rtasd.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. /*
  2. * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Communication to userspace based on kernel/printk.c
  10. */
  11. #include <linux/types.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/poll.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/init.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/cpu.h>
  21. #include <linux/delay.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/io.h>
  24. #include <asm/rtas.h>
  25. #include <asm/prom.h>
  26. #include <asm/nvram.h>
  27. #include <asm/atomic.h>
  28. #include <asm/machdep.h>
  29. #if 0
  30. #define DEBUG(A...) printk(KERN_ERR A)
  31. #else
  32. #define DEBUG(A...)
  33. #endif
  34. static DEFINE_SPINLOCK(rtasd_log_lock);
  35. DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
  36. static char *rtas_log_buf;
  37. static unsigned long rtas_log_start;
  38. static unsigned long rtas_log_size;
  39. static int surveillance_timeout = -1;
  40. static unsigned int rtas_event_scan_rate;
  41. static unsigned int rtas_error_log_max;
  42. static unsigned int rtas_error_log_buffer_max;
  43. static int full_rtas_msgs = 0;
  44. extern int no_logging;
  45. volatile int error_log_cnt = 0;
  46. /*
  47. * Since we use 32 bit RTAS, the physical address of this must be below
  48. * 4G or else bad things happen. Allocate this in the kernel data and
  49. * make it big enough.
  50. */
  51. static unsigned char logdata[RTAS_ERROR_LOG_MAX];
  52. static int get_eventscan_parms(void);
  53. static char *rtas_type[] = {
  54. "Unknown", "Retry", "TCE Error", "Internal Device Failure",
  55. "Timeout", "Data Parity", "Address Parity", "Cache Parity",
  56. "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
  57. };
  58. static char *rtas_event_type(int type)
  59. {
  60. if ((type > 0) && (type < 11))
  61. return rtas_type[type];
  62. switch (type) {
  63. case RTAS_TYPE_EPOW:
  64. return "EPOW";
  65. case RTAS_TYPE_PLATFORM:
  66. return "Platform Error";
  67. case RTAS_TYPE_IO:
  68. return "I/O Event";
  69. case RTAS_TYPE_INFO:
  70. return "Platform Information Event";
  71. case RTAS_TYPE_DEALLOC:
  72. return "Resource Deallocation Event";
  73. case RTAS_TYPE_DUMP:
  74. return "Dump Notification Event";
  75. }
  76. return rtas_type[0];
  77. }
  78. /* To see this info, grep RTAS /var/log/messages and each entry
  79. * will be collected together with obvious begin/end.
  80. * There will be a unique identifier on the begin and end lines.
  81. * This will persist across reboots.
  82. *
  83. * format of error logs returned from RTAS:
  84. * bytes (size) : contents
  85. * --------------------------------------------------------
  86. * 0-7 (8) : rtas_error_log
  87. * 8-47 (40) : extended info
  88. * 48-51 (4) : vendor id
  89. * 52-1023 (vendor specific) : location code and debug data
  90. */
  91. static void printk_log_rtas(char *buf, int len)
  92. {
  93. int i,j,n = 0;
  94. int perline = 16;
  95. char buffer[64];
  96. char * str = "RTAS event";
  97. if (full_rtas_msgs) {
  98. printk(RTAS_DEBUG "%d -------- %s begin --------\n",
  99. error_log_cnt, str);
  100. /*
  101. * Print perline bytes on each line, each line will start
  102. * with RTAS and a changing number, so syslogd will
  103. * print lines that are otherwise the same. Separate every
  104. * 4 bytes with a space.
  105. */
  106. for (i = 0; i < len; i++) {
  107. j = i % perline;
  108. if (j == 0) {
  109. memset(buffer, 0, sizeof(buffer));
  110. n = sprintf(buffer, "RTAS %d:", i/perline);
  111. }
  112. if ((i % 4) == 0)
  113. n += sprintf(buffer+n, " ");
  114. n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
  115. if (j == (perline-1))
  116. printk(KERN_DEBUG "%s\n", buffer);
  117. }
  118. if ((i % perline) != 0)
  119. printk(KERN_DEBUG "%s\n", buffer);
  120. printk(RTAS_DEBUG "%d -------- %s end ----------\n",
  121. error_log_cnt, str);
  122. } else {
  123. struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
  124. printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
  125. error_log_cnt, rtas_event_type(errlog->type),
  126. errlog->severity);
  127. }
  128. }
  129. static int log_rtas_len(char * buf)
  130. {
  131. int len;
  132. struct rtas_error_log *err;
  133. /* rtas fixed header */
  134. len = 8;
  135. err = (struct rtas_error_log *)buf;
  136. if (err->extended_log_length) {
  137. /* extended header */
  138. len += err->extended_log_length;
  139. }
  140. if (rtas_error_log_max == 0) {
  141. get_eventscan_parms();
  142. }
  143. if (len > rtas_error_log_max)
  144. len = rtas_error_log_max;
  145. return len;
  146. }
  147. /*
  148. * First write to nvram, if fatal error, that is the only
  149. * place we log the info. The error will be picked up
  150. * on the next reboot by rtasd. If not fatal, run the
  151. * method for the type of error. Currently, only RTAS
  152. * errors have methods implemented, but in the future
  153. * there might be a need to store data in nvram before a
  154. * call to panic().
  155. *
  156. * XXX We write to nvram periodically, to indicate error has
  157. * been written and sync'd, but there is a possibility
  158. * that if we don't shutdown correctly, a duplicate error
  159. * record will be created on next reboot.
  160. */
  161. void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
  162. {
  163. unsigned long offset;
  164. unsigned long s;
  165. int len = 0;
  166. DEBUG("logging event\n");
  167. if (buf == NULL)
  168. return;
  169. spin_lock_irqsave(&rtasd_log_lock, s);
  170. /* get length and increase count */
  171. switch (err_type & ERR_TYPE_MASK) {
  172. case ERR_TYPE_RTAS_LOG:
  173. len = log_rtas_len(buf);
  174. if (!(err_type & ERR_FLAG_BOOT))
  175. error_log_cnt++;
  176. break;
  177. case ERR_TYPE_KERNEL_PANIC:
  178. default:
  179. spin_unlock_irqrestore(&rtasd_log_lock, s);
  180. return;
  181. }
  182. /* Write error to NVRAM */
  183. if (!no_logging && !(err_type & ERR_FLAG_BOOT))
  184. nvram_write_error_log(buf, len, err_type);
  185. /*
  186. * rtas errors can occur during boot, and we do want to capture
  187. * those somewhere, even if nvram isn't ready (why not?), and even
  188. * if rtasd isn't ready. Put them into the boot log, at least.
  189. */
  190. if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
  191. printk_log_rtas(buf, len);
  192. /* Check to see if we need to or have stopped logging */
  193. if (fatal || no_logging) {
  194. no_logging = 1;
  195. spin_unlock_irqrestore(&rtasd_log_lock, s);
  196. return;
  197. }
  198. /* call type specific method for error */
  199. switch (err_type & ERR_TYPE_MASK) {
  200. case ERR_TYPE_RTAS_LOG:
  201. offset = rtas_error_log_buffer_max *
  202. ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
  203. /* First copy over sequence number */
  204. memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
  205. /* Second copy over error log data */
  206. offset += sizeof(int);
  207. memcpy(&rtas_log_buf[offset], buf, len);
  208. if (rtas_log_size < LOG_NUMBER)
  209. rtas_log_size += 1;
  210. else
  211. rtas_log_start += 1;
  212. spin_unlock_irqrestore(&rtasd_log_lock, s);
  213. wake_up_interruptible(&rtas_log_wait);
  214. break;
  215. case ERR_TYPE_KERNEL_PANIC:
  216. default:
  217. spin_unlock_irqrestore(&rtasd_log_lock, s);
  218. return;
  219. }
  220. }
  221. static int rtas_log_open(struct inode * inode, struct file * file)
  222. {
  223. return 0;
  224. }
  225. static int rtas_log_release(struct inode * inode, struct file * file)
  226. {
  227. return 0;
  228. }
  229. /* This will check if all events are logged, if they are then, we
  230. * know that we can safely clear the events in NVRAM.
  231. * Next we'll sit and wait for something else to log.
  232. */
  233. static ssize_t rtas_log_read(struct file * file, char __user * buf,
  234. size_t count, loff_t *ppos)
  235. {
  236. int error;
  237. char *tmp;
  238. unsigned long s;
  239. unsigned long offset;
  240. if (!buf || count < rtas_error_log_buffer_max)
  241. return -EINVAL;
  242. count = rtas_error_log_buffer_max;
  243. if (!access_ok(VERIFY_WRITE, buf, count))
  244. return -EFAULT;
  245. tmp = kmalloc(count, GFP_KERNEL);
  246. if (!tmp)
  247. return -ENOMEM;
  248. spin_lock_irqsave(&rtasd_log_lock, s);
  249. /* if it's 0, then we know we got the last one (the one in NVRAM) */
  250. if (rtas_log_size == 0 && !no_logging)
  251. nvram_clear_error_log();
  252. spin_unlock_irqrestore(&rtasd_log_lock, s);
  253. error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
  254. if (error)
  255. goto out;
  256. spin_lock_irqsave(&rtasd_log_lock, s);
  257. offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
  258. memcpy(tmp, &rtas_log_buf[offset], count);
  259. rtas_log_start += 1;
  260. rtas_log_size -= 1;
  261. spin_unlock_irqrestore(&rtasd_log_lock, s);
  262. error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
  263. out:
  264. kfree(tmp);
  265. return error;
  266. }
  267. static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
  268. {
  269. poll_wait(file, &rtas_log_wait, wait);
  270. if (rtas_log_size)
  271. return POLLIN | POLLRDNORM;
  272. return 0;
  273. }
  274. struct file_operations proc_rtas_log_operations = {
  275. .read = rtas_log_read,
  276. .poll = rtas_log_poll,
  277. .open = rtas_log_open,
  278. .release = rtas_log_release,
  279. };
  280. static int enable_surveillance(int timeout)
  281. {
  282. int error;
  283. error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
  284. if (error == 0)
  285. return 0;
  286. if (error == -EINVAL) {
  287. printk(KERN_INFO "rtasd: surveillance not supported\n");
  288. return 0;
  289. }
  290. printk(KERN_ERR "rtasd: could not update surveillance\n");
  291. return -1;
  292. }
  293. static int get_eventscan_parms(void)
  294. {
  295. struct device_node *node;
  296. int *ip;
  297. node = of_find_node_by_path("/rtas");
  298. ip = (int *)get_property(node, "rtas-event-scan-rate", NULL);
  299. if (ip == NULL) {
  300. printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n");
  301. of_node_put(node);
  302. return -1;
  303. }
  304. rtas_event_scan_rate = *ip;
  305. DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate);
  306. /* Make room for the sequence number */
  307. rtas_error_log_max = rtas_get_error_log_max();
  308. rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
  309. of_node_put(node);
  310. return 0;
  311. }
  312. static void do_event_scan(int event_scan)
  313. {
  314. int error;
  315. do {
  316. memset(logdata, 0, rtas_error_log_max);
  317. error = rtas_call(event_scan, 4, 1, NULL,
  318. RTAS_EVENT_SCAN_ALL_EVENTS, 0,
  319. __pa(logdata), rtas_error_log_max);
  320. if (error == -1) {
  321. printk(KERN_ERR "event-scan failed\n");
  322. break;
  323. }
  324. if (error == 0)
  325. pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
  326. } while(error == 0);
  327. }
  328. static void do_event_scan_all_cpus(long delay)
  329. {
  330. int cpu;
  331. lock_cpu_hotplug();
  332. cpu = first_cpu(cpu_online_map);
  333. for (;;) {
  334. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  335. do_event_scan(rtas_token("event-scan"));
  336. set_cpus_allowed(current, CPU_MASK_ALL);
  337. /* Drop hotplug lock, and sleep for the specified delay */
  338. unlock_cpu_hotplug();
  339. msleep_interruptible(delay);
  340. lock_cpu_hotplug();
  341. cpu = next_cpu(cpu, cpu_online_map);
  342. if (cpu == NR_CPUS)
  343. break;
  344. }
  345. unlock_cpu_hotplug();
  346. }
  347. static int rtasd(void *unused)
  348. {
  349. unsigned int err_type;
  350. int event_scan = rtas_token("event-scan");
  351. int rc;
  352. daemonize("rtasd");
  353. if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1)
  354. goto error;
  355. rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
  356. if (!rtas_log_buf) {
  357. printk(KERN_ERR "rtasd: no memory\n");
  358. goto error;
  359. }
  360. printk(KERN_INFO "RTAS daemon started\n");
  361. DEBUG("will sleep for %d milliseconds\n", (30000/rtas_event_scan_rate));
  362. /* See if we have any error stored in NVRAM */
  363. memset(logdata, 0, rtas_error_log_max);
  364. rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type);
  365. /* We can use rtas_log_buf now */
  366. no_logging = 0;
  367. if (!rc) {
  368. if (err_type != ERR_FLAG_ALREADY_LOGGED) {
  369. pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
  370. }
  371. }
  372. /* First pass. */
  373. do_event_scan_all_cpus(1000);
  374. if (surveillance_timeout != -1) {
  375. DEBUG("enabling surveillance\n");
  376. enable_surveillance(surveillance_timeout);
  377. DEBUG("surveillance enabled\n");
  378. }
  379. /* Delay should be at least one second since some
  380. * machines have problems if we call event-scan too
  381. * quickly. */
  382. for (;;)
  383. do_event_scan_all_cpus(30000/rtas_event_scan_rate);
  384. error:
  385. /* Should delete proc entries */
  386. return -EINVAL;
  387. }
  388. static int __init rtas_init(void)
  389. {
  390. struct proc_dir_entry *entry;
  391. if (!machine_is(pseries))
  392. return 0;
  393. /* No RTAS */
  394. if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) {
  395. printk(KERN_INFO "rtasd: no event-scan on system\n");
  396. return -ENODEV;
  397. }
  398. entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL);
  399. if (entry)
  400. entry->proc_fops = &proc_rtas_log_operations;
  401. else
  402. printk(KERN_ERR "Failed to create error_log proc entry\n");
  403. if (kernel_thread(rtasd, NULL, CLONE_FS) < 0)
  404. printk(KERN_ERR "Failed to start RTAS daemon\n");
  405. return 0;
  406. }
  407. static int __init surveillance_setup(char *str)
  408. {
  409. int i;
  410. if (get_option(&str,&i)) {
  411. if (i >= 0 && i <= 255)
  412. surveillance_timeout = i;
  413. }
  414. return 1;
  415. }
  416. static int __init rtasmsgs_setup(char *str)
  417. {
  418. if (strcmp(str, "on") == 0)
  419. full_rtas_msgs = 1;
  420. else if (strcmp(str, "off") == 0)
  421. full_rtas_msgs = 0;
  422. return 1;
  423. }
  424. __initcall(rtas_init);
  425. __setup("surveillance=", surveillance_setup);
  426. __setup("rtasmsgs=", rtasmsgs_setup);