intel_dp.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include "drmP.h"
  31. #include "drm.h"
  32. #include "drm_crtc.h"
  33. #include "drm_crtc_helper.h"
  34. #include "intel_drv.h"
  35. #include "i915_drm.h"
  36. #include "i915_drv.h"
  37. #include "drm_dp_helper.h"
  38. #define DP_RECEIVER_CAP_SIZE 0xf
  39. #define DP_LINK_STATUS_SIZE 6
  40. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  41. #define DP_LINK_CONFIGURATION_SIZE 9
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int force_audio;
  49. uint32_t color_range;
  50. int dpms_mode;
  51. uint8_t link_bw;
  52. uint8_t lane_count;
  53. uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
  54. struct i2c_adapter adapter;
  55. struct i2c_algo_dp_aux_data algo;
  56. bool is_pch_edp;
  57. uint8_t train_set[4];
  58. int panel_power_up_delay;
  59. int panel_power_down_delay;
  60. int panel_power_cycle_delay;
  61. int backlight_on_delay;
  62. int backlight_off_delay;
  63. struct drm_display_mode *panel_fixed_mode; /* for eDP */
  64. struct delayed_work panel_vdd_work;
  65. bool want_panel_vdd;
  66. };
  67. /**
  68. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  69. * @intel_dp: DP struct
  70. *
  71. * If a CPU or PCH DP output is attached to an eDP panel, this function
  72. * will return true, and false otherwise.
  73. */
  74. static bool is_edp(struct intel_dp *intel_dp)
  75. {
  76. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  77. }
  78. /**
  79. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  80. * @intel_dp: DP struct
  81. *
  82. * Returns true if the given DP struct corresponds to a PCH DP port attached
  83. * to an eDP panel, false otherwise. Helpful for determining whether we
  84. * may need FDI resources for a given DP output or not.
  85. */
  86. static bool is_pch_edp(struct intel_dp *intel_dp)
  87. {
  88. return intel_dp->is_pch_edp;
  89. }
  90. /**
  91. * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
  92. * @intel_dp: DP struct
  93. *
  94. * Returns true if the given DP struct corresponds to a CPU eDP port.
  95. */
  96. static bool is_cpu_edp(struct intel_dp *intel_dp)
  97. {
  98. return is_edp(intel_dp) && !is_pch_edp(intel_dp);
  99. }
  100. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  101. {
  102. return container_of(encoder, struct intel_dp, base.base);
  103. }
  104. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  105. {
  106. return container_of(intel_attached_encoder(connector),
  107. struct intel_dp, base);
  108. }
  109. /**
  110. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  111. * @encoder: DRM encoder
  112. *
  113. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  114. * by intel_display.c.
  115. */
  116. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  117. {
  118. struct intel_dp *intel_dp;
  119. if (!encoder)
  120. return false;
  121. intel_dp = enc_to_intel_dp(encoder);
  122. return is_pch_edp(intel_dp);
  123. }
  124. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  125. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  126. static void intel_dp_link_down(struct intel_dp *intel_dp);
  127. void
  128. intel_edp_link_config(struct intel_encoder *intel_encoder,
  129. int *lane_num, int *link_bw)
  130. {
  131. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  132. *lane_num = intel_dp->lane_count;
  133. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  134. *link_bw = 162000;
  135. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  136. *link_bw = 270000;
  137. }
  138. static int
  139. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  140. {
  141. int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  142. switch (max_lane_count) {
  143. case 1: case 2: case 4:
  144. break;
  145. default:
  146. max_lane_count = 4;
  147. }
  148. return max_lane_count;
  149. }
  150. static int
  151. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  152. {
  153. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  154. switch (max_link_bw) {
  155. case DP_LINK_BW_1_62:
  156. case DP_LINK_BW_2_7:
  157. break;
  158. default:
  159. max_link_bw = DP_LINK_BW_1_62;
  160. break;
  161. }
  162. return max_link_bw;
  163. }
  164. static int
  165. intel_dp_link_clock(uint8_t link_bw)
  166. {
  167. if (link_bw == DP_LINK_BW_2_7)
  168. return 270000;
  169. else
  170. return 162000;
  171. }
  172. /*
  173. * The units on the numbers in the next two are... bizarre. Examples will
  174. * make it clearer; this one parallels an example in the eDP spec.
  175. *
  176. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  177. *
  178. * 270000 * 1 * 8 / 10 == 216000
  179. *
  180. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  181. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  182. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  183. * 119000. At 18bpp that's 2142000 kilobits per second.
  184. *
  185. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  186. * get the result in decakilobits instead of kilobits.
  187. */
  188. static int
  189. intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
  190. {
  191. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  192. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  193. int bpp = 24;
  194. if (intel_crtc)
  195. bpp = intel_crtc->bpp;
  196. return (pixel_clock * bpp + 9) / 10;
  197. }
  198. static int
  199. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  200. {
  201. return (max_link_clock * max_lanes * 8) / 10;
  202. }
  203. static int
  204. intel_dp_mode_valid(struct drm_connector *connector,
  205. struct drm_display_mode *mode)
  206. {
  207. struct intel_dp *intel_dp = intel_attached_dp(connector);
  208. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  209. int max_lanes = intel_dp_max_lane_count(intel_dp);
  210. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  211. if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
  212. return MODE_PANEL;
  213. if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
  214. return MODE_PANEL;
  215. }
  216. if (intel_dp_link_required(intel_dp, mode->clock)
  217. > intel_dp_max_data_rate(max_link_clock, max_lanes))
  218. return MODE_CLOCK_HIGH;
  219. if (mode->clock < 10000)
  220. return MODE_CLOCK_LOW;
  221. return MODE_OK;
  222. }
  223. static uint32_t
  224. pack_aux(uint8_t *src, int src_bytes)
  225. {
  226. int i;
  227. uint32_t v = 0;
  228. if (src_bytes > 4)
  229. src_bytes = 4;
  230. for (i = 0; i < src_bytes; i++)
  231. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  232. return v;
  233. }
  234. static void
  235. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  236. {
  237. int i;
  238. if (dst_bytes > 4)
  239. dst_bytes = 4;
  240. for (i = 0; i < dst_bytes; i++)
  241. dst[i] = src >> ((3-i) * 8);
  242. }
  243. /* hrawclock is 1/4 the FSB frequency */
  244. static int
  245. intel_hrawclk(struct drm_device *dev)
  246. {
  247. struct drm_i915_private *dev_priv = dev->dev_private;
  248. uint32_t clkcfg;
  249. clkcfg = I915_READ(CLKCFG);
  250. switch (clkcfg & CLKCFG_FSB_MASK) {
  251. case CLKCFG_FSB_400:
  252. return 100;
  253. case CLKCFG_FSB_533:
  254. return 133;
  255. case CLKCFG_FSB_667:
  256. return 166;
  257. case CLKCFG_FSB_800:
  258. return 200;
  259. case CLKCFG_FSB_1067:
  260. return 266;
  261. case CLKCFG_FSB_1333:
  262. return 333;
  263. /* these two are just a guess; one of them might be right */
  264. case CLKCFG_FSB_1600:
  265. case CLKCFG_FSB_1600_ALT:
  266. return 400;
  267. default:
  268. return 133;
  269. }
  270. }
  271. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  272. {
  273. struct drm_device *dev = intel_dp->base.base.dev;
  274. struct drm_i915_private *dev_priv = dev->dev_private;
  275. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  276. }
  277. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  278. {
  279. struct drm_device *dev = intel_dp->base.base.dev;
  280. struct drm_i915_private *dev_priv = dev->dev_private;
  281. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  282. }
  283. static void
  284. intel_dp_check_edp(struct intel_dp *intel_dp)
  285. {
  286. struct drm_device *dev = intel_dp->base.base.dev;
  287. struct drm_i915_private *dev_priv = dev->dev_private;
  288. if (!is_edp(intel_dp))
  289. return;
  290. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  291. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  292. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  293. I915_READ(PCH_PP_STATUS),
  294. I915_READ(PCH_PP_CONTROL));
  295. }
  296. }
  297. static int
  298. intel_dp_aux_ch(struct intel_dp *intel_dp,
  299. uint8_t *send, int send_bytes,
  300. uint8_t *recv, int recv_size)
  301. {
  302. uint32_t output_reg = intel_dp->output_reg;
  303. struct drm_device *dev = intel_dp->base.base.dev;
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. uint32_t ch_ctl = output_reg + 0x10;
  306. uint32_t ch_data = ch_ctl + 4;
  307. int i;
  308. int recv_bytes;
  309. uint32_t status;
  310. uint32_t aux_clock_divider;
  311. int try, precharge;
  312. intel_dp_check_edp(intel_dp);
  313. /* The clock divider is based off the hrawclk,
  314. * and would like to run at 2MHz. So, take the
  315. * hrawclk value and divide by 2 and use that
  316. *
  317. * Note that PCH attached eDP panels should use a 125MHz input
  318. * clock divider.
  319. */
  320. if (is_cpu_edp(intel_dp)) {
  321. if (IS_GEN6(dev) || IS_GEN7(dev))
  322. aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
  323. else
  324. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  325. } else if (HAS_PCH_SPLIT(dev))
  326. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  327. else
  328. aux_clock_divider = intel_hrawclk(dev) / 2;
  329. if (IS_GEN6(dev))
  330. precharge = 3;
  331. else
  332. precharge = 5;
  333. /* Try to wait for any previous AUX channel activity */
  334. for (try = 0; try < 3; try++) {
  335. status = I915_READ(ch_ctl);
  336. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  337. break;
  338. msleep(1);
  339. }
  340. if (try == 3) {
  341. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  342. I915_READ(ch_ctl));
  343. return -EBUSY;
  344. }
  345. /* Must try at least 3 times according to DP spec */
  346. for (try = 0; try < 5; try++) {
  347. /* Load the send data into the aux channel data registers */
  348. for (i = 0; i < send_bytes; i += 4)
  349. I915_WRITE(ch_data + i,
  350. pack_aux(send + i, send_bytes - i));
  351. /* Send the command and wait for it to complete */
  352. I915_WRITE(ch_ctl,
  353. DP_AUX_CH_CTL_SEND_BUSY |
  354. DP_AUX_CH_CTL_TIME_OUT_400us |
  355. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  356. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  357. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  358. DP_AUX_CH_CTL_DONE |
  359. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  360. DP_AUX_CH_CTL_RECEIVE_ERROR);
  361. for (;;) {
  362. status = I915_READ(ch_ctl);
  363. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  364. break;
  365. udelay(100);
  366. }
  367. /* Clear done status and any errors */
  368. I915_WRITE(ch_ctl,
  369. status |
  370. DP_AUX_CH_CTL_DONE |
  371. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  372. DP_AUX_CH_CTL_RECEIVE_ERROR);
  373. if (status & DP_AUX_CH_CTL_DONE)
  374. break;
  375. }
  376. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  377. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  378. return -EBUSY;
  379. }
  380. /* Check for timeout or receive error.
  381. * Timeouts occur when the sink is not connected
  382. */
  383. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  384. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  385. return -EIO;
  386. }
  387. /* Timeouts occur when the device isn't connected, so they're
  388. * "normal" -- don't fill the kernel log with these */
  389. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  390. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  391. return -ETIMEDOUT;
  392. }
  393. /* Unload any bytes sent back from the other side */
  394. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  395. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  396. if (recv_bytes > recv_size)
  397. recv_bytes = recv_size;
  398. for (i = 0; i < recv_bytes; i += 4)
  399. unpack_aux(I915_READ(ch_data + i),
  400. recv + i, recv_bytes - i);
  401. return recv_bytes;
  402. }
  403. /* Write data to the aux channel in native mode */
  404. static int
  405. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  406. uint16_t address, uint8_t *send, int send_bytes)
  407. {
  408. int ret;
  409. uint8_t msg[20];
  410. int msg_bytes;
  411. uint8_t ack;
  412. intel_dp_check_edp(intel_dp);
  413. if (send_bytes > 16)
  414. return -1;
  415. msg[0] = AUX_NATIVE_WRITE << 4;
  416. msg[1] = address >> 8;
  417. msg[2] = address & 0xff;
  418. msg[3] = send_bytes - 1;
  419. memcpy(&msg[4], send, send_bytes);
  420. msg_bytes = send_bytes + 4;
  421. for (;;) {
  422. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  423. if (ret < 0)
  424. return ret;
  425. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  426. break;
  427. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  428. udelay(100);
  429. else
  430. return -EIO;
  431. }
  432. return send_bytes;
  433. }
  434. /* Write a single byte to the aux channel in native mode */
  435. static int
  436. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  437. uint16_t address, uint8_t byte)
  438. {
  439. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  440. }
  441. /* read bytes from a native aux channel */
  442. static int
  443. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  444. uint16_t address, uint8_t *recv, int recv_bytes)
  445. {
  446. uint8_t msg[4];
  447. int msg_bytes;
  448. uint8_t reply[20];
  449. int reply_bytes;
  450. uint8_t ack;
  451. int ret;
  452. intel_dp_check_edp(intel_dp);
  453. msg[0] = AUX_NATIVE_READ << 4;
  454. msg[1] = address >> 8;
  455. msg[2] = address & 0xff;
  456. msg[3] = recv_bytes - 1;
  457. msg_bytes = 4;
  458. reply_bytes = recv_bytes + 1;
  459. for (;;) {
  460. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  461. reply, reply_bytes);
  462. if (ret == 0)
  463. return -EPROTO;
  464. if (ret < 0)
  465. return ret;
  466. ack = reply[0];
  467. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  468. memcpy(recv, reply + 1, ret - 1);
  469. return ret - 1;
  470. }
  471. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  472. udelay(100);
  473. else
  474. return -EIO;
  475. }
  476. }
  477. static int
  478. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  479. uint8_t write_byte, uint8_t *read_byte)
  480. {
  481. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  482. struct intel_dp *intel_dp = container_of(adapter,
  483. struct intel_dp,
  484. adapter);
  485. uint16_t address = algo_data->address;
  486. uint8_t msg[5];
  487. uint8_t reply[2];
  488. unsigned retry;
  489. int msg_bytes;
  490. int reply_bytes;
  491. int ret;
  492. intel_dp_check_edp(intel_dp);
  493. /* Set up the command byte */
  494. if (mode & MODE_I2C_READ)
  495. msg[0] = AUX_I2C_READ << 4;
  496. else
  497. msg[0] = AUX_I2C_WRITE << 4;
  498. if (!(mode & MODE_I2C_STOP))
  499. msg[0] |= AUX_I2C_MOT << 4;
  500. msg[1] = address >> 8;
  501. msg[2] = address;
  502. switch (mode) {
  503. case MODE_I2C_WRITE:
  504. msg[3] = 0;
  505. msg[4] = write_byte;
  506. msg_bytes = 5;
  507. reply_bytes = 1;
  508. break;
  509. case MODE_I2C_READ:
  510. msg[3] = 0;
  511. msg_bytes = 4;
  512. reply_bytes = 2;
  513. break;
  514. default:
  515. msg_bytes = 3;
  516. reply_bytes = 1;
  517. break;
  518. }
  519. for (retry = 0; retry < 5; retry++) {
  520. ret = intel_dp_aux_ch(intel_dp,
  521. msg, msg_bytes,
  522. reply, reply_bytes);
  523. if (ret < 0) {
  524. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  525. return ret;
  526. }
  527. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  528. case AUX_NATIVE_REPLY_ACK:
  529. /* I2C-over-AUX Reply field is only valid
  530. * when paired with AUX ACK.
  531. */
  532. break;
  533. case AUX_NATIVE_REPLY_NACK:
  534. DRM_DEBUG_KMS("aux_ch native nack\n");
  535. return -EREMOTEIO;
  536. case AUX_NATIVE_REPLY_DEFER:
  537. udelay(100);
  538. continue;
  539. default:
  540. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  541. reply[0]);
  542. return -EREMOTEIO;
  543. }
  544. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  545. case AUX_I2C_REPLY_ACK:
  546. if (mode == MODE_I2C_READ) {
  547. *read_byte = reply[1];
  548. }
  549. return reply_bytes - 1;
  550. case AUX_I2C_REPLY_NACK:
  551. DRM_DEBUG_KMS("aux_i2c nack\n");
  552. return -EREMOTEIO;
  553. case AUX_I2C_REPLY_DEFER:
  554. DRM_DEBUG_KMS("aux_i2c defer\n");
  555. udelay(100);
  556. break;
  557. default:
  558. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  559. return -EREMOTEIO;
  560. }
  561. }
  562. DRM_ERROR("too many retries, giving up\n");
  563. return -EREMOTEIO;
  564. }
  565. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
  566. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
  567. static int
  568. intel_dp_i2c_init(struct intel_dp *intel_dp,
  569. struct intel_connector *intel_connector, const char *name)
  570. {
  571. int ret;
  572. DRM_DEBUG_KMS("i2c_init %s\n", name);
  573. intel_dp->algo.running = false;
  574. intel_dp->algo.address = 0;
  575. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  576. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  577. intel_dp->adapter.owner = THIS_MODULE;
  578. intel_dp->adapter.class = I2C_CLASS_DDC;
  579. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  580. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  581. intel_dp->adapter.algo_data = &intel_dp->algo;
  582. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  583. ironlake_edp_panel_vdd_on(intel_dp);
  584. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  585. ironlake_edp_panel_vdd_off(intel_dp, false);
  586. return ret;
  587. }
  588. static bool
  589. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  590. struct drm_display_mode *adjusted_mode)
  591. {
  592. struct drm_device *dev = encoder->dev;
  593. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  594. int lane_count, clock;
  595. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  596. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  597. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  598. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  599. intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
  600. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  601. mode, adjusted_mode);
  602. /*
  603. * the mode->clock is used to calculate the Data&Link M/N
  604. * of the pipe. For the eDP the fixed clock should be used.
  605. */
  606. mode->clock = intel_dp->panel_fixed_mode->clock;
  607. }
  608. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  609. for (clock = 0; clock <= max_clock; clock++) {
  610. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  611. if (intel_dp_link_required(intel_dp, mode->clock)
  612. <= link_avail) {
  613. intel_dp->link_bw = bws[clock];
  614. intel_dp->lane_count = lane_count;
  615. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  616. DRM_DEBUG_KMS("Display port link bw %02x lane "
  617. "count %d clock %d\n",
  618. intel_dp->link_bw, intel_dp->lane_count,
  619. adjusted_mode->clock);
  620. return true;
  621. }
  622. }
  623. }
  624. return false;
  625. }
  626. struct intel_dp_m_n {
  627. uint32_t tu;
  628. uint32_t gmch_m;
  629. uint32_t gmch_n;
  630. uint32_t link_m;
  631. uint32_t link_n;
  632. };
  633. static void
  634. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  635. {
  636. while (*num > 0xffffff || *den > 0xffffff) {
  637. *num >>= 1;
  638. *den >>= 1;
  639. }
  640. }
  641. static void
  642. intel_dp_compute_m_n(int bpp,
  643. int nlanes,
  644. int pixel_clock,
  645. int link_clock,
  646. struct intel_dp_m_n *m_n)
  647. {
  648. m_n->tu = 64;
  649. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  650. m_n->gmch_n = link_clock * nlanes;
  651. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  652. m_n->link_m = pixel_clock;
  653. m_n->link_n = link_clock;
  654. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  655. }
  656. void
  657. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  658. struct drm_display_mode *adjusted_mode)
  659. {
  660. struct drm_device *dev = crtc->dev;
  661. struct drm_mode_config *mode_config = &dev->mode_config;
  662. struct drm_encoder *encoder;
  663. struct drm_i915_private *dev_priv = dev->dev_private;
  664. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  665. int lane_count = 4;
  666. struct intel_dp_m_n m_n;
  667. int pipe = intel_crtc->pipe;
  668. /*
  669. * Find the lane count in the intel_encoder private
  670. */
  671. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  672. struct intel_dp *intel_dp;
  673. if (encoder->crtc != crtc)
  674. continue;
  675. intel_dp = enc_to_intel_dp(encoder);
  676. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
  677. intel_dp->base.type == INTEL_OUTPUT_EDP)
  678. {
  679. lane_count = intel_dp->lane_count;
  680. break;
  681. }
  682. }
  683. /*
  684. * Compute the GMCH and Link ratios. The '3' here is
  685. * the number of bytes_per_pixel post-LUT, which we always
  686. * set up for 8-bits of R/G/B, or 3 bytes total.
  687. */
  688. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  689. mode->clock, adjusted_mode->clock, &m_n);
  690. if (HAS_PCH_SPLIT(dev)) {
  691. I915_WRITE(TRANSDATA_M1(pipe),
  692. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  693. m_n.gmch_m);
  694. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  695. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  696. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  697. } else {
  698. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  699. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  700. m_n.gmch_m);
  701. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  702. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  703. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  704. }
  705. }
  706. static void ironlake_edp_pll_on(struct drm_encoder *encoder);
  707. static void ironlake_edp_pll_off(struct drm_encoder *encoder);
  708. static void
  709. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  710. struct drm_display_mode *adjusted_mode)
  711. {
  712. struct drm_device *dev = encoder->dev;
  713. struct drm_i915_private *dev_priv = dev->dev_private;
  714. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  715. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  716. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  717. /* Turn on the eDP PLL if needed */
  718. if (is_edp(intel_dp)) {
  719. if (!is_pch_edp(intel_dp))
  720. ironlake_edp_pll_on(encoder);
  721. else
  722. ironlake_edp_pll_off(encoder);
  723. }
  724. /*
  725. * There are four kinds of DP registers:
  726. *
  727. * IBX PCH
  728. * SNB CPU
  729. * IVB CPU
  730. * CPT PCH
  731. *
  732. * IBX PCH and CPU are the same for almost everything,
  733. * except that the CPU DP PLL is configured in this
  734. * register
  735. *
  736. * CPT PCH is quite different, having many bits moved
  737. * to the TRANS_DP_CTL register instead. That
  738. * configuration happens (oddly) in ironlake_pch_enable
  739. */
  740. /* Preserve the BIOS-computed detected bit. This is
  741. * supposed to be read-only.
  742. */
  743. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  744. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  745. /* Handle DP bits in common between all three register formats */
  746. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  747. switch (intel_dp->lane_count) {
  748. case 1:
  749. intel_dp->DP |= DP_PORT_WIDTH_1;
  750. break;
  751. case 2:
  752. intel_dp->DP |= DP_PORT_WIDTH_2;
  753. break;
  754. case 4:
  755. intel_dp->DP |= DP_PORT_WIDTH_4;
  756. break;
  757. }
  758. if (intel_dp->has_audio) {
  759. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  760. pipe_name(intel_crtc->pipe));
  761. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  762. intel_write_eld(encoder, adjusted_mode);
  763. }
  764. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  765. intel_dp->link_configuration[0] = intel_dp->link_bw;
  766. intel_dp->link_configuration[1] = intel_dp->lane_count;
  767. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  768. /*
  769. * Check for DPCD version > 1.1 and enhanced framing support
  770. */
  771. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  772. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  773. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  774. }
  775. /* Split out the IBX/CPU vs CPT settings */
  776. if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
  777. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  778. intel_dp->DP |= DP_SYNC_HS_HIGH;
  779. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  780. intel_dp->DP |= DP_SYNC_VS_HIGH;
  781. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  782. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  783. intel_dp->DP |= DP_ENHANCED_FRAMING;
  784. intel_dp->DP |= intel_crtc->pipe << 29;
  785. /* don't miss out required setting for eDP */
  786. intel_dp->DP |= DP_PLL_ENABLE;
  787. if (adjusted_mode->clock < 200000)
  788. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  789. else
  790. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  791. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  792. intel_dp->DP |= intel_dp->color_range;
  793. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  794. intel_dp->DP |= DP_SYNC_HS_HIGH;
  795. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  796. intel_dp->DP |= DP_SYNC_VS_HIGH;
  797. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  798. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  799. intel_dp->DP |= DP_ENHANCED_FRAMING;
  800. if (intel_crtc->pipe == 1)
  801. intel_dp->DP |= DP_PIPEB_SELECT;
  802. if (is_cpu_edp(intel_dp)) {
  803. /* don't miss out required setting for eDP */
  804. intel_dp->DP |= DP_PLL_ENABLE;
  805. if (adjusted_mode->clock < 200000)
  806. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  807. else
  808. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  809. }
  810. } else {
  811. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  812. }
  813. }
  814. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  815. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  816. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  817. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  818. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  819. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  820. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  821. u32 mask,
  822. u32 value)
  823. {
  824. struct drm_device *dev = intel_dp->base.base.dev;
  825. struct drm_i915_private *dev_priv = dev->dev_private;
  826. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  827. mask, value,
  828. I915_READ(PCH_PP_STATUS),
  829. I915_READ(PCH_PP_CONTROL));
  830. if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
  831. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  832. I915_READ(PCH_PP_STATUS),
  833. I915_READ(PCH_PP_CONTROL));
  834. }
  835. }
  836. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  837. {
  838. DRM_DEBUG_KMS("Wait for panel power on\n");
  839. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  840. }
  841. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  842. {
  843. DRM_DEBUG_KMS("Wait for panel power off time\n");
  844. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  845. }
  846. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  847. {
  848. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  849. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  850. }
  851. /* Read the current pp_control value, unlocking the register if it
  852. * is locked
  853. */
  854. static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
  855. {
  856. u32 control = I915_READ(PCH_PP_CONTROL);
  857. control &= ~PANEL_UNLOCK_MASK;
  858. control |= PANEL_UNLOCK_REGS;
  859. return control;
  860. }
  861. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  862. {
  863. struct drm_device *dev = intel_dp->base.base.dev;
  864. struct drm_i915_private *dev_priv = dev->dev_private;
  865. u32 pp;
  866. if (!is_edp(intel_dp))
  867. return;
  868. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  869. WARN(intel_dp->want_panel_vdd,
  870. "eDP VDD already requested on\n");
  871. intel_dp->want_panel_vdd = true;
  872. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  873. DRM_DEBUG_KMS("eDP VDD already on\n");
  874. return;
  875. }
  876. if (!ironlake_edp_have_panel_power(intel_dp))
  877. ironlake_wait_panel_power_cycle(intel_dp);
  878. pp = ironlake_get_pp_control(dev_priv);
  879. pp |= EDP_FORCE_VDD;
  880. I915_WRITE(PCH_PP_CONTROL, pp);
  881. POSTING_READ(PCH_PP_CONTROL);
  882. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  883. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  884. /*
  885. * If the panel wasn't on, delay before accessing aux channel
  886. */
  887. if (!ironlake_edp_have_panel_power(intel_dp)) {
  888. DRM_DEBUG_KMS("eDP was not running\n");
  889. msleep(intel_dp->panel_power_up_delay);
  890. }
  891. }
  892. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  893. {
  894. struct drm_device *dev = intel_dp->base.base.dev;
  895. struct drm_i915_private *dev_priv = dev->dev_private;
  896. u32 pp;
  897. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  898. pp = ironlake_get_pp_control(dev_priv);
  899. pp &= ~EDP_FORCE_VDD;
  900. I915_WRITE(PCH_PP_CONTROL, pp);
  901. POSTING_READ(PCH_PP_CONTROL);
  902. /* Make sure sequencer is idle before allowing subsequent activity */
  903. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  904. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  905. msleep(intel_dp->panel_power_down_delay);
  906. }
  907. }
  908. static void ironlake_panel_vdd_work(struct work_struct *__work)
  909. {
  910. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  911. struct intel_dp, panel_vdd_work);
  912. struct drm_device *dev = intel_dp->base.base.dev;
  913. mutex_lock(&dev->mode_config.mutex);
  914. ironlake_panel_vdd_off_sync(intel_dp);
  915. mutex_unlock(&dev->mode_config.mutex);
  916. }
  917. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  918. {
  919. if (!is_edp(intel_dp))
  920. return;
  921. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  922. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  923. intel_dp->want_panel_vdd = false;
  924. if (sync) {
  925. ironlake_panel_vdd_off_sync(intel_dp);
  926. } else {
  927. /*
  928. * Queue the timer to fire a long
  929. * time from now (relative to the power down delay)
  930. * to keep the panel power up across a sequence of operations
  931. */
  932. schedule_delayed_work(&intel_dp->panel_vdd_work,
  933. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  934. }
  935. }
  936. static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  937. {
  938. struct drm_device *dev = intel_dp->base.base.dev;
  939. struct drm_i915_private *dev_priv = dev->dev_private;
  940. u32 pp;
  941. if (!is_edp(intel_dp))
  942. return;
  943. DRM_DEBUG_KMS("Turn eDP power on\n");
  944. if (ironlake_edp_have_panel_power(intel_dp)) {
  945. DRM_DEBUG_KMS("eDP power already on\n");
  946. return;
  947. }
  948. ironlake_wait_panel_power_cycle(intel_dp);
  949. pp = ironlake_get_pp_control(dev_priv);
  950. if (IS_GEN5(dev)) {
  951. /* ILK workaround: disable reset around power sequence */
  952. pp &= ~PANEL_POWER_RESET;
  953. I915_WRITE(PCH_PP_CONTROL, pp);
  954. POSTING_READ(PCH_PP_CONTROL);
  955. }
  956. pp |= POWER_TARGET_ON;
  957. if (!IS_GEN5(dev))
  958. pp |= PANEL_POWER_RESET;
  959. I915_WRITE(PCH_PP_CONTROL, pp);
  960. POSTING_READ(PCH_PP_CONTROL);
  961. ironlake_wait_panel_on(intel_dp);
  962. if (IS_GEN5(dev)) {
  963. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  964. I915_WRITE(PCH_PP_CONTROL, pp);
  965. POSTING_READ(PCH_PP_CONTROL);
  966. }
  967. }
  968. static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  969. {
  970. struct drm_device *dev = intel_dp->base.base.dev;
  971. struct drm_i915_private *dev_priv = dev->dev_private;
  972. u32 pp;
  973. if (!is_edp(intel_dp))
  974. return;
  975. DRM_DEBUG_KMS("Turn eDP power off\n");
  976. WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
  977. pp = ironlake_get_pp_control(dev_priv);
  978. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  979. I915_WRITE(PCH_PP_CONTROL, pp);
  980. POSTING_READ(PCH_PP_CONTROL);
  981. ironlake_wait_panel_off(intel_dp);
  982. }
  983. static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  984. {
  985. struct drm_device *dev = intel_dp->base.base.dev;
  986. struct drm_i915_private *dev_priv = dev->dev_private;
  987. u32 pp;
  988. if (!is_edp(intel_dp))
  989. return;
  990. DRM_DEBUG_KMS("\n");
  991. /*
  992. * If we enable the backlight right away following a panel power
  993. * on, we may see slight flicker as the panel syncs with the eDP
  994. * link. So delay a bit to make sure the image is solid before
  995. * allowing it to appear.
  996. */
  997. msleep(intel_dp->backlight_on_delay);
  998. pp = ironlake_get_pp_control(dev_priv);
  999. pp |= EDP_BLC_ENABLE;
  1000. I915_WRITE(PCH_PP_CONTROL, pp);
  1001. POSTING_READ(PCH_PP_CONTROL);
  1002. }
  1003. static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1004. {
  1005. struct drm_device *dev = intel_dp->base.base.dev;
  1006. struct drm_i915_private *dev_priv = dev->dev_private;
  1007. u32 pp;
  1008. if (!is_edp(intel_dp))
  1009. return;
  1010. DRM_DEBUG_KMS("\n");
  1011. pp = ironlake_get_pp_control(dev_priv);
  1012. pp &= ~EDP_BLC_ENABLE;
  1013. I915_WRITE(PCH_PP_CONTROL, pp);
  1014. POSTING_READ(PCH_PP_CONTROL);
  1015. msleep(intel_dp->backlight_off_delay);
  1016. }
  1017. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  1018. {
  1019. struct drm_device *dev = encoder->dev;
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. u32 dpa_ctl;
  1022. DRM_DEBUG_KMS("\n");
  1023. dpa_ctl = I915_READ(DP_A);
  1024. dpa_ctl |= DP_PLL_ENABLE;
  1025. I915_WRITE(DP_A, dpa_ctl);
  1026. POSTING_READ(DP_A);
  1027. udelay(200);
  1028. }
  1029. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  1030. {
  1031. struct drm_device *dev = encoder->dev;
  1032. struct drm_i915_private *dev_priv = dev->dev_private;
  1033. u32 dpa_ctl;
  1034. dpa_ctl = I915_READ(DP_A);
  1035. dpa_ctl &= ~DP_PLL_ENABLE;
  1036. I915_WRITE(DP_A, dpa_ctl);
  1037. POSTING_READ(DP_A);
  1038. udelay(200);
  1039. }
  1040. /* If the sink supports it, try to set the power state appropriately */
  1041. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1042. {
  1043. int ret, i;
  1044. /* Should have a valid DPCD by this point */
  1045. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1046. return;
  1047. if (mode != DRM_MODE_DPMS_ON) {
  1048. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1049. DP_SET_POWER_D3);
  1050. if (ret != 1)
  1051. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1052. } else {
  1053. /*
  1054. * When turning on, we need to retry for 1ms to give the sink
  1055. * time to wake up.
  1056. */
  1057. for (i = 0; i < 3; i++) {
  1058. ret = intel_dp_aux_native_write_1(intel_dp,
  1059. DP_SET_POWER,
  1060. DP_SET_POWER_D0);
  1061. if (ret == 1)
  1062. break;
  1063. msleep(1);
  1064. }
  1065. }
  1066. }
  1067. static void intel_dp_prepare(struct drm_encoder *encoder)
  1068. {
  1069. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1070. ironlake_edp_backlight_off(intel_dp);
  1071. ironlake_edp_panel_off(intel_dp);
  1072. /* Wake up the sink first */
  1073. ironlake_edp_panel_vdd_on(intel_dp);
  1074. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1075. intel_dp_link_down(intel_dp);
  1076. ironlake_edp_panel_vdd_off(intel_dp, false);
  1077. /* Make sure the panel is off before trying to
  1078. * change the mode
  1079. */
  1080. }
  1081. static void intel_dp_commit(struct drm_encoder *encoder)
  1082. {
  1083. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1084. struct drm_device *dev = encoder->dev;
  1085. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1086. ironlake_edp_panel_vdd_on(intel_dp);
  1087. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1088. intel_dp_start_link_train(intel_dp);
  1089. ironlake_edp_panel_on(intel_dp);
  1090. ironlake_edp_panel_vdd_off(intel_dp, true);
  1091. intel_dp_complete_link_train(intel_dp);
  1092. ironlake_edp_backlight_on(intel_dp);
  1093. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1094. if (HAS_PCH_CPT(dev))
  1095. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  1096. }
  1097. static void
  1098. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  1099. {
  1100. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1101. struct drm_device *dev = encoder->dev;
  1102. struct drm_i915_private *dev_priv = dev->dev_private;
  1103. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1104. if (mode != DRM_MODE_DPMS_ON) {
  1105. ironlake_edp_backlight_off(intel_dp);
  1106. ironlake_edp_panel_off(intel_dp);
  1107. ironlake_edp_panel_vdd_on(intel_dp);
  1108. intel_dp_sink_dpms(intel_dp, mode);
  1109. intel_dp_link_down(intel_dp);
  1110. ironlake_edp_panel_vdd_off(intel_dp, false);
  1111. if (is_cpu_edp(intel_dp))
  1112. ironlake_edp_pll_off(encoder);
  1113. } else {
  1114. if (is_cpu_edp(intel_dp))
  1115. ironlake_edp_pll_on(encoder);
  1116. ironlake_edp_panel_vdd_on(intel_dp);
  1117. intel_dp_sink_dpms(intel_dp, mode);
  1118. if (!(dp_reg & DP_PORT_EN)) {
  1119. intel_dp_start_link_train(intel_dp);
  1120. ironlake_edp_panel_on(intel_dp);
  1121. ironlake_edp_panel_vdd_off(intel_dp, true);
  1122. intel_dp_complete_link_train(intel_dp);
  1123. } else
  1124. ironlake_edp_panel_vdd_off(intel_dp, false);
  1125. ironlake_edp_backlight_on(intel_dp);
  1126. }
  1127. intel_dp->dpms_mode = mode;
  1128. }
  1129. /*
  1130. * Native read with retry for link status and receiver capability reads for
  1131. * cases where the sink may still be asleep.
  1132. */
  1133. static bool
  1134. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1135. uint8_t *recv, int recv_bytes)
  1136. {
  1137. int ret, i;
  1138. /*
  1139. * Sinks are *supposed* to come up within 1ms from an off state,
  1140. * but we're also supposed to retry 3 times per the spec.
  1141. */
  1142. for (i = 0; i < 3; i++) {
  1143. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1144. recv_bytes);
  1145. if (ret == recv_bytes)
  1146. return true;
  1147. msleep(1);
  1148. }
  1149. return false;
  1150. }
  1151. /*
  1152. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1153. * link status information
  1154. */
  1155. static bool
  1156. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1157. {
  1158. return intel_dp_aux_native_read_retry(intel_dp,
  1159. DP_LANE0_1_STATUS,
  1160. link_status,
  1161. DP_LINK_STATUS_SIZE);
  1162. }
  1163. static uint8_t
  1164. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1165. int r)
  1166. {
  1167. return link_status[r - DP_LANE0_1_STATUS];
  1168. }
  1169. static uint8_t
  1170. intel_get_adjust_request_voltage(uint8_t adjust_request[2],
  1171. int lane)
  1172. {
  1173. int s = ((lane & 1) ?
  1174. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  1175. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  1176. uint8_t l = adjust_request[lane>>1];
  1177. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  1178. }
  1179. static uint8_t
  1180. intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
  1181. int lane)
  1182. {
  1183. int s = ((lane & 1) ?
  1184. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  1185. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  1186. uint8_t l = adjust_request[lane>>1];
  1187. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1188. }
  1189. #if 0
  1190. static char *voltage_names[] = {
  1191. "0.4V", "0.6V", "0.8V", "1.2V"
  1192. };
  1193. static char *pre_emph_names[] = {
  1194. "0dB", "3.5dB", "6dB", "9.5dB"
  1195. };
  1196. static char *link_train_names[] = {
  1197. "pattern 1", "pattern 2", "idle", "off"
  1198. };
  1199. #endif
  1200. /*
  1201. * These are source-specific values; current Intel hardware supports
  1202. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1203. */
  1204. static uint8_t
  1205. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1206. {
  1207. struct drm_device *dev = intel_dp->base.base.dev;
  1208. if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
  1209. return DP_TRAIN_VOLTAGE_SWING_800;
  1210. else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
  1211. return DP_TRAIN_VOLTAGE_SWING_1200;
  1212. else
  1213. return DP_TRAIN_VOLTAGE_SWING_800;
  1214. }
  1215. static uint8_t
  1216. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1217. {
  1218. struct drm_device *dev = intel_dp->base.base.dev;
  1219. if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
  1220. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1221. case DP_TRAIN_VOLTAGE_SWING_400:
  1222. return DP_TRAIN_PRE_EMPHASIS_6;
  1223. case DP_TRAIN_VOLTAGE_SWING_600:
  1224. case DP_TRAIN_VOLTAGE_SWING_800:
  1225. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1226. default:
  1227. return DP_TRAIN_PRE_EMPHASIS_0;
  1228. }
  1229. } else {
  1230. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1231. case DP_TRAIN_VOLTAGE_SWING_400:
  1232. return DP_TRAIN_PRE_EMPHASIS_6;
  1233. case DP_TRAIN_VOLTAGE_SWING_600:
  1234. return DP_TRAIN_PRE_EMPHASIS_6;
  1235. case DP_TRAIN_VOLTAGE_SWING_800:
  1236. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1237. case DP_TRAIN_VOLTAGE_SWING_1200:
  1238. default:
  1239. return DP_TRAIN_PRE_EMPHASIS_0;
  1240. }
  1241. }
  1242. }
  1243. static void
  1244. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1245. {
  1246. uint8_t v = 0;
  1247. uint8_t p = 0;
  1248. int lane;
  1249. uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
  1250. uint8_t voltage_max;
  1251. uint8_t preemph_max;
  1252. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1253. uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
  1254. uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
  1255. if (this_v > v)
  1256. v = this_v;
  1257. if (this_p > p)
  1258. p = this_p;
  1259. }
  1260. voltage_max = intel_dp_voltage_max(intel_dp);
  1261. if (v >= voltage_max)
  1262. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1263. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1264. if (p >= preemph_max)
  1265. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1266. for (lane = 0; lane < 4; lane++)
  1267. intel_dp->train_set[lane] = v | p;
  1268. }
  1269. static uint32_t
  1270. intel_dp_signal_levels(uint8_t train_set)
  1271. {
  1272. uint32_t signal_levels = 0;
  1273. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1274. case DP_TRAIN_VOLTAGE_SWING_400:
  1275. default:
  1276. signal_levels |= DP_VOLTAGE_0_4;
  1277. break;
  1278. case DP_TRAIN_VOLTAGE_SWING_600:
  1279. signal_levels |= DP_VOLTAGE_0_6;
  1280. break;
  1281. case DP_TRAIN_VOLTAGE_SWING_800:
  1282. signal_levels |= DP_VOLTAGE_0_8;
  1283. break;
  1284. case DP_TRAIN_VOLTAGE_SWING_1200:
  1285. signal_levels |= DP_VOLTAGE_1_2;
  1286. break;
  1287. }
  1288. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1289. case DP_TRAIN_PRE_EMPHASIS_0:
  1290. default:
  1291. signal_levels |= DP_PRE_EMPHASIS_0;
  1292. break;
  1293. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1294. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1295. break;
  1296. case DP_TRAIN_PRE_EMPHASIS_6:
  1297. signal_levels |= DP_PRE_EMPHASIS_6;
  1298. break;
  1299. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1300. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1301. break;
  1302. }
  1303. return signal_levels;
  1304. }
  1305. /* Gen6's DP voltage swing and pre-emphasis control */
  1306. static uint32_t
  1307. intel_gen6_edp_signal_levels(uint8_t train_set)
  1308. {
  1309. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1310. DP_TRAIN_PRE_EMPHASIS_MASK);
  1311. switch (signal_levels) {
  1312. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1313. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1314. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1315. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1316. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1317. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1318. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1319. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1320. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1321. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1322. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1323. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1324. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1325. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1326. default:
  1327. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1328. "0x%x\n", signal_levels);
  1329. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1330. }
  1331. }
  1332. /* Gen7's DP voltage swing and pre-emphasis control */
  1333. static uint32_t
  1334. intel_gen7_edp_signal_levels(uint8_t train_set)
  1335. {
  1336. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1337. DP_TRAIN_PRE_EMPHASIS_MASK);
  1338. switch (signal_levels) {
  1339. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1340. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1341. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1342. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1343. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1344. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1345. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1346. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1347. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1348. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1349. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1350. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1351. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1352. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1353. default:
  1354. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1355. "0x%x\n", signal_levels);
  1356. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1357. }
  1358. }
  1359. static uint8_t
  1360. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1361. int lane)
  1362. {
  1363. int s = (lane & 1) * 4;
  1364. uint8_t l = link_status[lane>>1];
  1365. return (l >> s) & 0xf;
  1366. }
  1367. /* Check for clock recovery is done on all channels */
  1368. static bool
  1369. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1370. {
  1371. int lane;
  1372. uint8_t lane_status;
  1373. for (lane = 0; lane < lane_count; lane++) {
  1374. lane_status = intel_get_lane_status(link_status, lane);
  1375. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1376. return false;
  1377. }
  1378. return true;
  1379. }
  1380. /* Check to see if channel eq is done on all channels */
  1381. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1382. DP_LANE_CHANNEL_EQ_DONE|\
  1383. DP_LANE_SYMBOL_LOCKED)
  1384. static bool
  1385. intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1386. {
  1387. uint8_t lane_align;
  1388. uint8_t lane_status;
  1389. int lane;
  1390. lane_align = intel_dp_link_status(link_status,
  1391. DP_LANE_ALIGN_STATUS_UPDATED);
  1392. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1393. return false;
  1394. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1395. lane_status = intel_get_lane_status(link_status, lane);
  1396. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1397. return false;
  1398. }
  1399. return true;
  1400. }
  1401. static bool
  1402. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1403. uint32_t dp_reg_value,
  1404. uint8_t dp_train_pat)
  1405. {
  1406. struct drm_device *dev = intel_dp->base.base.dev;
  1407. struct drm_i915_private *dev_priv = dev->dev_private;
  1408. int ret;
  1409. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1410. POSTING_READ(intel_dp->output_reg);
  1411. intel_dp_aux_native_write_1(intel_dp,
  1412. DP_TRAINING_PATTERN_SET,
  1413. dp_train_pat);
  1414. ret = intel_dp_aux_native_write(intel_dp,
  1415. DP_TRAINING_LANE0_SET,
  1416. intel_dp->train_set,
  1417. intel_dp->lane_count);
  1418. if (ret != intel_dp->lane_count)
  1419. return false;
  1420. return true;
  1421. }
  1422. /* Enable corresponding port and start training pattern 1 */
  1423. static void
  1424. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1425. {
  1426. struct drm_device *dev = intel_dp->base.base.dev;
  1427. struct drm_i915_private *dev_priv = dev->dev_private;
  1428. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1429. int i;
  1430. uint8_t voltage;
  1431. bool clock_recovery = false;
  1432. int voltage_tries, loop_tries;
  1433. u32 reg;
  1434. uint32_t DP = intel_dp->DP;
  1435. /*
  1436. * On CPT we have to enable the port in training pattern 1, which
  1437. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1438. * the port and wait for it to become active.
  1439. */
  1440. if (!HAS_PCH_CPT(dev)) {
  1441. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1442. POSTING_READ(intel_dp->output_reg);
  1443. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1444. }
  1445. /* Write the link configuration data */
  1446. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1447. intel_dp->link_configuration,
  1448. DP_LINK_CONFIGURATION_SIZE);
  1449. DP |= DP_PORT_EN;
  1450. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1451. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1452. else
  1453. DP &= ~DP_LINK_TRAIN_MASK;
  1454. memset(intel_dp->train_set, 0, 4);
  1455. voltage = 0xff;
  1456. voltage_tries = 0;
  1457. loop_tries = 0;
  1458. clock_recovery = false;
  1459. for (;;) {
  1460. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1461. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1462. uint32_t signal_levels;
  1463. if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
  1464. signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
  1465. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
  1466. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1467. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1468. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1469. } else {
  1470. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
  1471. DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
  1472. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1473. }
  1474. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1475. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1476. else
  1477. reg = DP | DP_LINK_TRAIN_PAT_1;
  1478. if (!intel_dp_set_link_train(intel_dp, reg,
  1479. DP_TRAINING_PATTERN_1 |
  1480. DP_LINK_SCRAMBLING_DISABLE))
  1481. break;
  1482. /* Set training pattern 1 */
  1483. udelay(100);
  1484. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1485. DRM_ERROR("failed to get link status\n");
  1486. break;
  1487. }
  1488. if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1489. DRM_DEBUG_KMS("clock recovery OK\n");
  1490. clock_recovery = true;
  1491. break;
  1492. }
  1493. /* Check to see if we've tried the max voltage */
  1494. for (i = 0; i < intel_dp->lane_count; i++)
  1495. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1496. break;
  1497. if (i == intel_dp->lane_count) {
  1498. ++loop_tries;
  1499. if (loop_tries == 5) {
  1500. DRM_DEBUG_KMS("too many full retries, give up\n");
  1501. break;
  1502. }
  1503. memset(intel_dp->train_set, 0, 4);
  1504. voltage_tries = 0;
  1505. continue;
  1506. }
  1507. /* Check to see if we've tried the same voltage 5 times */
  1508. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1509. ++voltage_tries;
  1510. if (voltage_tries == 5) {
  1511. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  1512. break;
  1513. }
  1514. } else
  1515. voltage_tries = 0;
  1516. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1517. /* Compute new intel_dp->train_set as requested by target */
  1518. intel_get_adjust_train(intel_dp, link_status);
  1519. }
  1520. intel_dp->DP = DP;
  1521. }
  1522. static void
  1523. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1524. {
  1525. struct drm_device *dev = intel_dp->base.base.dev;
  1526. struct drm_i915_private *dev_priv = dev->dev_private;
  1527. bool channel_eq = false;
  1528. int tries, cr_tries;
  1529. u32 reg;
  1530. uint32_t DP = intel_dp->DP;
  1531. /* channel equalization */
  1532. tries = 0;
  1533. cr_tries = 0;
  1534. channel_eq = false;
  1535. for (;;) {
  1536. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1537. uint32_t signal_levels;
  1538. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1539. if (cr_tries > 5) {
  1540. DRM_ERROR("failed to train DP, aborting\n");
  1541. intel_dp_link_down(intel_dp);
  1542. break;
  1543. }
  1544. if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
  1545. signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
  1546. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
  1547. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1548. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1549. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1550. } else {
  1551. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
  1552. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1553. }
  1554. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1555. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1556. else
  1557. reg = DP | DP_LINK_TRAIN_PAT_2;
  1558. /* channel eq pattern */
  1559. if (!intel_dp_set_link_train(intel_dp, reg,
  1560. DP_TRAINING_PATTERN_2 |
  1561. DP_LINK_SCRAMBLING_DISABLE))
  1562. break;
  1563. udelay(400);
  1564. if (!intel_dp_get_link_status(intel_dp, link_status))
  1565. break;
  1566. /* Make sure clock is still ok */
  1567. if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1568. intel_dp_start_link_train(intel_dp);
  1569. cr_tries++;
  1570. continue;
  1571. }
  1572. if (intel_channel_eq_ok(intel_dp, link_status)) {
  1573. channel_eq = true;
  1574. break;
  1575. }
  1576. /* Try 5 times, then try clock recovery if that fails */
  1577. if (tries > 5) {
  1578. intel_dp_link_down(intel_dp);
  1579. intel_dp_start_link_train(intel_dp);
  1580. tries = 0;
  1581. cr_tries++;
  1582. continue;
  1583. }
  1584. /* Compute new intel_dp->train_set as requested by target */
  1585. intel_get_adjust_train(intel_dp, link_status);
  1586. ++tries;
  1587. }
  1588. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1589. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1590. else
  1591. reg = DP | DP_LINK_TRAIN_OFF;
  1592. I915_WRITE(intel_dp->output_reg, reg);
  1593. POSTING_READ(intel_dp->output_reg);
  1594. intel_dp_aux_native_write_1(intel_dp,
  1595. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1596. }
  1597. static void
  1598. intel_dp_link_down(struct intel_dp *intel_dp)
  1599. {
  1600. struct drm_device *dev = intel_dp->base.base.dev;
  1601. struct drm_i915_private *dev_priv = dev->dev_private;
  1602. uint32_t DP = intel_dp->DP;
  1603. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1604. return;
  1605. DRM_DEBUG_KMS("\n");
  1606. if (is_edp(intel_dp)) {
  1607. DP &= ~DP_PLL_ENABLE;
  1608. I915_WRITE(intel_dp->output_reg, DP);
  1609. POSTING_READ(intel_dp->output_reg);
  1610. udelay(100);
  1611. }
  1612. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1613. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1614. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1615. } else {
  1616. DP &= ~DP_LINK_TRAIN_MASK;
  1617. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1618. }
  1619. POSTING_READ(intel_dp->output_reg);
  1620. msleep(17);
  1621. if (is_edp(intel_dp)) {
  1622. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1623. DP |= DP_LINK_TRAIN_OFF_CPT;
  1624. else
  1625. DP |= DP_LINK_TRAIN_OFF;
  1626. }
  1627. if (!HAS_PCH_CPT(dev) &&
  1628. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1629. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1630. /* Hardware workaround: leaving our transcoder select
  1631. * set to transcoder B while it's off will prevent the
  1632. * corresponding HDMI output on transcoder A.
  1633. *
  1634. * Combine this with another hardware workaround:
  1635. * transcoder select bit can only be cleared while the
  1636. * port is enabled.
  1637. */
  1638. DP &= ~DP_PIPEB_SELECT;
  1639. I915_WRITE(intel_dp->output_reg, DP);
  1640. /* Changes to enable or select take place the vblank
  1641. * after being written.
  1642. */
  1643. if (crtc == NULL) {
  1644. /* We can arrive here never having been attached
  1645. * to a CRTC, for instance, due to inheriting
  1646. * random state from the BIOS.
  1647. *
  1648. * If the pipe is not running, play safe and
  1649. * wait for the clocks to stabilise before
  1650. * continuing.
  1651. */
  1652. POSTING_READ(intel_dp->output_reg);
  1653. msleep(50);
  1654. } else
  1655. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1656. }
  1657. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1658. POSTING_READ(intel_dp->output_reg);
  1659. msleep(intel_dp->panel_power_down_delay);
  1660. }
  1661. static bool
  1662. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1663. {
  1664. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1665. sizeof(intel_dp->dpcd)) &&
  1666. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1667. return true;
  1668. }
  1669. return false;
  1670. }
  1671. static bool
  1672. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  1673. {
  1674. int ret;
  1675. ret = intel_dp_aux_native_read_retry(intel_dp,
  1676. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1677. sink_irq_vector, 1);
  1678. if (!ret)
  1679. return false;
  1680. return true;
  1681. }
  1682. static void
  1683. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  1684. {
  1685. /* NAK by default */
  1686. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
  1687. }
  1688. /*
  1689. * According to DP spec
  1690. * 5.1.2:
  1691. * 1. Read DPCD
  1692. * 2. Configure link according to Receiver Capabilities
  1693. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1694. * 4. Check link status on receipt of hot-plug interrupt
  1695. */
  1696. static void
  1697. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1698. {
  1699. u8 sink_irq_vector;
  1700. u8 link_status[DP_LINK_STATUS_SIZE];
  1701. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1702. return;
  1703. if (!intel_dp->base.base.crtc)
  1704. return;
  1705. /* Try to read receiver status if the link appears to be up */
  1706. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1707. intel_dp_link_down(intel_dp);
  1708. return;
  1709. }
  1710. /* Now read the DPCD to see if it's actually running */
  1711. if (!intel_dp_get_dpcd(intel_dp)) {
  1712. intel_dp_link_down(intel_dp);
  1713. return;
  1714. }
  1715. /* Try to read the source of the interrupt */
  1716. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  1717. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  1718. /* Clear interrupt source */
  1719. intel_dp_aux_native_write_1(intel_dp,
  1720. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1721. sink_irq_vector);
  1722. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  1723. intel_dp_handle_test_request(intel_dp);
  1724. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  1725. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  1726. }
  1727. if (!intel_channel_eq_ok(intel_dp, link_status)) {
  1728. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1729. drm_get_encoder_name(&intel_dp->base.base));
  1730. intel_dp_start_link_train(intel_dp);
  1731. intel_dp_complete_link_train(intel_dp);
  1732. }
  1733. }
  1734. static enum drm_connector_status
  1735. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1736. {
  1737. if (intel_dp_get_dpcd(intel_dp))
  1738. return connector_status_connected;
  1739. return connector_status_disconnected;
  1740. }
  1741. static enum drm_connector_status
  1742. ironlake_dp_detect(struct intel_dp *intel_dp)
  1743. {
  1744. enum drm_connector_status status;
  1745. /* Can't disconnect eDP, but you can close the lid... */
  1746. if (is_edp(intel_dp)) {
  1747. status = intel_panel_detect(intel_dp->base.base.dev);
  1748. if (status == connector_status_unknown)
  1749. status = connector_status_connected;
  1750. return status;
  1751. }
  1752. return intel_dp_detect_dpcd(intel_dp);
  1753. }
  1754. static enum drm_connector_status
  1755. g4x_dp_detect(struct intel_dp *intel_dp)
  1756. {
  1757. struct drm_device *dev = intel_dp->base.base.dev;
  1758. struct drm_i915_private *dev_priv = dev->dev_private;
  1759. uint32_t temp, bit;
  1760. switch (intel_dp->output_reg) {
  1761. case DP_B:
  1762. bit = DPB_HOTPLUG_INT_STATUS;
  1763. break;
  1764. case DP_C:
  1765. bit = DPC_HOTPLUG_INT_STATUS;
  1766. break;
  1767. case DP_D:
  1768. bit = DPD_HOTPLUG_INT_STATUS;
  1769. break;
  1770. default:
  1771. return connector_status_unknown;
  1772. }
  1773. temp = I915_READ(PORT_HOTPLUG_STAT);
  1774. if ((temp & bit) == 0)
  1775. return connector_status_disconnected;
  1776. return intel_dp_detect_dpcd(intel_dp);
  1777. }
  1778. static struct edid *
  1779. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1780. {
  1781. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1782. struct edid *edid;
  1783. ironlake_edp_panel_vdd_on(intel_dp);
  1784. edid = drm_get_edid(connector, adapter);
  1785. ironlake_edp_panel_vdd_off(intel_dp, false);
  1786. return edid;
  1787. }
  1788. static int
  1789. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  1790. {
  1791. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1792. int ret;
  1793. ironlake_edp_panel_vdd_on(intel_dp);
  1794. ret = intel_ddc_get_modes(connector, adapter);
  1795. ironlake_edp_panel_vdd_off(intel_dp, false);
  1796. return ret;
  1797. }
  1798. /**
  1799. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1800. *
  1801. * \return true if DP port is connected.
  1802. * \return false if DP port is disconnected.
  1803. */
  1804. static enum drm_connector_status
  1805. intel_dp_detect(struct drm_connector *connector, bool force)
  1806. {
  1807. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1808. struct drm_device *dev = intel_dp->base.base.dev;
  1809. enum drm_connector_status status;
  1810. struct edid *edid = NULL;
  1811. intel_dp->has_audio = false;
  1812. if (HAS_PCH_SPLIT(dev))
  1813. status = ironlake_dp_detect(intel_dp);
  1814. else
  1815. status = g4x_dp_detect(intel_dp);
  1816. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1817. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1818. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1819. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1820. if (status != connector_status_connected)
  1821. return status;
  1822. if (intel_dp->force_audio) {
  1823. intel_dp->has_audio = intel_dp->force_audio > 0;
  1824. } else {
  1825. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1826. if (edid) {
  1827. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1828. connector->display_info.raw_edid = NULL;
  1829. kfree(edid);
  1830. }
  1831. }
  1832. return connector_status_connected;
  1833. }
  1834. static int intel_dp_get_modes(struct drm_connector *connector)
  1835. {
  1836. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1837. struct drm_device *dev = intel_dp->base.base.dev;
  1838. struct drm_i915_private *dev_priv = dev->dev_private;
  1839. int ret;
  1840. /* We should parse the EDID data and find out if it has an audio sink
  1841. */
  1842. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  1843. if (ret) {
  1844. if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
  1845. struct drm_display_mode *newmode;
  1846. list_for_each_entry(newmode, &connector->probed_modes,
  1847. head) {
  1848. if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
  1849. intel_dp->panel_fixed_mode =
  1850. drm_mode_duplicate(dev, newmode);
  1851. break;
  1852. }
  1853. }
  1854. }
  1855. return ret;
  1856. }
  1857. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1858. if (is_edp(intel_dp)) {
  1859. /* initialize panel mode from VBT if available for eDP */
  1860. if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
  1861. intel_dp->panel_fixed_mode =
  1862. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1863. if (intel_dp->panel_fixed_mode) {
  1864. intel_dp->panel_fixed_mode->type |=
  1865. DRM_MODE_TYPE_PREFERRED;
  1866. }
  1867. }
  1868. if (intel_dp->panel_fixed_mode) {
  1869. struct drm_display_mode *mode;
  1870. mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
  1871. drm_mode_probed_add(connector, mode);
  1872. return 1;
  1873. }
  1874. }
  1875. return 0;
  1876. }
  1877. static bool
  1878. intel_dp_detect_audio(struct drm_connector *connector)
  1879. {
  1880. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1881. struct edid *edid;
  1882. bool has_audio = false;
  1883. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1884. if (edid) {
  1885. has_audio = drm_detect_monitor_audio(edid);
  1886. connector->display_info.raw_edid = NULL;
  1887. kfree(edid);
  1888. }
  1889. return has_audio;
  1890. }
  1891. static int
  1892. intel_dp_set_property(struct drm_connector *connector,
  1893. struct drm_property *property,
  1894. uint64_t val)
  1895. {
  1896. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1897. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1898. int ret;
  1899. ret = drm_connector_property_set_value(connector, property, val);
  1900. if (ret)
  1901. return ret;
  1902. if (property == dev_priv->force_audio_property) {
  1903. int i = val;
  1904. bool has_audio;
  1905. if (i == intel_dp->force_audio)
  1906. return 0;
  1907. intel_dp->force_audio = i;
  1908. if (i == 0)
  1909. has_audio = intel_dp_detect_audio(connector);
  1910. else
  1911. has_audio = i > 0;
  1912. if (has_audio == intel_dp->has_audio)
  1913. return 0;
  1914. intel_dp->has_audio = has_audio;
  1915. goto done;
  1916. }
  1917. if (property == dev_priv->broadcast_rgb_property) {
  1918. if (val == !!intel_dp->color_range)
  1919. return 0;
  1920. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1921. goto done;
  1922. }
  1923. return -EINVAL;
  1924. done:
  1925. if (intel_dp->base.base.crtc) {
  1926. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1927. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1928. crtc->x, crtc->y,
  1929. crtc->fb);
  1930. }
  1931. return 0;
  1932. }
  1933. static void
  1934. intel_dp_destroy(struct drm_connector *connector)
  1935. {
  1936. struct drm_device *dev = connector->dev;
  1937. if (intel_dpd_is_edp(dev))
  1938. intel_panel_destroy_backlight(dev);
  1939. drm_sysfs_connector_remove(connector);
  1940. drm_connector_cleanup(connector);
  1941. kfree(connector);
  1942. }
  1943. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1944. {
  1945. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1946. i2c_del_adapter(&intel_dp->adapter);
  1947. drm_encoder_cleanup(encoder);
  1948. if (is_edp(intel_dp)) {
  1949. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  1950. ironlake_panel_vdd_off_sync(intel_dp);
  1951. }
  1952. kfree(intel_dp);
  1953. }
  1954. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1955. .dpms = intel_dp_dpms,
  1956. .mode_fixup = intel_dp_mode_fixup,
  1957. .prepare = intel_dp_prepare,
  1958. .mode_set = intel_dp_mode_set,
  1959. .commit = intel_dp_commit,
  1960. };
  1961. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1962. .dpms = drm_helper_connector_dpms,
  1963. .detect = intel_dp_detect,
  1964. .fill_modes = drm_helper_probe_single_connector_modes,
  1965. .set_property = intel_dp_set_property,
  1966. .destroy = intel_dp_destroy,
  1967. };
  1968. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1969. .get_modes = intel_dp_get_modes,
  1970. .mode_valid = intel_dp_mode_valid,
  1971. .best_encoder = intel_best_encoder,
  1972. };
  1973. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1974. .destroy = intel_dp_encoder_destroy,
  1975. };
  1976. static void
  1977. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1978. {
  1979. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1980. intel_dp_check_link_status(intel_dp);
  1981. }
  1982. /* Return which DP Port should be selected for Transcoder DP control */
  1983. int
  1984. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  1985. {
  1986. struct drm_device *dev = crtc->dev;
  1987. struct drm_mode_config *mode_config = &dev->mode_config;
  1988. struct drm_encoder *encoder;
  1989. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1990. struct intel_dp *intel_dp;
  1991. if (encoder->crtc != crtc)
  1992. continue;
  1993. intel_dp = enc_to_intel_dp(encoder);
  1994. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
  1995. intel_dp->base.type == INTEL_OUTPUT_EDP)
  1996. return intel_dp->output_reg;
  1997. }
  1998. return -1;
  1999. }
  2000. /* check the VBT to see whether the eDP is on DP-D port */
  2001. bool intel_dpd_is_edp(struct drm_device *dev)
  2002. {
  2003. struct drm_i915_private *dev_priv = dev->dev_private;
  2004. struct child_device_config *p_child;
  2005. int i;
  2006. if (!dev_priv->child_dev_num)
  2007. return false;
  2008. for (i = 0; i < dev_priv->child_dev_num; i++) {
  2009. p_child = dev_priv->child_dev + i;
  2010. if (p_child->dvo_port == PORT_IDPD &&
  2011. p_child->device_type == DEVICE_TYPE_eDP)
  2012. return true;
  2013. }
  2014. return false;
  2015. }
  2016. static void
  2017. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2018. {
  2019. intel_attach_force_audio_property(connector);
  2020. intel_attach_broadcast_rgb_property(connector);
  2021. }
  2022. void
  2023. intel_dp_init(struct drm_device *dev, int output_reg)
  2024. {
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. struct drm_connector *connector;
  2027. struct intel_dp *intel_dp;
  2028. struct intel_encoder *intel_encoder;
  2029. struct intel_connector *intel_connector;
  2030. const char *name = NULL;
  2031. int type;
  2032. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  2033. if (!intel_dp)
  2034. return;
  2035. intel_dp->output_reg = output_reg;
  2036. intel_dp->dpms_mode = -1;
  2037. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2038. if (!intel_connector) {
  2039. kfree(intel_dp);
  2040. return;
  2041. }
  2042. intel_encoder = &intel_dp->base;
  2043. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  2044. if (intel_dpd_is_edp(dev))
  2045. intel_dp->is_pch_edp = true;
  2046. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  2047. type = DRM_MODE_CONNECTOR_eDP;
  2048. intel_encoder->type = INTEL_OUTPUT_EDP;
  2049. } else {
  2050. type = DRM_MODE_CONNECTOR_DisplayPort;
  2051. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2052. }
  2053. connector = &intel_connector->base;
  2054. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2055. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2056. connector->polled = DRM_CONNECTOR_POLL_HPD;
  2057. if (output_reg == DP_B || output_reg == PCH_DP_B)
  2058. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  2059. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  2060. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  2061. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  2062. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  2063. if (is_edp(intel_dp)) {
  2064. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  2065. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2066. ironlake_panel_vdd_work);
  2067. }
  2068. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2069. connector->interlace_allowed = true;
  2070. connector->doublescan_allowed = 0;
  2071. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2072. DRM_MODE_ENCODER_TMDS);
  2073. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2074. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2075. drm_sysfs_connector_add(connector);
  2076. /* Set up the DDC bus. */
  2077. switch (output_reg) {
  2078. case DP_A:
  2079. name = "DPDDC-A";
  2080. break;
  2081. case DP_B:
  2082. case PCH_DP_B:
  2083. dev_priv->hotplug_supported_mask |=
  2084. HDMIB_HOTPLUG_INT_STATUS;
  2085. name = "DPDDC-B";
  2086. break;
  2087. case DP_C:
  2088. case PCH_DP_C:
  2089. dev_priv->hotplug_supported_mask |=
  2090. HDMIC_HOTPLUG_INT_STATUS;
  2091. name = "DPDDC-C";
  2092. break;
  2093. case DP_D:
  2094. case PCH_DP_D:
  2095. dev_priv->hotplug_supported_mask |=
  2096. HDMID_HOTPLUG_INT_STATUS;
  2097. name = "DPDDC-D";
  2098. break;
  2099. }
  2100. /* Cache some DPCD data in the eDP case */
  2101. if (is_edp(intel_dp)) {
  2102. bool ret;
  2103. struct edp_power_seq cur, vbt;
  2104. u32 pp_on, pp_off, pp_div;
  2105. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  2106. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  2107. pp_div = I915_READ(PCH_PP_DIVISOR);
  2108. /* Pull timing values out of registers */
  2109. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2110. PANEL_POWER_UP_DELAY_SHIFT;
  2111. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2112. PANEL_LIGHT_ON_DELAY_SHIFT;
  2113. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2114. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2115. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2116. PANEL_POWER_DOWN_DELAY_SHIFT;
  2117. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2118. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2119. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2120. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2121. vbt = dev_priv->edp.pps;
  2122. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2123. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2124. #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
  2125. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2126. intel_dp->backlight_on_delay = get_delay(t8);
  2127. intel_dp->backlight_off_delay = get_delay(t9);
  2128. intel_dp->panel_power_down_delay = get_delay(t10);
  2129. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2130. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2131. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2132. intel_dp->panel_power_cycle_delay);
  2133. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2134. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2135. ironlake_edp_panel_vdd_on(intel_dp);
  2136. ret = intel_dp_get_dpcd(intel_dp);
  2137. ironlake_edp_panel_vdd_off(intel_dp, false);
  2138. if (ret) {
  2139. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2140. dev_priv->no_aux_handshake =
  2141. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2142. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2143. } else {
  2144. /* if this fails, presume the device is a ghost */
  2145. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2146. intel_dp_encoder_destroy(&intel_dp->base.base);
  2147. intel_dp_destroy(&intel_connector->base);
  2148. return;
  2149. }
  2150. }
  2151. intel_dp_i2c_init(intel_dp, intel_connector, name);
  2152. intel_encoder->hot_plug = intel_dp_hot_plug;
  2153. if (is_edp(intel_dp)) {
  2154. dev_priv->int_edp_connector = connector;
  2155. intel_panel_setup_backlight(dev);
  2156. }
  2157. intel_dp_add_properties(intel_dp, connector);
  2158. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2159. * 0xd. Failure to do so will result in spurious interrupts being
  2160. * generated on the port when a cable is not attached.
  2161. */
  2162. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2163. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2164. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2165. }
  2166. }