srat.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. /*
  2. * Some of the code in this file has been gleaned from the 64 bit
  3. * discontigmem support code base.
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. *
  24. * Send feedback to Pat Gaughen <gone@us.ibm.com>
  25. */
  26. #include <linux/config.h>
  27. #include <linux/mm.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/mmzone.h>
  30. #include <linux/acpi.h>
  31. #include <linux/nodemask.h>
  32. #include <asm/srat.h>
  33. #include <asm/topology.h>
  34. /*
  35. * proximity macros and definitions
  36. */
  37. #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
  38. #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
  39. #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
  40. #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
  41. #define MAX_PXM_DOMAINS 256 /* 1 byte and no promises about values */
  42. /* bitmap length; _PXM is at most 255 */
  43. #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
  44. static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
  45. #define MAX_CHUNKS_PER_NODE 4
  46. #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
  47. struct node_memory_chunk_s {
  48. unsigned long start_pfn;
  49. unsigned long end_pfn;
  50. u8 pxm; // proximity domain of node
  51. u8 nid; // which cnode contains this chunk?
  52. u8 bank; // which mem bank on this node
  53. };
  54. static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
  55. static int num_memory_chunks; /* total number of memory chunks */
  56. static int zholes_size_init;
  57. static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES];
  58. extern void * boot_ioremap(unsigned long, unsigned long);
  59. /* Identify CPU proximity domains */
  60. static void __init parse_cpu_affinity_structure(char *p)
  61. {
  62. struct acpi_table_processor_affinity *cpu_affinity =
  63. (struct acpi_table_processor_affinity *) p;
  64. if (!cpu_affinity->flags.enabled)
  65. return; /* empty entry */
  66. /* mark this node as "seen" in node bitmap */
  67. BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain);
  68. printk("CPU 0x%02X in proximity domain 0x%02X\n",
  69. cpu_affinity->apic_id, cpu_affinity->proximity_domain);
  70. }
  71. /*
  72. * Identify memory proximity domains and hot-remove capabilities.
  73. * Fill node memory chunk list structure.
  74. */
  75. static void __init parse_memory_affinity_structure (char *sratp)
  76. {
  77. unsigned long long paddr, size;
  78. unsigned long start_pfn, end_pfn;
  79. u8 pxm;
  80. struct node_memory_chunk_s *p, *q, *pend;
  81. struct acpi_table_memory_affinity *memory_affinity =
  82. (struct acpi_table_memory_affinity *) sratp;
  83. if (!memory_affinity->flags.enabled)
  84. return; /* empty entry */
  85. /* mark this node as "seen" in node bitmap */
  86. BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain);
  87. /* calculate info for memory chunk structure */
  88. paddr = memory_affinity->base_addr_hi;
  89. paddr = (paddr << 32) | memory_affinity->base_addr_lo;
  90. size = memory_affinity->length_hi;
  91. size = (size << 32) | memory_affinity->length_lo;
  92. start_pfn = paddr >> PAGE_SHIFT;
  93. end_pfn = (paddr + size) >> PAGE_SHIFT;
  94. pxm = memory_affinity->proximity_domain;
  95. if (num_memory_chunks >= MAXCHUNKS) {
  96. printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
  97. size/(1024*1024), paddr);
  98. return;
  99. }
  100. /* Insertion sort based on base address */
  101. pend = &node_memory_chunk[num_memory_chunks];
  102. for (p = &node_memory_chunk[0]; p < pend; p++) {
  103. if (start_pfn < p->start_pfn)
  104. break;
  105. }
  106. if (p < pend) {
  107. for (q = pend; q >= p; q--)
  108. *(q + 1) = *q;
  109. }
  110. p->start_pfn = start_pfn;
  111. p->end_pfn = end_pfn;
  112. p->pxm = pxm;
  113. num_memory_chunks++;
  114. printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
  115. start_pfn, end_pfn,
  116. memory_affinity->memory_type,
  117. memory_affinity->proximity_domain,
  118. (memory_affinity->flags.hot_pluggable ?
  119. "enabled and removable" : "enabled" ) );
  120. }
  121. #if MAX_NR_ZONES != 4
  122. #error "MAX_NR_ZONES != 4, chunk_to_zone requires review"
  123. #endif
  124. /* Take a chunk of pages from page frame cstart to cend and count the number
  125. * of pages in each zone, returned via zones[].
  126. */
  127. static __init void chunk_to_zones(unsigned long cstart, unsigned long cend,
  128. unsigned long *zones)
  129. {
  130. unsigned long max_dma;
  131. extern unsigned long max_low_pfn;
  132. int z;
  133. unsigned long rend;
  134. /* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide
  135. * similarly scoped information and should be handled in a consistant
  136. * manner.
  137. */
  138. max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  139. /* Split the hole into the zones in which it falls. Repeatedly
  140. * take the segment in which the remaining hole starts, round it
  141. * to the end of that zone.
  142. */
  143. memset(zones, 0, MAX_NR_ZONES * sizeof(long));
  144. while (cstart < cend) {
  145. if (cstart < max_dma) {
  146. z = ZONE_DMA;
  147. rend = (cend < max_dma)? cend : max_dma;
  148. } else if (cstart < max_low_pfn) {
  149. z = ZONE_NORMAL;
  150. rend = (cend < max_low_pfn)? cend : max_low_pfn;
  151. } else {
  152. z = ZONE_HIGHMEM;
  153. rend = cend;
  154. }
  155. zones[z] += rend - cstart;
  156. cstart = rend;
  157. }
  158. }
  159. /*
  160. * The SRAT table always lists ascending addresses, so can always
  161. * assume that the first "start" address that you see is the real
  162. * start of the node, and that the current "end" address is after
  163. * the previous one.
  164. */
  165. static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
  166. {
  167. /*
  168. * Only add present memory as told by the e820.
  169. * There is no guarantee from the SRAT that the memory it
  170. * enumerates is present at boot time because it represents
  171. * *possible* memory hotplug areas the same as normal RAM.
  172. */
  173. if (memory_chunk->start_pfn >= max_pfn) {
  174. printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
  175. memory_chunk->start_pfn, memory_chunk->end_pfn);
  176. return;
  177. }
  178. if (memory_chunk->nid != nid)
  179. return;
  180. if (!node_has_online_mem(nid))
  181. node_start_pfn[nid] = memory_chunk->start_pfn;
  182. if (node_start_pfn[nid] > memory_chunk->start_pfn)
  183. node_start_pfn[nid] = memory_chunk->start_pfn;
  184. if (node_end_pfn[nid] < memory_chunk->end_pfn)
  185. node_end_pfn[nid] = memory_chunk->end_pfn;
  186. }
  187. static u8 pxm_to_nid_map[MAX_PXM_DOMAINS];/* _PXM to logical node ID map */
  188. int pxm_to_node(int pxm)
  189. {
  190. return pxm_to_nid_map[pxm];
  191. }
  192. /* Parse the ACPI Static Resource Affinity Table */
  193. static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
  194. {
  195. u8 *start, *end, *p;
  196. int i, j, nid;
  197. u8 nid_to_pxm_map[MAX_NUMNODES];/* logical node ID to _PXM map */
  198. start = (u8 *)(&(sratp->reserved) + 1); /* skip header */
  199. p = start;
  200. end = (u8 *)sratp + sratp->header.length;
  201. memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
  202. memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
  203. memset(zholes_size, 0, sizeof(zholes_size));
  204. /* -1 in these maps means not available */
  205. memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map));
  206. memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map));
  207. num_memory_chunks = 0;
  208. while (p < end) {
  209. switch (*p) {
  210. case ACPI_SRAT_PROCESSOR_AFFINITY:
  211. parse_cpu_affinity_structure(p);
  212. break;
  213. case ACPI_SRAT_MEMORY_AFFINITY:
  214. parse_memory_affinity_structure(p);
  215. break;
  216. default:
  217. printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
  218. break;
  219. }
  220. p += p[1];
  221. if (p[1] == 0) {
  222. printk("acpi20_parse_srat: Entry length value is zero;"
  223. " can't parse any further!\n");
  224. break;
  225. }
  226. }
  227. if (num_memory_chunks == 0) {
  228. printk("could not finy any ACPI SRAT memory areas.\n");
  229. goto out_fail;
  230. }
  231. /* Calculate total number of nodes in system from PXM bitmap and create
  232. * a set of sequential node IDs starting at zero. (ACPI doesn't seem
  233. * to specify the range of _PXM values.)
  234. */
  235. /*
  236. * MCD - we no longer HAVE to number nodes sequentially. PXM domain
  237. * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
  238. * 32, so we will continue numbering them in this manner until MAX_NUMNODES
  239. * approaches MAX_PXM_DOMAINS for i386.
  240. */
  241. nodes_clear(node_online_map);
  242. for (i = 0; i < MAX_PXM_DOMAINS; i++) {
  243. if (BMAP_TEST(pxm_bitmap, i)) {
  244. nid = num_online_nodes();
  245. pxm_to_nid_map[i] = nid;
  246. nid_to_pxm_map[nid] = i;
  247. node_set_online(nid);
  248. }
  249. }
  250. BUG_ON(num_online_nodes() == 0);
  251. /* set cnode id in memory chunk structure */
  252. for (i = 0; i < num_memory_chunks; i++)
  253. node_memory_chunk[i].nid = pxm_to_nid_map[node_memory_chunk[i].pxm];
  254. printk("pxm bitmap: ");
  255. for (i = 0; i < sizeof(pxm_bitmap); i++) {
  256. printk("%02X ", pxm_bitmap[i]);
  257. }
  258. printk("\n");
  259. printk("Number of logical nodes in system = %d\n", num_online_nodes());
  260. printk("Number of memory chunks in system = %d\n", num_memory_chunks);
  261. for (j = 0; j < num_memory_chunks; j++){
  262. struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
  263. printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
  264. j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
  265. node_read_chunk(chunk->nid, chunk);
  266. }
  267. for_each_online_node(nid) {
  268. unsigned long start = node_start_pfn[nid];
  269. unsigned long end = node_end_pfn[nid];
  270. memory_present(nid, start, end);
  271. node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
  272. }
  273. return 1;
  274. out_fail:
  275. return 0;
  276. }
  277. int __init get_memcfg_from_srat(void)
  278. {
  279. struct acpi_table_header *header = NULL;
  280. struct acpi_table_rsdp *rsdp = NULL;
  281. struct acpi_table_rsdt *rsdt = NULL;
  282. struct acpi_pointer *rsdp_address = NULL;
  283. struct acpi_table_rsdt saved_rsdt;
  284. int tables = 0;
  285. int i = 0;
  286. if (ACPI_FAILURE(acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING,
  287. rsdp_address))) {
  288. printk("%s: System description tables not found\n",
  289. __FUNCTION__);
  290. goto out_err;
  291. }
  292. if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) {
  293. printk("%s: assigning address to rsdp\n", __FUNCTION__);
  294. rsdp = (struct acpi_table_rsdp *)
  295. (u32)rsdp_address->pointer.physical;
  296. } else {
  297. printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__);
  298. goto out_err;
  299. }
  300. if (!rsdp) {
  301. printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
  302. goto out_err;
  303. }
  304. printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
  305. rsdp->oem_id);
  306. if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) {
  307. printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
  308. goto out_err;
  309. }
  310. rsdt = (struct acpi_table_rsdt *)
  311. boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt));
  312. if (!rsdt) {
  313. printk(KERN_WARNING
  314. "%s: ACPI: Invalid root system description tables (RSDT)\n",
  315. __FUNCTION__);
  316. goto out_err;
  317. }
  318. header = & rsdt->header;
  319. if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) {
  320. printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
  321. goto out_err;
  322. }
  323. /*
  324. * The number of tables is computed by taking the
  325. * size of all entries (header size minus total
  326. * size of RSDT) divided by the size of each entry
  327. * (4-byte table pointers).
  328. */
  329. tables = (header->length - sizeof(struct acpi_table_header)) / 4;
  330. if (!tables)
  331. goto out_err;
  332. memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
  333. if (saved_rsdt.header.length > sizeof(saved_rsdt)) {
  334. printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
  335. saved_rsdt.header.length);
  336. goto out_err;
  337. }
  338. printk("Begin SRAT table scan....\n");
  339. for (i = 0; i < tables; i++) {
  340. /* Map in header, then map in full table length. */
  341. header = (struct acpi_table_header *)
  342. boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header));
  343. if (!header)
  344. break;
  345. header = (struct acpi_table_header *)
  346. boot_ioremap(saved_rsdt.entry[i], header->length);
  347. if (!header)
  348. break;
  349. if (strncmp((char *) &header->signature, "SRAT", 4))
  350. continue;
  351. /* we've found the srat table. don't need to look at any more tables */
  352. return acpi20_parse_srat((struct acpi_table_srat *)header);
  353. }
  354. out_err:
  355. printk("failed to get NUMA memory information from SRAT table\n");
  356. return 0;
  357. }
  358. /* For each node run the memory list to determine whether there are
  359. * any memory holes. For each hole determine which ZONE they fall
  360. * into.
  361. *
  362. * NOTE#1: this requires knowledge of the zone boundries and so
  363. * _cannot_ be performed before those are calculated in setup_memory.
  364. *
  365. * NOTE#2: we rely on the fact that the memory chunks are ordered by
  366. * start pfn number during setup.
  367. */
  368. static void __init get_zholes_init(void)
  369. {
  370. int nid;
  371. int c;
  372. int first;
  373. unsigned long end = 0;
  374. for_each_online_node(nid) {
  375. first = 1;
  376. for (c = 0; c < num_memory_chunks; c++){
  377. if (node_memory_chunk[c].nid == nid) {
  378. if (first) {
  379. end = node_memory_chunk[c].end_pfn;
  380. first = 0;
  381. } else {
  382. /* Record any gap between this chunk
  383. * and the previous chunk on this node
  384. * against the zones it spans.
  385. */
  386. chunk_to_zones(end,
  387. node_memory_chunk[c].start_pfn,
  388. &zholes_size[nid * MAX_NR_ZONES]);
  389. }
  390. }
  391. }
  392. }
  393. }
  394. unsigned long * __init get_zholes_size(int nid)
  395. {
  396. if (!zholes_size_init) {
  397. zholes_size_init++;
  398. get_zholes_init();
  399. }
  400. if (nid >= MAX_NUMNODES || !node_online(nid))
  401. printk("%s: nid = %d is invalid/offline. num_online_nodes = %d",
  402. __FUNCTION__, nid, num_online_nodes());
  403. return &zholes_size[nid * MAX_NR_ZONES];
  404. }