smtc.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322
  1. /* Copyright (C) 2004 Mips Technologies, Inc */
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/cpumask.h>
  5. #include <linux/interrupt.h>
  6. #include <asm/cpu.h>
  7. #include <asm/processor.h>
  8. #include <asm/atomic.h>
  9. #include <asm/system.h>
  10. #include <asm/hardirq.h>
  11. #include <asm/hazards.h>
  12. #include <asm/mmu_context.h>
  13. #include <asm/smp.h>
  14. #include <asm/mipsregs.h>
  15. #include <asm/cacheflush.h>
  16. #include <asm/time.h>
  17. #include <asm/addrspace.h>
  18. #include <asm/smtc.h>
  19. #include <asm/smtc_ipi.h>
  20. #include <asm/smtc_proc.h>
  21. /*
  22. * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
  23. */
  24. /*
  25. * MIPSCPU_INT_BASE is identically defined in both
  26. * asm-mips/mips-boards/maltaint.h and asm-mips/mips-boards/simint.h,
  27. * but as yet there's no properly organized include structure that
  28. * will ensure that the right *int.h file will be included for a
  29. * given platform build.
  30. */
  31. #define MIPSCPU_INT_BASE 16
  32. #define MIPS_CPU_IPI_IRQ 1
  33. #define LOCK_MT_PRA() \
  34. local_irq_save(flags); \
  35. mtflags = dmt()
  36. #define UNLOCK_MT_PRA() \
  37. emt(mtflags); \
  38. local_irq_restore(flags)
  39. #define LOCK_CORE_PRA() \
  40. local_irq_save(flags); \
  41. mtflags = dvpe()
  42. #define UNLOCK_CORE_PRA() \
  43. evpe(mtflags); \
  44. local_irq_restore(flags)
  45. /*
  46. * Data structures purely associated with SMTC parallelism
  47. */
  48. /*
  49. * Table for tracking ASIDs whose lifetime is prolonged.
  50. */
  51. asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
  52. /*
  53. * Clock interrupt "latch" buffers, per "CPU"
  54. */
  55. unsigned int ipi_timer_latch[NR_CPUS];
  56. /*
  57. * Number of InterProcessor Interupt (IPI) message buffers to allocate
  58. */
  59. #define IPIBUF_PER_CPU 4
  60. struct smtc_ipi_q IPIQ[NR_CPUS];
  61. struct smtc_ipi_q freeIPIq;
  62. /* Forward declarations */
  63. void ipi_decode(struct pt_regs *, struct smtc_ipi *);
  64. void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
  65. void setup_cross_vpe_interrupts(void);
  66. void init_smtc_stats(void);
  67. /* Global SMTC Status */
  68. unsigned int smtc_status = 0;
  69. /* Boot command line configuration overrides */
  70. static int vpelimit = 0;
  71. static int tclimit = 0;
  72. static int ipibuffers = 0;
  73. static int nostlb = 0;
  74. static int asidmask = 0;
  75. unsigned long smtc_asid_mask = 0xff;
  76. static int __init maxvpes(char *str)
  77. {
  78. get_option(&str, &vpelimit);
  79. return 1;
  80. }
  81. static int __init maxtcs(char *str)
  82. {
  83. get_option(&str, &tclimit);
  84. return 1;
  85. }
  86. static int __init ipibufs(char *str)
  87. {
  88. get_option(&str, &ipibuffers);
  89. return 1;
  90. }
  91. static int __init stlb_disable(char *s)
  92. {
  93. nostlb = 1;
  94. return 1;
  95. }
  96. static int __init asidmask_set(char *str)
  97. {
  98. get_option(&str, &asidmask);
  99. switch(asidmask) {
  100. case 0x1:
  101. case 0x3:
  102. case 0x7:
  103. case 0xf:
  104. case 0x1f:
  105. case 0x3f:
  106. case 0x7f:
  107. case 0xff:
  108. smtc_asid_mask = (unsigned long)asidmask;
  109. break;
  110. default:
  111. printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
  112. }
  113. return 1;
  114. }
  115. __setup("maxvpes=", maxvpes);
  116. __setup("maxtcs=", maxtcs);
  117. __setup("ipibufs=", ipibufs);
  118. __setup("nostlb", stlb_disable);
  119. __setup("asidmask=", asidmask_set);
  120. /* Enable additional debug checks before going into CPU idle loop */
  121. #define SMTC_IDLE_HOOK_DEBUG
  122. #ifdef SMTC_IDLE_HOOK_DEBUG
  123. static int hang_trig = 0;
  124. static int __init hangtrig_enable(char *s)
  125. {
  126. hang_trig = 1;
  127. return 1;
  128. }
  129. __setup("hangtrig", hangtrig_enable);
  130. #define DEFAULT_BLOCKED_IPI_LIMIT 32
  131. static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
  132. static int __init tintq(char *str)
  133. {
  134. get_option(&str, &timerq_limit);
  135. return 1;
  136. }
  137. __setup("tintq=", tintq);
  138. int imstuckcount[2][8];
  139. /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
  140. int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
  141. int tcnoprog[NR_CPUS];
  142. static atomic_t idle_hook_initialized = {0};
  143. static int clock_hang_reported[NR_CPUS];
  144. #endif /* SMTC_IDLE_HOOK_DEBUG */
  145. /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
  146. void __init sanitize_tlb_entries(void)
  147. {
  148. printk("Deprecated sanitize_tlb_entries() invoked\n");
  149. }
  150. /*
  151. * Configure shared TLB - VPC configuration bit must be set by caller
  152. */
  153. void smtc_configure_tlb(void)
  154. {
  155. int i,tlbsiz,vpes;
  156. unsigned long mvpconf0;
  157. unsigned long config1val;
  158. /* Set up ASID preservation table */
  159. for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
  160. for(i = 0; i < MAX_SMTC_ASIDS; i++) {
  161. smtc_live_asid[vpes][i] = 0;
  162. }
  163. }
  164. mvpconf0 = read_c0_mvpconf0();
  165. if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
  166. >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
  167. /* If we have multiple VPEs, try to share the TLB */
  168. if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
  169. /*
  170. * If TLB sizing is programmable, shared TLB
  171. * size is the total available complement.
  172. * Otherwise, we have to take the sum of all
  173. * static VPE TLB entries.
  174. */
  175. if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
  176. >> MVPCONF0_PTLBE_SHIFT)) == 0) {
  177. /*
  178. * If there's more than one VPE, there had better
  179. * be more than one TC, because we need one to bind
  180. * to each VPE in turn to be able to read
  181. * its configuration state!
  182. */
  183. settc(1);
  184. /* Stop the TC from doing anything foolish */
  185. write_tc_c0_tchalt(TCHALT_H);
  186. mips_ihb();
  187. /* No need to un-Halt - that happens later anyway */
  188. for (i=0; i < vpes; i++) {
  189. write_tc_c0_tcbind(i);
  190. /*
  191. * To be 100% sure we're really getting the right
  192. * information, we exit the configuration state
  193. * and do an IHB after each rebinding.
  194. */
  195. write_c0_mvpcontrol(
  196. read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
  197. mips_ihb();
  198. /*
  199. * Only count if the MMU Type indicated is TLB
  200. */
  201. if(((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
  202. config1val = read_vpe_c0_config1();
  203. tlbsiz += ((config1val >> 25) & 0x3f) + 1;
  204. }
  205. /* Put core back in configuration state */
  206. write_c0_mvpcontrol(
  207. read_c0_mvpcontrol() | MVPCONTROL_VPC );
  208. mips_ihb();
  209. }
  210. }
  211. write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
  212. /*
  213. * Setup kernel data structures to use software total,
  214. * rather than read the per-VPE Config1 value. The values
  215. * for "CPU 0" gets copied to all the other CPUs as part
  216. * of their initialization in smtc_cpu_setup().
  217. */
  218. tlbsiz = tlbsiz & 0x3f; /* MIPS32 limits TLB indices to 64 */
  219. cpu_data[0].tlbsize = tlbsiz;
  220. smtc_status |= SMTC_TLB_SHARED;
  221. printk("TLB of %d entry pairs shared by %d VPEs\n",
  222. tlbsiz, vpes);
  223. } else {
  224. printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
  225. }
  226. }
  227. }
  228. /*
  229. * Incrementally build the CPU map out of constituent MIPS MT cores,
  230. * using the specified available VPEs and TCs. Plaform code needs
  231. * to ensure that each MIPS MT core invokes this routine on reset,
  232. * one at a time(!).
  233. *
  234. * This version of the build_cpu_map and prepare_cpus routines assumes
  235. * that *all* TCs of a MIPS MT core will be used for Linux, and that
  236. * they will be spread across *all* available VPEs (to minimise the
  237. * loss of efficiency due to exception service serialization).
  238. * An improved version would pick up configuration information and
  239. * possibly leave some TCs/VPEs as "slave" processors.
  240. *
  241. * Use c0_MVPConf0 to find out how many TCs are available, setting up
  242. * phys_cpu_present_map and the logical/physical mappings.
  243. */
  244. int __init mipsmt_build_cpu_map(int start_cpu_slot)
  245. {
  246. int i, ntcs;
  247. /*
  248. * The CPU map isn't actually used for anything at this point,
  249. * so it's not clear what else we should do apart from set
  250. * everything up so that "logical" = "physical".
  251. */
  252. ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  253. for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
  254. cpu_set(i, phys_cpu_present_map);
  255. __cpu_number_map[i] = i;
  256. __cpu_logical_map[i] = i;
  257. }
  258. /* Initialize map of CPUs with FPUs */
  259. cpus_clear(mt_fpu_cpumask);
  260. /* One of those TC's is the one booting, and not a secondary... */
  261. printk("%i available secondary CPU TC(s)\n", i - 1);
  262. return i;
  263. }
  264. /*
  265. * Common setup before any secondaries are started
  266. * Make sure all CPU's are in a sensible state before we boot any of the
  267. * secondaries.
  268. *
  269. * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
  270. * as possible across the available VPEs.
  271. */
  272. static void smtc_tc_setup(int vpe, int tc, int cpu)
  273. {
  274. settc(tc);
  275. write_tc_c0_tchalt(TCHALT_H);
  276. mips_ihb();
  277. write_tc_c0_tcstatus((read_tc_c0_tcstatus()
  278. & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
  279. | TCSTATUS_A);
  280. write_tc_c0_tccontext(0);
  281. /* Bind tc to vpe */
  282. write_tc_c0_tcbind(vpe);
  283. /* In general, all TCs should have the same cpu_data indications */
  284. memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
  285. /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
  286. if (cpu_data[0].cputype == CPU_34K)
  287. cpu_data[cpu].options &= ~MIPS_CPU_FPU;
  288. cpu_data[cpu].vpe_id = vpe;
  289. cpu_data[cpu].tc_id = tc;
  290. }
  291. void mipsmt_prepare_cpus(void)
  292. {
  293. int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
  294. unsigned long flags;
  295. unsigned long val;
  296. int nipi;
  297. struct smtc_ipi *pipi;
  298. /* disable interrupts so we can disable MT */
  299. local_irq_save(flags);
  300. /* disable MT so we can configure */
  301. dvpe();
  302. dmt();
  303. freeIPIq.lock = SPIN_LOCK_UNLOCKED;
  304. /*
  305. * We probably don't have as many VPEs as we do SMP "CPUs",
  306. * but it's possible - and in any case we'll never use more!
  307. */
  308. for (i=0; i<NR_CPUS; i++) {
  309. IPIQ[i].head = IPIQ[i].tail = NULL;
  310. IPIQ[i].lock = SPIN_LOCK_UNLOCKED;
  311. IPIQ[i].depth = 0;
  312. ipi_timer_latch[i] = 0;
  313. }
  314. /* cpu_data index starts at zero */
  315. cpu = 0;
  316. cpu_data[cpu].vpe_id = 0;
  317. cpu_data[cpu].tc_id = 0;
  318. cpu++;
  319. /* Report on boot-time options */
  320. mips_mt_set_cpuoptions ();
  321. if (vpelimit > 0)
  322. printk("Limit of %d VPEs set\n", vpelimit);
  323. if (tclimit > 0)
  324. printk("Limit of %d TCs set\n", tclimit);
  325. if (nostlb) {
  326. printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
  327. }
  328. if (asidmask)
  329. printk("ASID mask value override to 0x%x\n", asidmask);
  330. /* Temporary */
  331. #ifdef SMTC_IDLE_HOOK_DEBUG
  332. if (hang_trig)
  333. printk("Logic Analyser Trigger on suspected TC hang\n");
  334. #endif /* SMTC_IDLE_HOOK_DEBUG */
  335. /* Put MVPE's into 'configuration state' */
  336. write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
  337. val = read_c0_mvpconf0();
  338. nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
  339. if (vpelimit > 0 && nvpe > vpelimit)
  340. nvpe = vpelimit;
  341. ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  342. if (ntc > NR_CPUS)
  343. ntc = NR_CPUS;
  344. if (tclimit > 0 && ntc > tclimit)
  345. ntc = tclimit;
  346. tcpervpe = ntc / nvpe;
  347. slop = ntc % nvpe; /* Residual TCs, < NVPE */
  348. /* Set up shared TLB */
  349. smtc_configure_tlb();
  350. for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
  351. /*
  352. * Set the MVP bits.
  353. */
  354. settc(tc);
  355. write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
  356. if (vpe != 0)
  357. printk(", ");
  358. printk("VPE %d: TC", vpe);
  359. for (i = 0; i < tcpervpe; i++) {
  360. /*
  361. * TC 0 is bound to VPE 0 at reset,
  362. * and is presumably executing this
  363. * code. Leave it alone!
  364. */
  365. if (tc != 0) {
  366. smtc_tc_setup(vpe,tc, cpu);
  367. cpu++;
  368. }
  369. printk(" %d", tc);
  370. tc++;
  371. }
  372. if (slop) {
  373. if (tc != 0) {
  374. smtc_tc_setup(vpe,tc, cpu);
  375. cpu++;
  376. }
  377. printk(" %d", tc);
  378. tc++;
  379. slop--;
  380. }
  381. if (vpe != 0) {
  382. /*
  383. * Clear any stale software interrupts from VPE's Cause
  384. */
  385. write_vpe_c0_cause(0);
  386. /*
  387. * Clear ERL/EXL of VPEs other than 0
  388. * and set restricted interrupt enable/mask.
  389. */
  390. write_vpe_c0_status((read_vpe_c0_status()
  391. & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
  392. | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
  393. | ST0_IE));
  394. /*
  395. * set config to be the same as vpe0,
  396. * particularly kseg0 coherency alg
  397. */
  398. write_vpe_c0_config(read_c0_config());
  399. /* Clear any pending timer interrupt */
  400. write_vpe_c0_compare(0);
  401. /* Propagate Config7 */
  402. write_vpe_c0_config7(read_c0_config7());
  403. }
  404. /* enable multi-threading within VPE */
  405. write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
  406. /* enable the VPE */
  407. write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
  408. }
  409. /*
  410. * Pull any physically present but unused TCs out of circulation.
  411. */
  412. while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
  413. cpu_clear(tc, phys_cpu_present_map);
  414. cpu_clear(tc, cpu_present_map);
  415. tc++;
  416. }
  417. /* release config state */
  418. write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
  419. printk("\n");
  420. /* Set up coprocessor affinity CPU mask(s) */
  421. for (tc = 0; tc < ntc; tc++) {
  422. if(cpu_data[tc].options & MIPS_CPU_FPU)
  423. cpu_set(tc, mt_fpu_cpumask);
  424. }
  425. /* set up ipi interrupts... */
  426. /* If we have multiple VPEs running, set up the cross-VPE interrupt */
  427. if (nvpe > 1)
  428. setup_cross_vpe_interrupts();
  429. /* Set up queue of free IPI "messages". */
  430. nipi = NR_CPUS * IPIBUF_PER_CPU;
  431. if (ipibuffers > 0)
  432. nipi = ipibuffers;
  433. pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
  434. if (pipi == NULL)
  435. panic("kmalloc of IPI message buffers failed\n");
  436. else
  437. printk("IPI buffer pool of %d buffers\n", nipi);
  438. for (i = 0; i < nipi; i++) {
  439. smtc_ipi_nq(&freeIPIq, pipi);
  440. pipi++;
  441. }
  442. /* Arm multithreading and enable other VPEs - but all TCs are Halted */
  443. emt(EMT_ENABLE);
  444. evpe(EVPE_ENABLE);
  445. local_irq_restore(flags);
  446. /* Initialize SMTC /proc statistics/diagnostics */
  447. init_smtc_stats();
  448. }
  449. /*
  450. * Setup the PC, SP, and GP of a secondary processor and start it
  451. * running!
  452. * smp_bootstrap is the place to resume from
  453. * __KSTK_TOS(idle) is apparently the stack pointer
  454. * (unsigned long)idle->thread_info the gp
  455. *
  456. */
  457. void smtc_boot_secondary(int cpu, struct task_struct *idle)
  458. {
  459. extern u32 kernelsp[NR_CPUS];
  460. long flags;
  461. int mtflags;
  462. LOCK_MT_PRA();
  463. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  464. dvpe();
  465. }
  466. settc(cpu_data[cpu].tc_id);
  467. /* pc */
  468. write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
  469. /* stack pointer */
  470. kernelsp[cpu] = __KSTK_TOS(idle);
  471. write_tc_gpr_sp(__KSTK_TOS(idle));
  472. /* global pointer */
  473. write_tc_gpr_gp((unsigned long)idle->thread_info);
  474. smtc_status |= SMTC_MTC_ACTIVE;
  475. write_tc_c0_tchalt(0);
  476. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  477. evpe(EVPE_ENABLE);
  478. }
  479. UNLOCK_MT_PRA();
  480. }
  481. void smtc_init_secondary(void)
  482. {
  483. /*
  484. * Start timer on secondary VPEs if necessary.
  485. * mips_timer_setup should already have been invoked by init/main
  486. * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
  487. * SMTC init code assigns TCs consdecutively and in ascending order
  488. * to across available VPEs.
  489. */
  490. if(((read_c0_tcbind() & TCBIND_CURTC) != 0)
  491. && ((read_c0_tcbind() & TCBIND_CURVPE)
  492. != cpu_data[smp_processor_id() - 1].vpe_id)){
  493. write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
  494. }
  495. local_irq_enable();
  496. }
  497. void smtc_smp_finish(void)
  498. {
  499. printk("TC %d going on-line as CPU %d\n",
  500. cpu_data[smp_processor_id()].tc_id, smp_processor_id());
  501. }
  502. void smtc_cpus_done(void)
  503. {
  504. }
  505. /*
  506. * Support for SMTC-optimized driver IRQ registration
  507. */
  508. /*
  509. * SMTC Kernel needs to manipulate low-level CPU interrupt mask
  510. * in do_IRQ. These are passed in setup_irq_smtc() and stored
  511. * in this table.
  512. */
  513. int setup_irq_smtc(unsigned int irq, struct irqaction * new,
  514. unsigned long hwmask)
  515. {
  516. irq_hwmask[irq] = hwmask;
  517. return setup_irq(irq, new);
  518. }
  519. /*
  520. * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
  521. * Within a VPE one TC can interrupt another by different approaches.
  522. * The easiest to get right would probably be to make all TCs except
  523. * the target IXMT and set a software interrupt, but an IXMT-based
  524. * scheme requires that a handler must run before a new IPI could
  525. * be sent, which would break the "broadcast" loops in MIPS MT.
  526. * A more gonzo approach within a VPE is to halt the TC, extract
  527. * its Restart, Status, and a couple of GPRs, and program the Restart
  528. * address to emulate an interrupt.
  529. *
  530. * Within a VPE, one can be confident that the target TC isn't in
  531. * a critical EXL state when halted, since the write to the Halt
  532. * register could not have issued on the writing thread if the
  533. * halting thread had EXL set. So k0 and k1 of the target TC
  534. * can be used by the injection code. Across VPEs, one can't
  535. * be certain that the target TC isn't in a critical exception
  536. * state. So we try a two-step process of sending a software
  537. * interrupt to the target VPE, which either handles the event
  538. * itself (if it was the target) or injects the event within
  539. * the VPE.
  540. */
  541. void smtc_ipi_qdump(void)
  542. {
  543. int i;
  544. for (i = 0; i < NR_CPUS ;i++) {
  545. printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
  546. i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
  547. IPIQ[i].depth);
  548. }
  549. }
  550. /*
  551. * The standard atomic.h primitives don't quite do what we want
  552. * here: We need an atomic add-and-return-previous-value (which
  553. * could be done with atomic_add_return and a decrement) and an
  554. * atomic set/zero-and-return-previous-value (which can't really
  555. * be done with the atomic.h primitives). And since this is
  556. * MIPS MT, we can assume that we have LL/SC.
  557. */
  558. static __inline__ int atomic_postincrement(unsigned int *pv)
  559. {
  560. unsigned long result;
  561. unsigned long temp;
  562. __asm__ __volatile__(
  563. "1: ll %0, %2 \n"
  564. " addu %1, %0, 1 \n"
  565. " sc %1, %2 \n"
  566. " beqz %1, 1b \n"
  567. " sync \n"
  568. : "=&r" (result), "=&r" (temp), "=m" (*pv)
  569. : "m" (*pv)
  570. : "memory");
  571. return result;
  572. }
  573. /* No longer used in IPI dispatch, but retained for future recycling */
  574. static __inline__ int atomic_postclear(unsigned int *pv)
  575. {
  576. unsigned long result;
  577. unsigned long temp;
  578. __asm__ __volatile__(
  579. "1: ll %0, %2 \n"
  580. " or %1, $0, $0 \n"
  581. " sc %1, %2 \n"
  582. " beqz %1, 1b \n"
  583. " sync \n"
  584. : "=&r" (result), "=&r" (temp), "=m" (*pv)
  585. : "m" (*pv)
  586. : "memory");
  587. return result;
  588. }
  589. void smtc_send_ipi(int cpu, int type, unsigned int action)
  590. {
  591. int tcstatus;
  592. struct smtc_ipi *pipi;
  593. long flags;
  594. int mtflags;
  595. if (cpu == smp_processor_id()) {
  596. printk("Cannot Send IPI to self!\n");
  597. return;
  598. }
  599. /* Set up a descriptor, to be delivered either promptly or queued */
  600. pipi = smtc_ipi_dq(&freeIPIq);
  601. if (pipi == NULL) {
  602. bust_spinlocks(1);
  603. mips_mt_regdump(dvpe());
  604. panic("IPI Msg. Buffers Depleted\n");
  605. }
  606. pipi->type = type;
  607. pipi->arg = (void *)action;
  608. pipi->dest = cpu;
  609. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  610. /* If not on same VPE, enqueue and send cross-VPE interupt */
  611. smtc_ipi_nq(&IPIQ[cpu], pipi);
  612. LOCK_CORE_PRA();
  613. settc(cpu_data[cpu].tc_id);
  614. write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
  615. UNLOCK_CORE_PRA();
  616. } else {
  617. /*
  618. * Not sufficient to do a LOCK_MT_PRA (dmt) here,
  619. * since ASID shootdown on the other VPE may
  620. * collide with this operation.
  621. */
  622. LOCK_CORE_PRA();
  623. settc(cpu_data[cpu].tc_id);
  624. /* Halt the targeted TC */
  625. write_tc_c0_tchalt(TCHALT_H);
  626. mips_ihb();
  627. /*
  628. * Inspect TCStatus - if IXMT is set, we have to queue
  629. * a message. Otherwise, we set up the "interrupt"
  630. * of the other TC
  631. */
  632. tcstatus = read_tc_c0_tcstatus();
  633. if ((tcstatus & TCSTATUS_IXMT) != 0) {
  634. /*
  635. * Spin-waiting here can deadlock,
  636. * so we queue the message for the target TC.
  637. */
  638. write_tc_c0_tchalt(0);
  639. UNLOCK_CORE_PRA();
  640. /* Try to reduce redundant timer interrupt messages */
  641. if(type == SMTC_CLOCK_TICK) {
  642. if(atomic_postincrement(&ipi_timer_latch[cpu])!=0) {
  643. smtc_ipi_nq(&freeIPIq, pipi);
  644. return;
  645. }
  646. }
  647. smtc_ipi_nq(&IPIQ[cpu], pipi);
  648. } else {
  649. post_direct_ipi(cpu, pipi);
  650. write_tc_c0_tchalt(0);
  651. UNLOCK_CORE_PRA();
  652. }
  653. }
  654. }
  655. /*
  656. * Send IPI message to Halted TC, TargTC/TargVPE already having been set
  657. */
  658. void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
  659. {
  660. struct pt_regs *kstack;
  661. unsigned long tcstatus;
  662. unsigned long tcrestart;
  663. extern u32 kernelsp[NR_CPUS];
  664. extern void __smtc_ipi_vector(void);
  665. /* Extract Status, EPC from halted TC */
  666. tcstatus = read_tc_c0_tcstatus();
  667. tcrestart = read_tc_c0_tcrestart();
  668. /* If TCRestart indicates a WAIT instruction, advance the PC */
  669. if ((tcrestart & 0x80000000)
  670. && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
  671. tcrestart += 4;
  672. }
  673. /*
  674. * Save on TC's future kernel stack
  675. *
  676. * CU bit of Status is indicator that TC was
  677. * already running on a kernel stack...
  678. */
  679. if(tcstatus & ST0_CU0) {
  680. /* Note that this "- 1" is pointer arithmetic */
  681. kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
  682. } else {
  683. kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
  684. }
  685. kstack->cp0_epc = (long)tcrestart;
  686. /* Save TCStatus */
  687. kstack->cp0_tcstatus = tcstatus;
  688. /* Pass token of operation to be performed kernel stack pad area */
  689. kstack->pad0[4] = (unsigned long)pipi;
  690. /* Pass address of function to be called likewise */
  691. kstack->pad0[5] = (unsigned long)&ipi_decode;
  692. /* Set interrupt exempt and kernel mode */
  693. tcstatus |= TCSTATUS_IXMT;
  694. tcstatus &= ~TCSTATUS_TKSU;
  695. write_tc_c0_tcstatus(tcstatus);
  696. ehb();
  697. /* Set TC Restart address to be SMTC IPI vector */
  698. write_tc_c0_tcrestart(__smtc_ipi_vector);
  699. }
  700. void ipi_resched_interrupt(struct pt_regs *regs)
  701. {
  702. /* Return from interrupt should be enough to cause scheduler check */
  703. }
  704. void ipi_call_interrupt(struct pt_regs *regs)
  705. {
  706. /* Invoke generic function invocation code in smp.c */
  707. smp_call_function_interrupt();
  708. }
  709. void ipi_decode(struct pt_regs *regs, struct smtc_ipi *pipi)
  710. {
  711. void *arg_copy = pipi->arg;
  712. int type_copy = pipi->type;
  713. int dest_copy = pipi->dest;
  714. smtc_ipi_nq(&freeIPIq, pipi);
  715. switch (type_copy) {
  716. case SMTC_CLOCK_TICK:
  717. /* Invoke Clock "Interrupt" */
  718. ipi_timer_latch[dest_copy] = 0;
  719. #ifdef SMTC_IDLE_HOOK_DEBUG
  720. clock_hang_reported[dest_copy] = 0;
  721. #endif /* SMTC_IDLE_HOOK_DEBUG */
  722. local_timer_interrupt(0, NULL, regs);
  723. break;
  724. case LINUX_SMP_IPI:
  725. switch ((int)arg_copy) {
  726. case SMP_RESCHEDULE_YOURSELF:
  727. ipi_resched_interrupt(regs);
  728. break;
  729. case SMP_CALL_FUNCTION:
  730. ipi_call_interrupt(regs);
  731. break;
  732. default:
  733. printk("Impossible SMTC IPI Argument 0x%x\n",
  734. (int)arg_copy);
  735. break;
  736. }
  737. break;
  738. default:
  739. printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
  740. break;
  741. }
  742. }
  743. void deferred_smtc_ipi(struct pt_regs *regs)
  744. {
  745. struct smtc_ipi *pipi;
  746. unsigned long flags;
  747. /* DEBUG */
  748. int q = smp_processor_id();
  749. /*
  750. * Test is not atomic, but much faster than a dequeue,
  751. * and the vast majority of invocations will have a null queue.
  752. */
  753. if(IPIQ[q].head != NULL) {
  754. while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
  755. /* ipi_decode() should be called with interrupts off */
  756. local_irq_save(flags);
  757. ipi_decode(regs, pipi);
  758. local_irq_restore(flags);
  759. }
  760. }
  761. }
  762. /*
  763. * Send clock tick to all TCs except the one executing the funtion
  764. */
  765. void smtc_timer_broadcast(int vpe)
  766. {
  767. int cpu;
  768. int myTC = cpu_data[smp_processor_id()].tc_id;
  769. int myVPE = cpu_data[smp_processor_id()].vpe_id;
  770. smtc_cpu_stats[smp_processor_id()].timerints++;
  771. for_each_online_cpu(cpu) {
  772. if (cpu_data[cpu].vpe_id == myVPE &&
  773. cpu_data[cpu].tc_id != myTC)
  774. smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
  775. }
  776. }
  777. /*
  778. * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
  779. * set via cross-VPE MTTR manipulation of the Cause register. It would be
  780. * in some regards preferable to have external logic for "doorbell" hardware
  781. * interrupts.
  782. */
  783. static int cpu_ipi_irq = MIPSCPU_INT_BASE + MIPS_CPU_IPI_IRQ;
  784. static irqreturn_t ipi_interrupt(int irq, void *dev_idm, struct pt_regs *regs)
  785. {
  786. int my_vpe = cpu_data[smp_processor_id()].vpe_id;
  787. int my_tc = cpu_data[smp_processor_id()].tc_id;
  788. int cpu;
  789. struct smtc_ipi *pipi;
  790. unsigned long tcstatus;
  791. int sent;
  792. long flags;
  793. unsigned int mtflags;
  794. unsigned int vpflags;
  795. /*
  796. * So long as cross-VPE interrupts are done via
  797. * MFTR/MTTR read-modify-writes of Cause, we need
  798. * to stop other VPEs whenever the local VPE does
  799. * anything similar.
  800. */
  801. local_irq_save(flags);
  802. vpflags = dvpe();
  803. clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
  804. set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
  805. irq_enable_hazard();
  806. evpe(vpflags);
  807. local_irq_restore(flags);
  808. /*
  809. * Cross-VPE Interrupt handler: Try to directly deliver IPIs
  810. * queued for TCs on this VPE other than the current one.
  811. * Return-from-interrupt should cause us to drain the queue
  812. * for the current TC, so we ought not to have to do it explicitly here.
  813. */
  814. for_each_online_cpu(cpu) {
  815. if (cpu_data[cpu].vpe_id != my_vpe)
  816. continue;
  817. pipi = smtc_ipi_dq(&IPIQ[cpu]);
  818. if (pipi != NULL) {
  819. if (cpu_data[cpu].tc_id != my_tc) {
  820. sent = 0;
  821. LOCK_MT_PRA();
  822. settc(cpu_data[cpu].tc_id);
  823. write_tc_c0_tchalt(TCHALT_H);
  824. mips_ihb();
  825. tcstatus = read_tc_c0_tcstatus();
  826. if ((tcstatus & TCSTATUS_IXMT) == 0) {
  827. post_direct_ipi(cpu, pipi);
  828. sent = 1;
  829. }
  830. write_tc_c0_tchalt(0);
  831. UNLOCK_MT_PRA();
  832. if (!sent) {
  833. smtc_ipi_req(&IPIQ[cpu], pipi);
  834. }
  835. } else {
  836. /*
  837. * ipi_decode() should be called
  838. * with interrupts off
  839. */
  840. local_irq_save(flags);
  841. ipi_decode(regs, pipi);
  842. local_irq_restore(flags);
  843. }
  844. }
  845. }
  846. return IRQ_HANDLED;
  847. }
  848. static void ipi_irq_dispatch(struct pt_regs *regs)
  849. {
  850. do_IRQ(cpu_ipi_irq, regs);
  851. }
  852. static struct irqaction irq_ipi;
  853. void setup_cross_vpe_interrupts(void)
  854. {
  855. if (!cpu_has_vint)
  856. panic("SMTC Kernel requires Vectored Interupt support");
  857. set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
  858. irq_ipi.handler = ipi_interrupt;
  859. irq_ipi.flags = SA_INTERRUPT;
  860. irq_ipi.name = "SMTC_IPI";
  861. setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
  862. irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
  863. }
  864. /*
  865. * SMTC-specific hacks invoked from elsewhere in the kernel.
  866. */
  867. void smtc_idle_loop_hook(void)
  868. {
  869. #ifdef SMTC_IDLE_HOOK_DEBUG
  870. int im;
  871. int flags;
  872. int mtflags;
  873. int bit;
  874. int vpe;
  875. int tc;
  876. int hook_ntcs;
  877. /*
  878. * printk within DMT-protected regions can deadlock,
  879. * so buffer diagnostic messages for later output.
  880. */
  881. char *pdb_msg;
  882. char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
  883. if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
  884. if (atomic_add_return(1, &idle_hook_initialized) == 1) {
  885. int mvpconf0;
  886. /* Tedious stuff to just do once */
  887. mvpconf0 = read_c0_mvpconf0();
  888. hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  889. if (hook_ntcs > NR_CPUS)
  890. hook_ntcs = NR_CPUS;
  891. for (tc = 0; tc < hook_ntcs; tc++) {
  892. tcnoprog[tc] = 0;
  893. clock_hang_reported[tc] = 0;
  894. }
  895. for (vpe = 0; vpe < 2; vpe++)
  896. for (im = 0; im < 8; im++)
  897. imstuckcount[vpe][im] = 0;
  898. printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
  899. atomic_set(&idle_hook_initialized, 1000);
  900. } else {
  901. /* Someone else is initializing in parallel - let 'em finish */
  902. while (atomic_read(&idle_hook_initialized) < 1000)
  903. ;
  904. }
  905. }
  906. /* Have we stupidly left IXMT set somewhere? */
  907. if (read_c0_tcstatus() & 0x400) {
  908. write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
  909. ehb();
  910. printk("Dangling IXMT in cpu_idle()\n");
  911. }
  912. /* Have we stupidly left an IM bit turned off? */
  913. #define IM_LIMIT 2000
  914. local_irq_save(flags);
  915. mtflags = dmt();
  916. pdb_msg = &id_ho_db_msg[0];
  917. im = read_c0_status();
  918. vpe = cpu_data[smp_processor_id()].vpe_id;
  919. for (bit = 0; bit < 8; bit++) {
  920. /*
  921. * In current prototype, I/O interrupts
  922. * are masked for VPE > 0
  923. */
  924. if (vpemask[vpe][bit]) {
  925. if (!(im & (0x100 << bit)))
  926. imstuckcount[vpe][bit]++;
  927. else
  928. imstuckcount[vpe][bit] = 0;
  929. if (imstuckcount[vpe][bit] > IM_LIMIT) {
  930. set_c0_status(0x100 << bit);
  931. ehb();
  932. imstuckcount[vpe][bit] = 0;
  933. pdb_msg += sprintf(pdb_msg,
  934. "Dangling IM %d fixed for VPE %d\n", bit,
  935. vpe);
  936. }
  937. }
  938. }
  939. /*
  940. * Now that we limit outstanding timer IPIs, check for hung TC
  941. */
  942. for (tc = 0; tc < NR_CPUS; tc++) {
  943. /* Don't check ourself - we'll dequeue IPIs just below */
  944. if ((tc != smp_processor_id()) &&
  945. ipi_timer_latch[tc] > timerq_limit) {
  946. if (clock_hang_reported[tc] == 0) {
  947. pdb_msg += sprintf(pdb_msg,
  948. "TC %d looks hung with timer latch at %d\n",
  949. tc, ipi_timer_latch[tc]);
  950. clock_hang_reported[tc]++;
  951. }
  952. }
  953. }
  954. emt(mtflags);
  955. local_irq_restore(flags);
  956. if (pdb_msg != &id_ho_db_msg[0])
  957. printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
  958. #endif /* SMTC_IDLE_HOOK_DEBUG */
  959. /*
  960. * To the extent that we've ever turned interrupts off,
  961. * we may have accumulated deferred IPIs. This is subtle.
  962. * If we use the smtc_ipi_qdepth() macro, we'll get an
  963. * exact number - but we'll also disable interrupts
  964. * and create a window of failure where a new IPI gets
  965. * queued after we test the depth but before we re-enable
  966. * interrupts. So long as IXMT never gets set, however,
  967. * we should be OK: If we pick up something and dispatch
  968. * it here, that's great. If we see nothing, but concurrent
  969. * with this operation, another TC sends us an IPI, IXMT
  970. * is clear, and we'll handle it as a real pseudo-interrupt
  971. * and not a pseudo-pseudo interrupt.
  972. */
  973. if (IPIQ[smp_processor_id()].depth > 0) {
  974. struct smtc_ipi *pipi;
  975. extern void self_ipi(struct smtc_ipi *);
  976. if ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()])) != NULL) {
  977. self_ipi(pipi);
  978. smtc_cpu_stats[smp_processor_id()].selfipis++;
  979. }
  980. }
  981. }
  982. void smtc_soft_dump(void)
  983. {
  984. int i;
  985. printk("Counter Interrupts taken per CPU (TC)\n");
  986. for (i=0; i < NR_CPUS; i++) {
  987. printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
  988. }
  989. printk("Self-IPI invocations:\n");
  990. for (i=0; i < NR_CPUS; i++) {
  991. printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
  992. }
  993. smtc_ipi_qdump();
  994. printk("Timer IPI Backlogs:\n");
  995. for (i=0; i < NR_CPUS; i++) {
  996. printk("%d: %d\n", i, ipi_timer_latch[i]);
  997. }
  998. printk("%d Recoveries of \"stolen\" FPU\n",
  999. atomic_read(&smtc_fpu_recoveries));
  1000. }
  1001. /*
  1002. * TLB management routines special to SMTC
  1003. */
  1004. void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
  1005. {
  1006. unsigned long flags, mtflags, tcstat, prevhalt, asid;
  1007. int tlb, i;
  1008. /*
  1009. * It would be nice to be able to use a spinlock here,
  1010. * but this is invoked from within TLB flush routines
  1011. * that protect themselves with DVPE, so if a lock is
  1012. * held by another TC, it'll never be freed.
  1013. *
  1014. * DVPE/DMT must not be done with interrupts enabled,
  1015. * so even so most callers will already have disabled
  1016. * them, let's be really careful...
  1017. */
  1018. local_irq_save(flags);
  1019. if (smtc_status & SMTC_TLB_SHARED) {
  1020. mtflags = dvpe();
  1021. tlb = 0;
  1022. } else {
  1023. mtflags = dmt();
  1024. tlb = cpu_data[cpu].vpe_id;
  1025. }
  1026. asid = asid_cache(cpu);
  1027. do {
  1028. if (!((asid += ASID_INC) & ASID_MASK) ) {
  1029. if (cpu_has_vtag_icache)
  1030. flush_icache_all();
  1031. /* Traverse all online CPUs (hack requires contigous range) */
  1032. for (i = 0; i < num_online_cpus(); i++) {
  1033. /*
  1034. * We don't need to worry about our own CPU, nor those of
  1035. * CPUs who don't share our TLB.
  1036. */
  1037. if ((i != smp_processor_id()) &&
  1038. ((smtc_status & SMTC_TLB_SHARED) ||
  1039. (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
  1040. settc(cpu_data[i].tc_id);
  1041. prevhalt = read_tc_c0_tchalt() & TCHALT_H;
  1042. if (!prevhalt) {
  1043. write_tc_c0_tchalt(TCHALT_H);
  1044. mips_ihb();
  1045. }
  1046. tcstat = read_tc_c0_tcstatus();
  1047. smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
  1048. if (!prevhalt)
  1049. write_tc_c0_tchalt(0);
  1050. }
  1051. }
  1052. if (!asid) /* fix version if needed */
  1053. asid = ASID_FIRST_VERSION;
  1054. local_flush_tlb_all(); /* start new asid cycle */
  1055. }
  1056. } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
  1057. /*
  1058. * SMTC shares the TLB within VPEs and possibly across all VPEs.
  1059. */
  1060. for (i = 0; i < num_online_cpus(); i++) {
  1061. if ((smtc_status & SMTC_TLB_SHARED) ||
  1062. (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
  1063. cpu_context(i, mm) = asid_cache(i) = asid;
  1064. }
  1065. if (smtc_status & SMTC_TLB_SHARED)
  1066. evpe(mtflags);
  1067. else
  1068. emt(mtflags);
  1069. local_irq_restore(flags);
  1070. }
  1071. /*
  1072. * Invoked from macros defined in mmu_context.h
  1073. * which must already have disabled interrupts
  1074. * and done a DVPE or DMT as appropriate.
  1075. */
  1076. void smtc_flush_tlb_asid(unsigned long asid)
  1077. {
  1078. int entry;
  1079. unsigned long ehi;
  1080. entry = read_c0_wired();
  1081. /* Traverse all non-wired entries */
  1082. while (entry < current_cpu_data.tlbsize) {
  1083. write_c0_index(entry);
  1084. ehb();
  1085. tlb_read();
  1086. ehb();
  1087. ehi = read_c0_entryhi();
  1088. if((ehi & ASID_MASK) == asid) {
  1089. /*
  1090. * Invalidate only entries with specified ASID,
  1091. * makiing sure all entries differ.
  1092. */
  1093. write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
  1094. write_c0_entrylo0(0);
  1095. write_c0_entrylo1(0);
  1096. mtc0_tlbw_hazard();
  1097. tlb_write_indexed();
  1098. }
  1099. entry++;
  1100. }
  1101. write_c0_index(PARKED_INDEX);
  1102. tlbw_use_hazard();
  1103. }
  1104. /*
  1105. * Support for single-threading cache flush operations.
  1106. */
  1107. int halt_state_save[NR_CPUS];
  1108. /*
  1109. * To really, really be sure that nothing is being done
  1110. * by other TCs, halt them all. This code assumes that
  1111. * a DVPE has already been done, so while their Halted
  1112. * state is theoretically architecturally unstable, in
  1113. * practice, it's not going to change while we're looking
  1114. * at it.
  1115. */
  1116. void smtc_cflush_lockdown(void)
  1117. {
  1118. int cpu;
  1119. for_each_online_cpu(cpu) {
  1120. if (cpu != smp_processor_id()) {
  1121. settc(cpu_data[cpu].tc_id);
  1122. halt_state_save[cpu] = read_tc_c0_tchalt();
  1123. write_tc_c0_tchalt(TCHALT_H);
  1124. }
  1125. }
  1126. mips_ihb();
  1127. }
  1128. /* It would be cheating to change the cpu_online states during a flush! */
  1129. void smtc_cflush_release(void)
  1130. {
  1131. int cpu;
  1132. /*
  1133. * Start with a hazard barrier to ensure
  1134. * that all CACHE ops have played through.
  1135. */
  1136. mips_ihb();
  1137. for_each_online_cpu(cpu) {
  1138. if (cpu != smp_processor_id()) {
  1139. settc(cpu_data[cpu].tc_id);
  1140. write_tc_c0_tchalt(halt_state_save[cpu]);
  1141. }
  1142. }
  1143. mips_ihb();
  1144. }