fsl_soc.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. /*
  2. * FSL SoC setup code
  3. *
  4. * Maintained by Kumar Gala (see MAINTAINERS for contact information)
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/config.h>
  12. #include <linux/stddef.h>
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/errno.h>
  16. #include <linux/major.h>
  17. #include <linux/delay.h>
  18. #include <linux/irq.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/fsl_devices.h>
  23. #include <asm/system.h>
  24. #include <asm/atomic.h>
  25. #include <asm/io.h>
  26. #include <asm/irq.h>
  27. #include <asm/prom.h>
  28. #include <sysdev/fsl_soc.h>
  29. #include <mm/mmu_decl.h>
  30. static phys_addr_t immrbase = -1;
  31. phys_addr_t get_immrbase(void)
  32. {
  33. struct device_node *soc;
  34. if (immrbase != -1)
  35. return immrbase;
  36. soc = of_find_node_by_type(NULL, "soc");
  37. if (soc) {
  38. unsigned int size;
  39. void *prop = get_property(soc, "reg", &size);
  40. immrbase = of_translate_address(soc, prop);
  41. of_node_put(soc);
  42. };
  43. return immrbase;
  44. }
  45. EXPORT_SYMBOL(get_immrbase);
  46. static int __init gfar_mdio_of_init(void)
  47. {
  48. struct device_node *np;
  49. unsigned int i;
  50. struct platform_device *mdio_dev;
  51. struct resource res;
  52. int ret;
  53. for (np = NULL, i = 0;
  54. (np = of_find_compatible_node(np, "mdio", "gianfar")) != NULL;
  55. i++) {
  56. int k;
  57. struct device_node *child = NULL;
  58. struct gianfar_mdio_data mdio_data;
  59. memset(&res, 0, sizeof(res));
  60. memset(&mdio_data, 0, sizeof(mdio_data));
  61. ret = of_address_to_resource(np, 0, &res);
  62. if (ret)
  63. goto err;
  64. mdio_dev =
  65. platform_device_register_simple("fsl-gianfar_mdio",
  66. res.start, &res, 1);
  67. if (IS_ERR(mdio_dev)) {
  68. ret = PTR_ERR(mdio_dev);
  69. goto err;
  70. }
  71. for (k = 0; k < 32; k++)
  72. mdio_data.irq[k] = -1;
  73. while ((child = of_get_next_child(np, child)) != NULL) {
  74. if (child->n_intrs) {
  75. u32 *id =
  76. (u32 *) get_property(child, "reg", NULL);
  77. mdio_data.irq[*id] = child->intrs[0].line;
  78. }
  79. }
  80. ret =
  81. platform_device_add_data(mdio_dev, &mdio_data,
  82. sizeof(struct gianfar_mdio_data));
  83. if (ret)
  84. goto unreg;
  85. }
  86. return 0;
  87. unreg:
  88. platform_device_unregister(mdio_dev);
  89. err:
  90. return ret;
  91. }
  92. arch_initcall(gfar_mdio_of_init);
  93. static const char *gfar_tx_intr = "tx";
  94. static const char *gfar_rx_intr = "rx";
  95. static const char *gfar_err_intr = "error";
  96. static int __init gfar_of_init(void)
  97. {
  98. struct device_node *np;
  99. unsigned int i;
  100. struct platform_device *gfar_dev;
  101. struct resource res;
  102. int ret;
  103. for (np = NULL, i = 0;
  104. (np = of_find_compatible_node(np, "network", "gianfar")) != NULL;
  105. i++) {
  106. struct resource r[4];
  107. struct device_node *phy, *mdio;
  108. struct gianfar_platform_data gfar_data;
  109. unsigned int *id;
  110. char *model;
  111. void *mac_addr;
  112. phandle *ph;
  113. memset(r, 0, sizeof(r));
  114. memset(&gfar_data, 0, sizeof(gfar_data));
  115. ret = of_address_to_resource(np, 0, &r[0]);
  116. if (ret)
  117. goto err;
  118. r[1].start = np->intrs[0].line;
  119. r[1].end = np->intrs[0].line;
  120. r[1].flags = IORESOURCE_IRQ;
  121. model = get_property(np, "model", NULL);
  122. /* If we aren't the FEC we have multiple interrupts */
  123. if (model && strcasecmp(model, "FEC")) {
  124. r[1].name = gfar_tx_intr;
  125. r[2].name = gfar_rx_intr;
  126. r[2].start = np->intrs[1].line;
  127. r[2].end = np->intrs[1].line;
  128. r[2].flags = IORESOURCE_IRQ;
  129. r[3].name = gfar_err_intr;
  130. r[3].start = np->intrs[2].line;
  131. r[3].end = np->intrs[2].line;
  132. r[3].flags = IORESOURCE_IRQ;
  133. }
  134. gfar_dev =
  135. platform_device_register_simple("fsl-gianfar", i, &r[0],
  136. np->n_intrs + 1);
  137. if (IS_ERR(gfar_dev)) {
  138. ret = PTR_ERR(gfar_dev);
  139. goto err;
  140. }
  141. mac_addr = get_property(np, "address", NULL);
  142. memcpy(gfar_data.mac_addr, mac_addr, 6);
  143. if (model && !strcasecmp(model, "TSEC"))
  144. gfar_data.device_flags =
  145. FSL_GIANFAR_DEV_HAS_GIGABIT |
  146. FSL_GIANFAR_DEV_HAS_COALESCE |
  147. FSL_GIANFAR_DEV_HAS_RMON |
  148. FSL_GIANFAR_DEV_HAS_MULTI_INTR;
  149. if (model && !strcasecmp(model, "eTSEC"))
  150. gfar_data.device_flags =
  151. FSL_GIANFAR_DEV_HAS_GIGABIT |
  152. FSL_GIANFAR_DEV_HAS_COALESCE |
  153. FSL_GIANFAR_DEV_HAS_RMON |
  154. FSL_GIANFAR_DEV_HAS_MULTI_INTR |
  155. FSL_GIANFAR_DEV_HAS_CSUM |
  156. FSL_GIANFAR_DEV_HAS_VLAN |
  157. FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
  158. ph = (phandle *) get_property(np, "phy-handle", NULL);
  159. phy = of_find_node_by_phandle(*ph);
  160. if (phy == NULL) {
  161. ret = -ENODEV;
  162. goto unreg;
  163. }
  164. mdio = of_get_parent(phy);
  165. id = (u32 *) get_property(phy, "reg", NULL);
  166. ret = of_address_to_resource(mdio, 0, &res);
  167. if (ret) {
  168. of_node_put(phy);
  169. of_node_put(mdio);
  170. goto unreg;
  171. }
  172. gfar_data.phy_id = *id;
  173. gfar_data.bus_id = res.start;
  174. of_node_put(phy);
  175. of_node_put(mdio);
  176. ret =
  177. platform_device_add_data(gfar_dev, &gfar_data,
  178. sizeof(struct
  179. gianfar_platform_data));
  180. if (ret)
  181. goto unreg;
  182. }
  183. return 0;
  184. unreg:
  185. platform_device_unregister(gfar_dev);
  186. err:
  187. return ret;
  188. }
  189. arch_initcall(gfar_of_init);
  190. static int __init fsl_i2c_of_init(void)
  191. {
  192. struct device_node *np;
  193. unsigned int i;
  194. struct platform_device *i2c_dev;
  195. int ret;
  196. for (np = NULL, i = 0;
  197. (np = of_find_compatible_node(np, "i2c", "fsl-i2c")) != NULL;
  198. i++) {
  199. struct resource r[2];
  200. struct fsl_i2c_platform_data i2c_data;
  201. unsigned char *flags = NULL;
  202. memset(&r, 0, sizeof(r));
  203. memset(&i2c_data, 0, sizeof(i2c_data));
  204. ret = of_address_to_resource(np, 0, &r[0]);
  205. if (ret)
  206. goto err;
  207. r[1].start = np->intrs[0].line;
  208. r[1].end = np->intrs[0].line;
  209. r[1].flags = IORESOURCE_IRQ;
  210. i2c_dev = platform_device_register_simple("fsl-i2c", i, r, 2);
  211. if (IS_ERR(i2c_dev)) {
  212. ret = PTR_ERR(i2c_dev);
  213. goto err;
  214. }
  215. i2c_data.device_flags = 0;
  216. flags = get_property(np, "dfsrr", NULL);
  217. if (flags)
  218. i2c_data.device_flags |= FSL_I2C_DEV_SEPARATE_DFSRR;
  219. flags = get_property(np, "fsl5200-clocking", NULL);
  220. if (flags)
  221. i2c_data.device_flags |= FSL_I2C_DEV_CLOCK_5200;
  222. ret =
  223. platform_device_add_data(i2c_dev, &i2c_data,
  224. sizeof(struct
  225. fsl_i2c_platform_data));
  226. if (ret)
  227. goto unreg;
  228. }
  229. return 0;
  230. unreg:
  231. platform_device_unregister(i2c_dev);
  232. err:
  233. return ret;
  234. }
  235. arch_initcall(fsl_i2c_of_init);
  236. #ifdef CONFIG_PPC_83xx
  237. static int __init mpc83xx_wdt_init(void)
  238. {
  239. struct resource r;
  240. struct device_node *soc, *np;
  241. struct platform_device *dev;
  242. unsigned int *freq;
  243. int ret;
  244. np = of_find_compatible_node(NULL, "watchdog", "mpc83xx_wdt");
  245. if (!np) {
  246. ret = -ENODEV;
  247. goto nodev;
  248. }
  249. soc = of_find_node_by_type(NULL, "soc");
  250. if (!soc) {
  251. ret = -ENODEV;
  252. goto nosoc;
  253. }
  254. freq = (unsigned int *)get_property(soc, "bus-frequency", NULL);
  255. if (!freq) {
  256. ret = -ENODEV;
  257. goto err;
  258. }
  259. memset(&r, 0, sizeof(r));
  260. ret = of_address_to_resource(np, 0, &r);
  261. if (ret)
  262. goto err;
  263. dev = platform_device_register_simple("mpc83xx_wdt", 0, &r, 1);
  264. if (IS_ERR(dev)) {
  265. ret = PTR_ERR(dev);
  266. goto err;
  267. }
  268. ret = platform_device_add_data(dev, freq, sizeof(int));
  269. if (ret)
  270. goto unreg;
  271. of_node_put(soc);
  272. of_node_put(np);
  273. return 0;
  274. unreg:
  275. platform_device_unregister(dev);
  276. err:
  277. of_node_put(soc);
  278. nosoc:
  279. of_node_put(np);
  280. nodev:
  281. return ret;
  282. }
  283. arch_initcall(mpc83xx_wdt_init);
  284. #endif
  285. static enum fsl_usb2_phy_modes determine_usb_phy(char * phy_type)
  286. {
  287. if (!phy_type)
  288. return FSL_USB2_PHY_NONE;
  289. if (!strcasecmp(phy_type, "ulpi"))
  290. return FSL_USB2_PHY_ULPI;
  291. if (!strcasecmp(phy_type, "utmi"))
  292. return FSL_USB2_PHY_UTMI;
  293. if (!strcasecmp(phy_type, "utmi_wide"))
  294. return FSL_USB2_PHY_UTMI_WIDE;
  295. if (!strcasecmp(phy_type, "serial"))
  296. return FSL_USB2_PHY_SERIAL;
  297. return FSL_USB2_PHY_NONE;
  298. }
  299. static int __init fsl_usb_of_init(void)
  300. {
  301. struct device_node *np;
  302. unsigned int i;
  303. struct platform_device *usb_dev;
  304. int ret;
  305. for (np = NULL, i = 0;
  306. (np = of_find_compatible_node(np, "usb", "fsl-usb2-mph")) != NULL;
  307. i++) {
  308. struct resource r[2];
  309. struct fsl_usb2_platform_data usb_data;
  310. unsigned char *prop = NULL;
  311. memset(&r, 0, sizeof(r));
  312. memset(&usb_data, 0, sizeof(usb_data));
  313. ret = of_address_to_resource(np, 0, &r[0]);
  314. if (ret)
  315. goto err;
  316. r[1].start = np->intrs[0].line;
  317. r[1].end = np->intrs[0].line;
  318. r[1].flags = IORESOURCE_IRQ;
  319. usb_dev =
  320. platform_device_register_simple("fsl-usb2-mph", i, r, 2);
  321. if (IS_ERR(usb_dev)) {
  322. ret = PTR_ERR(usb_dev);
  323. goto err;
  324. }
  325. usb_dev->dev.coherent_dma_mask = 0xffffffffUL;
  326. usb_dev->dev.dma_mask = &usb_dev->dev.coherent_dma_mask;
  327. usb_data.operating_mode = FSL_USB2_MPH_HOST;
  328. prop = get_property(np, "port0", NULL);
  329. if (prop)
  330. usb_data.port_enables |= FSL_USB2_PORT0_ENABLED;
  331. prop = get_property(np, "port1", NULL);
  332. if (prop)
  333. usb_data.port_enables |= FSL_USB2_PORT1_ENABLED;
  334. prop = get_property(np, "phy_type", NULL);
  335. usb_data.phy_mode = determine_usb_phy(prop);
  336. ret =
  337. platform_device_add_data(usb_dev, &usb_data,
  338. sizeof(struct
  339. fsl_usb2_platform_data));
  340. if (ret)
  341. goto unreg;
  342. }
  343. return 0;
  344. unreg:
  345. platform_device_unregister(usb_dev);
  346. err:
  347. return ret;
  348. }
  349. arch_initcall(fsl_usb_of_init);
  350. static int __init fsl_usb_dr_of_init(void)
  351. {
  352. struct device_node *np;
  353. unsigned int i;
  354. struct platform_device *usb_dev;
  355. int ret;
  356. for (np = NULL, i = 0;
  357. (np = of_find_compatible_node(np, "usb", "fsl-usb2-dr")) != NULL;
  358. i++) {
  359. struct resource r[2];
  360. struct fsl_usb2_platform_data usb_data;
  361. unsigned char *prop = NULL;
  362. memset(&r, 0, sizeof(r));
  363. memset(&usb_data, 0, sizeof(usb_data));
  364. ret = of_address_to_resource(np, 0, &r[0]);
  365. if (ret)
  366. goto err;
  367. r[1].start = np->intrs[0].line;
  368. r[1].end = np->intrs[0].line;
  369. r[1].flags = IORESOURCE_IRQ;
  370. usb_dev =
  371. platform_device_register_simple("fsl-usb2-dr", i, r, 2);
  372. if (IS_ERR(usb_dev)) {
  373. ret = PTR_ERR(usb_dev);
  374. goto err;
  375. }
  376. usb_dev->dev.coherent_dma_mask = 0xffffffffUL;
  377. usb_dev->dev.dma_mask = &usb_dev->dev.coherent_dma_mask;
  378. usb_data.operating_mode = FSL_USB2_DR_HOST;
  379. prop = get_property(np, "phy_type", NULL);
  380. usb_data.phy_mode = determine_usb_phy(prop);
  381. ret =
  382. platform_device_add_data(usb_dev, &usb_data,
  383. sizeof(struct
  384. fsl_usb2_platform_data));
  385. if (ret)
  386. goto unreg;
  387. }
  388. return 0;
  389. unreg:
  390. platform_device_unregister(usb_dev);
  391. err:
  392. return ret;
  393. }
  394. arch_initcall(fsl_usb_dr_of_init);