security.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. #include <linux/integrity.h>
  19. #include <linux/ima.h>
  20. #include <linux/evm.h>
  21. #define MAX_LSM_EVM_XATTR 2
  22. /* Boot-time LSM user choice */
  23. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  24. CONFIG_DEFAULT_SECURITY;
  25. static struct security_operations *security_ops;
  26. static struct security_operations default_security_ops = {
  27. .name = "default",
  28. };
  29. static inline int __init verify(struct security_operations *ops)
  30. {
  31. /* verify the security_operations structure exists */
  32. if (!ops)
  33. return -EINVAL;
  34. security_fixup_ops(ops);
  35. return 0;
  36. }
  37. static void __init do_security_initcalls(void)
  38. {
  39. initcall_t *call;
  40. call = __security_initcall_start;
  41. while (call < __security_initcall_end) {
  42. (*call) ();
  43. call++;
  44. }
  45. }
  46. /**
  47. * security_init - initializes the security framework
  48. *
  49. * This should be called early in the kernel initialization sequence.
  50. */
  51. int __init security_init(void)
  52. {
  53. printk(KERN_INFO "Security Framework initialized\n");
  54. security_fixup_ops(&default_security_ops);
  55. security_ops = &default_security_ops;
  56. do_security_initcalls();
  57. return 0;
  58. }
  59. void reset_security_ops(void)
  60. {
  61. security_ops = &default_security_ops;
  62. }
  63. /* Save user chosen LSM */
  64. static int __init choose_lsm(char *str)
  65. {
  66. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  67. return 1;
  68. }
  69. __setup("security=", choose_lsm);
  70. /**
  71. * security_module_enable - Load given security module on boot ?
  72. * @ops: a pointer to the struct security_operations that is to be checked.
  73. *
  74. * Each LSM must pass this method before registering its own operations
  75. * to avoid security registration races. This method may also be used
  76. * to check if your LSM is currently loaded during kernel initialization.
  77. *
  78. * Return true if:
  79. * -The passed LSM is the one chosen by user at boot time,
  80. * -or the passed LSM is configured as the default and the user did not
  81. * choose an alternate LSM at boot time.
  82. * Otherwise, return false.
  83. */
  84. int __init security_module_enable(struct security_operations *ops)
  85. {
  86. return !strcmp(ops->name, chosen_lsm);
  87. }
  88. /**
  89. * register_security - registers a security framework with the kernel
  90. * @ops: a pointer to the struct security_options that is to be registered
  91. *
  92. * This function allows a security module to register itself with the
  93. * kernel security subsystem. Some rudimentary checking is done on the @ops
  94. * value passed to this function. You'll need to check first if your LSM
  95. * is allowed to register its @ops by calling security_module_enable(@ops).
  96. *
  97. * If there is already a security module registered with the kernel,
  98. * an error will be returned. Otherwise %0 is returned on success.
  99. */
  100. int __init register_security(struct security_operations *ops)
  101. {
  102. if (verify(ops)) {
  103. printk(KERN_DEBUG "%s could not verify "
  104. "security_operations structure.\n", __func__);
  105. return -EINVAL;
  106. }
  107. if (security_ops != &default_security_ops)
  108. return -EAGAIN;
  109. security_ops = ops;
  110. return 0;
  111. }
  112. /* Security operations */
  113. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  114. {
  115. return security_ops->ptrace_access_check(child, mode);
  116. }
  117. int security_ptrace_traceme(struct task_struct *parent)
  118. {
  119. return security_ops->ptrace_traceme(parent);
  120. }
  121. int security_capget(struct task_struct *target,
  122. kernel_cap_t *effective,
  123. kernel_cap_t *inheritable,
  124. kernel_cap_t *permitted)
  125. {
  126. return security_ops->capget(target, effective, inheritable, permitted);
  127. }
  128. int security_capset(struct cred *new, const struct cred *old,
  129. const kernel_cap_t *effective,
  130. const kernel_cap_t *inheritable,
  131. const kernel_cap_t *permitted)
  132. {
  133. return security_ops->capset(new, old,
  134. effective, inheritable, permitted);
  135. }
  136. int security_capable(const struct cred *cred, struct user_namespace *ns,
  137. int cap)
  138. {
  139. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  140. }
  141. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  142. int cap)
  143. {
  144. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  145. }
  146. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  147. {
  148. return security_ops->quotactl(cmds, type, id, sb);
  149. }
  150. int security_quota_on(struct dentry *dentry)
  151. {
  152. return security_ops->quota_on(dentry);
  153. }
  154. int security_syslog(int type)
  155. {
  156. return security_ops->syslog(type);
  157. }
  158. int security_settime(const struct timespec *ts, const struct timezone *tz)
  159. {
  160. return security_ops->settime(ts, tz);
  161. }
  162. int security_vm_enough_memory(long pages)
  163. {
  164. WARN_ON(current->mm == NULL);
  165. return security_ops->vm_enough_memory(current->mm, pages);
  166. }
  167. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  168. {
  169. WARN_ON(mm == NULL);
  170. return security_ops->vm_enough_memory(mm, pages);
  171. }
  172. int security_vm_enough_memory_kern(long pages)
  173. {
  174. /* If current->mm is a kernel thread then we will pass NULL,
  175. for this specific case that is fine */
  176. return security_ops->vm_enough_memory(current->mm, pages);
  177. }
  178. int security_bprm_set_creds(struct linux_binprm *bprm)
  179. {
  180. return security_ops->bprm_set_creds(bprm);
  181. }
  182. int security_bprm_check(struct linux_binprm *bprm)
  183. {
  184. int ret;
  185. ret = security_ops->bprm_check_security(bprm);
  186. if (ret)
  187. return ret;
  188. return ima_bprm_check(bprm);
  189. }
  190. void security_bprm_committing_creds(struct linux_binprm *bprm)
  191. {
  192. security_ops->bprm_committing_creds(bprm);
  193. }
  194. void security_bprm_committed_creds(struct linux_binprm *bprm)
  195. {
  196. security_ops->bprm_committed_creds(bprm);
  197. }
  198. int security_bprm_secureexec(struct linux_binprm *bprm)
  199. {
  200. return security_ops->bprm_secureexec(bprm);
  201. }
  202. int security_sb_alloc(struct super_block *sb)
  203. {
  204. return security_ops->sb_alloc_security(sb);
  205. }
  206. void security_sb_free(struct super_block *sb)
  207. {
  208. security_ops->sb_free_security(sb);
  209. }
  210. int security_sb_copy_data(char *orig, char *copy)
  211. {
  212. return security_ops->sb_copy_data(orig, copy);
  213. }
  214. EXPORT_SYMBOL(security_sb_copy_data);
  215. int security_sb_remount(struct super_block *sb, void *data)
  216. {
  217. return security_ops->sb_remount(sb, data);
  218. }
  219. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  220. {
  221. return security_ops->sb_kern_mount(sb, flags, data);
  222. }
  223. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  224. {
  225. return security_ops->sb_show_options(m, sb);
  226. }
  227. int security_sb_statfs(struct dentry *dentry)
  228. {
  229. return security_ops->sb_statfs(dentry);
  230. }
  231. int security_sb_mount(char *dev_name, struct path *path,
  232. char *type, unsigned long flags, void *data)
  233. {
  234. return security_ops->sb_mount(dev_name, path, type, flags, data);
  235. }
  236. int security_sb_umount(struct vfsmount *mnt, int flags)
  237. {
  238. return security_ops->sb_umount(mnt, flags);
  239. }
  240. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  241. {
  242. return security_ops->sb_pivotroot(old_path, new_path);
  243. }
  244. int security_sb_set_mnt_opts(struct super_block *sb,
  245. struct security_mnt_opts *opts)
  246. {
  247. return security_ops->sb_set_mnt_opts(sb, opts);
  248. }
  249. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  250. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  251. struct super_block *newsb)
  252. {
  253. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  254. }
  255. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  256. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  257. {
  258. return security_ops->sb_parse_opts_str(options, opts);
  259. }
  260. EXPORT_SYMBOL(security_sb_parse_opts_str);
  261. int security_inode_alloc(struct inode *inode)
  262. {
  263. inode->i_security = NULL;
  264. return security_ops->inode_alloc_security(inode);
  265. }
  266. void security_inode_free(struct inode *inode)
  267. {
  268. integrity_inode_free(inode);
  269. security_ops->inode_free_security(inode);
  270. }
  271. int security_inode_init_security(struct inode *inode, struct inode *dir,
  272. const struct qstr *qstr,
  273. const initxattrs initxattrs, void *fs_data)
  274. {
  275. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  276. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  277. int ret;
  278. if (unlikely(IS_PRIVATE(inode)))
  279. return 0;
  280. memset(new_xattrs, 0, sizeof new_xattrs);
  281. if (!initxattrs)
  282. return security_ops->inode_init_security(inode, dir, qstr,
  283. NULL, NULL, NULL);
  284. lsm_xattr = new_xattrs;
  285. ret = security_ops->inode_init_security(inode, dir, qstr,
  286. &lsm_xattr->name,
  287. &lsm_xattr->value,
  288. &lsm_xattr->value_len);
  289. if (ret)
  290. goto out;
  291. evm_xattr = lsm_xattr + 1;
  292. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  293. if (ret)
  294. goto out;
  295. ret = initxattrs(inode, new_xattrs, fs_data);
  296. out:
  297. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  298. kfree(xattr->name);
  299. kfree(xattr->value);
  300. }
  301. return (ret == -EOPNOTSUPP) ? 0 : ret;
  302. }
  303. EXPORT_SYMBOL(security_inode_init_security);
  304. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  305. const struct qstr *qstr, char **name,
  306. void **value, size_t *len)
  307. {
  308. if (unlikely(IS_PRIVATE(inode)))
  309. return -EOPNOTSUPP;
  310. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  311. len);
  312. }
  313. EXPORT_SYMBOL(security_old_inode_init_security);
  314. #ifdef CONFIG_SECURITY_PATH
  315. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  316. unsigned int dev)
  317. {
  318. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  319. return 0;
  320. return security_ops->path_mknod(dir, dentry, mode, dev);
  321. }
  322. EXPORT_SYMBOL(security_path_mknod);
  323. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  324. {
  325. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  326. return 0;
  327. return security_ops->path_mkdir(dir, dentry, mode);
  328. }
  329. EXPORT_SYMBOL(security_path_mkdir);
  330. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  331. {
  332. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  333. return 0;
  334. return security_ops->path_rmdir(dir, dentry);
  335. }
  336. int security_path_unlink(struct path *dir, struct dentry *dentry)
  337. {
  338. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  339. return 0;
  340. return security_ops->path_unlink(dir, dentry);
  341. }
  342. EXPORT_SYMBOL(security_path_unlink);
  343. int security_path_symlink(struct path *dir, struct dentry *dentry,
  344. const char *old_name)
  345. {
  346. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  347. return 0;
  348. return security_ops->path_symlink(dir, dentry, old_name);
  349. }
  350. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  351. struct dentry *new_dentry)
  352. {
  353. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  354. return 0;
  355. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  356. }
  357. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  358. struct path *new_dir, struct dentry *new_dentry)
  359. {
  360. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  361. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  362. return 0;
  363. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  364. new_dentry);
  365. }
  366. EXPORT_SYMBOL(security_path_rename);
  367. int security_path_truncate(struct path *path)
  368. {
  369. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  370. return 0;
  371. return security_ops->path_truncate(path);
  372. }
  373. int security_path_chmod(struct path *path, umode_t mode)
  374. {
  375. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  376. return 0;
  377. return security_ops->path_chmod(path, mode);
  378. }
  379. int security_path_chown(struct path *path, uid_t uid, gid_t gid)
  380. {
  381. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  382. return 0;
  383. return security_ops->path_chown(path, uid, gid);
  384. }
  385. int security_path_chroot(struct path *path)
  386. {
  387. return security_ops->path_chroot(path);
  388. }
  389. #endif
  390. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  391. {
  392. if (unlikely(IS_PRIVATE(dir)))
  393. return 0;
  394. return security_ops->inode_create(dir, dentry, mode);
  395. }
  396. EXPORT_SYMBOL_GPL(security_inode_create);
  397. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  398. struct dentry *new_dentry)
  399. {
  400. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  401. return 0;
  402. return security_ops->inode_link(old_dentry, dir, new_dentry);
  403. }
  404. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  405. {
  406. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  407. return 0;
  408. return security_ops->inode_unlink(dir, dentry);
  409. }
  410. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  411. const char *old_name)
  412. {
  413. if (unlikely(IS_PRIVATE(dir)))
  414. return 0;
  415. return security_ops->inode_symlink(dir, dentry, old_name);
  416. }
  417. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  418. {
  419. if (unlikely(IS_PRIVATE(dir)))
  420. return 0;
  421. return security_ops->inode_mkdir(dir, dentry, mode);
  422. }
  423. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  424. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  425. {
  426. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  427. return 0;
  428. return security_ops->inode_rmdir(dir, dentry);
  429. }
  430. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  431. {
  432. if (unlikely(IS_PRIVATE(dir)))
  433. return 0;
  434. return security_ops->inode_mknod(dir, dentry, mode, dev);
  435. }
  436. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  437. struct inode *new_dir, struct dentry *new_dentry)
  438. {
  439. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  440. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  441. return 0;
  442. return security_ops->inode_rename(old_dir, old_dentry,
  443. new_dir, new_dentry);
  444. }
  445. int security_inode_readlink(struct dentry *dentry)
  446. {
  447. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  448. return 0;
  449. return security_ops->inode_readlink(dentry);
  450. }
  451. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  452. {
  453. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  454. return 0;
  455. return security_ops->inode_follow_link(dentry, nd);
  456. }
  457. int security_inode_permission(struct inode *inode, int mask)
  458. {
  459. if (unlikely(IS_PRIVATE(inode)))
  460. return 0;
  461. return security_ops->inode_permission(inode, mask);
  462. }
  463. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  464. {
  465. int ret;
  466. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  467. return 0;
  468. ret = security_ops->inode_setattr(dentry, attr);
  469. if (ret)
  470. return ret;
  471. return evm_inode_setattr(dentry, attr);
  472. }
  473. EXPORT_SYMBOL_GPL(security_inode_setattr);
  474. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  475. {
  476. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  477. return 0;
  478. return security_ops->inode_getattr(mnt, dentry);
  479. }
  480. int security_inode_setxattr(struct dentry *dentry, const char *name,
  481. const void *value, size_t size, int flags)
  482. {
  483. int ret;
  484. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  485. return 0;
  486. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  487. if (ret)
  488. return ret;
  489. return evm_inode_setxattr(dentry, name, value, size);
  490. }
  491. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  492. const void *value, size_t size, int flags)
  493. {
  494. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  495. return;
  496. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  497. evm_inode_post_setxattr(dentry, name, value, size);
  498. }
  499. int security_inode_getxattr(struct dentry *dentry, const char *name)
  500. {
  501. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  502. return 0;
  503. return security_ops->inode_getxattr(dentry, name);
  504. }
  505. int security_inode_listxattr(struct dentry *dentry)
  506. {
  507. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  508. return 0;
  509. return security_ops->inode_listxattr(dentry);
  510. }
  511. int security_inode_removexattr(struct dentry *dentry, const char *name)
  512. {
  513. int ret;
  514. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  515. return 0;
  516. ret = security_ops->inode_removexattr(dentry, name);
  517. if (ret)
  518. return ret;
  519. return evm_inode_removexattr(dentry, name);
  520. }
  521. int security_inode_need_killpriv(struct dentry *dentry)
  522. {
  523. return security_ops->inode_need_killpriv(dentry);
  524. }
  525. int security_inode_killpriv(struct dentry *dentry)
  526. {
  527. return security_ops->inode_killpriv(dentry);
  528. }
  529. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  530. {
  531. if (unlikely(IS_PRIVATE(inode)))
  532. return -EOPNOTSUPP;
  533. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  534. }
  535. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  536. {
  537. if (unlikely(IS_PRIVATE(inode)))
  538. return -EOPNOTSUPP;
  539. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  540. }
  541. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  542. {
  543. if (unlikely(IS_PRIVATE(inode)))
  544. return 0;
  545. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  546. }
  547. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  548. {
  549. security_ops->inode_getsecid(inode, secid);
  550. }
  551. int security_file_permission(struct file *file, int mask)
  552. {
  553. int ret;
  554. ret = security_ops->file_permission(file, mask);
  555. if (ret)
  556. return ret;
  557. return fsnotify_perm(file, mask);
  558. }
  559. int security_file_alloc(struct file *file)
  560. {
  561. return security_ops->file_alloc_security(file);
  562. }
  563. void security_file_free(struct file *file)
  564. {
  565. security_ops->file_free_security(file);
  566. }
  567. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  568. {
  569. return security_ops->file_ioctl(file, cmd, arg);
  570. }
  571. int security_file_mmap(struct file *file, unsigned long reqprot,
  572. unsigned long prot, unsigned long flags,
  573. unsigned long addr, unsigned long addr_only)
  574. {
  575. int ret;
  576. ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  577. if (ret)
  578. return ret;
  579. return ima_file_mmap(file, prot);
  580. }
  581. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  582. unsigned long prot)
  583. {
  584. return security_ops->file_mprotect(vma, reqprot, prot);
  585. }
  586. int security_file_lock(struct file *file, unsigned int cmd)
  587. {
  588. return security_ops->file_lock(file, cmd);
  589. }
  590. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  591. {
  592. return security_ops->file_fcntl(file, cmd, arg);
  593. }
  594. int security_file_set_fowner(struct file *file)
  595. {
  596. return security_ops->file_set_fowner(file);
  597. }
  598. int security_file_send_sigiotask(struct task_struct *tsk,
  599. struct fown_struct *fown, int sig)
  600. {
  601. return security_ops->file_send_sigiotask(tsk, fown, sig);
  602. }
  603. int security_file_receive(struct file *file)
  604. {
  605. return security_ops->file_receive(file);
  606. }
  607. int security_dentry_open(struct file *file, const struct cred *cred)
  608. {
  609. int ret;
  610. ret = security_ops->dentry_open(file, cred);
  611. if (ret)
  612. return ret;
  613. return fsnotify_perm(file, MAY_OPEN);
  614. }
  615. int security_task_create(unsigned long clone_flags)
  616. {
  617. return security_ops->task_create(clone_flags);
  618. }
  619. void security_task_free(struct task_struct *task)
  620. {
  621. security_ops->task_free(task);
  622. }
  623. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  624. {
  625. return security_ops->cred_alloc_blank(cred, gfp);
  626. }
  627. void security_cred_free(struct cred *cred)
  628. {
  629. security_ops->cred_free(cred);
  630. }
  631. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  632. {
  633. return security_ops->cred_prepare(new, old, gfp);
  634. }
  635. void security_transfer_creds(struct cred *new, const struct cred *old)
  636. {
  637. security_ops->cred_transfer(new, old);
  638. }
  639. int security_kernel_act_as(struct cred *new, u32 secid)
  640. {
  641. return security_ops->kernel_act_as(new, secid);
  642. }
  643. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  644. {
  645. return security_ops->kernel_create_files_as(new, inode);
  646. }
  647. int security_kernel_module_request(char *kmod_name)
  648. {
  649. return security_ops->kernel_module_request(kmod_name);
  650. }
  651. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  652. int flags)
  653. {
  654. return security_ops->task_fix_setuid(new, old, flags);
  655. }
  656. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  657. {
  658. return security_ops->task_setpgid(p, pgid);
  659. }
  660. int security_task_getpgid(struct task_struct *p)
  661. {
  662. return security_ops->task_getpgid(p);
  663. }
  664. int security_task_getsid(struct task_struct *p)
  665. {
  666. return security_ops->task_getsid(p);
  667. }
  668. void security_task_getsecid(struct task_struct *p, u32 *secid)
  669. {
  670. security_ops->task_getsecid(p, secid);
  671. }
  672. EXPORT_SYMBOL(security_task_getsecid);
  673. int security_task_setnice(struct task_struct *p, int nice)
  674. {
  675. return security_ops->task_setnice(p, nice);
  676. }
  677. int security_task_setioprio(struct task_struct *p, int ioprio)
  678. {
  679. return security_ops->task_setioprio(p, ioprio);
  680. }
  681. int security_task_getioprio(struct task_struct *p)
  682. {
  683. return security_ops->task_getioprio(p);
  684. }
  685. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  686. struct rlimit *new_rlim)
  687. {
  688. return security_ops->task_setrlimit(p, resource, new_rlim);
  689. }
  690. int security_task_setscheduler(struct task_struct *p)
  691. {
  692. return security_ops->task_setscheduler(p);
  693. }
  694. int security_task_getscheduler(struct task_struct *p)
  695. {
  696. return security_ops->task_getscheduler(p);
  697. }
  698. int security_task_movememory(struct task_struct *p)
  699. {
  700. return security_ops->task_movememory(p);
  701. }
  702. int security_task_kill(struct task_struct *p, struct siginfo *info,
  703. int sig, u32 secid)
  704. {
  705. return security_ops->task_kill(p, info, sig, secid);
  706. }
  707. int security_task_wait(struct task_struct *p)
  708. {
  709. return security_ops->task_wait(p);
  710. }
  711. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  712. unsigned long arg4, unsigned long arg5)
  713. {
  714. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  715. }
  716. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  717. {
  718. security_ops->task_to_inode(p, inode);
  719. }
  720. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  721. {
  722. return security_ops->ipc_permission(ipcp, flag);
  723. }
  724. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  725. {
  726. security_ops->ipc_getsecid(ipcp, secid);
  727. }
  728. int security_msg_msg_alloc(struct msg_msg *msg)
  729. {
  730. return security_ops->msg_msg_alloc_security(msg);
  731. }
  732. void security_msg_msg_free(struct msg_msg *msg)
  733. {
  734. security_ops->msg_msg_free_security(msg);
  735. }
  736. int security_msg_queue_alloc(struct msg_queue *msq)
  737. {
  738. return security_ops->msg_queue_alloc_security(msq);
  739. }
  740. void security_msg_queue_free(struct msg_queue *msq)
  741. {
  742. security_ops->msg_queue_free_security(msq);
  743. }
  744. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  745. {
  746. return security_ops->msg_queue_associate(msq, msqflg);
  747. }
  748. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  749. {
  750. return security_ops->msg_queue_msgctl(msq, cmd);
  751. }
  752. int security_msg_queue_msgsnd(struct msg_queue *msq,
  753. struct msg_msg *msg, int msqflg)
  754. {
  755. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  756. }
  757. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  758. struct task_struct *target, long type, int mode)
  759. {
  760. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  761. }
  762. int security_shm_alloc(struct shmid_kernel *shp)
  763. {
  764. return security_ops->shm_alloc_security(shp);
  765. }
  766. void security_shm_free(struct shmid_kernel *shp)
  767. {
  768. security_ops->shm_free_security(shp);
  769. }
  770. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  771. {
  772. return security_ops->shm_associate(shp, shmflg);
  773. }
  774. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  775. {
  776. return security_ops->shm_shmctl(shp, cmd);
  777. }
  778. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  779. {
  780. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  781. }
  782. int security_sem_alloc(struct sem_array *sma)
  783. {
  784. return security_ops->sem_alloc_security(sma);
  785. }
  786. void security_sem_free(struct sem_array *sma)
  787. {
  788. security_ops->sem_free_security(sma);
  789. }
  790. int security_sem_associate(struct sem_array *sma, int semflg)
  791. {
  792. return security_ops->sem_associate(sma, semflg);
  793. }
  794. int security_sem_semctl(struct sem_array *sma, int cmd)
  795. {
  796. return security_ops->sem_semctl(sma, cmd);
  797. }
  798. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  799. unsigned nsops, int alter)
  800. {
  801. return security_ops->sem_semop(sma, sops, nsops, alter);
  802. }
  803. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  804. {
  805. if (unlikely(inode && IS_PRIVATE(inode)))
  806. return;
  807. security_ops->d_instantiate(dentry, inode);
  808. }
  809. EXPORT_SYMBOL(security_d_instantiate);
  810. int security_getprocattr(struct task_struct *p, char *name, char **value)
  811. {
  812. return security_ops->getprocattr(p, name, value);
  813. }
  814. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  815. {
  816. return security_ops->setprocattr(p, name, value, size);
  817. }
  818. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  819. {
  820. return security_ops->netlink_send(sk, skb);
  821. }
  822. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  823. {
  824. return security_ops->secid_to_secctx(secid, secdata, seclen);
  825. }
  826. EXPORT_SYMBOL(security_secid_to_secctx);
  827. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  828. {
  829. return security_ops->secctx_to_secid(secdata, seclen, secid);
  830. }
  831. EXPORT_SYMBOL(security_secctx_to_secid);
  832. void security_release_secctx(char *secdata, u32 seclen)
  833. {
  834. security_ops->release_secctx(secdata, seclen);
  835. }
  836. EXPORT_SYMBOL(security_release_secctx);
  837. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  838. {
  839. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  840. }
  841. EXPORT_SYMBOL(security_inode_notifysecctx);
  842. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  843. {
  844. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  845. }
  846. EXPORT_SYMBOL(security_inode_setsecctx);
  847. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  848. {
  849. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  850. }
  851. EXPORT_SYMBOL(security_inode_getsecctx);
  852. #ifdef CONFIG_SECURITY_NETWORK
  853. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  854. {
  855. return security_ops->unix_stream_connect(sock, other, newsk);
  856. }
  857. EXPORT_SYMBOL(security_unix_stream_connect);
  858. int security_unix_may_send(struct socket *sock, struct socket *other)
  859. {
  860. return security_ops->unix_may_send(sock, other);
  861. }
  862. EXPORT_SYMBOL(security_unix_may_send);
  863. int security_socket_create(int family, int type, int protocol, int kern)
  864. {
  865. return security_ops->socket_create(family, type, protocol, kern);
  866. }
  867. int security_socket_post_create(struct socket *sock, int family,
  868. int type, int protocol, int kern)
  869. {
  870. return security_ops->socket_post_create(sock, family, type,
  871. protocol, kern);
  872. }
  873. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  874. {
  875. return security_ops->socket_bind(sock, address, addrlen);
  876. }
  877. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  878. {
  879. return security_ops->socket_connect(sock, address, addrlen);
  880. }
  881. int security_socket_listen(struct socket *sock, int backlog)
  882. {
  883. return security_ops->socket_listen(sock, backlog);
  884. }
  885. int security_socket_accept(struct socket *sock, struct socket *newsock)
  886. {
  887. return security_ops->socket_accept(sock, newsock);
  888. }
  889. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  890. {
  891. return security_ops->socket_sendmsg(sock, msg, size);
  892. }
  893. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  894. int size, int flags)
  895. {
  896. return security_ops->socket_recvmsg(sock, msg, size, flags);
  897. }
  898. int security_socket_getsockname(struct socket *sock)
  899. {
  900. return security_ops->socket_getsockname(sock);
  901. }
  902. int security_socket_getpeername(struct socket *sock)
  903. {
  904. return security_ops->socket_getpeername(sock);
  905. }
  906. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  907. {
  908. return security_ops->socket_getsockopt(sock, level, optname);
  909. }
  910. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  911. {
  912. return security_ops->socket_setsockopt(sock, level, optname);
  913. }
  914. int security_socket_shutdown(struct socket *sock, int how)
  915. {
  916. return security_ops->socket_shutdown(sock, how);
  917. }
  918. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  919. {
  920. return security_ops->socket_sock_rcv_skb(sk, skb);
  921. }
  922. EXPORT_SYMBOL(security_sock_rcv_skb);
  923. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  924. int __user *optlen, unsigned len)
  925. {
  926. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  927. }
  928. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  929. {
  930. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  931. }
  932. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  933. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  934. {
  935. return security_ops->sk_alloc_security(sk, family, priority);
  936. }
  937. void security_sk_free(struct sock *sk)
  938. {
  939. security_ops->sk_free_security(sk);
  940. }
  941. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  942. {
  943. security_ops->sk_clone_security(sk, newsk);
  944. }
  945. EXPORT_SYMBOL(security_sk_clone);
  946. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  947. {
  948. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  949. }
  950. EXPORT_SYMBOL(security_sk_classify_flow);
  951. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  952. {
  953. security_ops->req_classify_flow(req, fl);
  954. }
  955. EXPORT_SYMBOL(security_req_classify_flow);
  956. void security_sock_graft(struct sock *sk, struct socket *parent)
  957. {
  958. security_ops->sock_graft(sk, parent);
  959. }
  960. EXPORT_SYMBOL(security_sock_graft);
  961. int security_inet_conn_request(struct sock *sk,
  962. struct sk_buff *skb, struct request_sock *req)
  963. {
  964. return security_ops->inet_conn_request(sk, skb, req);
  965. }
  966. EXPORT_SYMBOL(security_inet_conn_request);
  967. void security_inet_csk_clone(struct sock *newsk,
  968. const struct request_sock *req)
  969. {
  970. security_ops->inet_csk_clone(newsk, req);
  971. }
  972. void security_inet_conn_established(struct sock *sk,
  973. struct sk_buff *skb)
  974. {
  975. security_ops->inet_conn_established(sk, skb);
  976. }
  977. int security_secmark_relabel_packet(u32 secid)
  978. {
  979. return security_ops->secmark_relabel_packet(secid);
  980. }
  981. EXPORT_SYMBOL(security_secmark_relabel_packet);
  982. void security_secmark_refcount_inc(void)
  983. {
  984. security_ops->secmark_refcount_inc();
  985. }
  986. EXPORT_SYMBOL(security_secmark_refcount_inc);
  987. void security_secmark_refcount_dec(void)
  988. {
  989. security_ops->secmark_refcount_dec();
  990. }
  991. EXPORT_SYMBOL(security_secmark_refcount_dec);
  992. int security_tun_dev_create(void)
  993. {
  994. return security_ops->tun_dev_create();
  995. }
  996. EXPORT_SYMBOL(security_tun_dev_create);
  997. void security_tun_dev_post_create(struct sock *sk)
  998. {
  999. return security_ops->tun_dev_post_create(sk);
  1000. }
  1001. EXPORT_SYMBOL(security_tun_dev_post_create);
  1002. int security_tun_dev_attach(struct sock *sk)
  1003. {
  1004. return security_ops->tun_dev_attach(sk);
  1005. }
  1006. EXPORT_SYMBOL(security_tun_dev_attach);
  1007. #endif /* CONFIG_SECURITY_NETWORK */
  1008. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1009. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1010. {
  1011. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1012. }
  1013. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1014. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1015. struct xfrm_sec_ctx **new_ctxp)
  1016. {
  1017. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1018. }
  1019. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1020. {
  1021. security_ops->xfrm_policy_free_security(ctx);
  1022. }
  1023. EXPORT_SYMBOL(security_xfrm_policy_free);
  1024. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1025. {
  1026. return security_ops->xfrm_policy_delete_security(ctx);
  1027. }
  1028. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1029. {
  1030. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1031. }
  1032. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1033. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1034. struct xfrm_sec_ctx *polsec, u32 secid)
  1035. {
  1036. if (!polsec)
  1037. return 0;
  1038. /*
  1039. * We want the context to be taken from secid which is usually
  1040. * from the sock.
  1041. */
  1042. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1043. }
  1044. int security_xfrm_state_delete(struct xfrm_state *x)
  1045. {
  1046. return security_ops->xfrm_state_delete_security(x);
  1047. }
  1048. EXPORT_SYMBOL(security_xfrm_state_delete);
  1049. void security_xfrm_state_free(struct xfrm_state *x)
  1050. {
  1051. security_ops->xfrm_state_free_security(x);
  1052. }
  1053. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1054. {
  1055. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1056. }
  1057. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1058. struct xfrm_policy *xp,
  1059. const struct flowi *fl)
  1060. {
  1061. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1062. }
  1063. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1064. {
  1065. return security_ops->xfrm_decode_session(skb, secid, 1);
  1066. }
  1067. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1068. {
  1069. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1070. BUG_ON(rc);
  1071. }
  1072. EXPORT_SYMBOL(security_skb_classify_flow);
  1073. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1074. #ifdef CONFIG_KEYS
  1075. int security_key_alloc(struct key *key, const struct cred *cred,
  1076. unsigned long flags)
  1077. {
  1078. return security_ops->key_alloc(key, cred, flags);
  1079. }
  1080. void security_key_free(struct key *key)
  1081. {
  1082. security_ops->key_free(key);
  1083. }
  1084. int security_key_permission(key_ref_t key_ref,
  1085. const struct cred *cred, key_perm_t perm)
  1086. {
  1087. return security_ops->key_permission(key_ref, cred, perm);
  1088. }
  1089. int security_key_getsecurity(struct key *key, char **_buffer)
  1090. {
  1091. return security_ops->key_getsecurity(key, _buffer);
  1092. }
  1093. #endif /* CONFIG_KEYS */
  1094. #ifdef CONFIG_AUDIT
  1095. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1096. {
  1097. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1098. }
  1099. int security_audit_rule_known(struct audit_krule *krule)
  1100. {
  1101. return security_ops->audit_rule_known(krule);
  1102. }
  1103. void security_audit_rule_free(void *lsmrule)
  1104. {
  1105. security_ops->audit_rule_free(lsmrule);
  1106. }
  1107. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1108. struct audit_context *actx)
  1109. {
  1110. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1111. }
  1112. #endif /* CONFIG_AUDIT */