intel_dp.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. int dpms_mode;
  48. uint8_t link_bw;
  49. uint8_t lane_count;
  50. uint8_t dpcd[4];
  51. struct i2c_adapter adapter;
  52. struct i2c_algo_dp_aux_data algo;
  53. bool is_pch_edp;
  54. uint8_t train_set[4];
  55. uint8_t link_status[DP_LINK_STATUS_SIZE];
  56. struct drm_property *force_audio_property;
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[0] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[1];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. if (is_edp(intel_dp))
  162. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  163. else
  164. return pixel_clock * 3;
  165. }
  166. static int
  167. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  168. {
  169. return (max_link_clock * max_lanes * 8) / 10;
  170. }
  171. static int
  172. intel_dp_mode_valid(struct drm_connector *connector,
  173. struct drm_display_mode *mode)
  174. {
  175. struct intel_dp *intel_dp = intel_attached_dp(connector);
  176. struct drm_device *dev = connector->dev;
  177. struct drm_i915_private *dev_priv = dev->dev_private;
  178. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  179. int max_lanes = intel_dp_max_lane_count(intel_dp);
  180. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  181. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  182. return MODE_PANEL;
  183. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  184. return MODE_PANEL;
  185. }
  186. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  187. which are outside spec tolerances but somehow work by magic */
  188. if (!is_edp(intel_dp) &&
  189. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  190. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  191. return MODE_CLOCK_HIGH;
  192. if (mode->clock < 10000)
  193. return MODE_CLOCK_LOW;
  194. return MODE_OK;
  195. }
  196. static uint32_t
  197. pack_aux(uint8_t *src, int src_bytes)
  198. {
  199. int i;
  200. uint32_t v = 0;
  201. if (src_bytes > 4)
  202. src_bytes = 4;
  203. for (i = 0; i < src_bytes; i++)
  204. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  205. return v;
  206. }
  207. static void
  208. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  209. {
  210. int i;
  211. if (dst_bytes > 4)
  212. dst_bytes = 4;
  213. for (i = 0; i < dst_bytes; i++)
  214. dst[i] = src >> ((3-i) * 8);
  215. }
  216. /* hrawclock is 1/4 the FSB frequency */
  217. static int
  218. intel_hrawclk(struct drm_device *dev)
  219. {
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. uint32_t clkcfg;
  222. clkcfg = I915_READ(CLKCFG);
  223. switch (clkcfg & CLKCFG_FSB_MASK) {
  224. case CLKCFG_FSB_400:
  225. return 100;
  226. case CLKCFG_FSB_533:
  227. return 133;
  228. case CLKCFG_FSB_667:
  229. return 166;
  230. case CLKCFG_FSB_800:
  231. return 200;
  232. case CLKCFG_FSB_1067:
  233. return 266;
  234. case CLKCFG_FSB_1333:
  235. return 333;
  236. /* these two are just a guess; one of them might be right */
  237. case CLKCFG_FSB_1600:
  238. case CLKCFG_FSB_1600_ALT:
  239. return 400;
  240. default:
  241. return 133;
  242. }
  243. }
  244. static int
  245. intel_dp_aux_ch(struct intel_dp *intel_dp,
  246. uint8_t *send, int send_bytes,
  247. uint8_t *recv, int recv_size)
  248. {
  249. uint32_t output_reg = intel_dp->output_reg;
  250. struct drm_device *dev = intel_dp->base.base.dev;
  251. struct drm_i915_private *dev_priv = dev->dev_private;
  252. uint32_t ch_ctl = output_reg + 0x10;
  253. uint32_t ch_data = ch_ctl + 4;
  254. int i;
  255. int recv_bytes;
  256. uint32_t status;
  257. uint32_t aux_clock_divider;
  258. int try, precharge;
  259. /* The clock divider is based off the hrawclk,
  260. * and would like to run at 2MHz. So, take the
  261. * hrawclk value and divide by 2 and use that
  262. *
  263. * Note that PCH attached eDP panels should use a 125MHz input
  264. * clock divider.
  265. */
  266. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  267. if (IS_GEN6(dev))
  268. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  269. else
  270. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  271. } else if (HAS_PCH_SPLIT(dev))
  272. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  273. else
  274. aux_clock_divider = intel_hrawclk(dev) / 2;
  275. if (IS_GEN6(dev))
  276. precharge = 3;
  277. else
  278. precharge = 5;
  279. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  280. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  281. I915_READ(ch_ctl));
  282. return -EBUSY;
  283. }
  284. /* Must try at least 3 times according to DP spec */
  285. for (try = 0; try < 5; try++) {
  286. /* Load the send data into the aux channel data registers */
  287. for (i = 0; i < send_bytes; i += 4)
  288. I915_WRITE(ch_data + i,
  289. pack_aux(send + i, send_bytes - i));
  290. /* Send the command and wait for it to complete */
  291. I915_WRITE(ch_ctl,
  292. DP_AUX_CH_CTL_SEND_BUSY |
  293. DP_AUX_CH_CTL_TIME_OUT_400us |
  294. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  295. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  296. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  297. DP_AUX_CH_CTL_DONE |
  298. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  299. DP_AUX_CH_CTL_RECEIVE_ERROR);
  300. for (;;) {
  301. status = I915_READ(ch_ctl);
  302. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  303. break;
  304. udelay(100);
  305. }
  306. /* Clear done status and any errors */
  307. I915_WRITE(ch_ctl,
  308. status |
  309. DP_AUX_CH_CTL_DONE |
  310. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  311. DP_AUX_CH_CTL_RECEIVE_ERROR);
  312. if (status & DP_AUX_CH_CTL_DONE)
  313. break;
  314. }
  315. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  316. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  317. return -EBUSY;
  318. }
  319. /* Check for timeout or receive error.
  320. * Timeouts occur when the sink is not connected
  321. */
  322. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  323. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  324. return -EIO;
  325. }
  326. /* Timeouts occur when the device isn't connected, so they're
  327. * "normal" -- don't fill the kernel log with these */
  328. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  329. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  330. return -ETIMEDOUT;
  331. }
  332. /* Unload any bytes sent back from the other side */
  333. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  334. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  335. if (recv_bytes > recv_size)
  336. recv_bytes = recv_size;
  337. for (i = 0; i < recv_bytes; i += 4)
  338. unpack_aux(I915_READ(ch_data + i),
  339. recv + i, recv_bytes - i);
  340. return recv_bytes;
  341. }
  342. /* Write data to the aux channel in native mode */
  343. static int
  344. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  345. uint16_t address, uint8_t *send, int send_bytes)
  346. {
  347. int ret;
  348. uint8_t msg[20];
  349. int msg_bytes;
  350. uint8_t ack;
  351. if (send_bytes > 16)
  352. return -1;
  353. msg[0] = AUX_NATIVE_WRITE << 4;
  354. msg[1] = address >> 8;
  355. msg[2] = address & 0xff;
  356. msg[3] = send_bytes - 1;
  357. memcpy(&msg[4], send, send_bytes);
  358. msg_bytes = send_bytes + 4;
  359. for (;;) {
  360. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  361. if (ret < 0)
  362. return ret;
  363. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  364. break;
  365. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  366. udelay(100);
  367. else
  368. return -EIO;
  369. }
  370. return send_bytes;
  371. }
  372. /* Write a single byte to the aux channel in native mode */
  373. static int
  374. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  375. uint16_t address, uint8_t byte)
  376. {
  377. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  378. }
  379. /* read bytes from a native aux channel */
  380. static int
  381. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  382. uint16_t address, uint8_t *recv, int recv_bytes)
  383. {
  384. uint8_t msg[4];
  385. int msg_bytes;
  386. uint8_t reply[20];
  387. int reply_bytes;
  388. uint8_t ack;
  389. int ret;
  390. msg[0] = AUX_NATIVE_READ << 4;
  391. msg[1] = address >> 8;
  392. msg[2] = address & 0xff;
  393. msg[3] = recv_bytes - 1;
  394. msg_bytes = 4;
  395. reply_bytes = recv_bytes + 1;
  396. for (;;) {
  397. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  398. reply, reply_bytes);
  399. if (ret == 0)
  400. return -EPROTO;
  401. if (ret < 0)
  402. return ret;
  403. ack = reply[0];
  404. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  405. memcpy(recv, reply + 1, ret - 1);
  406. return ret - 1;
  407. }
  408. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  409. udelay(100);
  410. else
  411. return -EIO;
  412. }
  413. }
  414. static int
  415. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  416. uint8_t write_byte, uint8_t *read_byte)
  417. {
  418. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  419. struct intel_dp *intel_dp = container_of(adapter,
  420. struct intel_dp,
  421. adapter);
  422. uint16_t address = algo_data->address;
  423. uint8_t msg[5];
  424. uint8_t reply[2];
  425. int msg_bytes;
  426. int reply_bytes;
  427. int ret;
  428. /* Set up the command byte */
  429. if (mode & MODE_I2C_READ)
  430. msg[0] = AUX_I2C_READ << 4;
  431. else
  432. msg[0] = AUX_I2C_WRITE << 4;
  433. if (!(mode & MODE_I2C_STOP))
  434. msg[0] |= AUX_I2C_MOT << 4;
  435. msg[1] = address >> 8;
  436. msg[2] = address;
  437. switch (mode) {
  438. case MODE_I2C_WRITE:
  439. msg[3] = 0;
  440. msg[4] = write_byte;
  441. msg_bytes = 5;
  442. reply_bytes = 1;
  443. break;
  444. case MODE_I2C_READ:
  445. msg[3] = 0;
  446. msg_bytes = 4;
  447. reply_bytes = 2;
  448. break;
  449. default:
  450. msg_bytes = 3;
  451. reply_bytes = 1;
  452. break;
  453. }
  454. for (;;) {
  455. ret = intel_dp_aux_ch(intel_dp,
  456. msg, msg_bytes,
  457. reply, reply_bytes);
  458. if (ret < 0) {
  459. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  460. return ret;
  461. }
  462. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  463. case AUX_I2C_REPLY_ACK:
  464. if (mode == MODE_I2C_READ) {
  465. *read_byte = reply[1];
  466. }
  467. return reply_bytes - 1;
  468. case AUX_I2C_REPLY_NACK:
  469. DRM_DEBUG_KMS("aux_ch nack\n");
  470. return -EREMOTEIO;
  471. case AUX_I2C_REPLY_DEFER:
  472. DRM_DEBUG_KMS("aux_ch defer\n");
  473. udelay(100);
  474. break;
  475. default:
  476. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  477. return -EREMOTEIO;
  478. }
  479. }
  480. }
  481. static int
  482. intel_dp_i2c_init(struct intel_dp *intel_dp,
  483. struct intel_connector *intel_connector, const char *name)
  484. {
  485. DRM_DEBUG_KMS("i2c_init %s\n", name);
  486. intel_dp->algo.running = false;
  487. intel_dp->algo.address = 0;
  488. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  489. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  490. intel_dp->adapter.owner = THIS_MODULE;
  491. intel_dp->adapter.class = I2C_CLASS_DDC;
  492. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  493. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  494. intel_dp->adapter.algo_data = &intel_dp->algo;
  495. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  496. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  497. }
  498. static bool
  499. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  500. struct drm_display_mode *adjusted_mode)
  501. {
  502. struct drm_device *dev = encoder->dev;
  503. struct drm_i915_private *dev_priv = dev->dev_private;
  504. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  505. int lane_count, clock;
  506. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  507. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  508. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  509. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  510. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  511. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  512. mode, adjusted_mode);
  513. /*
  514. * the mode->clock is used to calculate the Data&Link M/N
  515. * of the pipe. For the eDP the fixed clock should be used.
  516. */
  517. mode->clock = dev_priv->panel_fixed_mode->clock;
  518. }
  519. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  520. for (clock = 0; clock <= max_clock; clock++) {
  521. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  522. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  523. <= link_avail) {
  524. intel_dp->link_bw = bws[clock];
  525. intel_dp->lane_count = lane_count;
  526. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  527. DRM_DEBUG_KMS("Display port link bw %02x lane "
  528. "count %d clock %d\n",
  529. intel_dp->link_bw, intel_dp->lane_count,
  530. adjusted_mode->clock);
  531. return true;
  532. }
  533. }
  534. }
  535. if (is_edp(intel_dp)) {
  536. /* okay we failed just pick the highest */
  537. intel_dp->lane_count = max_lane_count;
  538. intel_dp->link_bw = bws[max_clock];
  539. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  540. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  541. "count %d clock %d\n",
  542. intel_dp->link_bw, intel_dp->lane_count,
  543. adjusted_mode->clock);
  544. return true;
  545. }
  546. return false;
  547. }
  548. struct intel_dp_m_n {
  549. uint32_t tu;
  550. uint32_t gmch_m;
  551. uint32_t gmch_n;
  552. uint32_t link_m;
  553. uint32_t link_n;
  554. };
  555. static void
  556. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  557. {
  558. while (*num > 0xffffff || *den > 0xffffff) {
  559. *num >>= 1;
  560. *den >>= 1;
  561. }
  562. }
  563. static void
  564. intel_dp_compute_m_n(int bpp,
  565. int nlanes,
  566. int pixel_clock,
  567. int link_clock,
  568. struct intel_dp_m_n *m_n)
  569. {
  570. m_n->tu = 64;
  571. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  572. m_n->gmch_n = link_clock * nlanes;
  573. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  574. m_n->link_m = pixel_clock;
  575. m_n->link_n = link_clock;
  576. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  577. }
  578. void
  579. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  580. struct drm_display_mode *adjusted_mode)
  581. {
  582. struct drm_device *dev = crtc->dev;
  583. struct drm_mode_config *mode_config = &dev->mode_config;
  584. struct drm_encoder *encoder;
  585. struct drm_i915_private *dev_priv = dev->dev_private;
  586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  587. int lane_count = 4, bpp = 24;
  588. struct intel_dp_m_n m_n;
  589. /*
  590. * Find the lane count in the intel_encoder private
  591. */
  592. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  593. struct intel_dp *intel_dp;
  594. if (encoder->crtc != crtc)
  595. continue;
  596. intel_dp = enc_to_intel_dp(encoder);
  597. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  598. lane_count = intel_dp->lane_count;
  599. break;
  600. } else if (is_edp(intel_dp)) {
  601. lane_count = dev_priv->edp.lanes;
  602. bpp = dev_priv->edp.bpp;
  603. break;
  604. }
  605. }
  606. /*
  607. * Compute the GMCH and Link ratios. The '3' here is
  608. * the number of bytes_per_pixel post-LUT, which we always
  609. * set up for 8-bits of R/G/B, or 3 bytes total.
  610. */
  611. intel_dp_compute_m_n(bpp, lane_count,
  612. mode->clock, adjusted_mode->clock, &m_n);
  613. if (HAS_PCH_SPLIT(dev)) {
  614. if (intel_crtc->pipe == 0) {
  615. I915_WRITE(TRANSA_DATA_M1,
  616. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  617. m_n.gmch_m);
  618. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  619. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  620. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  621. } else {
  622. I915_WRITE(TRANSB_DATA_M1,
  623. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  624. m_n.gmch_m);
  625. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  626. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  627. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  628. }
  629. } else {
  630. if (intel_crtc->pipe == 0) {
  631. I915_WRITE(PIPEA_GMCH_DATA_M,
  632. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  633. m_n.gmch_m);
  634. I915_WRITE(PIPEA_GMCH_DATA_N,
  635. m_n.gmch_n);
  636. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  637. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  638. } else {
  639. I915_WRITE(PIPEB_GMCH_DATA_M,
  640. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  641. m_n.gmch_m);
  642. I915_WRITE(PIPEB_GMCH_DATA_N,
  643. m_n.gmch_n);
  644. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  645. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  646. }
  647. }
  648. }
  649. static void
  650. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  651. struct drm_display_mode *adjusted_mode)
  652. {
  653. struct drm_device *dev = encoder->dev;
  654. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  655. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  657. intel_dp->DP = (DP_VOLTAGE_0_4 |
  658. DP_PRE_EMPHASIS_0);
  659. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  660. intel_dp->DP |= DP_SYNC_HS_HIGH;
  661. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  662. intel_dp->DP |= DP_SYNC_VS_HIGH;
  663. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  664. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  665. else
  666. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  667. switch (intel_dp->lane_count) {
  668. case 1:
  669. intel_dp->DP |= DP_PORT_WIDTH_1;
  670. break;
  671. case 2:
  672. intel_dp->DP |= DP_PORT_WIDTH_2;
  673. break;
  674. case 4:
  675. intel_dp->DP |= DP_PORT_WIDTH_4;
  676. break;
  677. }
  678. if (intel_dp->has_audio)
  679. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  680. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  681. intel_dp->link_configuration[0] = intel_dp->link_bw;
  682. intel_dp->link_configuration[1] = intel_dp->lane_count;
  683. /*
  684. * Check for DPCD version > 1.1 and enhanced framing support
  685. */
  686. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  687. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  688. intel_dp->DP |= DP_ENHANCED_FRAMING;
  689. }
  690. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  691. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  692. intel_dp->DP |= DP_PIPEB_SELECT;
  693. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  694. /* don't miss out required setting for eDP */
  695. intel_dp->DP |= DP_PLL_ENABLE;
  696. if (adjusted_mode->clock < 200000)
  697. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  698. else
  699. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  700. }
  701. }
  702. /* Returns true if the panel was already on when called */
  703. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  704. {
  705. struct drm_device *dev = intel_dp->base.base.dev;
  706. struct drm_i915_private *dev_priv = dev->dev_private;
  707. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  708. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  709. return true;
  710. pp = I915_READ(PCH_PP_CONTROL);
  711. /* ILK workaround: disable reset around power sequence */
  712. pp &= ~PANEL_POWER_RESET;
  713. I915_WRITE(PCH_PP_CONTROL, pp);
  714. POSTING_READ(PCH_PP_CONTROL);
  715. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  716. I915_WRITE(PCH_PP_CONTROL, pp);
  717. POSTING_READ(PCH_PP_CONTROL);
  718. /* Ouch. We need to wait here for some panels, like Dell e6510
  719. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  720. */
  721. msleep(300);
  722. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  723. 5000))
  724. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  725. I915_READ(PCH_PP_STATUS));
  726. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  727. I915_WRITE(PCH_PP_CONTROL, pp);
  728. POSTING_READ(PCH_PP_CONTROL);
  729. return false;
  730. }
  731. static void ironlake_edp_panel_off (struct drm_device *dev)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  735. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  736. pp = I915_READ(PCH_PP_CONTROL);
  737. /* ILK workaround: disable reset around power sequence */
  738. pp &= ~PANEL_POWER_RESET;
  739. I915_WRITE(PCH_PP_CONTROL, pp);
  740. POSTING_READ(PCH_PP_CONTROL);
  741. pp &= ~POWER_TARGET_ON;
  742. I915_WRITE(PCH_PP_CONTROL, pp);
  743. POSTING_READ(PCH_PP_CONTROL);
  744. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  745. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  746. I915_READ(PCH_PP_STATUS));
  747. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  748. I915_WRITE(PCH_PP_CONTROL, pp);
  749. POSTING_READ(PCH_PP_CONTROL);
  750. /* Ouch. We need to wait here for some panels, like Dell e6510
  751. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  752. */
  753. msleep(300);
  754. }
  755. static void ironlake_edp_backlight_on (struct drm_device *dev)
  756. {
  757. struct drm_i915_private *dev_priv = dev->dev_private;
  758. u32 pp;
  759. DRM_DEBUG_KMS("\n");
  760. /*
  761. * If we enable the backlight right away following a panel power
  762. * on, we may see slight flicker as the panel syncs with the eDP
  763. * link. So delay a bit to make sure the image is solid before
  764. * allowing it to appear.
  765. */
  766. msleep(300);
  767. pp = I915_READ(PCH_PP_CONTROL);
  768. pp |= EDP_BLC_ENABLE;
  769. I915_WRITE(PCH_PP_CONTROL, pp);
  770. }
  771. static void ironlake_edp_backlight_off (struct drm_device *dev)
  772. {
  773. struct drm_i915_private *dev_priv = dev->dev_private;
  774. u32 pp;
  775. DRM_DEBUG_KMS("\n");
  776. pp = I915_READ(PCH_PP_CONTROL);
  777. pp &= ~EDP_BLC_ENABLE;
  778. I915_WRITE(PCH_PP_CONTROL, pp);
  779. }
  780. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  781. {
  782. struct drm_device *dev = encoder->dev;
  783. struct drm_i915_private *dev_priv = dev->dev_private;
  784. u32 dpa_ctl;
  785. DRM_DEBUG_KMS("\n");
  786. dpa_ctl = I915_READ(DP_A);
  787. dpa_ctl |= DP_PLL_ENABLE;
  788. I915_WRITE(DP_A, dpa_ctl);
  789. POSTING_READ(DP_A);
  790. udelay(200);
  791. }
  792. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  793. {
  794. struct drm_device *dev = encoder->dev;
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. u32 dpa_ctl;
  797. dpa_ctl = I915_READ(DP_A);
  798. dpa_ctl &= ~DP_PLL_ENABLE;
  799. I915_WRITE(DP_A, dpa_ctl);
  800. POSTING_READ(DP_A);
  801. udelay(200);
  802. }
  803. static void intel_dp_prepare(struct drm_encoder *encoder)
  804. {
  805. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  806. struct drm_device *dev = encoder->dev;
  807. if (is_edp(intel_dp)) {
  808. ironlake_edp_backlight_off(dev);
  809. ironlake_edp_panel_on(intel_dp);
  810. if (!is_pch_edp(intel_dp))
  811. ironlake_edp_pll_on(encoder);
  812. else
  813. ironlake_edp_pll_off(encoder);
  814. }
  815. intel_dp_link_down(intel_dp);
  816. }
  817. static void intel_dp_commit(struct drm_encoder *encoder)
  818. {
  819. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  820. struct drm_device *dev = encoder->dev;
  821. intel_dp_start_link_train(intel_dp);
  822. if (is_edp(intel_dp))
  823. ironlake_edp_panel_on(intel_dp);
  824. intel_dp_complete_link_train(intel_dp);
  825. if (is_edp(intel_dp))
  826. ironlake_edp_backlight_on(dev);
  827. }
  828. static void
  829. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  830. {
  831. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  832. struct drm_device *dev = encoder->dev;
  833. struct drm_i915_private *dev_priv = dev->dev_private;
  834. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  835. if (mode != DRM_MODE_DPMS_ON) {
  836. if (is_edp(intel_dp))
  837. ironlake_edp_backlight_off(dev);
  838. intel_dp_link_down(intel_dp);
  839. if (is_edp(intel_dp))
  840. ironlake_edp_panel_off(dev);
  841. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  842. ironlake_edp_pll_off(encoder);
  843. } else {
  844. if (is_edp(intel_dp))
  845. ironlake_edp_panel_on(intel_dp);
  846. if (!(dp_reg & DP_PORT_EN)) {
  847. intel_dp_start_link_train(intel_dp);
  848. intel_dp_complete_link_train(intel_dp);
  849. }
  850. if (is_edp(intel_dp))
  851. ironlake_edp_backlight_on(dev);
  852. }
  853. intel_dp->dpms_mode = mode;
  854. }
  855. /*
  856. * Fetch AUX CH registers 0x202 - 0x207 which contain
  857. * link status information
  858. */
  859. static bool
  860. intel_dp_get_link_status(struct intel_dp *intel_dp)
  861. {
  862. int ret;
  863. ret = intel_dp_aux_native_read(intel_dp,
  864. DP_LANE0_1_STATUS,
  865. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  866. if (ret != DP_LINK_STATUS_SIZE)
  867. return false;
  868. return true;
  869. }
  870. static uint8_t
  871. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  872. int r)
  873. {
  874. return link_status[r - DP_LANE0_1_STATUS];
  875. }
  876. static uint8_t
  877. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  878. int lane)
  879. {
  880. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  881. int s = ((lane & 1) ?
  882. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  883. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  884. uint8_t l = intel_dp_link_status(link_status, i);
  885. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  886. }
  887. static uint8_t
  888. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  889. int lane)
  890. {
  891. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  892. int s = ((lane & 1) ?
  893. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  894. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  895. uint8_t l = intel_dp_link_status(link_status, i);
  896. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  897. }
  898. #if 0
  899. static char *voltage_names[] = {
  900. "0.4V", "0.6V", "0.8V", "1.2V"
  901. };
  902. static char *pre_emph_names[] = {
  903. "0dB", "3.5dB", "6dB", "9.5dB"
  904. };
  905. static char *link_train_names[] = {
  906. "pattern 1", "pattern 2", "idle", "off"
  907. };
  908. #endif
  909. /*
  910. * These are source-specific values; current Intel hardware supports
  911. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  912. */
  913. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  914. static uint8_t
  915. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  916. {
  917. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  918. case DP_TRAIN_VOLTAGE_SWING_400:
  919. return DP_TRAIN_PRE_EMPHASIS_6;
  920. case DP_TRAIN_VOLTAGE_SWING_600:
  921. return DP_TRAIN_PRE_EMPHASIS_6;
  922. case DP_TRAIN_VOLTAGE_SWING_800:
  923. return DP_TRAIN_PRE_EMPHASIS_3_5;
  924. case DP_TRAIN_VOLTAGE_SWING_1200:
  925. default:
  926. return DP_TRAIN_PRE_EMPHASIS_0;
  927. }
  928. }
  929. static void
  930. intel_get_adjust_train(struct intel_dp *intel_dp)
  931. {
  932. uint8_t v = 0;
  933. uint8_t p = 0;
  934. int lane;
  935. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  936. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  937. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  938. if (this_v > v)
  939. v = this_v;
  940. if (this_p > p)
  941. p = this_p;
  942. }
  943. if (v >= I830_DP_VOLTAGE_MAX)
  944. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  945. if (p >= intel_dp_pre_emphasis_max(v))
  946. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  947. for (lane = 0; lane < 4; lane++)
  948. intel_dp->train_set[lane] = v | p;
  949. }
  950. static uint32_t
  951. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  952. {
  953. uint32_t signal_levels = 0;
  954. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  955. case DP_TRAIN_VOLTAGE_SWING_400:
  956. default:
  957. signal_levels |= DP_VOLTAGE_0_4;
  958. break;
  959. case DP_TRAIN_VOLTAGE_SWING_600:
  960. signal_levels |= DP_VOLTAGE_0_6;
  961. break;
  962. case DP_TRAIN_VOLTAGE_SWING_800:
  963. signal_levels |= DP_VOLTAGE_0_8;
  964. break;
  965. case DP_TRAIN_VOLTAGE_SWING_1200:
  966. signal_levels |= DP_VOLTAGE_1_2;
  967. break;
  968. }
  969. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  970. case DP_TRAIN_PRE_EMPHASIS_0:
  971. default:
  972. signal_levels |= DP_PRE_EMPHASIS_0;
  973. break;
  974. case DP_TRAIN_PRE_EMPHASIS_3_5:
  975. signal_levels |= DP_PRE_EMPHASIS_3_5;
  976. break;
  977. case DP_TRAIN_PRE_EMPHASIS_6:
  978. signal_levels |= DP_PRE_EMPHASIS_6;
  979. break;
  980. case DP_TRAIN_PRE_EMPHASIS_9_5:
  981. signal_levels |= DP_PRE_EMPHASIS_9_5;
  982. break;
  983. }
  984. return signal_levels;
  985. }
  986. /* Gen6's DP voltage swing and pre-emphasis control */
  987. static uint32_t
  988. intel_gen6_edp_signal_levels(uint8_t train_set)
  989. {
  990. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  991. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  992. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  993. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  994. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  995. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  996. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  997. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  998. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  999. default:
  1000. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  1001. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  1002. }
  1003. }
  1004. static uint8_t
  1005. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1006. int lane)
  1007. {
  1008. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1009. int s = (lane & 1) * 4;
  1010. uint8_t l = intel_dp_link_status(link_status, i);
  1011. return (l >> s) & 0xf;
  1012. }
  1013. /* Check for clock recovery is done on all channels */
  1014. static bool
  1015. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1016. {
  1017. int lane;
  1018. uint8_t lane_status;
  1019. for (lane = 0; lane < lane_count; lane++) {
  1020. lane_status = intel_get_lane_status(link_status, lane);
  1021. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1022. return false;
  1023. }
  1024. return true;
  1025. }
  1026. /* Check to see if channel eq is done on all channels */
  1027. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1028. DP_LANE_CHANNEL_EQ_DONE|\
  1029. DP_LANE_SYMBOL_LOCKED)
  1030. static bool
  1031. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1032. {
  1033. uint8_t lane_align;
  1034. uint8_t lane_status;
  1035. int lane;
  1036. lane_align = intel_dp_link_status(intel_dp->link_status,
  1037. DP_LANE_ALIGN_STATUS_UPDATED);
  1038. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1039. return false;
  1040. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1041. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1042. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1043. return false;
  1044. }
  1045. return true;
  1046. }
  1047. static bool
  1048. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1049. uint32_t dp_reg_value,
  1050. uint8_t dp_train_pat)
  1051. {
  1052. struct drm_device *dev = intel_dp->base.base.dev;
  1053. struct drm_i915_private *dev_priv = dev->dev_private;
  1054. int ret;
  1055. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1056. POSTING_READ(intel_dp->output_reg);
  1057. intel_dp_aux_native_write_1(intel_dp,
  1058. DP_TRAINING_PATTERN_SET,
  1059. dp_train_pat);
  1060. ret = intel_dp_aux_native_write(intel_dp,
  1061. DP_TRAINING_LANE0_SET,
  1062. intel_dp->train_set, 4);
  1063. if (ret != 4)
  1064. return false;
  1065. return true;
  1066. }
  1067. /* Enable corresponding port and start training pattern 1 */
  1068. static void
  1069. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1070. {
  1071. struct drm_device *dev = intel_dp->base.base.dev;
  1072. struct drm_i915_private *dev_priv = dev->dev_private;
  1073. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1074. int i;
  1075. uint8_t voltage;
  1076. bool clock_recovery = false;
  1077. int tries;
  1078. u32 reg;
  1079. uint32_t DP = intel_dp->DP;
  1080. /* Enable output, wait for it to become active */
  1081. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1082. POSTING_READ(intel_dp->output_reg);
  1083. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1084. /* Write the link configuration data */
  1085. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1086. intel_dp->link_configuration,
  1087. DP_LINK_CONFIGURATION_SIZE);
  1088. DP |= DP_PORT_EN;
  1089. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1090. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1091. else
  1092. DP &= ~DP_LINK_TRAIN_MASK;
  1093. memset(intel_dp->train_set, 0, 4);
  1094. voltage = 0xff;
  1095. tries = 0;
  1096. clock_recovery = false;
  1097. for (;;) {
  1098. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1099. uint32_t signal_levels;
  1100. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1101. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1102. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1103. } else {
  1104. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1105. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1106. }
  1107. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1108. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1109. else
  1110. reg = DP | DP_LINK_TRAIN_PAT_1;
  1111. if (!intel_dp_set_link_train(intel_dp, reg,
  1112. DP_TRAINING_PATTERN_1))
  1113. break;
  1114. /* Set training pattern 1 */
  1115. udelay(100);
  1116. if (!intel_dp_get_link_status(intel_dp))
  1117. break;
  1118. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1119. clock_recovery = true;
  1120. break;
  1121. }
  1122. /* Check to see if we've tried the max voltage */
  1123. for (i = 0; i < intel_dp->lane_count; i++)
  1124. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1125. break;
  1126. if (i == intel_dp->lane_count)
  1127. break;
  1128. /* Check to see if we've tried the same voltage 5 times */
  1129. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1130. ++tries;
  1131. if (tries == 5)
  1132. break;
  1133. } else
  1134. tries = 0;
  1135. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1136. /* Compute new intel_dp->train_set as requested by target */
  1137. intel_get_adjust_train(intel_dp);
  1138. }
  1139. intel_dp->DP = DP;
  1140. }
  1141. static void
  1142. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1143. {
  1144. struct drm_device *dev = intel_dp->base.base.dev;
  1145. struct drm_i915_private *dev_priv = dev->dev_private;
  1146. bool channel_eq = false;
  1147. int tries;
  1148. u32 reg;
  1149. uint32_t DP = intel_dp->DP;
  1150. /* channel equalization */
  1151. tries = 0;
  1152. channel_eq = false;
  1153. for (;;) {
  1154. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1155. uint32_t signal_levels;
  1156. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1157. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1158. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1159. } else {
  1160. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1161. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1162. }
  1163. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1164. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1165. else
  1166. reg = DP | DP_LINK_TRAIN_PAT_2;
  1167. /* channel eq pattern */
  1168. if (!intel_dp_set_link_train(intel_dp, reg,
  1169. DP_TRAINING_PATTERN_2))
  1170. break;
  1171. udelay(400);
  1172. if (!intel_dp_get_link_status(intel_dp))
  1173. break;
  1174. if (intel_channel_eq_ok(intel_dp)) {
  1175. channel_eq = true;
  1176. break;
  1177. }
  1178. /* Try 5 times */
  1179. if (tries > 5)
  1180. break;
  1181. /* Compute new intel_dp->train_set as requested by target */
  1182. intel_get_adjust_train(intel_dp);
  1183. ++tries;
  1184. }
  1185. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1186. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1187. else
  1188. reg = DP | DP_LINK_TRAIN_OFF;
  1189. I915_WRITE(intel_dp->output_reg, reg);
  1190. POSTING_READ(intel_dp->output_reg);
  1191. intel_dp_aux_native_write_1(intel_dp,
  1192. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1193. }
  1194. static void
  1195. intel_dp_link_down(struct intel_dp *intel_dp)
  1196. {
  1197. struct drm_device *dev = intel_dp->base.base.dev;
  1198. struct drm_i915_private *dev_priv = dev->dev_private;
  1199. uint32_t DP = intel_dp->DP;
  1200. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1201. return;
  1202. DRM_DEBUG_KMS("\n");
  1203. if (is_edp(intel_dp)) {
  1204. DP &= ~DP_PLL_ENABLE;
  1205. I915_WRITE(intel_dp->output_reg, DP);
  1206. POSTING_READ(intel_dp->output_reg);
  1207. udelay(100);
  1208. }
  1209. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1210. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1211. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1212. } else {
  1213. DP &= ~DP_LINK_TRAIN_MASK;
  1214. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1215. }
  1216. POSTING_READ(intel_dp->output_reg);
  1217. msleep(17);
  1218. if (is_edp(intel_dp))
  1219. DP |= DP_LINK_TRAIN_OFF;
  1220. if (!HAS_PCH_CPT(dev) &&
  1221. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1222. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1223. /* Hardware workaround: leaving our transcoder select
  1224. * set to transcoder B while it's off will prevent the
  1225. * corresponding HDMI output on transcoder A.
  1226. *
  1227. * Combine this with another hardware workaround:
  1228. * transcoder select bit can only be cleared while the
  1229. * port is enabled.
  1230. */
  1231. DP &= ~DP_PIPEB_SELECT;
  1232. I915_WRITE(intel_dp->output_reg, DP);
  1233. /* Changes to enable or select take place the vblank
  1234. * after being written.
  1235. */
  1236. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1237. }
  1238. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1239. POSTING_READ(intel_dp->output_reg);
  1240. }
  1241. /*
  1242. * According to DP spec
  1243. * 5.1.2:
  1244. * 1. Read DPCD
  1245. * 2. Configure link according to Receiver Capabilities
  1246. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1247. * 4. Check link status on receipt of hot-plug interrupt
  1248. */
  1249. static void
  1250. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1251. {
  1252. if (!intel_dp->base.base.crtc)
  1253. return;
  1254. if (!intel_dp_get_link_status(intel_dp)) {
  1255. intel_dp_link_down(intel_dp);
  1256. return;
  1257. }
  1258. if (!intel_channel_eq_ok(intel_dp)) {
  1259. intel_dp_start_link_train(intel_dp);
  1260. intel_dp_complete_link_train(intel_dp);
  1261. }
  1262. }
  1263. static enum drm_connector_status
  1264. ironlake_dp_detect(struct intel_dp *intel_dp)
  1265. {
  1266. enum drm_connector_status status;
  1267. /* Can't disconnect eDP */
  1268. if (is_edp(intel_dp))
  1269. return connector_status_connected;
  1270. status = connector_status_disconnected;
  1271. if (intel_dp_aux_native_read(intel_dp,
  1272. 0x000, intel_dp->dpcd,
  1273. sizeof (intel_dp->dpcd))
  1274. == sizeof(intel_dp->dpcd)) {
  1275. if (intel_dp->dpcd[0] != 0)
  1276. status = connector_status_connected;
  1277. }
  1278. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1279. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1280. return status;
  1281. }
  1282. static enum drm_connector_status
  1283. g4x_dp_detect(struct intel_dp *intel_dp)
  1284. {
  1285. struct drm_device *dev = intel_dp->base.base.dev;
  1286. struct drm_i915_private *dev_priv = dev->dev_private;
  1287. enum drm_connector_status status;
  1288. uint32_t temp, bit;
  1289. switch (intel_dp->output_reg) {
  1290. case DP_B:
  1291. bit = DPB_HOTPLUG_INT_STATUS;
  1292. break;
  1293. case DP_C:
  1294. bit = DPC_HOTPLUG_INT_STATUS;
  1295. break;
  1296. case DP_D:
  1297. bit = DPD_HOTPLUG_INT_STATUS;
  1298. break;
  1299. default:
  1300. return connector_status_unknown;
  1301. }
  1302. temp = I915_READ(PORT_HOTPLUG_STAT);
  1303. if ((temp & bit) == 0)
  1304. return connector_status_disconnected;
  1305. status = connector_status_disconnected;
  1306. if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
  1307. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1308. {
  1309. if (intel_dp->dpcd[0] != 0)
  1310. status = connector_status_connected;
  1311. }
  1312. return status;
  1313. }
  1314. /**
  1315. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1316. *
  1317. * \return true if DP port is connected.
  1318. * \return false if DP port is disconnected.
  1319. */
  1320. static enum drm_connector_status
  1321. intel_dp_detect(struct drm_connector *connector, bool force)
  1322. {
  1323. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1324. struct drm_device *dev = intel_dp->base.base.dev;
  1325. enum drm_connector_status status;
  1326. struct edid *edid = NULL;
  1327. intel_dp->has_audio = false;
  1328. if (HAS_PCH_SPLIT(dev))
  1329. status = ironlake_dp_detect(intel_dp);
  1330. else
  1331. status = g4x_dp_detect(intel_dp);
  1332. if (status != connector_status_connected)
  1333. return status;
  1334. if (intel_dp->force_audio) {
  1335. intel_dp->has_audio = intel_dp->force_audio > 0;
  1336. } else {
  1337. edid = drm_get_edid(connector, &intel_dp->adapter);
  1338. if (edid) {
  1339. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1340. connector->display_info.raw_edid = NULL;
  1341. kfree(edid);
  1342. }
  1343. }
  1344. return connector_status_connected;
  1345. }
  1346. static int intel_dp_get_modes(struct drm_connector *connector)
  1347. {
  1348. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1349. struct drm_device *dev = intel_dp->base.base.dev;
  1350. struct drm_i915_private *dev_priv = dev->dev_private;
  1351. int ret;
  1352. /* We should parse the EDID data and find out if it has an audio sink
  1353. */
  1354. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1355. if (ret) {
  1356. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1357. struct drm_display_mode *newmode;
  1358. list_for_each_entry(newmode, &connector->probed_modes,
  1359. head) {
  1360. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1361. dev_priv->panel_fixed_mode =
  1362. drm_mode_duplicate(dev, newmode);
  1363. break;
  1364. }
  1365. }
  1366. }
  1367. return ret;
  1368. }
  1369. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1370. if (is_edp(intel_dp)) {
  1371. if (dev_priv->panel_fixed_mode != NULL) {
  1372. struct drm_display_mode *mode;
  1373. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1374. drm_mode_probed_add(connector, mode);
  1375. return 1;
  1376. }
  1377. }
  1378. return 0;
  1379. }
  1380. static int
  1381. intel_dp_set_property(struct drm_connector *connector,
  1382. struct drm_property *property,
  1383. uint64_t val)
  1384. {
  1385. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1386. int ret;
  1387. ret = drm_connector_property_set_value(connector, property, val);
  1388. if (ret)
  1389. return ret;
  1390. if (property == intel_dp->force_audio_property) {
  1391. if (val == intel_dp->force_audio)
  1392. return 0;
  1393. intel_dp->force_audio = val;
  1394. if (val > 0 && intel_dp->has_audio)
  1395. return 0;
  1396. if (val < 0 && !intel_dp->has_audio)
  1397. return 0;
  1398. intel_dp->has_audio = val > 0;
  1399. goto done;
  1400. }
  1401. return -EINVAL;
  1402. done:
  1403. if (intel_dp->base.base.crtc) {
  1404. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1405. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1406. crtc->x, crtc->y,
  1407. crtc->fb);
  1408. }
  1409. return 0;
  1410. }
  1411. static void
  1412. intel_dp_destroy (struct drm_connector *connector)
  1413. {
  1414. drm_sysfs_connector_remove(connector);
  1415. drm_connector_cleanup(connector);
  1416. kfree(connector);
  1417. }
  1418. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1419. {
  1420. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1421. i2c_del_adapter(&intel_dp->adapter);
  1422. drm_encoder_cleanup(encoder);
  1423. kfree(intel_dp);
  1424. }
  1425. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1426. .dpms = intel_dp_dpms,
  1427. .mode_fixup = intel_dp_mode_fixup,
  1428. .prepare = intel_dp_prepare,
  1429. .mode_set = intel_dp_mode_set,
  1430. .commit = intel_dp_commit,
  1431. };
  1432. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1433. .dpms = drm_helper_connector_dpms,
  1434. .detect = intel_dp_detect,
  1435. .fill_modes = drm_helper_probe_single_connector_modes,
  1436. .set_property = intel_dp_set_property,
  1437. .destroy = intel_dp_destroy,
  1438. };
  1439. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1440. .get_modes = intel_dp_get_modes,
  1441. .mode_valid = intel_dp_mode_valid,
  1442. .best_encoder = intel_best_encoder,
  1443. };
  1444. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1445. .destroy = intel_dp_encoder_destroy,
  1446. };
  1447. static void
  1448. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1449. {
  1450. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1451. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1452. intel_dp_check_link_status(intel_dp);
  1453. }
  1454. /* Return which DP Port should be selected for Transcoder DP control */
  1455. int
  1456. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1457. {
  1458. struct drm_device *dev = crtc->dev;
  1459. struct drm_mode_config *mode_config = &dev->mode_config;
  1460. struct drm_encoder *encoder;
  1461. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1462. struct intel_dp *intel_dp;
  1463. if (encoder->crtc != crtc)
  1464. continue;
  1465. intel_dp = enc_to_intel_dp(encoder);
  1466. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1467. return intel_dp->output_reg;
  1468. }
  1469. return -1;
  1470. }
  1471. /* check the VBT to see whether the eDP is on DP-D port */
  1472. bool intel_dpd_is_edp(struct drm_device *dev)
  1473. {
  1474. struct drm_i915_private *dev_priv = dev->dev_private;
  1475. struct child_device_config *p_child;
  1476. int i;
  1477. if (!dev_priv->child_dev_num)
  1478. return false;
  1479. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1480. p_child = dev_priv->child_dev + i;
  1481. if (p_child->dvo_port == PORT_IDPD &&
  1482. p_child->device_type == DEVICE_TYPE_eDP)
  1483. return true;
  1484. }
  1485. return false;
  1486. }
  1487. static void
  1488. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1489. {
  1490. struct drm_device *dev = connector->dev;
  1491. intel_dp->force_audio_property =
  1492. drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
  1493. if (intel_dp->force_audio_property) {
  1494. intel_dp->force_audio_property->values[0] = -1;
  1495. intel_dp->force_audio_property->values[1] = 1;
  1496. drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
  1497. }
  1498. }
  1499. void
  1500. intel_dp_init(struct drm_device *dev, int output_reg)
  1501. {
  1502. struct drm_i915_private *dev_priv = dev->dev_private;
  1503. struct drm_connector *connector;
  1504. struct intel_dp *intel_dp;
  1505. struct intel_encoder *intel_encoder;
  1506. struct intel_connector *intel_connector;
  1507. const char *name = NULL;
  1508. int type;
  1509. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1510. if (!intel_dp)
  1511. return;
  1512. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1513. if (!intel_connector) {
  1514. kfree(intel_dp);
  1515. return;
  1516. }
  1517. intel_encoder = &intel_dp->base;
  1518. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1519. if (intel_dpd_is_edp(dev))
  1520. intel_dp->is_pch_edp = true;
  1521. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1522. type = DRM_MODE_CONNECTOR_eDP;
  1523. intel_encoder->type = INTEL_OUTPUT_EDP;
  1524. } else {
  1525. type = DRM_MODE_CONNECTOR_DisplayPort;
  1526. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1527. }
  1528. connector = &intel_connector->base;
  1529. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1530. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1531. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1532. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1533. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1534. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1535. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1536. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1537. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1538. if (is_edp(intel_dp))
  1539. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1540. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1541. connector->interlace_allowed = true;
  1542. connector->doublescan_allowed = 0;
  1543. intel_dp->output_reg = output_reg;
  1544. intel_dp->has_audio = false;
  1545. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1546. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1547. DRM_MODE_ENCODER_TMDS);
  1548. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1549. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1550. drm_sysfs_connector_add(connector);
  1551. /* Set up the DDC bus. */
  1552. switch (output_reg) {
  1553. case DP_A:
  1554. name = "DPDDC-A";
  1555. break;
  1556. case DP_B:
  1557. case PCH_DP_B:
  1558. dev_priv->hotplug_supported_mask |=
  1559. HDMIB_HOTPLUG_INT_STATUS;
  1560. name = "DPDDC-B";
  1561. break;
  1562. case DP_C:
  1563. case PCH_DP_C:
  1564. dev_priv->hotplug_supported_mask |=
  1565. HDMIC_HOTPLUG_INT_STATUS;
  1566. name = "DPDDC-C";
  1567. break;
  1568. case DP_D:
  1569. case PCH_DP_D:
  1570. dev_priv->hotplug_supported_mask |=
  1571. HDMID_HOTPLUG_INT_STATUS;
  1572. name = "DPDDC-D";
  1573. break;
  1574. }
  1575. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1576. /* Cache some DPCD data in the eDP case */
  1577. if (is_edp(intel_dp)) {
  1578. int ret;
  1579. bool was_on;
  1580. was_on = ironlake_edp_panel_on(intel_dp);
  1581. ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
  1582. intel_dp->dpcd,
  1583. sizeof(intel_dp->dpcd));
  1584. if (ret == sizeof(intel_dp->dpcd)) {
  1585. if (intel_dp->dpcd[0] >= 0x11)
  1586. dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
  1587. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1588. } else {
  1589. DRM_ERROR("failed to retrieve link info\n");
  1590. }
  1591. if (!was_on)
  1592. ironlake_edp_panel_off(dev);
  1593. }
  1594. intel_encoder->hot_plug = intel_dp_hot_plug;
  1595. if (is_edp(intel_dp)) {
  1596. /* initialize panel mode from VBT if available for eDP */
  1597. if (dev_priv->lfp_lvds_vbt_mode) {
  1598. dev_priv->panel_fixed_mode =
  1599. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1600. if (dev_priv->panel_fixed_mode) {
  1601. dev_priv->panel_fixed_mode->type |=
  1602. DRM_MODE_TYPE_PREFERRED;
  1603. }
  1604. }
  1605. }
  1606. intel_dp_add_properties(intel_dp, connector);
  1607. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1608. * 0xd. Failure to do so will result in spurious interrupts being
  1609. * generated on the port when a cable is not attached.
  1610. */
  1611. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1612. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1613. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1614. }
  1615. }