numa.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805
  1. /*
  2. * pSeries NUMA support
  3. *
  4. * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/threads.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/mmzone.h>
  16. #include <linux/module.h>
  17. #include <linux/nodemask.h>
  18. #include <linux/cpu.h>
  19. #include <linux/notifier.h>
  20. #include <asm/sparsemem.h>
  21. #include <asm/lmb.h>
  22. #include <asm/system.h>
  23. #include <asm/smp.h>
  24. static int numa_enabled = 1;
  25. static int numa_debug;
  26. #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  27. int numa_cpu_lookup_table[NR_CPUS];
  28. cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
  29. struct pglist_data *node_data[MAX_NUMNODES];
  30. EXPORT_SYMBOL(numa_cpu_lookup_table);
  31. EXPORT_SYMBOL(numa_cpumask_lookup_table);
  32. EXPORT_SYMBOL(node_data);
  33. static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
  34. static int min_common_depth;
  35. static int n_mem_addr_cells, n_mem_size_cells;
  36. /*
  37. * We need somewhere to store start/end/node for each region until we have
  38. * allocated the real node_data structures.
  39. */
  40. #define MAX_REGIONS (MAX_LMB_REGIONS*2)
  41. static struct {
  42. unsigned long start_pfn;
  43. unsigned long end_pfn;
  44. int nid;
  45. } init_node_data[MAX_REGIONS] __initdata;
  46. int __init early_pfn_to_nid(unsigned long pfn)
  47. {
  48. unsigned int i;
  49. for (i = 0; init_node_data[i].end_pfn; i++) {
  50. unsigned long start_pfn = init_node_data[i].start_pfn;
  51. unsigned long end_pfn = init_node_data[i].end_pfn;
  52. if ((start_pfn <= pfn) && (pfn < end_pfn))
  53. return init_node_data[i].nid;
  54. }
  55. return -1;
  56. }
  57. void __init add_region(unsigned int nid, unsigned long start_pfn,
  58. unsigned long pages)
  59. {
  60. unsigned int i;
  61. dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
  62. nid, start_pfn, pages);
  63. for (i = 0; init_node_data[i].end_pfn; i++) {
  64. if (init_node_data[i].nid != nid)
  65. continue;
  66. if (init_node_data[i].end_pfn == start_pfn) {
  67. init_node_data[i].end_pfn += pages;
  68. return;
  69. }
  70. if (init_node_data[i].start_pfn == (start_pfn + pages)) {
  71. init_node_data[i].start_pfn -= pages;
  72. return;
  73. }
  74. }
  75. /*
  76. * Leave last entry NULL so we dont iterate off the end (we use
  77. * entry.end_pfn to terminate the walk).
  78. */
  79. if (i >= (MAX_REGIONS - 1)) {
  80. printk(KERN_ERR "WARNING: too many memory regions in "
  81. "numa code, truncating\n");
  82. return;
  83. }
  84. init_node_data[i].start_pfn = start_pfn;
  85. init_node_data[i].end_pfn = start_pfn + pages;
  86. init_node_data[i].nid = nid;
  87. }
  88. /* We assume init_node_data has no overlapping regions */
  89. void __init get_region(unsigned int nid, unsigned long *start_pfn,
  90. unsigned long *end_pfn, unsigned long *pages_present)
  91. {
  92. unsigned int i;
  93. *start_pfn = -1UL;
  94. *end_pfn = *pages_present = 0;
  95. for (i = 0; init_node_data[i].end_pfn; i++) {
  96. if (init_node_data[i].nid != nid)
  97. continue;
  98. *pages_present += init_node_data[i].end_pfn -
  99. init_node_data[i].start_pfn;
  100. if (init_node_data[i].start_pfn < *start_pfn)
  101. *start_pfn = init_node_data[i].start_pfn;
  102. if (init_node_data[i].end_pfn > *end_pfn)
  103. *end_pfn = init_node_data[i].end_pfn;
  104. }
  105. /* We didnt find a matching region, return start/end as 0 */
  106. if (*start_pfn == -1UL)
  107. *start_pfn = 0;
  108. }
  109. static void __cpuinit map_cpu_to_node(int cpu, int node)
  110. {
  111. numa_cpu_lookup_table[cpu] = node;
  112. dbg("adding cpu %d to node %d\n", cpu, node);
  113. if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
  114. cpu_set(cpu, numa_cpumask_lookup_table[node]);
  115. }
  116. #ifdef CONFIG_HOTPLUG_CPU
  117. static void unmap_cpu_from_node(unsigned long cpu)
  118. {
  119. int node = numa_cpu_lookup_table[cpu];
  120. dbg("removing cpu %lu from node %d\n", cpu, node);
  121. if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
  122. cpu_clear(cpu, numa_cpumask_lookup_table[node]);
  123. } else {
  124. printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
  125. cpu, node);
  126. }
  127. }
  128. #endif /* CONFIG_HOTPLUG_CPU */
  129. static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
  130. {
  131. unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
  132. struct device_node *cpu_node = NULL;
  133. unsigned int *interrupt_server, *reg;
  134. int len;
  135. while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
  136. /* Try interrupt server first */
  137. interrupt_server = (unsigned int *)get_property(cpu_node,
  138. "ibm,ppc-interrupt-server#s", &len);
  139. len = len / sizeof(u32);
  140. if (interrupt_server && (len > 0)) {
  141. while (len--) {
  142. if (interrupt_server[len] == hw_cpuid)
  143. return cpu_node;
  144. }
  145. } else {
  146. reg = (unsigned int *)get_property(cpu_node,
  147. "reg", &len);
  148. if (reg && (len > 0) && (reg[0] == hw_cpuid))
  149. return cpu_node;
  150. }
  151. }
  152. return NULL;
  153. }
  154. /* must hold reference to node during call */
  155. static int *of_get_associativity(struct device_node *dev)
  156. {
  157. return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
  158. }
  159. /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
  160. * info is found.
  161. */
  162. static int of_node_to_nid(struct device_node *device)
  163. {
  164. int nid = -1;
  165. unsigned int *tmp;
  166. if (min_common_depth == -1)
  167. goto out;
  168. tmp = of_get_associativity(device);
  169. if (!tmp)
  170. goto out;
  171. if (tmp[0] >= min_common_depth)
  172. nid = tmp[min_common_depth];
  173. /* POWER4 LPAR uses 0xffff as invalid node */
  174. if (nid == 0xffff || nid >= MAX_NUMNODES)
  175. nid = -1;
  176. out:
  177. return nid;
  178. }
  179. /*
  180. * In theory, the "ibm,associativity" property may contain multiple
  181. * associativity lists because a resource may be multiply connected
  182. * into the machine. This resource then has different associativity
  183. * characteristics relative to its multiple connections. We ignore
  184. * this for now. We also assume that all cpu and memory sets have
  185. * their distances represented at a common level. This won't be
  186. * true for heirarchical NUMA.
  187. *
  188. * In any case the ibm,associativity-reference-points should give
  189. * the correct depth for a normal NUMA system.
  190. *
  191. * - Dave Hansen <haveblue@us.ibm.com>
  192. */
  193. static int __init find_min_common_depth(void)
  194. {
  195. int depth;
  196. unsigned int *ref_points;
  197. struct device_node *rtas_root;
  198. unsigned int len;
  199. rtas_root = of_find_node_by_path("/rtas");
  200. if (!rtas_root)
  201. return -1;
  202. /*
  203. * this property is 2 32-bit integers, each representing a level of
  204. * depth in the associativity nodes. The first is for an SMP
  205. * configuration (should be all 0's) and the second is for a normal
  206. * NUMA configuration.
  207. */
  208. ref_points = (unsigned int *)get_property(rtas_root,
  209. "ibm,associativity-reference-points", &len);
  210. if ((len >= 1) && ref_points) {
  211. depth = ref_points[1];
  212. } else {
  213. dbg("NUMA: ibm,associativity-reference-points not found.\n");
  214. depth = -1;
  215. }
  216. of_node_put(rtas_root);
  217. return depth;
  218. }
  219. static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
  220. {
  221. struct device_node *memory = NULL;
  222. memory = of_find_node_by_type(memory, "memory");
  223. if (!memory)
  224. panic("numa.c: No memory nodes found!");
  225. *n_addr_cells = prom_n_addr_cells(memory);
  226. *n_size_cells = prom_n_size_cells(memory);
  227. of_node_put(memory);
  228. }
  229. static unsigned long __devinit read_n_cells(int n, unsigned int **buf)
  230. {
  231. unsigned long result = 0;
  232. while (n--) {
  233. result = (result << 32) | **buf;
  234. (*buf)++;
  235. }
  236. return result;
  237. }
  238. /*
  239. * Figure out to which domain a cpu belongs and stick it there.
  240. * Return the id of the domain used.
  241. */
  242. static int __cpuinit numa_setup_cpu(unsigned long lcpu)
  243. {
  244. int nid = 0;
  245. struct device_node *cpu = find_cpu_node(lcpu);
  246. if (!cpu) {
  247. WARN_ON(1);
  248. goto out;
  249. }
  250. nid = of_node_to_nid(cpu);
  251. if (nid < 0 || !node_online(nid))
  252. nid = any_online_node(NODE_MASK_ALL);
  253. out:
  254. map_cpu_to_node(lcpu, nid);
  255. of_node_put(cpu);
  256. return nid;
  257. }
  258. static int cpu_numa_callback(struct notifier_block *nfb,
  259. unsigned long action,
  260. void *hcpu)
  261. {
  262. unsigned long lcpu = (unsigned long)hcpu;
  263. int ret = NOTIFY_DONE;
  264. switch (action) {
  265. case CPU_UP_PREPARE:
  266. numa_setup_cpu(lcpu);
  267. ret = NOTIFY_OK;
  268. break;
  269. #ifdef CONFIG_HOTPLUG_CPU
  270. case CPU_DEAD:
  271. case CPU_UP_CANCELED:
  272. unmap_cpu_from_node(lcpu);
  273. break;
  274. ret = NOTIFY_OK;
  275. #endif
  276. }
  277. return ret;
  278. }
  279. /*
  280. * Check and possibly modify a memory region to enforce the memory limit.
  281. *
  282. * Returns the size the region should have to enforce the memory limit.
  283. * This will either be the original value of size, a truncated value,
  284. * or zero. If the returned value of size is 0 the region should be
  285. * discarded as it lies wholy above the memory limit.
  286. */
  287. static unsigned long __init numa_enforce_memory_limit(unsigned long start,
  288. unsigned long size)
  289. {
  290. /*
  291. * We use lmb_end_of_DRAM() in here instead of memory_limit because
  292. * we've already adjusted it for the limit and it takes care of
  293. * having memory holes below the limit.
  294. */
  295. if (! memory_limit)
  296. return size;
  297. if (start + size <= lmb_end_of_DRAM())
  298. return size;
  299. if (start >= lmb_end_of_DRAM())
  300. return 0;
  301. return lmb_end_of_DRAM() - start;
  302. }
  303. static int __init parse_numa_properties(void)
  304. {
  305. struct device_node *cpu = NULL;
  306. struct device_node *memory = NULL;
  307. int default_nid = 0;
  308. unsigned long i;
  309. if (numa_enabled == 0) {
  310. printk(KERN_WARNING "NUMA disabled by user\n");
  311. return -1;
  312. }
  313. min_common_depth = find_min_common_depth();
  314. if (min_common_depth < 0)
  315. return min_common_depth;
  316. dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
  317. /*
  318. * Even though we connect cpus to numa domains later in SMP
  319. * init, we need to know the node ids now. This is because
  320. * each node to be onlined must have NODE_DATA etc backing it.
  321. */
  322. for_each_present_cpu(i) {
  323. int nid;
  324. cpu = find_cpu_node(i);
  325. BUG_ON(!cpu);
  326. nid = of_node_to_nid(cpu);
  327. of_node_put(cpu);
  328. /*
  329. * Don't fall back to default_nid yet -- we will plug
  330. * cpus into nodes once the memory scan has discovered
  331. * the topology.
  332. */
  333. if (nid < 0)
  334. continue;
  335. node_set_online(nid);
  336. }
  337. get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
  338. memory = NULL;
  339. while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
  340. unsigned long start;
  341. unsigned long size;
  342. int nid;
  343. int ranges;
  344. unsigned int *memcell_buf;
  345. unsigned int len;
  346. memcell_buf = (unsigned int *)get_property(memory,
  347. "linux,usable-memory", &len);
  348. if (!memcell_buf || len <= 0)
  349. memcell_buf =
  350. (unsigned int *)get_property(memory, "reg",
  351. &len);
  352. if (!memcell_buf || len <= 0)
  353. continue;
  354. /* ranges in cell */
  355. ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
  356. new_range:
  357. /* these are order-sensitive, and modify the buffer pointer */
  358. start = read_n_cells(n_mem_addr_cells, &memcell_buf);
  359. size = read_n_cells(n_mem_size_cells, &memcell_buf);
  360. /*
  361. * Assumption: either all memory nodes or none will
  362. * have associativity properties. If none, then
  363. * everything goes to default_nid.
  364. */
  365. nid = of_node_to_nid(memory);
  366. if (nid < 0)
  367. nid = default_nid;
  368. node_set_online(nid);
  369. if (!(size = numa_enforce_memory_limit(start, size))) {
  370. if (--ranges)
  371. goto new_range;
  372. else
  373. continue;
  374. }
  375. add_region(nid, start >> PAGE_SHIFT,
  376. size >> PAGE_SHIFT);
  377. if (--ranges)
  378. goto new_range;
  379. }
  380. return 0;
  381. }
  382. static void __init setup_nonnuma(void)
  383. {
  384. unsigned long top_of_ram = lmb_end_of_DRAM();
  385. unsigned long total_ram = lmb_phys_mem_size();
  386. unsigned int i;
  387. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  388. top_of_ram, total_ram);
  389. printk(KERN_INFO "Memory hole size: %ldMB\n",
  390. (top_of_ram - total_ram) >> 20);
  391. for (i = 0; i < lmb.memory.cnt; ++i)
  392. add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
  393. lmb_size_pages(&lmb.memory, i));
  394. node_set_online(0);
  395. }
  396. void __init dump_numa_cpu_topology(void)
  397. {
  398. unsigned int node;
  399. unsigned int cpu, count;
  400. if (min_common_depth == -1 || !numa_enabled)
  401. return;
  402. for_each_online_node(node) {
  403. printk(KERN_INFO "Node %d CPUs:", node);
  404. count = 0;
  405. /*
  406. * If we used a CPU iterator here we would miss printing
  407. * the holes in the cpumap.
  408. */
  409. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  410. if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
  411. if (count == 0)
  412. printk(" %u", cpu);
  413. ++count;
  414. } else {
  415. if (count > 1)
  416. printk("-%u", cpu - 1);
  417. count = 0;
  418. }
  419. }
  420. if (count > 1)
  421. printk("-%u", NR_CPUS - 1);
  422. printk("\n");
  423. }
  424. }
  425. static void __init dump_numa_memory_topology(void)
  426. {
  427. unsigned int node;
  428. unsigned int count;
  429. if (min_common_depth == -1 || !numa_enabled)
  430. return;
  431. for_each_online_node(node) {
  432. unsigned long i;
  433. printk(KERN_INFO "Node %d Memory:", node);
  434. count = 0;
  435. for (i = 0; i < lmb_end_of_DRAM();
  436. i += (1 << SECTION_SIZE_BITS)) {
  437. if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
  438. if (count == 0)
  439. printk(" 0x%lx", i);
  440. ++count;
  441. } else {
  442. if (count > 0)
  443. printk("-0x%lx", i);
  444. count = 0;
  445. }
  446. }
  447. if (count > 0)
  448. printk("-0x%lx", i);
  449. printk("\n");
  450. }
  451. }
  452. /*
  453. * Allocate some memory, satisfying the lmb or bootmem allocator where
  454. * required. nid is the preferred node and end is the physical address of
  455. * the highest address in the node.
  456. *
  457. * Returns the physical address of the memory.
  458. */
  459. static void __init *careful_allocation(int nid, unsigned long size,
  460. unsigned long align,
  461. unsigned long end_pfn)
  462. {
  463. int new_nid;
  464. unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
  465. /* retry over all memory */
  466. if (!ret)
  467. ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
  468. if (!ret)
  469. panic("numa.c: cannot allocate %lu bytes on node %d",
  470. size, nid);
  471. /*
  472. * If the memory came from a previously allocated node, we must
  473. * retry with the bootmem allocator.
  474. */
  475. new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
  476. if (new_nid < nid) {
  477. ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
  478. size, align, 0);
  479. if (!ret)
  480. panic("numa.c: cannot allocate %lu bytes on node %d",
  481. size, new_nid);
  482. ret = __pa(ret);
  483. dbg("alloc_bootmem %lx %lx\n", ret, size);
  484. }
  485. return (void *)ret;
  486. }
  487. void __init do_init_bootmem(void)
  488. {
  489. int nid;
  490. unsigned int i;
  491. static struct notifier_block ppc64_numa_nb = {
  492. .notifier_call = cpu_numa_callback,
  493. .priority = 1 /* Must run before sched domains notifier. */
  494. };
  495. min_low_pfn = 0;
  496. max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
  497. max_pfn = max_low_pfn;
  498. if (parse_numa_properties())
  499. setup_nonnuma();
  500. else
  501. dump_numa_memory_topology();
  502. register_cpu_notifier(&ppc64_numa_nb);
  503. cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
  504. (void *)(unsigned long)boot_cpuid);
  505. for_each_online_node(nid) {
  506. unsigned long start_pfn, end_pfn, pages_present;
  507. unsigned long bootmem_paddr;
  508. unsigned long bootmap_pages;
  509. get_region(nid, &start_pfn, &end_pfn, &pages_present);
  510. /* Allocate the node structure node local if possible */
  511. NODE_DATA(nid) = careful_allocation(nid,
  512. sizeof(struct pglist_data),
  513. SMP_CACHE_BYTES, end_pfn);
  514. NODE_DATA(nid) = __va(NODE_DATA(nid));
  515. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  516. dbg("node %d\n", nid);
  517. dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
  518. NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
  519. NODE_DATA(nid)->node_start_pfn = start_pfn;
  520. NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
  521. if (NODE_DATA(nid)->node_spanned_pages == 0)
  522. continue;
  523. dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  524. dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
  525. bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
  526. bootmem_paddr = (unsigned long)careful_allocation(nid,
  527. bootmap_pages << PAGE_SHIFT,
  528. PAGE_SIZE, end_pfn);
  529. memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
  530. dbg("bootmap_paddr = %lx\n", bootmem_paddr);
  531. init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
  532. start_pfn, end_pfn);
  533. /* Add free regions on this node */
  534. for (i = 0; init_node_data[i].end_pfn; i++) {
  535. unsigned long start, end;
  536. if (init_node_data[i].nid != nid)
  537. continue;
  538. start = init_node_data[i].start_pfn << PAGE_SHIFT;
  539. end = init_node_data[i].end_pfn << PAGE_SHIFT;
  540. dbg("free_bootmem %lx %lx\n", start, end - start);
  541. free_bootmem_node(NODE_DATA(nid), start, end - start);
  542. }
  543. /* Mark reserved regions on this node */
  544. for (i = 0; i < lmb.reserved.cnt; i++) {
  545. unsigned long physbase = lmb.reserved.region[i].base;
  546. unsigned long size = lmb.reserved.region[i].size;
  547. unsigned long start_paddr = start_pfn << PAGE_SHIFT;
  548. unsigned long end_paddr = end_pfn << PAGE_SHIFT;
  549. if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
  550. early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
  551. continue;
  552. if (physbase < end_paddr &&
  553. (physbase+size) > start_paddr) {
  554. /* overlaps */
  555. if (physbase < start_paddr) {
  556. size -= start_paddr - physbase;
  557. physbase = start_paddr;
  558. }
  559. if (size > end_paddr - physbase)
  560. size = end_paddr - physbase;
  561. dbg("reserve_bootmem %lx %lx\n", physbase,
  562. size);
  563. reserve_bootmem_node(NODE_DATA(nid), physbase,
  564. size);
  565. }
  566. }
  567. /* Add regions into sparsemem */
  568. for (i = 0; init_node_data[i].end_pfn; i++) {
  569. unsigned long start, end;
  570. if (init_node_data[i].nid != nid)
  571. continue;
  572. start = init_node_data[i].start_pfn;
  573. end = init_node_data[i].end_pfn;
  574. memory_present(nid, start, end);
  575. }
  576. }
  577. }
  578. void __init paging_init(void)
  579. {
  580. unsigned long zones_size[MAX_NR_ZONES];
  581. unsigned long zholes_size[MAX_NR_ZONES];
  582. int nid;
  583. memset(zones_size, 0, sizeof(zones_size));
  584. memset(zholes_size, 0, sizeof(zholes_size));
  585. for_each_online_node(nid) {
  586. unsigned long start_pfn, end_pfn, pages_present;
  587. get_region(nid, &start_pfn, &end_pfn, &pages_present);
  588. zones_size[ZONE_DMA] = end_pfn - start_pfn;
  589. zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
  590. dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
  591. zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
  592. free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
  593. zholes_size);
  594. }
  595. }
  596. static int __init early_numa(char *p)
  597. {
  598. if (!p)
  599. return 0;
  600. if (strstr(p, "off"))
  601. numa_enabled = 0;
  602. if (strstr(p, "debug"))
  603. numa_debug = 1;
  604. return 0;
  605. }
  606. early_param("numa", early_numa);
  607. #ifdef CONFIG_MEMORY_HOTPLUG
  608. /*
  609. * Find the node associated with a hot added memory section. Section
  610. * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
  611. * sections are fully contained within a single LMB.
  612. */
  613. int hot_add_scn_to_nid(unsigned long scn_addr)
  614. {
  615. struct device_node *memory = NULL;
  616. nodemask_t nodes;
  617. int default_nid = any_online_node(NODE_MASK_ALL);
  618. int nid;
  619. if (!numa_enabled || (min_common_depth < 0))
  620. return default_nid;
  621. while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
  622. unsigned long start, size;
  623. int ranges;
  624. unsigned int *memcell_buf;
  625. unsigned int len;
  626. memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
  627. if (!memcell_buf || len <= 0)
  628. continue;
  629. /* ranges in cell */
  630. ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
  631. ha_new_range:
  632. start = read_n_cells(n_mem_addr_cells, &memcell_buf);
  633. size = read_n_cells(n_mem_size_cells, &memcell_buf);
  634. nid = of_node_to_nid(memory);
  635. /* Domains not present at boot default to 0 */
  636. if (nid < 0 || !node_online(nid))
  637. nid = default_nid;
  638. if ((scn_addr >= start) && (scn_addr < (start + size))) {
  639. of_node_put(memory);
  640. goto got_nid;
  641. }
  642. if (--ranges) /* process all ranges in cell */
  643. goto ha_new_range;
  644. }
  645. BUG(); /* section address should be found above */
  646. return 0;
  647. /* Temporary code to ensure that returned node is not empty */
  648. got_nid:
  649. nodes_setall(nodes);
  650. while (NODE_DATA(nid)->node_spanned_pages == 0) {
  651. node_clear(nid, nodes);
  652. nid = any_online_node(nodes);
  653. }
  654. return nid;
  655. }
  656. #endif /* CONFIG_MEMORY_HOTPLUG */