time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780
  1. /*
  2. * Copyright 2001 MontaVista Software Inc.
  3. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
  4. * Copyright (c) 2003, 2004 Maciej W. Rozycki
  5. *
  6. * Common time service routines for MIPS machines. See
  7. * Documentation/mips/time.README.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2 of the License, or (at your
  12. * option) any later version.
  13. */
  14. #include <linux/config.h>
  15. #include <linux/types.h>
  16. #include <linux/kernel.h>
  17. #include <linux/init.h>
  18. #include <linux/sched.h>
  19. #include <linux/param.h>
  20. #include <linux/time.h>
  21. #include <linux/timex.h>
  22. #include <linux/smp.h>
  23. #include <linux/kernel_stat.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/module.h>
  27. #include <asm/bootinfo.h>
  28. #include <asm/cache.h>
  29. #include <asm/compiler.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cpu-features.h>
  32. #include <asm/div64.h>
  33. #include <asm/sections.h>
  34. #include <asm/time.h>
  35. /*
  36. * The integer part of the number of usecs per jiffy is taken from tick,
  37. * but the fractional part is not recorded, so we calculate it using the
  38. * initial value of HZ. This aids systems where tick isn't really an
  39. * integer (e.g. for HZ = 128).
  40. */
  41. #define USECS_PER_JIFFY TICK_SIZE
  42. #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
  43. #define TICK_SIZE (tick_nsec / 1000)
  44. /*
  45. * forward reference
  46. */
  47. extern volatile unsigned long wall_jiffies;
  48. DEFINE_SPINLOCK(rtc_lock);
  49. /*
  50. * By default we provide the null RTC ops
  51. */
  52. static unsigned long null_rtc_get_time(void)
  53. {
  54. return mktime(2000, 1, 1, 0, 0, 0);
  55. }
  56. static int null_rtc_set_time(unsigned long sec)
  57. {
  58. return 0;
  59. }
  60. unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
  61. int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
  62. int (*rtc_mips_set_mmss)(unsigned long);
  63. /* usecs per counter cycle, shifted to left by 32 bits */
  64. static unsigned int sll32_usecs_per_cycle;
  65. /* how many counter cycles in a jiffy */
  66. static unsigned long cycles_per_jiffy __read_mostly;
  67. /* Cycle counter value at the previous timer interrupt.. */
  68. static unsigned int timerhi, timerlo;
  69. /* expirelo is the count value for next CPU timer interrupt */
  70. static unsigned int expirelo;
  71. /*
  72. * Null timer ack for systems not needing one (e.g. i8254).
  73. */
  74. static void null_timer_ack(void) { /* nothing */ }
  75. /*
  76. * Null high precision timer functions for systems lacking one.
  77. */
  78. static unsigned int null_hpt_read(void)
  79. {
  80. return 0;
  81. }
  82. static void null_hpt_init(unsigned int count)
  83. {
  84. /* nothing */
  85. }
  86. /*
  87. * Timer ack for an R4k-compatible timer of a known frequency.
  88. */
  89. static void c0_timer_ack(void)
  90. {
  91. unsigned int count;
  92. #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
  93. /* Ack this timer interrupt and set the next one. */
  94. expirelo += cycles_per_jiffy;
  95. #endif
  96. write_c0_compare(expirelo);
  97. /* Check to see if we have missed any timer interrupts. */
  98. while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
  99. /* missed_timer_count++; */
  100. expirelo = count + cycles_per_jiffy;
  101. write_c0_compare(expirelo);
  102. }
  103. }
  104. /*
  105. * High precision timer functions for a R4k-compatible timer.
  106. */
  107. static unsigned int c0_hpt_read(void)
  108. {
  109. return read_c0_count();
  110. }
  111. /* For use solely as a high precision timer. */
  112. static void c0_hpt_init(unsigned int count)
  113. {
  114. write_c0_count(read_c0_count() - count);
  115. }
  116. /* For use both as a high precision timer and an interrupt source. */
  117. static void c0_hpt_timer_init(unsigned int count)
  118. {
  119. count = read_c0_count() - count;
  120. expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
  121. write_c0_count(expirelo - cycles_per_jiffy);
  122. write_c0_compare(expirelo);
  123. write_c0_count(count);
  124. }
  125. int (*mips_timer_state)(void);
  126. void (*mips_timer_ack)(void);
  127. unsigned int (*mips_hpt_read)(void);
  128. void (*mips_hpt_init)(unsigned int);
  129. /*
  130. * This version of gettimeofday has microsecond resolution and better than
  131. * microsecond precision on fast machines with cycle counter.
  132. */
  133. void do_gettimeofday(struct timeval *tv)
  134. {
  135. unsigned long seq;
  136. unsigned long lost;
  137. unsigned long usec, sec;
  138. unsigned long max_ntp_tick;
  139. do {
  140. seq = read_seqbegin(&xtime_lock);
  141. usec = do_gettimeoffset();
  142. lost = jiffies - wall_jiffies;
  143. /*
  144. * If time_adjust is negative then NTP is slowing the clock
  145. * so make sure not to go into next possible interval.
  146. * Better to lose some accuracy than have time go backwards..
  147. */
  148. if (unlikely(time_adjust < 0)) {
  149. max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
  150. usec = min(usec, max_ntp_tick);
  151. if (lost)
  152. usec += lost * max_ntp_tick;
  153. } else if (unlikely(lost))
  154. usec += lost * (USEC_PER_SEC / HZ);
  155. sec = xtime.tv_sec;
  156. usec += (xtime.tv_nsec / 1000);
  157. } while (read_seqretry(&xtime_lock, seq));
  158. while (usec >= 1000000) {
  159. usec -= 1000000;
  160. sec++;
  161. }
  162. tv->tv_sec = sec;
  163. tv->tv_usec = usec;
  164. }
  165. EXPORT_SYMBOL(do_gettimeofday);
  166. int do_settimeofday(struct timespec *tv)
  167. {
  168. time_t wtm_sec, sec = tv->tv_sec;
  169. long wtm_nsec, nsec = tv->tv_nsec;
  170. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  171. return -EINVAL;
  172. write_seqlock_irq(&xtime_lock);
  173. /*
  174. * This is revolting. We need to set "xtime" correctly. However,
  175. * the value in this location is the value at the most recent update
  176. * of wall time. Discover what correction gettimeofday() would have
  177. * made, and then undo it!
  178. */
  179. nsec -= do_gettimeoffset() * NSEC_PER_USEC;
  180. nsec -= (jiffies - wall_jiffies) * tick_nsec;
  181. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  182. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  183. set_normalized_timespec(&xtime, sec, nsec);
  184. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  185. ntp_clear();
  186. write_sequnlock_irq(&xtime_lock);
  187. clock_was_set();
  188. return 0;
  189. }
  190. EXPORT_SYMBOL(do_settimeofday);
  191. /*
  192. * Gettimeoffset routines. These routines returns the time duration
  193. * since last timer interrupt in usecs.
  194. *
  195. * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
  196. * Otherwise use calibrate_gettimeoffset()
  197. *
  198. * If the CPU does not have the counter register, you can either supply
  199. * your own gettimeoffset() routine, or use null_gettimeoffset(), which
  200. * gives the same resolution as HZ.
  201. */
  202. static unsigned long null_gettimeoffset(void)
  203. {
  204. return 0;
  205. }
  206. /* The function pointer to one of the gettimeoffset funcs. */
  207. unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
  208. static unsigned long fixed_rate_gettimeoffset(void)
  209. {
  210. u32 count;
  211. unsigned long res;
  212. /* Get last timer tick in absolute kernel time */
  213. count = mips_hpt_read();
  214. /* .. relative to previous jiffy (32 bits is enough) */
  215. count -= timerlo;
  216. __asm__("multu %1,%2"
  217. : "=h" (res)
  218. : "r" (count), "r" (sll32_usecs_per_cycle)
  219. : "lo", GCC_REG_ACCUM);
  220. /*
  221. * Due to possible jiffies inconsistencies, we need to check
  222. * the result so that we'll get a timer that is monotonic.
  223. */
  224. if (res >= USECS_PER_JIFFY)
  225. res = USECS_PER_JIFFY - 1;
  226. return res;
  227. }
  228. /*
  229. * Cached "1/(clocks per usec) * 2^32" value.
  230. * It has to be recalculated once each jiffy.
  231. */
  232. static unsigned long cached_quotient;
  233. /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
  234. static unsigned long last_jiffies;
  235. /*
  236. * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
  237. */
  238. static unsigned long calibrate_div32_gettimeoffset(void)
  239. {
  240. u32 count;
  241. unsigned long res, tmp;
  242. unsigned long quotient;
  243. tmp = jiffies;
  244. quotient = cached_quotient;
  245. if (last_jiffies != tmp) {
  246. last_jiffies = tmp;
  247. if (last_jiffies != 0) {
  248. unsigned long r0;
  249. do_div64_32(r0, timerhi, timerlo, tmp);
  250. do_div64_32(quotient, USECS_PER_JIFFY,
  251. USECS_PER_JIFFY_FRAC, r0);
  252. cached_quotient = quotient;
  253. }
  254. }
  255. /* Get last timer tick in absolute kernel time */
  256. count = mips_hpt_read();
  257. /* .. relative to previous jiffy (32 bits is enough) */
  258. count -= timerlo;
  259. __asm__("multu %1,%2"
  260. : "=h" (res)
  261. : "r" (count), "r" (quotient)
  262. : "lo", GCC_REG_ACCUM);
  263. /*
  264. * Due to possible jiffies inconsistencies, we need to check
  265. * the result so that we'll get a timer that is monotonic.
  266. */
  267. if (res >= USECS_PER_JIFFY)
  268. res = USECS_PER_JIFFY - 1;
  269. return res;
  270. }
  271. static unsigned long calibrate_div64_gettimeoffset(void)
  272. {
  273. u32 count;
  274. unsigned long res, tmp;
  275. unsigned long quotient;
  276. tmp = jiffies;
  277. quotient = cached_quotient;
  278. if (last_jiffies != tmp) {
  279. last_jiffies = tmp;
  280. if (last_jiffies) {
  281. unsigned long r0;
  282. __asm__(".set push\n\t"
  283. ".set mips3\n\t"
  284. "lwu %0,%3\n\t"
  285. "dsll32 %1,%2,0\n\t"
  286. "or %1,%1,%0\n\t"
  287. "ddivu $0,%1,%4\n\t"
  288. "mflo %1\n\t"
  289. "dsll32 %0,%5,0\n\t"
  290. "or %0,%0,%6\n\t"
  291. "ddivu $0,%0,%1\n\t"
  292. "mflo %0\n\t"
  293. ".set pop"
  294. : "=&r" (quotient), "=&r" (r0)
  295. : "r" (timerhi), "m" (timerlo),
  296. "r" (tmp), "r" (USECS_PER_JIFFY),
  297. "r" (USECS_PER_JIFFY_FRAC)
  298. : "hi", "lo", GCC_REG_ACCUM);
  299. cached_quotient = quotient;
  300. }
  301. }
  302. /* Get last timer tick in absolute kernel time */
  303. count = mips_hpt_read();
  304. /* .. relative to previous jiffy (32 bits is enough) */
  305. count -= timerlo;
  306. __asm__("multu %1,%2"
  307. : "=h" (res)
  308. : "r" (count), "r" (quotient)
  309. : "lo", GCC_REG_ACCUM);
  310. /*
  311. * Due to possible jiffies inconsistencies, we need to check
  312. * the result so that we'll get a timer that is monotonic.
  313. */
  314. if (res >= USECS_PER_JIFFY)
  315. res = USECS_PER_JIFFY - 1;
  316. return res;
  317. }
  318. /* last time when xtime and rtc are sync'ed up */
  319. static long last_rtc_update;
  320. /*
  321. * local_timer_interrupt() does profiling and process accounting
  322. * on a per-CPU basis.
  323. *
  324. * In UP mode, it is invoked from the (global) timer_interrupt.
  325. *
  326. * In SMP mode, it might invoked by per-CPU timer interrupt, or
  327. * a broadcasted inter-processor interrupt which itself is triggered
  328. * by the global timer interrupt.
  329. */
  330. void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  331. {
  332. if (current->pid)
  333. profile_tick(CPU_PROFILING, regs);
  334. update_process_times(user_mode(regs));
  335. }
  336. /*
  337. * High-level timer interrupt service routines. This function
  338. * is set as irqaction->handler and is invoked through do_IRQ.
  339. */
  340. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  341. {
  342. unsigned long j;
  343. unsigned int count;
  344. write_seqlock(&xtime_lock);
  345. count = mips_hpt_read();
  346. mips_timer_ack();
  347. /* Update timerhi/timerlo for intra-jiffy calibration. */
  348. timerhi += count < timerlo; /* Wrap around */
  349. timerlo = count;
  350. /*
  351. * call the generic timer interrupt handling
  352. */
  353. do_timer(regs);
  354. /*
  355. * If we have an externally synchronized Linux clock, then update
  356. * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
  357. * called as close as possible to 500 ms before the new second starts.
  358. */
  359. if (ntp_synced() &&
  360. xtime.tv_sec > last_rtc_update + 660 &&
  361. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  362. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  363. if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
  364. last_rtc_update = xtime.tv_sec;
  365. } else {
  366. /* do it again in 60 s */
  367. last_rtc_update = xtime.tv_sec - 600;
  368. }
  369. }
  370. /*
  371. * If jiffies has overflown in this timer_interrupt, we must
  372. * update the timer[hi]/[lo] to make fast gettimeoffset funcs
  373. * quotient calc still valid. -arca
  374. *
  375. * The first timer interrupt comes late as interrupts are
  376. * enabled long after timers are initialized. Therefore the
  377. * high precision timer is fast, leading to wrong gettimeoffset()
  378. * calculations. We deal with it by setting it based on the
  379. * number of its ticks between the second and the third interrupt.
  380. * That is still somewhat imprecise, but it's a good estimate.
  381. * --macro
  382. */
  383. j = jiffies;
  384. if (j < 4) {
  385. static unsigned int prev_count;
  386. static int hpt_initialized;
  387. switch (j) {
  388. case 0:
  389. timerhi = timerlo = 0;
  390. mips_hpt_init(count);
  391. break;
  392. case 2:
  393. prev_count = count;
  394. break;
  395. case 3:
  396. if (!hpt_initialized) {
  397. unsigned int c3 = 3 * (count - prev_count);
  398. timerhi = 0;
  399. timerlo = c3;
  400. mips_hpt_init(count - c3);
  401. hpt_initialized = 1;
  402. }
  403. break;
  404. default:
  405. break;
  406. }
  407. }
  408. write_sequnlock(&xtime_lock);
  409. /*
  410. * In UP mode, we call local_timer_interrupt() to do profiling
  411. * and process accouting.
  412. *
  413. * In SMP mode, local_timer_interrupt() is invoked by appropriate
  414. * low-level local timer interrupt handler.
  415. */
  416. local_timer_interrupt(irq, dev_id, regs);
  417. return IRQ_HANDLED;
  418. }
  419. int null_perf_irq(struct pt_regs *regs)
  420. {
  421. return 0;
  422. }
  423. int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
  424. EXPORT_SYMBOL(null_perf_irq);
  425. EXPORT_SYMBOL(perf_irq);
  426. asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
  427. {
  428. int r2 = cpu_has_mips_r2;
  429. irq_enter();
  430. kstat_this_cpu.irqs[irq]++;
  431. /*
  432. * Suckage alert:
  433. * Before R2 of the architecture there was no way to see if a
  434. * performance counter interrupt was pending, so we have to run the
  435. * performance counter interrupt handler anyway.
  436. */
  437. if (!r2 || (read_c0_cause() & (1 << 26)))
  438. if (perf_irq(regs))
  439. goto out;
  440. /* we keep interrupt disabled all the time */
  441. if (!r2 || (read_c0_cause() & (1 << 30)))
  442. timer_interrupt(irq, NULL, regs);
  443. out:
  444. irq_exit();
  445. }
  446. asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
  447. {
  448. irq_enter();
  449. if (smp_processor_id() != 0)
  450. kstat_this_cpu.irqs[irq]++;
  451. /* we keep interrupt disabled all the time */
  452. local_timer_interrupt(irq, NULL, regs);
  453. irq_exit();
  454. }
  455. /*
  456. * time_init() - it does the following things.
  457. *
  458. * 1) board_time_init() -
  459. * a) (optional) set up RTC routines,
  460. * b) (optional) calibrate and set the mips_hpt_frequency
  461. * (only needed if you intended to use fixed_rate_gettimeoffset
  462. * or use cpu counter as timer interrupt source)
  463. * 2) setup xtime based on rtc_mips_get_time().
  464. * 3) choose a appropriate gettimeoffset routine.
  465. * 4) calculate a couple of cached variables for later usage
  466. * 5) board_timer_setup() -
  467. * a) (optional) over-write any choices made above by time_init().
  468. * b) machine specific code should setup the timer irqaction.
  469. * c) enable the timer interrupt
  470. */
  471. void (*board_time_init)(void);
  472. void (*board_timer_setup)(struct irqaction *irq);
  473. unsigned int mips_hpt_frequency;
  474. static struct irqaction timer_irqaction = {
  475. .handler = timer_interrupt,
  476. .flags = SA_INTERRUPT,
  477. .name = "timer",
  478. };
  479. static unsigned int __init calibrate_hpt(void)
  480. {
  481. u64 frequency;
  482. u32 hpt_start, hpt_end, hpt_count, hz;
  483. const int loops = HZ / 10;
  484. int log_2_loops = 0;
  485. int i;
  486. /*
  487. * We want to calibrate for 0.1s, but to avoid a 64-bit
  488. * division we round the number of loops up to the nearest
  489. * power of 2.
  490. */
  491. while (loops > 1 << log_2_loops)
  492. log_2_loops++;
  493. i = 1 << log_2_loops;
  494. /*
  495. * Wait for a rising edge of the timer interrupt.
  496. */
  497. while (mips_timer_state());
  498. while (!mips_timer_state());
  499. /*
  500. * Now see how many high precision timer ticks happen
  501. * during the calculated number of periods between timer
  502. * interrupts.
  503. */
  504. hpt_start = mips_hpt_read();
  505. do {
  506. while (mips_timer_state());
  507. while (!mips_timer_state());
  508. } while (--i);
  509. hpt_end = mips_hpt_read();
  510. hpt_count = hpt_end - hpt_start;
  511. hz = HZ;
  512. frequency = (u64)hpt_count * (u64)hz;
  513. return frequency >> log_2_loops;
  514. }
  515. void __init time_init(void)
  516. {
  517. if (board_time_init)
  518. board_time_init();
  519. if (!rtc_mips_set_mmss)
  520. rtc_mips_set_mmss = rtc_mips_set_time;
  521. xtime.tv_sec = rtc_mips_get_time();
  522. xtime.tv_nsec = 0;
  523. set_normalized_timespec(&wall_to_monotonic,
  524. -xtime.tv_sec, -xtime.tv_nsec);
  525. /* Choose appropriate high precision timer routines. */
  526. if (!cpu_has_counter && !mips_hpt_read) {
  527. /* No high precision timer -- sorry. */
  528. mips_hpt_read = null_hpt_read;
  529. mips_hpt_init = null_hpt_init;
  530. } else if (!mips_hpt_frequency && !mips_timer_state) {
  531. /* A high precision timer of unknown frequency. */
  532. if (!mips_hpt_read) {
  533. /* No external high precision timer -- use R4k. */
  534. mips_hpt_read = c0_hpt_read;
  535. mips_hpt_init = c0_hpt_init;
  536. }
  537. if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
  538. (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
  539. (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
  540. /*
  541. * We need to calibrate the counter but we don't have
  542. * 64-bit division.
  543. */
  544. do_gettimeoffset = calibrate_div32_gettimeoffset;
  545. else
  546. /*
  547. * We need to calibrate the counter but we *do* have
  548. * 64-bit division.
  549. */
  550. do_gettimeoffset = calibrate_div64_gettimeoffset;
  551. } else {
  552. /* We know counter frequency. Or we can get it. */
  553. if (!mips_hpt_read) {
  554. /* No external high precision timer -- use R4k. */
  555. mips_hpt_read = c0_hpt_read;
  556. if (mips_timer_state)
  557. mips_hpt_init = c0_hpt_init;
  558. else {
  559. /* No external timer interrupt -- use R4k. */
  560. mips_hpt_init = c0_hpt_timer_init;
  561. mips_timer_ack = c0_timer_ack;
  562. }
  563. }
  564. if (!mips_hpt_frequency)
  565. mips_hpt_frequency = calibrate_hpt();
  566. do_gettimeoffset = fixed_rate_gettimeoffset;
  567. /* Calculate cache parameters. */
  568. cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
  569. /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
  570. do_div64_32(sll32_usecs_per_cycle,
  571. 1000000, mips_hpt_frequency / 2,
  572. mips_hpt_frequency);
  573. /* Report the high precision timer rate for a reference. */
  574. printk("Using %u.%03u MHz high precision timer.\n",
  575. ((mips_hpt_frequency + 500) / 1000) / 1000,
  576. ((mips_hpt_frequency + 500) / 1000) % 1000);
  577. }
  578. if (!mips_timer_ack)
  579. /* No timer interrupt ack (e.g. i8254). */
  580. mips_timer_ack = null_timer_ack;
  581. /* This sets up the high precision timer for the first interrupt. */
  582. mips_hpt_init(mips_hpt_read());
  583. /*
  584. * Call board specific timer interrupt setup.
  585. *
  586. * this pointer must be setup in machine setup routine.
  587. *
  588. * Even if a machine chooses to use a low-level timer interrupt,
  589. * it still needs to setup the timer_irqaction.
  590. * In that case, it might be better to set timer_irqaction.handler
  591. * to be NULL function so that we are sure the high-level code
  592. * is not invoked accidentally.
  593. */
  594. board_timer_setup(&timer_irqaction);
  595. }
  596. #define FEBRUARY 2
  597. #define STARTOFTIME 1970
  598. #define SECDAY 86400L
  599. #define SECYR (SECDAY * 365)
  600. #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
  601. #define days_in_year(y) (leapyear(y) ? 366 : 365)
  602. #define days_in_month(m) (month_days[(m) - 1])
  603. static int month_days[12] = {
  604. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  605. };
  606. void to_tm(unsigned long tim, struct rtc_time *tm)
  607. {
  608. long hms, day, gday;
  609. int i;
  610. gday = day = tim / SECDAY;
  611. hms = tim % SECDAY;
  612. /* Hours, minutes, seconds are easy */
  613. tm->tm_hour = hms / 3600;
  614. tm->tm_min = (hms % 3600) / 60;
  615. tm->tm_sec = (hms % 3600) % 60;
  616. /* Number of years in days */
  617. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  618. day -= days_in_year(i);
  619. tm->tm_year = i;
  620. /* Number of months in days left */
  621. if (leapyear(tm->tm_year))
  622. days_in_month(FEBRUARY) = 29;
  623. for (i = 1; day >= days_in_month(i); i++)
  624. day -= days_in_month(i);
  625. days_in_month(FEBRUARY) = 28;
  626. tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
  627. /* Days are what is left over (+1) from all that. */
  628. tm->tm_mday = day + 1;
  629. /*
  630. * Determine the day of week
  631. */
  632. tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
  633. }
  634. EXPORT_SYMBOL(rtc_lock);
  635. EXPORT_SYMBOL(to_tm);
  636. EXPORT_SYMBOL(rtc_mips_set_time);
  637. EXPORT_SYMBOL(rtc_mips_get_time);
  638. unsigned long long sched_clock(void)
  639. {
  640. return (unsigned long long)jiffies*(1000000000/HZ);
  641. }