unaligned.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547
  1. /*
  2. * Architecture-specific unaligned trap handling.
  3. *
  4. * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
  5. * Stephane Eranian <eranian@hpl.hp.com>
  6. * David Mosberger-Tang <davidm@hpl.hp.com>
  7. *
  8. * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
  9. * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
  10. * stacked register returns an undefined value; it does NOT trigger a
  11. * "rsvd register fault").
  12. * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
  13. * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
  14. * 2001/01/17 Add support emulation of unaligned kernel accesses.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/sched.h>
  18. #include <linux/smp_lock.h>
  19. #include <linux/tty.h>
  20. #include <asm/intrinsics.h>
  21. #include <asm/processor.h>
  22. #include <asm/rse.h>
  23. #include <asm/uaccess.h>
  24. #include <asm/unaligned.h>
  25. extern void die_if_kernel(char *str, struct pt_regs *regs, long err);
  26. #undef DEBUG_UNALIGNED_TRAP
  27. #ifdef DEBUG_UNALIGNED_TRAP
  28. # define DPRINT(a...) do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0)
  29. # define DDUMP(str,vp,len) dump(str, vp, len)
  30. static void
  31. dump (const char *str, void *vp, size_t len)
  32. {
  33. unsigned char *cp = vp;
  34. int i;
  35. printk("%s", str);
  36. for (i = 0; i < len; ++i)
  37. printk (" %02x", *cp++);
  38. printk("\n");
  39. }
  40. #else
  41. # define DPRINT(a...)
  42. # define DDUMP(str,vp,len)
  43. #endif
  44. #define IA64_FIRST_STACKED_GR 32
  45. #define IA64_FIRST_ROTATING_FR 32
  46. #define SIGN_EXT9 0xffffffffffffff00ul
  47. /*
  48. * sysctl settable hook which tells the kernel whether to honor the
  49. * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
  50. * to allow the super user to enable/disable this for security reasons
  51. * (i.e. don't allow attacker to fill up logs with unaligned accesses).
  52. */
  53. int no_unaligned_warning;
  54. static int noprint_warning;
  55. /*
  56. * For M-unit:
  57. *
  58. * opcode | m | x6 |
  59. * --------|------|---------|
  60. * [40-37] | [36] | [35:30] |
  61. * --------|------|---------|
  62. * 4 | 1 | 6 | = 11 bits
  63. * --------------------------
  64. * However bits [31:30] are not directly useful to distinguish between
  65. * load/store so we can use [35:32] instead, which gives the following
  66. * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
  67. * checking the m-bit until later in the load/store emulation.
  68. */
  69. #define IA64_OPCODE_MASK 0x1ef
  70. #define IA64_OPCODE_SHIFT 32
  71. /*
  72. * Table C-28 Integer Load/Store
  73. *
  74. * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
  75. *
  76. * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
  77. * the address (bits [8:3]), so we must failed.
  78. */
  79. #define LD_OP 0x080
  80. #define LDS_OP 0x081
  81. #define LDA_OP 0x082
  82. #define LDSA_OP 0x083
  83. #define LDBIAS_OP 0x084
  84. #define LDACQ_OP 0x085
  85. /* 0x086, 0x087 are not relevant */
  86. #define LDCCLR_OP 0x088
  87. #define LDCNC_OP 0x089
  88. #define LDCCLRACQ_OP 0x08a
  89. #define ST_OP 0x08c
  90. #define STREL_OP 0x08d
  91. /* 0x08e,0x8f are not relevant */
  92. /*
  93. * Table C-29 Integer Load +Reg
  94. *
  95. * we use the ld->m (bit [36:36]) field to determine whether or not we have
  96. * a load/store of this form.
  97. */
  98. /*
  99. * Table C-30 Integer Load/Store +Imm
  100. *
  101. * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
  102. *
  103. * ld8.fill, st8.fill must be aligned because the Nat register are based on
  104. * the address, so we must fail and the program must be fixed.
  105. */
  106. #define LD_IMM_OP 0x0a0
  107. #define LDS_IMM_OP 0x0a1
  108. #define LDA_IMM_OP 0x0a2
  109. #define LDSA_IMM_OP 0x0a3
  110. #define LDBIAS_IMM_OP 0x0a4
  111. #define LDACQ_IMM_OP 0x0a5
  112. /* 0x0a6, 0xa7 are not relevant */
  113. #define LDCCLR_IMM_OP 0x0a8
  114. #define LDCNC_IMM_OP 0x0a9
  115. #define LDCCLRACQ_IMM_OP 0x0aa
  116. #define ST_IMM_OP 0x0ac
  117. #define STREL_IMM_OP 0x0ad
  118. /* 0x0ae,0xaf are not relevant */
  119. /*
  120. * Table C-32 Floating-point Load/Store
  121. */
  122. #define LDF_OP 0x0c0
  123. #define LDFS_OP 0x0c1
  124. #define LDFA_OP 0x0c2
  125. #define LDFSA_OP 0x0c3
  126. /* 0x0c6 is irrelevant */
  127. #define LDFCCLR_OP 0x0c8
  128. #define LDFCNC_OP 0x0c9
  129. /* 0x0cb is irrelevant */
  130. #define STF_OP 0x0cc
  131. /*
  132. * Table C-33 Floating-point Load +Reg
  133. *
  134. * we use the ld->m (bit [36:36]) field to determine whether or not we have
  135. * a load/store of this form.
  136. */
  137. /*
  138. * Table C-34 Floating-point Load/Store +Imm
  139. */
  140. #define LDF_IMM_OP 0x0e0
  141. #define LDFS_IMM_OP 0x0e1
  142. #define LDFA_IMM_OP 0x0e2
  143. #define LDFSA_IMM_OP 0x0e3
  144. /* 0x0e6 is irrelevant */
  145. #define LDFCCLR_IMM_OP 0x0e8
  146. #define LDFCNC_IMM_OP 0x0e9
  147. #define STF_IMM_OP 0x0ec
  148. typedef struct {
  149. unsigned long qp:6; /* [0:5] */
  150. unsigned long r1:7; /* [6:12] */
  151. unsigned long imm:7; /* [13:19] */
  152. unsigned long r3:7; /* [20:26] */
  153. unsigned long x:1; /* [27:27] */
  154. unsigned long hint:2; /* [28:29] */
  155. unsigned long x6_sz:2; /* [30:31] */
  156. unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
  157. unsigned long m:1; /* [36:36] */
  158. unsigned long op:4; /* [37:40] */
  159. unsigned long pad:23; /* [41:63] */
  160. } load_store_t;
  161. typedef enum {
  162. UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
  163. UPD_REG /* ldXZ r1=[r3],r2 */
  164. } update_t;
  165. /*
  166. * We use tables to keep track of the offsets of registers in the saved state.
  167. * This way we save having big switch/case statements.
  168. *
  169. * We use bit 0 to indicate switch_stack or pt_regs.
  170. * The offset is simply shifted by 1 bit.
  171. * A 2-byte value should be enough to hold any kind of offset
  172. *
  173. * In case the calling convention changes (and thus pt_regs/switch_stack)
  174. * simply use RSW instead of RPT or vice-versa.
  175. */
  176. #define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
  177. #define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
  178. #define RPT(x) (RPO(x) << 1)
  179. #define RSW(x) (1| RSO(x)<<1)
  180. #define GR_OFFS(x) (gr_info[x]>>1)
  181. #define GR_IN_SW(x) (gr_info[x] & 0x1)
  182. #define FR_OFFS(x) (fr_info[x]>>1)
  183. #define FR_IN_SW(x) (fr_info[x] & 0x1)
  184. static u16 gr_info[32]={
  185. 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
  186. RPT(r1), RPT(r2), RPT(r3),
  187. RSW(r4), RSW(r5), RSW(r6), RSW(r7),
  188. RPT(r8), RPT(r9), RPT(r10), RPT(r11),
  189. RPT(r12), RPT(r13), RPT(r14), RPT(r15),
  190. RPT(r16), RPT(r17), RPT(r18), RPT(r19),
  191. RPT(r20), RPT(r21), RPT(r22), RPT(r23),
  192. RPT(r24), RPT(r25), RPT(r26), RPT(r27),
  193. RPT(r28), RPT(r29), RPT(r30), RPT(r31)
  194. };
  195. static u16 fr_info[32]={
  196. 0, /* constant : WE SHOULD NEVER GET THIS */
  197. 0, /* constant : WE SHOULD NEVER GET THIS */
  198. RSW(f2), RSW(f3), RSW(f4), RSW(f5),
  199. RPT(f6), RPT(f7), RPT(f8), RPT(f9),
  200. RPT(f10), RPT(f11),
  201. RSW(f12), RSW(f13), RSW(f14),
  202. RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
  203. RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
  204. RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
  205. RSW(f30), RSW(f31)
  206. };
  207. /* Invalidate ALAT entry for integer register REGNO. */
  208. static void
  209. invala_gr (int regno)
  210. {
  211. # define F(reg) case reg: ia64_invala_gr(reg); break
  212. switch (regno) {
  213. F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
  214. F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
  215. F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
  216. F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
  217. F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
  218. F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
  219. F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
  220. F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
  221. F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
  222. F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
  223. F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
  224. F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
  225. F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
  226. F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
  227. F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
  228. F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
  229. }
  230. # undef F
  231. }
  232. /* Invalidate ALAT entry for floating-point register REGNO. */
  233. static void
  234. invala_fr (int regno)
  235. {
  236. # define F(reg) case reg: ia64_invala_fr(reg); break
  237. switch (regno) {
  238. F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
  239. F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
  240. F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
  241. F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
  242. F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
  243. F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
  244. F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
  245. F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
  246. F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
  247. F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
  248. F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
  249. F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
  250. F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
  251. F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
  252. F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
  253. F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
  254. }
  255. # undef F
  256. }
  257. static inline unsigned long
  258. rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
  259. {
  260. reg += rrb;
  261. if (reg >= sor)
  262. reg -= sor;
  263. return reg;
  264. }
  265. static void
  266. set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
  267. {
  268. struct switch_stack *sw = (struct switch_stack *) regs - 1;
  269. unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
  270. unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
  271. unsigned long rnats, nat_mask;
  272. unsigned long on_kbs;
  273. long sof = (regs->cr_ifs) & 0x7f;
  274. long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
  275. long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
  276. long ridx = r1 - 32;
  277. if (ridx >= sof) {
  278. /* this should never happen, as the "rsvd register fault" has higher priority */
  279. DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
  280. return;
  281. }
  282. if (ridx < sor)
  283. ridx = rotate_reg(sor, rrb_gr, ridx);
  284. DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
  285. r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
  286. on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
  287. addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
  288. if (addr >= kbs) {
  289. /* the register is on the kernel backing store: easy... */
  290. rnat_addr = ia64_rse_rnat_addr(addr);
  291. if ((unsigned long) rnat_addr >= sw->ar_bspstore)
  292. rnat_addr = &sw->ar_rnat;
  293. nat_mask = 1UL << ia64_rse_slot_num(addr);
  294. *addr = val;
  295. if (nat)
  296. *rnat_addr |= nat_mask;
  297. else
  298. *rnat_addr &= ~nat_mask;
  299. return;
  300. }
  301. if (!user_stack(current, regs)) {
  302. DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
  303. return;
  304. }
  305. bspstore = (unsigned long *)regs->ar_bspstore;
  306. ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
  307. bsp = ia64_rse_skip_regs(ubs_end, -sof);
  308. addr = ia64_rse_skip_regs(bsp, ridx);
  309. DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
  310. ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
  311. rnat_addr = ia64_rse_rnat_addr(addr);
  312. ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
  313. DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
  314. (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
  315. nat_mask = 1UL << ia64_rse_slot_num(addr);
  316. if (nat)
  317. rnats |= nat_mask;
  318. else
  319. rnats &= ~nat_mask;
  320. ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
  321. DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
  322. }
  323. static void
  324. get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
  325. {
  326. struct switch_stack *sw = (struct switch_stack *) regs - 1;
  327. unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
  328. unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
  329. unsigned long rnats, nat_mask;
  330. unsigned long on_kbs;
  331. long sof = (regs->cr_ifs) & 0x7f;
  332. long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
  333. long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
  334. long ridx = r1 - 32;
  335. if (ridx >= sof) {
  336. /* read of out-of-frame register returns an undefined value; 0 in our case. */
  337. DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
  338. goto fail;
  339. }
  340. if (ridx < sor)
  341. ridx = rotate_reg(sor, rrb_gr, ridx);
  342. DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
  343. r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
  344. on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
  345. addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
  346. if (addr >= kbs) {
  347. /* the register is on the kernel backing store: easy... */
  348. *val = *addr;
  349. if (nat) {
  350. rnat_addr = ia64_rse_rnat_addr(addr);
  351. if ((unsigned long) rnat_addr >= sw->ar_bspstore)
  352. rnat_addr = &sw->ar_rnat;
  353. nat_mask = 1UL << ia64_rse_slot_num(addr);
  354. *nat = (*rnat_addr & nat_mask) != 0;
  355. }
  356. return;
  357. }
  358. if (!user_stack(current, regs)) {
  359. DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
  360. goto fail;
  361. }
  362. bspstore = (unsigned long *)regs->ar_bspstore;
  363. ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
  364. bsp = ia64_rse_skip_regs(ubs_end, -sof);
  365. addr = ia64_rse_skip_regs(bsp, ridx);
  366. DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
  367. ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
  368. if (nat) {
  369. rnat_addr = ia64_rse_rnat_addr(addr);
  370. nat_mask = 1UL << ia64_rse_slot_num(addr);
  371. DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
  372. ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
  373. *nat = (rnats & nat_mask) != 0;
  374. }
  375. return;
  376. fail:
  377. *val = 0;
  378. if (nat)
  379. *nat = 0;
  380. return;
  381. }
  382. static void
  383. setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
  384. {
  385. struct switch_stack *sw = (struct switch_stack *) regs - 1;
  386. unsigned long addr;
  387. unsigned long bitmask;
  388. unsigned long *unat;
  389. /*
  390. * First takes care of stacked registers
  391. */
  392. if (regnum >= IA64_FIRST_STACKED_GR) {
  393. set_rse_reg(regs, regnum, val, nat);
  394. return;
  395. }
  396. /*
  397. * Using r0 as a target raises a General Exception fault which has higher priority
  398. * than the Unaligned Reference fault.
  399. */
  400. /*
  401. * Now look at registers in [0-31] range and init correct UNAT
  402. */
  403. if (GR_IN_SW(regnum)) {
  404. addr = (unsigned long)sw;
  405. unat = &sw->ar_unat;
  406. } else {
  407. addr = (unsigned long)regs;
  408. unat = &sw->caller_unat;
  409. }
  410. DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
  411. addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
  412. /*
  413. * add offset from base of struct
  414. * and do it !
  415. */
  416. addr += GR_OFFS(regnum);
  417. *(unsigned long *)addr = val;
  418. /*
  419. * We need to clear the corresponding UNAT bit to fully emulate the load
  420. * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
  421. */
  422. bitmask = 1UL << (addr >> 3 & 0x3f);
  423. DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
  424. if (nat) {
  425. *unat |= bitmask;
  426. } else {
  427. *unat &= ~bitmask;
  428. }
  429. DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
  430. }
  431. /*
  432. * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
  433. * range from 32-127, result is in the range from 0-95.
  434. */
  435. static inline unsigned long
  436. fph_index (struct pt_regs *regs, long regnum)
  437. {
  438. unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
  439. return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
  440. }
  441. static void
  442. setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
  443. {
  444. struct switch_stack *sw = (struct switch_stack *)regs - 1;
  445. unsigned long addr;
  446. /*
  447. * From EAS-2.5: FPDisableFault has higher priority than Unaligned
  448. * Fault. Thus, when we get here, we know the partition is enabled.
  449. * To update f32-f127, there are three choices:
  450. *
  451. * (1) save f32-f127 to thread.fph and update the values there
  452. * (2) use a gigantic switch statement to directly access the registers
  453. * (3) generate code on the fly to update the desired register
  454. *
  455. * For now, we are using approach (1).
  456. */
  457. if (regnum >= IA64_FIRST_ROTATING_FR) {
  458. ia64_sync_fph(current);
  459. current->thread.fph[fph_index(regs, regnum)] = *fpval;
  460. } else {
  461. /*
  462. * pt_regs or switch_stack ?
  463. */
  464. if (FR_IN_SW(regnum)) {
  465. addr = (unsigned long)sw;
  466. } else {
  467. addr = (unsigned long)regs;
  468. }
  469. DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
  470. addr += FR_OFFS(regnum);
  471. *(struct ia64_fpreg *)addr = *fpval;
  472. /*
  473. * mark the low partition as being used now
  474. *
  475. * It is highly unlikely that this bit is not already set, but
  476. * let's do it for safety.
  477. */
  478. regs->cr_ipsr |= IA64_PSR_MFL;
  479. }
  480. }
  481. /*
  482. * Those 2 inline functions generate the spilled versions of the constant floating point
  483. * registers which can be used with stfX
  484. */
  485. static inline void
  486. float_spill_f0 (struct ia64_fpreg *final)
  487. {
  488. ia64_stf_spill(final, 0);
  489. }
  490. static inline void
  491. float_spill_f1 (struct ia64_fpreg *final)
  492. {
  493. ia64_stf_spill(final, 1);
  494. }
  495. static void
  496. getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
  497. {
  498. struct switch_stack *sw = (struct switch_stack *) regs - 1;
  499. unsigned long addr;
  500. /*
  501. * From EAS-2.5: FPDisableFault has higher priority than
  502. * Unaligned Fault. Thus, when we get here, we know the partition is
  503. * enabled.
  504. *
  505. * When regnum > 31, the register is still live and we need to force a save
  506. * to current->thread.fph to get access to it. See discussion in setfpreg()
  507. * for reasons and other ways of doing this.
  508. */
  509. if (regnum >= IA64_FIRST_ROTATING_FR) {
  510. ia64_flush_fph(current);
  511. *fpval = current->thread.fph[fph_index(regs, regnum)];
  512. } else {
  513. /*
  514. * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
  515. * not saved, we must generate their spilled form on the fly
  516. */
  517. switch(regnum) {
  518. case 0:
  519. float_spill_f0(fpval);
  520. break;
  521. case 1:
  522. float_spill_f1(fpval);
  523. break;
  524. default:
  525. /*
  526. * pt_regs or switch_stack ?
  527. */
  528. addr = FR_IN_SW(regnum) ? (unsigned long)sw
  529. : (unsigned long)regs;
  530. DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
  531. FR_IN_SW(regnum), addr, FR_OFFS(regnum));
  532. addr += FR_OFFS(regnum);
  533. *fpval = *(struct ia64_fpreg *)addr;
  534. }
  535. }
  536. }
  537. static void
  538. getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
  539. {
  540. struct switch_stack *sw = (struct switch_stack *) regs - 1;
  541. unsigned long addr, *unat;
  542. if (regnum >= IA64_FIRST_STACKED_GR) {
  543. get_rse_reg(regs, regnum, val, nat);
  544. return;
  545. }
  546. /*
  547. * take care of r0 (read-only always evaluate to 0)
  548. */
  549. if (regnum == 0) {
  550. *val = 0;
  551. if (nat)
  552. *nat = 0;
  553. return;
  554. }
  555. /*
  556. * Now look at registers in [0-31] range and init correct UNAT
  557. */
  558. if (GR_IN_SW(regnum)) {
  559. addr = (unsigned long)sw;
  560. unat = &sw->ar_unat;
  561. } else {
  562. addr = (unsigned long)regs;
  563. unat = &sw->caller_unat;
  564. }
  565. DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
  566. addr += GR_OFFS(regnum);
  567. *val = *(unsigned long *)addr;
  568. /*
  569. * do it only when requested
  570. */
  571. if (nat)
  572. *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
  573. }
  574. static void
  575. emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
  576. {
  577. /*
  578. * IMPORTANT:
  579. * Given the way we handle unaligned speculative loads, we should
  580. * not get to this point in the code but we keep this sanity check,
  581. * just in case.
  582. */
  583. if (ld.x6_op == 1 || ld.x6_op == 3) {
  584. printk(KERN_ERR "%s: register update on speculative load, error\n", __FUNCTION__);
  585. die_if_kernel("unaligned reference on speculative load with register update\n",
  586. regs, 30);
  587. }
  588. /*
  589. * at this point, we know that the base register to update is valid i.e.,
  590. * it's not r0
  591. */
  592. if (type == UPD_IMMEDIATE) {
  593. unsigned long imm;
  594. /*
  595. * Load +Imm: ldXZ r1=[r3],imm(9)
  596. *
  597. *
  598. * form imm9: [13:19] contain the first 7 bits
  599. */
  600. imm = ld.x << 7 | ld.imm;
  601. /*
  602. * sign extend (1+8bits) if m set
  603. */
  604. if (ld.m) imm |= SIGN_EXT9;
  605. /*
  606. * ifa == r3 and we know that the NaT bit on r3 was clear so
  607. * we can directly use ifa.
  608. */
  609. ifa += imm;
  610. setreg(ld.r3, ifa, 0, regs);
  611. DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
  612. } else if (ld.m) {
  613. unsigned long r2;
  614. int nat_r2;
  615. /*
  616. * Load +Reg Opcode: ldXZ r1=[r3],r2
  617. *
  618. * Note: that we update r3 even in the case of ldfX.a
  619. * (where the load does not happen)
  620. *
  621. * The way the load algorithm works, we know that r3 does not
  622. * have its NaT bit set (would have gotten NaT consumption
  623. * before getting the unaligned fault). So we can use ifa
  624. * which equals r3 at this point.
  625. *
  626. * IMPORTANT:
  627. * The above statement holds ONLY because we know that we
  628. * never reach this code when trying to do a ldX.s.
  629. * If we ever make it to here on an ldfX.s then
  630. */
  631. getreg(ld.imm, &r2, &nat_r2, regs);
  632. ifa += r2;
  633. /*
  634. * propagate Nat r2 -> r3
  635. */
  636. setreg(ld.r3, ifa, nat_r2, regs);
  637. DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
  638. }
  639. }
  640. static int
  641. emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
  642. {
  643. unsigned int len = 1 << ld.x6_sz;
  644. unsigned long val = 0;
  645. /*
  646. * r0, as target, doesn't need to be checked because Illegal Instruction
  647. * faults have higher priority than unaligned faults.
  648. *
  649. * r0 cannot be found as the base as it would never generate an
  650. * unaligned reference.
  651. */
  652. /*
  653. * ldX.a we will emulate load and also invalidate the ALAT entry.
  654. * See comment below for explanation on how we handle ldX.a
  655. */
  656. if (len != 2 && len != 4 && len != 8) {
  657. DPRINT("unknown size: x6=%d\n", ld.x6_sz);
  658. return -1;
  659. }
  660. /* this assumes little-endian byte-order: */
  661. if (copy_from_user(&val, (void __user *) ifa, len))
  662. return -1;
  663. setreg(ld.r1, val, 0, regs);
  664. /*
  665. * check for updates on any kind of loads
  666. */
  667. if (ld.op == 0x5 || ld.m)
  668. emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
  669. /*
  670. * handling of various loads (based on EAS2.4):
  671. *
  672. * ldX.acq (ordered load):
  673. * - acquire semantics would have been used, so force fence instead.
  674. *
  675. * ldX.c.clr (check load and clear):
  676. * - if we get to this handler, it's because the entry was not in the ALAT.
  677. * Therefore the operation reverts to a normal load
  678. *
  679. * ldX.c.nc (check load no clear):
  680. * - same as previous one
  681. *
  682. * ldX.c.clr.acq (ordered check load and clear):
  683. * - same as above for c.clr part. The load needs to have acquire semantics. So
  684. * we use the fence semantics which is stronger and thus ensures correctness.
  685. *
  686. * ldX.a (advanced load):
  687. * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
  688. * address doesn't match requested size alignment. This means that we would
  689. * possibly need more than one load to get the result.
  690. *
  691. * The load part can be handled just like a normal load, however the difficult
  692. * part is to get the right thing into the ALAT. The critical piece of information
  693. * in the base address of the load & size. To do that, a ld.a must be executed,
  694. * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
  695. * if we use the same target register, we will be okay for the check.a instruction.
  696. * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
  697. * which would overlap within [r3,r3+X] (the size of the load was store in the
  698. * ALAT). If such an entry is found the entry is invalidated. But this is not good
  699. * enough, take the following example:
  700. * r3=3
  701. * ld4.a r1=[r3]
  702. *
  703. * Could be emulated by doing:
  704. * ld1.a r1=[r3],1
  705. * store to temporary;
  706. * ld1.a r1=[r3],1
  707. * store & shift to temporary;
  708. * ld1.a r1=[r3],1
  709. * store & shift to temporary;
  710. * ld1.a r1=[r3]
  711. * store & shift to temporary;
  712. * r1=temporary
  713. *
  714. * So in this case, you would get the right value is r1 but the wrong info in
  715. * the ALAT. Notice that you could do it in reverse to finish with address 3
  716. * but you would still get the size wrong. To get the size right, one needs to
  717. * execute exactly the same kind of load. You could do it from a aligned
  718. * temporary location, but you would get the address wrong.
  719. *
  720. * So no matter what, it is not possible to emulate an advanced load
  721. * correctly. But is that really critical ?
  722. *
  723. * We will always convert ld.a into a normal load with ALAT invalidated. This
  724. * will enable compiler to do optimization where certain code path after ld.a
  725. * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
  726. *
  727. * If there is a store after the advanced load, one must either do a ld.c.* or
  728. * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
  729. * entry found in ALAT), and that's perfectly ok because:
  730. *
  731. * - ld.c.*, if the entry is not present a normal load is executed
  732. * - chk.a.*, if the entry is not present, execution jumps to recovery code
  733. *
  734. * In either case, the load can be potentially retried in another form.
  735. *
  736. * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
  737. * up a stale entry later). The register base update MUST also be performed.
  738. */
  739. /*
  740. * when the load has the .acq completer then
  741. * use ordering fence.
  742. */
  743. if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
  744. mb();
  745. /*
  746. * invalidate ALAT entry in case of advanced load
  747. */
  748. if (ld.x6_op == 0x2)
  749. invala_gr(ld.r1);
  750. return 0;
  751. }
  752. static int
  753. emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
  754. {
  755. unsigned long r2;
  756. unsigned int len = 1 << ld.x6_sz;
  757. /*
  758. * if we get to this handler, Nat bits on both r3 and r2 have already
  759. * been checked. so we don't need to do it
  760. *
  761. * extract the value to be stored
  762. */
  763. getreg(ld.imm, &r2, NULL, regs);
  764. /*
  765. * we rely on the macros in unaligned.h for now i.e.,
  766. * we let the compiler figure out how to read memory gracefully.
  767. *
  768. * We need this switch/case because the way the inline function
  769. * works. The code is optimized by the compiler and looks like
  770. * a single switch/case.
  771. */
  772. DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
  773. if (len != 2 && len != 4 && len != 8) {
  774. DPRINT("unknown size: x6=%d\n", ld.x6_sz);
  775. return -1;
  776. }
  777. /* this assumes little-endian byte-order: */
  778. if (copy_to_user((void __user *) ifa, &r2, len))
  779. return -1;
  780. /*
  781. * stX [r3]=r2,imm(9)
  782. *
  783. * NOTE:
  784. * ld.r3 can never be r0, because r0 would not generate an
  785. * unaligned access.
  786. */
  787. if (ld.op == 0x5) {
  788. unsigned long imm;
  789. /*
  790. * form imm9: [12:6] contain first 7bits
  791. */
  792. imm = ld.x << 7 | ld.r1;
  793. /*
  794. * sign extend (8bits) if m set
  795. */
  796. if (ld.m) imm |= SIGN_EXT9;
  797. /*
  798. * ifa == r3 (NaT is necessarily cleared)
  799. */
  800. ifa += imm;
  801. DPRINT("imm=%lx r3=%lx\n", imm, ifa);
  802. setreg(ld.r3, ifa, 0, regs);
  803. }
  804. /*
  805. * we don't have alat_invalidate_multiple() so we need
  806. * to do the complete flush :-<<
  807. */
  808. ia64_invala();
  809. /*
  810. * stX.rel: use fence instead of release
  811. */
  812. if (ld.x6_op == 0xd)
  813. mb();
  814. return 0;
  815. }
  816. /*
  817. * floating point operations sizes in bytes
  818. */
  819. static const unsigned char float_fsz[4]={
  820. 10, /* extended precision (e) */
  821. 8, /* integer (8) */
  822. 4, /* single precision (s) */
  823. 8 /* double precision (d) */
  824. };
  825. static inline void
  826. mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
  827. {
  828. ia64_ldfe(6, init);
  829. ia64_stop();
  830. ia64_stf_spill(final, 6);
  831. }
  832. static inline void
  833. mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
  834. {
  835. ia64_ldf8(6, init);
  836. ia64_stop();
  837. ia64_stf_spill(final, 6);
  838. }
  839. static inline void
  840. mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
  841. {
  842. ia64_ldfs(6, init);
  843. ia64_stop();
  844. ia64_stf_spill(final, 6);
  845. }
  846. static inline void
  847. mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
  848. {
  849. ia64_ldfd(6, init);
  850. ia64_stop();
  851. ia64_stf_spill(final, 6);
  852. }
  853. static inline void
  854. float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
  855. {
  856. ia64_ldf_fill(6, init);
  857. ia64_stop();
  858. ia64_stfe(final, 6);
  859. }
  860. static inline void
  861. float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
  862. {
  863. ia64_ldf_fill(6, init);
  864. ia64_stop();
  865. ia64_stf8(final, 6);
  866. }
  867. static inline void
  868. float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
  869. {
  870. ia64_ldf_fill(6, init);
  871. ia64_stop();
  872. ia64_stfs(final, 6);
  873. }
  874. static inline void
  875. float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
  876. {
  877. ia64_ldf_fill(6, init);
  878. ia64_stop();
  879. ia64_stfd(final, 6);
  880. }
  881. static int
  882. emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
  883. {
  884. struct ia64_fpreg fpr_init[2];
  885. struct ia64_fpreg fpr_final[2];
  886. unsigned long len = float_fsz[ld.x6_sz];
  887. /*
  888. * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
  889. * higher priority than unaligned faults.
  890. *
  891. * r0 cannot be found as the base as it would never generate an unaligned
  892. * reference.
  893. */
  894. /*
  895. * make sure we get clean buffers
  896. */
  897. memset(&fpr_init, 0, sizeof(fpr_init));
  898. memset(&fpr_final, 0, sizeof(fpr_final));
  899. /*
  900. * ldfpX.a: we don't try to emulate anything but we must
  901. * invalidate the ALAT entry and execute updates, if any.
  902. */
  903. if (ld.x6_op != 0x2) {
  904. /*
  905. * This assumes little-endian byte-order. Note that there is no "ldfpe"
  906. * instruction:
  907. */
  908. if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
  909. || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
  910. return -1;
  911. DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
  912. DDUMP("frp_init =", &fpr_init, 2*len);
  913. /*
  914. * XXX fixme
  915. * Could optimize inlines by using ldfpX & 2 spills
  916. */
  917. switch( ld.x6_sz ) {
  918. case 0:
  919. mem2float_extended(&fpr_init[0], &fpr_final[0]);
  920. mem2float_extended(&fpr_init[1], &fpr_final[1]);
  921. break;
  922. case 1:
  923. mem2float_integer(&fpr_init[0], &fpr_final[0]);
  924. mem2float_integer(&fpr_init[1], &fpr_final[1]);
  925. break;
  926. case 2:
  927. mem2float_single(&fpr_init[0], &fpr_final[0]);
  928. mem2float_single(&fpr_init[1], &fpr_final[1]);
  929. break;
  930. case 3:
  931. mem2float_double(&fpr_init[0], &fpr_final[0]);
  932. mem2float_double(&fpr_init[1], &fpr_final[1]);
  933. break;
  934. }
  935. DDUMP("fpr_final =", &fpr_final, 2*len);
  936. /*
  937. * XXX fixme
  938. *
  939. * A possible optimization would be to drop fpr_final and directly
  940. * use the storage from the saved context i.e., the actual final
  941. * destination (pt_regs, switch_stack or thread structure).
  942. */
  943. setfpreg(ld.r1, &fpr_final[0], regs);
  944. setfpreg(ld.imm, &fpr_final[1], regs);
  945. }
  946. /*
  947. * Check for updates: only immediate updates are available for this
  948. * instruction.
  949. */
  950. if (ld.m) {
  951. /*
  952. * the immediate is implicit given the ldsz of the operation:
  953. * single: 8 (2x4) and for all others it's 16 (2x8)
  954. */
  955. ifa += len<<1;
  956. /*
  957. * IMPORTANT:
  958. * the fact that we force the NaT of r3 to zero is ONLY valid
  959. * as long as we don't come here with a ldfpX.s.
  960. * For this reason we keep this sanity check
  961. */
  962. if (ld.x6_op == 1 || ld.x6_op == 3)
  963. printk(KERN_ERR "%s: register update on speculative load pair, error\n",
  964. __FUNCTION__);
  965. setreg(ld.r3, ifa, 0, regs);
  966. }
  967. /*
  968. * Invalidate ALAT entries, if any, for both registers.
  969. */
  970. if (ld.x6_op == 0x2) {
  971. invala_fr(ld.r1);
  972. invala_fr(ld.imm);
  973. }
  974. return 0;
  975. }
  976. static int
  977. emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
  978. {
  979. struct ia64_fpreg fpr_init;
  980. struct ia64_fpreg fpr_final;
  981. unsigned long len = float_fsz[ld.x6_sz];
  982. /*
  983. * fr0 & fr1 don't need to be checked because Illegal Instruction
  984. * faults have higher priority than unaligned faults.
  985. *
  986. * r0 cannot be found as the base as it would never generate an
  987. * unaligned reference.
  988. */
  989. /*
  990. * make sure we get clean buffers
  991. */
  992. memset(&fpr_init,0, sizeof(fpr_init));
  993. memset(&fpr_final,0, sizeof(fpr_final));
  994. /*
  995. * ldfX.a we don't try to emulate anything but we must
  996. * invalidate the ALAT entry.
  997. * See comments in ldX for descriptions on how the various loads are handled.
  998. */
  999. if (ld.x6_op != 0x2) {
  1000. if (copy_from_user(&fpr_init, (void __user *) ifa, len))
  1001. return -1;
  1002. DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
  1003. DDUMP("fpr_init =", &fpr_init, len);
  1004. /*
  1005. * we only do something for x6_op={0,8,9}
  1006. */
  1007. switch( ld.x6_sz ) {
  1008. case 0:
  1009. mem2float_extended(&fpr_init, &fpr_final);
  1010. break;
  1011. case 1:
  1012. mem2float_integer(&fpr_init, &fpr_final);
  1013. break;
  1014. case 2:
  1015. mem2float_single(&fpr_init, &fpr_final);
  1016. break;
  1017. case 3:
  1018. mem2float_double(&fpr_init, &fpr_final);
  1019. break;
  1020. }
  1021. DDUMP("fpr_final =", &fpr_final, len);
  1022. /*
  1023. * XXX fixme
  1024. *
  1025. * A possible optimization would be to drop fpr_final and directly
  1026. * use the storage from the saved context i.e., the actual final
  1027. * destination (pt_regs, switch_stack or thread structure).
  1028. */
  1029. setfpreg(ld.r1, &fpr_final, regs);
  1030. }
  1031. /*
  1032. * check for updates on any loads
  1033. */
  1034. if (ld.op == 0x7 || ld.m)
  1035. emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
  1036. /*
  1037. * invalidate ALAT entry in case of advanced floating point loads
  1038. */
  1039. if (ld.x6_op == 0x2)
  1040. invala_fr(ld.r1);
  1041. return 0;
  1042. }
  1043. static int
  1044. emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
  1045. {
  1046. struct ia64_fpreg fpr_init;
  1047. struct ia64_fpreg fpr_final;
  1048. unsigned long len = float_fsz[ld.x6_sz];
  1049. /*
  1050. * make sure we get clean buffers
  1051. */
  1052. memset(&fpr_init,0, sizeof(fpr_init));
  1053. memset(&fpr_final,0, sizeof(fpr_final));
  1054. /*
  1055. * if we get to this handler, Nat bits on both r3 and r2 have already
  1056. * been checked. so we don't need to do it
  1057. *
  1058. * extract the value to be stored
  1059. */
  1060. getfpreg(ld.imm, &fpr_init, regs);
  1061. /*
  1062. * during this step, we extract the spilled registers from the saved
  1063. * context i.e., we refill. Then we store (no spill) to temporary
  1064. * aligned location
  1065. */
  1066. switch( ld.x6_sz ) {
  1067. case 0:
  1068. float2mem_extended(&fpr_init, &fpr_final);
  1069. break;
  1070. case 1:
  1071. float2mem_integer(&fpr_init, &fpr_final);
  1072. break;
  1073. case 2:
  1074. float2mem_single(&fpr_init, &fpr_final);
  1075. break;
  1076. case 3:
  1077. float2mem_double(&fpr_init, &fpr_final);
  1078. break;
  1079. }
  1080. DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
  1081. DDUMP("fpr_init =", &fpr_init, len);
  1082. DDUMP("fpr_final =", &fpr_final, len);
  1083. if (copy_to_user((void __user *) ifa, &fpr_final, len))
  1084. return -1;
  1085. /*
  1086. * stfX [r3]=r2,imm(9)
  1087. *
  1088. * NOTE:
  1089. * ld.r3 can never be r0, because r0 would not generate an
  1090. * unaligned access.
  1091. */
  1092. if (ld.op == 0x7) {
  1093. unsigned long imm;
  1094. /*
  1095. * form imm9: [12:6] contain first 7bits
  1096. */
  1097. imm = ld.x << 7 | ld.r1;
  1098. /*
  1099. * sign extend (8bits) if m set
  1100. */
  1101. if (ld.m)
  1102. imm |= SIGN_EXT9;
  1103. /*
  1104. * ifa == r3 (NaT is necessarily cleared)
  1105. */
  1106. ifa += imm;
  1107. DPRINT("imm=%lx r3=%lx\n", imm, ifa);
  1108. setreg(ld.r3, ifa, 0, regs);
  1109. }
  1110. /*
  1111. * we don't have alat_invalidate_multiple() so we need
  1112. * to do the complete flush :-<<
  1113. */
  1114. ia64_invala();
  1115. return 0;
  1116. }
  1117. /*
  1118. * Make sure we log the unaligned access, so that user/sysadmin can notice it and
  1119. * eventually fix the program. However, we don't want to do that for every access so we
  1120. * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
  1121. * either...
  1122. */
  1123. static int
  1124. within_logging_rate_limit (void)
  1125. {
  1126. static unsigned long count, last_time;
  1127. if (jiffies - last_time > 5*HZ)
  1128. count = 0;
  1129. if (count < 5) {
  1130. last_time = jiffies;
  1131. count++;
  1132. return 1;
  1133. }
  1134. return 0;
  1135. }
  1136. void
  1137. ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
  1138. {
  1139. struct ia64_psr *ipsr = ia64_psr(regs);
  1140. mm_segment_t old_fs = get_fs();
  1141. unsigned long bundle[2];
  1142. unsigned long opcode;
  1143. struct siginfo si;
  1144. const struct exception_table_entry *eh = NULL;
  1145. union {
  1146. unsigned long l;
  1147. load_store_t insn;
  1148. } u;
  1149. int ret = -1;
  1150. if (ia64_psr(regs)->be) {
  1151. /* we don't support big-endian accesses */
  1152. die_if_kernel("big-endian unaligned accesses are not supported", regs, 0);
  1153. goto force_sigbus;
  1154. }
  1155. /*
  1156. * Treat kernel accesses for which there is an exception handler entry the same as
  1157. * user-level unaligned accesses. Otherwise, a clever program could trick this
  1158. * handler into reading an arbitrary kernel addresses...
  1159. */
  1160. if (!user_mode(regs))
  1161. eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
  1162. if (user_mode(regs) || eh) {
  1163. if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
  1164. goto force_sigbus;
  1165. if (!no_unaligned_warning &&
  1166. !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
  1167. within_logging_rate_limit())
  1168. {
  1169. char buf[200]; /* comm[] is at most 16 bytes... */
  1170. size_t len;
  1171. len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
  1172. "ip=0x%016lx\n\r", current->comm, current->pid,
  1173. ifa, regs->cr_iip + ipsr->ri);
  1174. /*
  1175. * Don't call tty_write_message() if we're in the kernel; we might
  1176. * be holding locks...
  1177. */
  1178. if (user_mode(regs))
  1179. tty_write_message(current->signal->tty, buf);
  1180. buf[len-1] = '\0'; /* drop '\r' */
  1181. /* watch for command names containing %s */
  1182. printk(KERN_WARNING "%s", buf);
  1183. } else {
  1184. if (no_unaligned_warning && !noprint_warning) {
  1185. noprint_warning = 1;
  1186. printk(KERN_WARNING "%s(%d) encountered an "
  1187. "unaligned exception which required\n"
  1188. "kernel assistance, which degrades "
  1189. "the performance of the application.\n"
  1190. "Unaligned exception warnings have "
  1191. "been disabled by the system "
  1192. "administrator\n"
  1193. "echo 0 > /proc/sys/kernel/ignore-"
  1194. "unaligned-usertrap to re-enable\n",
  1195. current->comm, current->pid);
  1196. }
  1197. }
  1198. } else {
  1199. if (within_logging_rate_limit())
  1200. printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
  1201. ifa, regs->cr_iip + ipsr->ri);
  1202. set_fs(KERNEL_DS);
  1203. }
  1204. DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
  1205. regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
  1206. if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
  1207. goto failure;
  1208. /*
  1209. * extract the instruction from the bundle given the slot number
  1210. */
  1211. switch (ipsr->ri) {
  1212. case 0: u.l = (bundle[0] >> 5); break;
  1213. case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
  1214. case 2: u.l = (bundle[1] >> 23); break;
  1215. }
  1216. opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
  1217. DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
  1218. "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
  1219. u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
  1220. /*
  1221. * IMPORTANT:
  1222. * Notice that the switch statement DOES not cover all possible instructions
  1223. * that DO generate unaligned references. This is made on purpose because for some
  1224. * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
  1225. * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
  1226. * the program will get a signal and die:
  1227. *
  1228. * load/store:
  1229. * - ldX.spill
  1230. * - stX.spill
  1231. * Reason: RNATs are based on addresses
  1232. * - ld16
  1233. * - st16
  1234. * Reason: ld16 and st16 are supposed to occur in a single
  1235. * memory op
  1236. *
  1237. * synchronization:
  1238. * - cmpxchg
  1239. * - fetchadd
  1240. * - xchg
  1241. * Reason: ATOMIC operations cannot be emulated properly using multiple
  1242. * instructions.
  1243. *
  1244. * speculative loads:
  1245. * - ldX.sZ
  1246. * Reason: side effects, code must be ready to deal with failure so simpler
  1247. * to let the load fail.
  1248. * ---------------------------------------------------------------------------------
  1249. * XXX fixme
  1250. *
  1251. * I would like to get rid of this switch case and do something
  1252. * more elegant.
  1253. */
  1254. switch (opcode) {
  1255. case LDS_OP:
  1256. case LDSA_OP:
  1257. if (u.insn.x)
  1258. /* oops, really a semaphore op (cmpxchg, etc) */
  1259. goto failure;
  1260. /* no break */
  1261. case LDS_IMM_OP:
  1262. case LDSA_IMM_OP:
  1263. case LDFS_OP:
  1264. case LDFSA_OP:
  1265. case LDFS_IMM_OP:
  1266. /*
  1267. * The instruction will be retried with deferred exceptions turned on, and
  1268. * we should get Nat bit installed
  1269. *
  1270. * IMPORTANT: When PSR_ED is set, the register & immediate update forms
  1271. * are actually executed even though the operation failed. So we don't
  1272. * need to take care of this.
  1273. */
  1274. DPRINT("forcing PSR_ED\n");
  1275. regs->cr_ipsr |= IA64_PSR_ED;
  1276. goto done;
  1277. case LD_OP:
  1278. case LDA_OP:
  1279. case LDBIAS_OP:
  1280. case LDACQ_OP:
  1281. case LDCCLR_OP:
  1282. case LDCNC_OP:
  1283. case LDCCLRACQ_OP:
  1284. if (u.insn.x)
  1285. /* oops, really a semaphore op (cmpxchg, etc) */
  1286. goto failure;
  1287. /* no break */
  1288. case LD_IMM_OP:
  1289. case LDA_IMM_OP:
  1290. case LDBIAS_IMM_OP:
  1291. case LDACQ_IMM_OP:
  1292. case LDCCLR_IMM_OP:
  1293. case LDCNC_IMM_OP:
  1294. case LDCCLRACQ_IMM_OP:
  1295. ret = emulate_load_int(ifa, u.insn, regs);
  1296. break;
  1297. case ST_OP:
  1298. case STREL_OP:
  1299. if (u.insn.x)
  1300. /* oops, really a semaphore op (cmpxchg, etc) */
  1301. goto failure;
  1302. /* no break */
  1303. case ST_IMM_OP:
  1304. case STREL_IMM_OP:
  1305. ret = emulate_store_int(ifa, u.insn, regs);
  1306. break;
  1307. case LDF_OP:
  1308. case LDFA_OP:
  1309. case LDFCCLR_OP:
  1310. case LDFCNC_OP:
  1311. case LDF_IMM_OP:
  1312. case LDFA_IMM_OP:
  1313. case LDFCCLR_IMM_OP:
  1314. case LDFCNC_IMM_OP:
  1315. if (u.insn.x)
  1316. ret = emulate_load_floatpair(ifa, u.insn, regs);
  1317. else
  1318. ret = emulate_load_float(ifa, u.insn, regs);
  1319. break;
  1320. case STF_OP:
  1321. case STF_IMM_OP:
  1322. ret = emulate_store_float(ifa, u.insn, regs);
  1323. break;
  1324. default:
  1325. goto failure;
  1326. }
  1327. DPRINT("ret=%d\n", ret);
  1328. if (ret)
  1329. goto failure;
  1330. if (ipsr->ri == 2)
  1331. /*
  1332. * given today's architecture this case is not likely to happen because a
  1333. * memory access instruction (M) can never be in the last slot of a
  1334. * bundle. But let's keep it for now.
  1335. */
  1336. regs->cr_iip += 16;
  1337. ipsr->ri = (ipsr->ri + 1) & 0x3;
  1338. DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
  1339. done:
  1340. set_fs(old_fs); /* restore original address limit */
  1341. return;
  1342. failure:
  1343. /* something went wrong... */
  1344. if (!user_mode(regs)) {
  1345. if (eh) {
  1346. ia64_handle_exception(regs, eh);
  1347. goto done;
  1348. }
  1349. die_if_kernel("error during unaligned kernel access\n", regs, ret);
  1350. /* NOT_REACHED */
  1351. }
  1352. force_sigbus:
  1353. si.si_signo = SIGBUS;
  1354. si.si_errno = 0;
  1355. si.si_code = BUS_ADRALN;
  1356. si.si_addr = (void __user *) ifa;
  1357. si.si_flags = 0;
  1358. si.si_isr = 0;
  1359. si.si_imm = 0;
  1360. force_sig_info(SIGBUS, &si, current);
  1361. goto done;
  1362. }