pgtable.c 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. /*
  2. * linux/arch/i386/mm/pgtable.c
  3. */
  4. #include <linux/config.h>
  5. #include <linux/sched.h>
  6. #include <linux/kernel.h>
  7. #include <linux/errno.h>
  8. #include <linux/mm.h>
  9. #include <linux/swap.h>
  10. #include <linux/smp.h>
  11. #include <linux/highmem.h>
  12. #include <linux/slab.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/spinlock.h>
  15. #include <asm/system.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/pgalloc.h>
  18. #include <asm/fixmap.h>
  19. #include <asm/e820.h>
  20. #include <asm/tlb.h>
  21. #include <asm/tlbflush.h>
  22. void show_mem(void)
  23. {
  24. int total = 0, reserved = 0;
  25. int shared = 0, cached = 0;
  26. int highmem = 0;
  27. struct page *page;
  28. pg_data_t *pgdat;
  29. unsigned long i;
  30. struct page_state ps;
  31. unsigned long flags;
  32. printk(KERN_INFO "Mem-info:\n");
  33. show_free_areas();
  34. printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  35. for_each_online_pgdat(pgdat) {
  36. pgdat_resize_lock(pgdat, &flags);
  37. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  38. page = pgdat_page_nr(pgdat, i);
  39. total++;
  40. if (PageHighMem(page))
  41. highmem++;
  42. if (PageReserved(page))
  43. reserved++;
  44. else if (PageSwapCache(page))
  45. cached++;
  46. else if (page_count(page))
  47. shared += page_count(page) - 1;
  48. }
  49. pgdat_resize_unlock(pgdat, &flags);
  50. }
  51. printk(KERN_INFO "%d pages of RAM\n", total);
  52. printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
  53. printk(KERN_INFO "%d reserved pages\n", reserved);
  54. printk(KERN_INFO "%d pages shared\n", shared);
  55. printk(KERN_INFO "%d pages swap cached\n", cached);
  56. get_page_state(&ps);
  57. printk(KERN_INFO "%lu pages dirty\n", ps.nr_dirty);
  58. printk(KERN_INFO "%lu pages writeback\n", ps.nr_writeback);
  59. printk(KERN_INFO "%lu pages mapped\n", ps.nr_mapped);
  60. printk(KERN_INFO "%lu pages slab\n", ps.nr_slab);
  61. printk(KERN_INFO "%lu pages pagetables\n", ps.nr_page_table_pages);
  62. }
  63. /*
  64. * Associate a virtual page frame with a given physical page frame
  65. * and protection flags for that frame.
  66. */
  67. static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  68. {
  69. pgd_t *pgd;
  70. pud_t *pud;
  71. pmd_t *pmd;
  72. pte_t *pte;
  73. pgd = swapper_pg_dir + pgd_index(vaddr);
  74. if (pgd_none(*pgd)) {
  75. BUG();
  76. return;
  77. }
  78. pud = pud_offset(pgd, vaddr);
  79. if (pud_none(*pud)) {
  80. BUG();
  81. return;
  82. }
  83. pmd = pmd_offset(pud, vaddr);
  84. if (pmd_none(*pmd)) {
  85. BUG();
  86. return;
  87. }
  88. pte = pte_offset_kernel(pmd, vaddr);
  89. /* <pfn,flags> stored as-is, to permit clearing entries */
  90. set_pte(pte, pfn_pte(pfn, flags));
  91. /*
  92. * It's enough to flush this one mapping.
  93. * (PGE mappings get flushed as well)
  94. */
  95. __flush_tlb_one(vaddr);
  96. }
  97. /*
  98. * Associate a large virtual page frame with a given physical page frame
  99. * and protection flags for that frame. pfn is for the base of the page,
  100. * vaddr is what the page gets mapped to - both must be properly aligned.
  101. * The pmd must already be instantiated. Assumes PAE mode.
  102. */
  103. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  104. {
  105. pgd_t *pgd;
  106. pud_t *pud;
  107. pmd_t *pmd;
  108. if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
  109. printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
  110. return; /* BUG(); */
  111. }
  112. if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
  113. printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
  114. return; /* BUG(); */
  115. }
  116. pgd = swapper_pg_dir + pgd_index(vaddr);
  117. if (pgd_none(*pgd)) {
  118. printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
  119. return; /* BUG(); */
  120. }
  121. pud = pud_offset(pgd, vaddr);
  122. pmd = pmd_offset(pud, vaddr);
  123. set_pmd(pmd, pfn_pmd(pfn, flags));
  124. /*
  125. * It's enough to flush this one mapping.
  126. * (PGE mappings get flushed as well)
  127. */
  128. __flush_tlb_one(vaddr);
  129. }
  130. void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  131. {
  132. unsigned long address = __fix_to_virt(idx);
  133. if (idx >= __end_of_fixed_addresses) {
  134. BUG();
  135. return;
  136. }
  137. set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
  138. }
  139. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  140. {
  141. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  142. }
  143. struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
  144. {
  145. struct page *pte;
  146. #ifdef CONFIG_HIGHPTE
  147. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  148. #else
  149. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  150. #endif
  151. return pte;
  152. }
  153. void pmd_ctor(void *pmd, kmem_cache_t *cache, unsigned long flags)
  154. {
  155. memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
  156. }
  157. /*
  158. * List of all pgd's needed for non-PAE so it can invalidate entries
  159. * in both cached and uncached pgd's; not needed for PAE since the
  160. * kernel pmd is shared. If PAE were not to share the pmd a similar
  161. * tactic would be needed. This is essentially codepath-based locking
  162. * against pageattr.c; it is the unique case in which a valid change
  163. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  164. * vmalloc faults work because attached pagetables are never freed.
  165. * The locking scheme was chosen on the basis of manfred's
  166. * recommendations and having no core impact whatsoever.
  167. * -- wli
  168. */
  169. DEFINE_SPINLOCK(pgd_lock);
  170. struct page *pgd_list;
  171. static inline void pgd_list_add(pgd_t *pgd)
  172. {
  173. struct page *page = virt_to_page(pgd);
  174. page->index = (unsigned long)pgd_list;
  175. if (pgd_list)
  176. set_page_private(pgd_list, (unsigned long)&page->index);
  177. pgd_list = page;
  178. set_page_private(page, (unsigned long)&pgd_list);
  179. }
  180. static inline void pgd_list_del(pgd_t *pgd)
  181. {
  182. struct page *next, **pprev, *page = virt_to_page(pgd);
  183. next = (struct page *)page->index;
  184. pprev = (struct page **)page_private(page);
  185. *pprev = next;
  186. if (next)
  187. set_page_private(next, (unsigned long)pprev);
  188. }
  189. void pgd_ctor(void *pgd, kmem_cache_t *cache, unsigned long unused)
  190. {
  191. unsigned long flags;
  192. if (PTRS_PER_PMD == 1) {
  193. memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
  194. spin_lock_irqsave(&pgd_lock, flags);
  195. }
  196. clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
  197. swapper_pg_dir + USER_PTRS_PER_PGD,
  198. KERNEL_PGD_PTRS);
  199. if (PTRS_PER_PMD > 1)
  200. return;
  201. pgd_list_add(pgd);
  202. spin_unlock_irqrestore(&pgd_lock, flags);
  203. }
  204. /* never called when PTRS_PER_PMD > 1 */
  205. void pgd_dtor(void *pgd, kmem_cache_t *cache, unsigned long unused)
  206. {
  207. unsigned long flags; /* can be called from interrupt context */
  208. spin_lock_irqsave(&pgd_lock, flags);
  209. pgd_list_del(pgd);
  210. spin_unlock_irqrestore(&pgd_lock, flags);
  211. }
  212. pgd_t *pgd_alloc(struct mm_struct *mm)
  213. {
  214. int i;
  215. pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
  216. if (PTRS_PER_PMD == 1 || !pgd)
  217. return pgd;
  218. for (i = 0; i < USER_PTRS_PER_PGD; ++i) {
  219. pmd_t *pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
  220. if (!pmd)
  221. goto out_oom;
  222. set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
  223. }
  224. return pgd;
  225. out_oom:
  226. for (i--; i >= 0; i--)
  227. kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1));
  228. kmem_cache_free(pgd_cache, pgd);
  229. return NULL;
  230. }
  231. void pgd_free(pgd_t *pgd)
  232. {
  233. int i;
  234. /* in the PAE case user pgd entries are overwritten before usage */
  235. if (PTRS_PER_PMD > 1)
  236. for (i = 0; i < USER_PTRS_PER_PGD; ++i)
  237. kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1));
  238. /* in the non-PAE case, free_pgtables() clears user pgd entries */
  239. kmem_cache_free(pgd_cache, pgd);
  240. }