context.c 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. /*
  2. * SPU file system -- SPU context management
  3. *
  4. * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
  5. *
  6. * Author: Arnd Bergmann <arndb@de.ibm.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/fs.h>
  23. #include <linux/mm.h>
  24. #include <linux/slab.h>
  25. #include <asm/spu.h>
  26. #include <asm/spu_csa.h>
  27. #include "spufs.h"
  28. struct spu_context *alloc_spu_context(void)
  29. {
  30. struct spu_context *ctx;
  31. ctx = kmalloc(sizeof *ctx, GFP_KERNEL);
  32. if (!ctx)
  33. goto out;
  34. /* Binding to physical processor deferred
  35. * until spu_activate().
  36. */
  37. spu_init_csa(&ctx->csa);
  38. if (!ctx->csa.lscsa) {
  39. goto out_free;
  40. }
  41. spin_lock_init(&ctx->mmio_lock);
  42. kref_init(&ctx->kref);
  43. init_rwsem(&ctx->state_sema);
  44. init_MUTEX(&ctx->run_sema);
  45. init_waitqueue_head(&ctx->ibox_wq);
  46. init_waitqueue_head(&ctx->wbox_wq);
  47. init_waitqueue_head(&ctx->stop_wq);
  48. init_waitqueue_head(&ctx->mfc_wq);
  49. ctx->ibox_fasync = NULL;
  50. ctx->wbox_fasync = NULL;
  51. ctx->mfc_fasync = NULL;
  52. ctx->mfc = NULL;
  53. ctx->tagwait = 0;
  54. ctx->state = SPU_STATE_SAVED;
  55. ctx->local_store = NULL;
  56. ctx->cntl = NULL;
  57. ctx->signal1 = NULL;
  58. ctx->signal2 = NULL;
  59. ctx->spu = NULL;
  60. ctx->ops = &spu_backing_ops;
  61. ctx->owner = get_task_mm(current);
  62. goto out;
  63. out_free:
  64. kfree(ctx);
  65. ctx = NULL;
  66. out:
  67. return ctx;
  68. }
  69. void destroy_spu_context(struct kref *kref)
  70. {
  71. struct spu_context *ctx;
  72. ctx = container_of(kref, struct spu_context, kref);
  73. down_write(&ctx->state_sema);
  74. spu_deactivate(ctx);
  75. up_write(&ctx->state_sema);
  76. spu_fini_csa(&ctx->csa);
  77. kfree(ctx);
  78. }
  79. struct spu_context * get_spu_context(struct spu_context *ctx)
  80. {
  81. kref_get(&ctx->kref);
  82. return ctx;
  83. }
  84. int put_spu_context(struct spu_context *ctx)
  85. {
  86. return kref_put(&ctx->kref, &destroy_spu_context);
  87. }
  88. /* give up the mm reference when the context is about to be destroyed */
  89. void spu_forget(struct spu_context *ctx)
  90. {
  91. struct mm_struct *mm;
  92. spu_acquire_saved(ctx);
  93. mm = ctx->owner;
  94. ctx->owner = NULL;
  95. mmput(mm);
  96. spu_release(ctx);
  97. }
  98. void spu_acquire(struct spu_context *ctx)
  99. {
  100. down_read(&ctx->state_sema);
  101. }
  102. void spu_release(struct spu_context *ctx)
  103. {
  104. up_read(&ctx->state_sema);
  105. }
  106. void spu_unmap_mappings(struct spu_context *ctx)
  107. {
  108. if (ctx->local_store)
  109. unmap_mapping_range(ctx->local_store, 0, LS_SIZE, 1);
  110. if (ctx->mfc)
  111. unmap_mapping_range(ctx->mfc, 0, 0x4000, 1);
  112. if (ctx->cntl)
  113. unmap_mapping_range(ctx->cntl, 0, 0x4000, 1);
  114. if (ctx->signal1)
  115. unmap_mapping_range(ctx->signal1, 0, 0x4000, 1);
  116. if (ctx->signal2)
  117. unmap_mapping_range(ctx->signal2, 0, 0x4000, 1);
  118. }
  119. int spu_acquire_runnable(struct spu_context *ctx)
  120. {
  121. int ret = 0;
  122. down_read(&ctx->state_sema);
  123. if (ctx->state == SPU_STATE_RUNNABLE) {
  124. ctx->spu->prio = current->prio;
  125. return 0;
  126. }
  127. up_read(&ctx->state_sema);
  128. down_write(&ctx->state_sema);
  129. /* ctx is about to be freed, can't acquire any more */
  130. if (!ctx->owner) {
  131. ret = -EINVAL;
  132. goto out;
  133. }
  134. if (ctx->state == SPU_STATE_SAVED) {
  135. ret = spu_activate(ctx, 0);
  136. if (ret)
  137. goto out;
  138. ctx->state = SPU_STATE_RUNNABLE;
  139. }
  140. downgrade_write(&ctx->state_sema);
  141. /* On success, we return holding the lock */
  142. return ret;
  143. out:
  144. /* Release here, to simplify calling code. */
  145. up_write(&ctx->state_sema);
  146. return ret;
  147. }
  148. void spu_acquire_saved(struct spu_context *ctx)
  149. {
  150. down_read(&ctx->state_sema);
  151. if (ctx->state == SPU_STATE_SAVED)
  152. return;
  153. up_read(&ctx->state_sema);
  154. down_write(&ctx->state_sema);
  155. if (ctx->state == SPU_STATE_RUNNABLE) {
  156. spu_deactivate(ctx);
  157. ctx->state = SPU_STATE_SAVED;
  158. }
  159. downgrade_write(&ctx->state_sema);
  160. }