af_rose.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License as published by
  4. * the Free Software Foundation; either version 2 of the License, or
  5. * (at your option) any later version.
  6. *
  7. * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
  8. * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
  9. * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
  10. * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
  11. */
  12. #include <linux/capability.h>
  13. #include <linux/module.h>
  14. #include <linux/moduleparam.h>
  15. #include <linux/init.h>
  16. #include <linux/errno.h>
  17. #include <linux/types.h>
  18. #include <linux/socket.h>
  19. #include <linux/in.h>
  20. #include <linux/slab.h>
  21. #include <linux/kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/timer.h>
  25. #include <linux/string.h>
  26. #include <linux/sockios.h>
  27. #include <linux/net.h>
  28. #include <linux/stat.h>
  29. #include <net/net_namespace.h>
  30. #include <net/ax25.h>
  31. #include <linux/inet.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/if_arp.h>
  34. #include <linux/skbuff.h>
  35. #include <net/sock.h>
  36. #include <asm/uaccess.h>
  37. #include <linux/fcntl.h>
  38. #include <linux/termios.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/notifier.h>
  42. #include <net/rose.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <net/tcp_states.h>
  46. #include <net/ip.h>
  47. #include <net/arp.h>
  48. static int rose_ndevs = 10;
  49. int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
  50. int sysctl_rose_call_request_timeout = ROSE_DEFAULT_T1;
  51. int sysctl_rose_reset_request_timeout = ROSE_DEFAULT_T2;
  52. int sysctl_rose_clear_request_timeout = ROSE_DEFAULT_T3;
  53. int sysctl_rose_no_activity_timeout = ROSE_DEFAULT_IDLE;
  54. int sysctl_rose_ack_hold_back_timeout = ROSE_DEFAULT_HB;
  55. int sysctl_rose_routing_control = ROSE_DEFAULT_ROUTING;
  56. int sysctl_rose_link_fail_timeout = ROSE_DEFAULT_FAIL_TIMEOUT;
  57. int sysctl_rose_maximum_vcs = ROSE_DEFAULT_MAXVC;
  58. int sysctl_rose_window_size = ROSE_DEFAULT_WINDOW_SIZE;
  59. static HLIST_HEAD(rose_list);
  60. static DEFINE_SPINLOCK(rose_list_lock);
  61. static const struct proto_ops rose_proto_ops;
  62. ax25_address rose_callsign;
  63. /*
  64. * ROSE network devices are virtual network devices encapsulating ROSE
  65. * frames into AX.25 which will be sent through an AX.25 device, so form a
  66. * special "super class" of normal net devices; split their locks off into a
  67. * separate class since they always nest.
  68. */
  69. static struct lock_class_key rose_netdev_xmit_lock_key;
  70. static struct lock_class_key rose_netdev_addr_lock_key;
  71. static void rose_set_lockdep_one(struct net_device *dev,
  72. struct netdev_queue *txq,
  73. void *_unused)
  74. {
  75. lockdep_set_class(&txq->_xmit_lock, &rose_netdev_xmit_lock_key);
  76. }
  77. static void rose_set_lockdep_key(struct net_device *dev)
  78. {
  79. lockdep_set_class(&dev->addr_list_lock, &rose_netdev_addr_lock_key);
  80. netdev_for_each_tx_queue(dev, rose_set_lockdep_one, NULL);
  81. }
  82. /*
  83. * Convert a ROSE address into text.
  84. */
  85. char *rose2asc(char *buf, const rose_address *addr)
  86. {
  87. if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
  88. addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
  89. addr->rose_addr[4] == 0x00) {
  90. strcpy(buf, "*");
  91. } else {
  92. sprintf(buf, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
  93. addr->rose_addr[1] & 0xFF,
  94. addr->rose_addr[2] & 0xFF,
  95. addr->rose_addr[3] & 0xFF,
  96. addr->rose_addr[4] & 0xFF);
  97. }
  98. return buf;
  99. }
  100. /*
  101. * Compare two ROSE addresses, 0 == equal.
  102. */
  103. int rosecmp(rose_address *addr1, rose_address *addr2)
  104. {
  105. int i;
  106. for (i = 0; i < 5; i++)
  107. if (addr1->rose_addr[i] != addr2->rose_addr[i])
  108. return 1;
  109. return 0;
  110. }
  111. /*
  112. * Compare two ROSE addresses for only mask digits, 0 == equal.
  113. */
  114. int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
  115. {
  116. unsigned int i, j;
  117. if (mask > 10)
  118. return 1;
  119. for (i = 0; i < mask; i++) {
  120. j = i / 2;
  121. if ((i % 2) != 0) {
  122. if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
  123. return 1;
  124. } else {
  125. if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
  126. return 1;
  127. }
  128. }
  129. return 0;
  130. }
  131. /*
  132. * Socket removal during an interrupt is now safe.
  133. */
  134. static void rose_remove_socket(struct sock *sk)
  135. {
  136. spin_lock_bh(&rose_list_lock);
  137. sk_del_node_init(sk);
  138. spin_unlock_bh(&rose_list_lock);
  139. }
  140. /*
  141. * Kill all bound sockets on a broken link layer connection to a
  142. * particular neighbour.
  143. */
  144. void rose_kill_by_neigh(struct rose_neigh *neigh)
  145. {
  146. struct sock *s;
  147. spin_lock_bh(&rose_list_lock);
  148. sk_for_each(s, &rose_list) {
  149. struct rose_sock *rose = rose_sk(s);
  150. if (rose->neighbour == neigh) {
  151. rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
  152. rose->neighbour->use--;
  153. rose->neighbour = NULL;
  154. }
  155. }
  156. spin_unlock_bh(&rose_list_lock);
  157. }
  158. /*
  159. * Kill all bound sockets on a dropped device.
  160. */
  161. static void rose_kill_by_device(struct net_device *dev)
  162. {
  163. struct sock *s;
  164. spin_lock_bh(&rose_list_lock);
  165. sk_for_each(s, &rose_list) {
  166. struct rose_sock *rose = rose_sk(s);
  167. if (rose->device == dev) {
  168. rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
  169. rose->neighbour->use--;
  170. rose->device = NULL;
  171. }
  172. }
  173. spin_unlock_bh(&rose_list_lock);
  174. }
  175. /*
  176. * Handle device status changes.
  177. */
  178. static int rose_device_event(struct notifier_block *this, unsigned long event,
  179. void *ptr)
  180. {
  181. struct net_device *dev = (struct net_device *)ptr;
  182. if (!net_eq(dev_net(dev), &init_net))
  183. return NOTIFY_DONE;
  184. if (event != NETDEV_DOWN)
  185. return NOTIFY_DONE;
  186. switch (dev->type) {
  187. case ARPHRD_ROSE:
  188. rose_kill_by_device(dev);
  189. break;
  190. case ARPHRD_AX25:
  191. rose_link_device_down(dev);
  192. rose_rt_device_down(dev);
  193. break;
  194. }
  195. return NOTIFY_DONE;
  196. }
  197. /*
  198. * Add a socket to the bound sockets list.
  199. */
  200. static void rose_insert_socket(struct sock *sk)
  201. {
  202. spin_lock_bh(&rose_list_lock);
  203. sk_add_node(sk, &rose_list);
  204. spin_unlock_bh(&rose_list_lock);
  205. }
  206. /*
  207. * Find a socket that wants to accept the Call Request we just
  208. * received.
  209. */
  210. static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
  211. {
  212. struct sock *s;
  213. spin_lock_bh(&rose_list_lock);
  214. sk_for_each(s, &rose_list) {
  215. struct rose_sock *rose = rose_sk(s);
  216. if (!rosecmp(&rose->source_addr, addr) &&
  217. !ax25cmp(&rose->source_call, call) &&
  218. !rose->source_ndigis && s->sk_state == TCP_LISTEN)
  219. goto found;
  220. }
  221. sk_for_each(s, &rose_list) {
  222. struct rose_sock *rose = rose_sk(s);
  223. if (!rosecmp(&rose->source_addr, addr) &&
  224. !ax25cmp(&rose->source_call, &null_ax25_address) &&
  225. s->sk_state == TCP_LISTEN)
  226. goto found;
  227. }
  228. s = NULL;
  229. found:
  230. spin_unlock_bh(&rose_list_lock);
  231. return s;
  232. }
  233. /*
  234. * Find a connected ROSE socket given my LCI and device.
  235. */
  236. struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
  237. {
  238. struct sock *s;
  239. spin_lock_bh(&rose_list_lock);
  240. sk_for_each(s, &rose_list) {
  241. struct rose_sock *rose = rose_sk(s);
  242. if (rose->lci == lci && rose->neighbour == neigh)
  243. goto found;
  244. }
  245. s = NULL;
  246. found:
  247. spin_unlock_bh(&rose_list_lock);
  248. return s;
  249. }
  250. /*
  251. * Find a unique LCI for a given device.
  252. */
  253. unsigned int rose_new_lci(struct rose_neigh *neigh)
  254. {
  255. int lci;
  256. if (neigh->dce_mode) {
  257. for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
  258. if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
  259. return lci;
  260. } else {
  261. for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
  262. if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
  263. return lci;
  264. }
  265. return 0;
  266. }
  267. /*
  268. * Deferred destroy.
  269. */
  270. void rose_destroy_socket(struct sock *);
  271. /*
  272. * Handler for deferred kills.
  273. */
  274. static void rose_destroy_timer(unsigned long data)
  275. {
  276. rose_destroy_socket((struct sock *)data);
  277. }
  278. /*
  279. * This is called from user mode and the timers. Thus it protects itself
  280. * against interrupt users but doesn't worry about being called during
  281. * work. Once it is removed from the queue no interrupt or bottom half
  282. * will touch it and we are (fairly 8-) ) safe.
  283. */
  284. void rose_destroy_socket(struct sock *sk)
  285. {
  286. struct sk_buff *skb;
  287. rose_remove_socket(sk);
  288. rose_stop_heartbeat(sk);
  289. rose_stop_idletimer(sk);
  290. rose_stop_timer(sk);
  291. rose_clear_queues(sk); /* Flush the queues */
  292. while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
  293. if (skb->sk != sk) { /* A pending connection */
  294. /* Queue the unaccepted socket for death */
  295. sock_set_flag(skb->sk, SOCK_DEAD);
  296. rose_start_heartbeat(skb->sk);
  297. rose_sk(skb->sk)->state = ROSE_STATE_0;
  298. }
  299. kfree_skb(skb);
  300. }
  301. if (sk_has_allocations(sk)) {
  302. /* Defer: outstanding buffers */
  303. setup_timer(&sk->sk_timer, rose_destroy_timer,
  304. (unsigned long)sk);
  305. sk->sk_timer.expires = jiffies + 10 * HZ;
  306. add_timer(&sk->sk_timer);
  307. } else
  308. sock_put(sk);
  309. }
  310. /*
  311. * Handling for system calls applied via the various interfaces to a
  312. * ROSE socket object.
  313. */
  314. static int rose_setsockopt(struct socket *sock, int level, int optname,
  315. char __user *optval, unsigned int optlen)
  316. {
  317. struct sock *sk = sock->sk;
  318. struct rose_sock *rose = rose_sk(sk);
  319. int opt;
  320. if (level != SOL_ROSE)
  321. return -ENOPROTOOPT;
  322. if (optlen < sizeof(int))
  323. return -EINVAL;
  324. if (get_user(opt, (int __user *)optval))
  325. return -EFAULT;
  326. switch (optname) {
  327. case ROSE_DEFER:
  328. rose->defer = opt ? 1 : 0;
  329. return 0;
  330. case ROSE_T1:
  331. if (opt < 1)
  332. return -EINVAL;
  333. rose->t1 = opt * HZ;
  334. return 0;
  335. case ROSE_T2:
  336. if (opt < 1)
  337. return -EINVAL;
  338. rose->t2 = opt * HZ;
  339. return 0;
  340. case ROSE_T3:
  341. if (opt < 1)
  342. return -EINVAL;
  343. rose->t3 = opt * HZ;
  344. return 0;
  345. case ROSE_HOLDBACK:
  346. if (opt < 1)
  347. return -EINVAL;
  348. rose->hb = opt * HZ;
  349. return 0;
  350. case ROSE_IDLE:
  351. if (opt < 0)
  352. return -EINVAL;
  353. rose->idle = opt * 60 * HZ;
  354. return 0;
  355. case ROSE_QBITINCL:
  356. rose->qbitincl = opt ? 1 : 0;
  357. return 0;
  358. default:
  359. return -ENOPROTOOPT;
  360. }
  361. }
  362. static int rose_getsockopt(struct socket *sock, int level, int optname,
  363. char __user *optval, int __user *optlen)
  364. {
  365. struct sock *sk = sock->sk;
  366. struct rose_sock *rose = rose_sk(sk);
  367. int val = 0;
  368. int len;
  369. if (level != SOL_ROSE)
  370. return -ENOPROTOOPT;
  371. if (get_user(len, optlen))
  372. return -EFAULT;
  373. if (len < 0)
  374. return -EINVAL;
  375. switch (optname) {
  376. case ROSE_DEFER:
  377. val = rose->defer;
  378. break;
  379. case ROSE_T1:
  380. val = rose->t1 / HZ;
  381. break;
  382. case ROSE_T2:
  383. val = rose->t2 / HZ;
  384. break;
  385. case ROSE_T3:
  386. val = rose->t3 / HZ;
  387. break;
  388. case ROSE_HOLDBACK:
  389. val = rose->hb / HZ;
  390. break;
  391. case ROSE_IDLE:
  392. val = rose->idle / (60 * HZ);
  393. break;
  394. case ROSE_QBITINCL:
  395. val = rose->qbitincl;
  396. break;
  397. default:
  398. return -ENOPROTOOPT;
  399. }
  400. len = min_t(unsigned int, len, sizeof(int));
  401. if (put_user(len, optlen))
  402. return -EFAULT;
  403. return copy_to_user(optval, &val, len) ? -EFAULT : 0;
  404. }
  405. static int rose_listen(struct socket *sock, int backlog)
  406. {
  407. struct sock *sk = sock->sk;
  408. if (sk->sk_state != TCP_LISTEN) {
  409. struct rose_sock *rose = rose_sk(sk);
  410. rose->dest_ndigis = 0;
  411. memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
  412. memset(&rose->dest_call, 0, AX25_ADDR_LEN);
  413. memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
  414. sk->sk_max_ack_backlog = backlog;
  415. sk->sk_state = TCP_LISTEN;
  416. return 0;
  417. }
  418. return -EOPNOTSUPP;
  419. }
  420. static struct proto rose_proto = {
  421. .name = "ROSE",
  422. .owner = THIS_MODULE,
  423. .obj_size = sizeof(struct rose_sock),
  424. };
  425. static int rose_create(struct net *net, struct socket *sock, int protocol,
  426. int kern)
  427. {
  428. struct sock *sk;
  429. struct rose_sock *rose;
  430. if (!net_eq(net, &init_net))
  431. return -EAFNOSUPPORT;
  432. if (sock->type != SOCK_SEQPACKET || protocol != 0)
  433. return -ESOCKTNOSUPPORT;
  434. sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto);
  435. if (sk == NULL)
  436. return -ENOMEM;
  437. rose = rose_sk(sk);
  438. sock_init_data(sock, sk);
  439. skb_queue_head_init(&rose->ack_queue);
  440. #ifdef M_BIT
  441. skb_queue_head_init(&rose->frag_queue);
  442. rose->fraglen = 0;
  443. #endif
  444. sock->ops = &rose_proto_ops;
  445. sk->sk_protocol = protocol;
  446. init_timer(&rose->timer);
  447. init_timer(&rose->idletimer);
  448. rose->t1 = msecs_to_jiffies(sysctl_rose_call_request_timeout);
  449. rose->t2 = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
  450. rose->t3 = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
  451. rose->hb = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
  452. rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
  453. rose->state = ROSE_STATE_0;
  454. return 0;
  455. }
  456. static struct sock *rose_make_new(struct sock *osk)
  457. {
  458. struct sock *sk;
  459. struct rose_sock *rose, *orose;
  460. if (osk->sk_type != SOCK_SEQPACKET)
  461. return NULL;
  462. sk = sk_alloc(sock_net(osk), PF_ROSE, GFP_ATOMIC, &rose_proto);
  463. if (sk == NULL)
  464. return NULL;
  465. rose = rose_sk(sk);
  466. sock_init_data(NULL, sk);
  467. skb_queue_head_init(&rose->ack_queue);
  468. #ifdef M_BIT
  469. skb_queue_head_init(&rose->frag_queue);
  470. rose->fraglen = 0;
  471. #endif
  472. sk->sk_type = osk->sk_type;
  473. sk->sk_priority = osk->sk_priority;
  474. sk->sk_protocol = osk->sk_protocol;
  475. sk->sk_rcvbuf = osk->sk_rcvbuf;
  476. sk->sk_sndbuf = osk->sk_sndbuf;
  477. sk->sk_state = TCP_ESTABLISHED;
  478. sock_copy_flags(sk, osk);
  479. init_timer(&rose->timer);
  480. init_timer(&rose->idletimer);
  481. orose = rose_sk(osk);
  482. rose->t1 = orose->t1;
  483. rose->t2 = orose->t2;
  484. rose->t3 = orose->t3;
  485. rose->hb = orose->hb;
  486. rose->idle = orose->idle;
  487. rose->defer = orose->defer;
  488. rose->device = orose->device;
  489. rose->qbitincl = orose->qbitincl;
  490. return sk;
  491. }
  492. static int rose_release(struct socket *sock)
  493. {
  494. struct sock *sk = sock->sk;
  495. struct rose_sock *rose;
  496. if (sk == NULL) return 0;
  497. sock_hold(sk);
  498. sock_orphan(sk);
  499. lock_sock(sk);
  500. rose = rose_sk(sk);
  501. switch (rose->state) {
  502. case ROSE_STATE_0:
  503. release_sock(sk);
  504. rose_disconnect(sk, 0, -1, -1);
  505. lock_sock(sk);
  506. rose_destroy_socket(sk);
  507. break;
  508. case ROSE_STATE_2:
  509. rose->neighbour->use--;
  510. release_sock(sk);
  511. rose_disconnect(sk, 0, -1, -1);
  512. lock_sock(sk);
  513. rose_destroy_socket(sk);
  514. break;
  515. case ROSE_STATE_1:
  516. case ROSE_STATE_3:
  517. case ROSE_STATE_4:
  518. case ROSE_STATE_5:
  519. rose_clear_queues(sk);
  520. rose_stop_idletimer(sk);
  521. rose_write_internal(sk, ROSE_CLEAR_REQUEST);
  522. rose_start_t3timer(sk);
  523. rose->state = ROSE_STATE_2;
  524. sk->sk_state = TCP_CLOSE;
  525. sk->sk_shutdown |= SEND_SHUTDOWN;
  526. sk->sk_state_change(sk);
  527. sock_set_flag(sk, SOCK_DEAD);
  528. sock_set_flag(sk, SOCK_DESTROY);
  529. break;
  530. default:
  531. break;
  532. }
  533. sock->sk = NULL;
  534. release_sock(sk);
  535. sock_put(sk);
  536. return 0;
  537. }
  538. static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
  539. {
  540. struct sock *sk = sock->sk;
  541. struct rose_sock *rose = rose_sk(sk);
  542. struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
  543. struct net_device *dev;
  544. ax25_address *source;
  545. ax25_uid_assoc *user;
  546. int n;
  547. if (!sock_flag(sk, SOCK_ZAPPED))
  548. return -EINVAL;
  549. if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
  550. return -EINVAL;
  551. if (addr->srose_family != AF_ROSE)
  552. return -EINVAL;
  553. if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
  554. return -EINVAL;
  555. if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
  556. return -EINVAL;
  557. if ((dev = rose_dev_get(&addr->srose_addr)) == NULL)
  558. return -EADDRNOTAVAIL;
  559. source = &addr->srose_call;
  560. user = ax25_findbyuid(current_euid());
  561. if (user) {
  562. rose->source_call = user->call;
  563. ax25_uid_put(user);
  564. } else {
  565. if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
  566. return -EACCES;
  567. rose->source_call = *source;
  568. }
  569. rose->source_addr = addr->srose_addr;
  570. rose->device = dev;
  571. rose->source_ndigis = addr->srose_ndigis;
  572. if (addr_len == sizeof(struct full_sockaddr_rose)) {
  573. struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
  574. for (n = 0 ; n < addr->srose_ndigis ; n++)
  575. rose->source_digis[n] = full_addr->srose_digis[n];
  576. } else {
  577. if (rose->source_ndigis == 1) {
  578. rose->source_digis[0] = addr->srose_digi;
  579. }
  580. }
  581. rose_insert_socket(sk);
  582. sock_reset_flag(sk, SOCK_ZAPPED);
  583. return 0;
  584. }
  585. static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
  586. {
  587. struct sock *sk = sock->sk;
  588. struct rose_sock *rose = rose_sk(sk);
  589. struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
  590. unsigned char cause, diagnostic;
  591. struct net_device *dev;
  592. ax25_uid_assoc *user;
  593. int n, err = 0;
  594. if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
  595. return -EINVAL;
  596. if (addr->srose_family != AF_ROSE)
  597. return -EINVAL;
  598. if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
  599. return -EINVAL;
  600. if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
  601. return -EINVAL;
  602. /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
  603. if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
  604. return -EINVAL;
  605. lock_sock(sk);
  606. if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
  607. /* Connect completed during a ERESTARTSYS event */
  608. sock->state = SS_CONNECTED;
  609. goto out_release;
  610. }
  611. if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
  612. sock->state = SS_UNCONNECTED;
  613. err = -ECONNREFUSED;
  614. goto out_release;
  615. }
  616. if (sk->sk_state == TCP_ESTABLISHED) {
  617. /* No reconnect on a seqpacket socket */
  618. err = -EISCONN;
  619. goto out_release;
  620. }
  621. sk->sk_state = TCP_CLOSE;
  622. sock->state = SS_UNCONNECTED;
  623. rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
  624. &diagnostic, 0);
  625. if (!rose->neighbour) {
  626. err = -ENETUNREACH;
  627. goto out_release;
  628. }
  629. rose->lci = rose_new_lci(rose->neighbour);
  630. if (!rose->lci) {
  631. err = -ENETUNREACH;
  632. goto out_release;
  633. }
  634. if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */
  635. sock_reset_flag(sk, SOCK_ZAPPED);
  636. if ((dev = rose_dev_first()) == NULL) {
  637. err = -ENETUNREACH;
  638. goto out_release;
  639. }
  640. user = ax25_findbyuid(current_euid());
  641. if (!user) {
  642. err = -EINVAL;
  643. goto out_release;
  644. }
  645. memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
  646. rose->source_call = user->call;
  647. rose->device = dev;
  648. ax25_uid_put(user);
  649. rose_insert_socket(sk); /* Finish the bind */
  650. }
  651. rose->dest_addr = addr->srose_addr;
  652. rose->dest_call = addr->srose_call;
  653. rose->rand = ((long)rose & 0xFFFF) + rose->lci;
  654. rose->dest_ndigis = addr->srose_ndigis;
  655. if (addr_len == sizeof(struct full_sockaddr_rose)) {
  656. struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
  657. for (n = 0 ; n < addr->srose_ndigis ; n++)
  658. rose->dest_digis[n] = full_addr->srose_digis[n];
  659. } else {
  660. if (rose->dest_ndigis == 1) {
  661. rose->dest_digis[0] = addr->srose_digi;
  662. }
  663. }
  664. /* Move to connecting socket, start sending Connect Requests */
  665. sock->state = SS_CONNECTING;
  666. sk->sk_state = TCP_SYN_SENT;
  667. rose->state = ROSE_STATE_1;
  668. rose->neighbour->use++;
  669. rose_write_internal(sk, ROSE_CALL_REQUEST);
  670. rose_start_heartbeat(sk);
  671. rose_start_t1timer(sk);
  672. /* Now the loop */
  673. if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
  674. err = -EINPROGRESS;
  675. goto out_release;
  676. }
  677. /*
  678. * A Connect Ack with Choke or timeout or failed routing will go to
  679. * closed.
  680. */
  681. if (sk->sk_state == TCP_SYN_SENT) {
  682. DEFINE_WAIT(wait);
  683. for (;;) {
  684. prepare_to_wait(sk_sleep(sk), &wait,
  685. TASK_INTERRUPTIBLE);
  686. if (sk->sk_state != TCP_SYN_SENT)
  687. break;
  688. if (!signal_pending(current)) {
  689. release_sock(sk);
  690. schedule();
  691. lock_sock(sk);
  692. continue;
  693. }
  694. err = -ERESTARTSYS;
  695. break;
  696. }
  697. finish_wait(sk_sleep(sk), &wait);
  698. if (err)
  699. goto out_release;
  700. }
  701. if (sk->sk_state != TCP_ESTABLISHED) {
  702. sock->state = SS_UNCONNECTED;
  703. err = sock_error(sk); /* Always set at this point */
  704. goto out_release;
  705. }
  706. sock->state = SS_CONNECTED;
  707. out_release:
  708. release_sock(sk);
  709. return err;
  710. }
  711. static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
  712. {
  713. struct sk_buff *skb;
  714. struct sock *newsk;
  715. DEFINE_WAIT(wait);
  716. struct sock *sk;
  717. int err = 0;
  718. if ((sk = sock->sk) == NULL)
  719. return -EINVAL;
  720. lock_sock(sk);
  721. if (sk->sk_type != SOCK_SEQPACKET) {
  722. err = -EOPNOTSUPP;
  723. goto out_release;
  724. }
  725. if (sk->sk_state != TCP_LISTEN) {
  726. err = -EINVAL;
  727. goto out_release;
  728. }
  729. /*
  730. * The write queue this time is holding sockets ready to use
  731. * hooked into the SABM we saved
  732. */
  733. for (;;) {
  734. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  735. skb = skb_dequeue(&sk->sk_receive_queue);
  736. if (skb)
  737. break;
  738. if (flags & O_NONBLOCK) {
  739. err = -EWOULDBLOCK;
  740. break;
  741. }
  742. if (!signal_pending(current)) {
  743. release_sock(sk);
  744. schedule();
  745. lock_sock(sk);
  746. continue;
  747. }
  748. err = -ERESTARTSYS;
  749. break;
  750. }
  751. finish_wait(sk_sleep(sk), &wait);
  752. if (err)
  753. goto out_release;
  754. newsk = skb->sk;
  755. sock_graft(newsk, newsock);
  756. /* Now attach up the new socket */
  757. skb->sk = NULL;
  758. kfree_skb(skb);
  759. sk->sk_ack_backlog--;
  760. out_release:
  761. release_sock(sk);
  762. return err;
  763. }
  764. static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
  765. int *uaddr_len, int peer)
  766. {
  767. struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
  768. struct sock *sk = sock->sk;
  769. struct rose_sock *rose = rose_sk(sk);
  770. int n;
  771. memset(srose, 0, sizeof(*srose));
  772. if (peer != 0) {
  773. if (sk->sk_state != TCP_ESTABLISHED)
  774. return -ENOTCONN;
  775. srose->srose_family = AF_ROSE;
  776. srose->srose_addr = rose->dest_addr;
  777. srose->srose_call = rose->dest_call;
  778. srose->srose_ndigis = rose->dest_ndigis;
  779. for (n = 0; n < rose->dest_ndigis; n++)
  780. srose->srose_digis[n] = rose->dest_digis[n];
  781. } else {
  782. srose->srose_family = AF_ROSE;
  783. srose->srose_addr = rose->source_addr;
  784. srose->srose_call = rose->source_call;
  785. srose->srose_ndigis = rose->source_ndigis;
  786. for (n = 0; n < rose->source_ndigis; n++)
  787. srose->srose_digis[n] = rose->source_digis[n];
  788. }
  789. *uaddr_len = sizeof(struct full_sockaddr_rose);
  790. return 0;
  791. }
  792. int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
  793. {
  794. struct sock *sk;
  795. struct sock *make;
  796. struct rose_sock *make_rose;
  797. struct rose_facilities_struct facilities;
  798. int n;
  799. skb->sk = NULL; /* Initially we don't know who it's for */
  800. /*
  801. * skb->data points to the rose frame start
  802. */
  803. memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
  804. if (!rose_parse_facilities(skb->data + ROSE_CALL_REQ_FACILITIES_OFF,
  805. skb->len - ROSE_CALL_REQ_FACILITIES_OFF,
  806. &facilities)) {
  807. rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
  808. return 0;
  809. }
  810. sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
  811. /*
  812. * We can't accept the Call Request.
  813. */
  814. if (sk == NULL || sk_acceptq_is_full(sk) ||
  815. (make = rose_make_new(sk)) == NULL) {
  816. rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
  817. return 0;
  818. }
  819. skb->sk = make;
  820. make->sk_state = TCP_ESTABLISHED;
  821. make_rose = rose_sk(make);
  822. make_rose->lci = lci;
  823. make_rose->dest_addr = facilities.dest_addr;
  824. make_rose->dest_call = facilities.dest_call;
  825. make_rose->dest_ndigis = facilities.dest_ndigis;
  826. for (n = 0 ; n < facilities.dest_ndigis ; n++)
  827. make_rose->dest_digis[n] = facilities.dest_digis[n];
  828. make_rose->source_addr = facilities.source_addr;
  829. make_rose->source_call = facilities.source_call;
  830. make_rose->source_ndigis = facilities.source_ndigis;
  831. for (n = 0 ; n < facilities.source_ndigis ; n++)
  832. make_rose->source_digis[n]= facilities.source_digis[n];
  833. make_rose->neighbour = neigh;
  834. make_rose->device = dev;
  835. make_rose->facilities = facilities;
  836. make_rose->neighbour->use++;
  837. if (rose_sk(sk)->defer) {
  838. make_rose->state = ROSE_STATE_5;
  839. } else {
  840. rose_write_internal(make, ROSE_CALL_ACCEPTED);
  841. make_rose->state = ROSE_STATE_3;
  842. rose_start_idletimer(make);
  843. }
  844. make_rose->condition = 0x00;
  845. make_rose->vs = 0;
  846. make_rose->va = 0;
  847. make_rose->vr = 0;
  848. make_rose->vl = 0;
  849. sk->sk_ack_backlog++;
  850. rose_insert_socket(make);
  851. skb_queue_head(&sk->sk_receive_queue, skb);
  852. rose_start_heartbeat(make);
  853. if (!sock_flag(sk, SOCK_DEAD))
  854. sk->sk_data_ready(sk, skb->len);
  855. return 1;
  856. }
  857. static int rose_sendmsg(struct kiocb *iocb, struct socket *sock,
  858. struct msghdr *msg, size_t len)
  859. {
  860. struct sock *sk = sock->sk;
  861. struct rose_sock *rose = rose_sk(sk);
  862. struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
  863. int err;
  864. struct full_sockaddr_rose srose;
  865. struct sk_buff *skb;
  866. unsigned char *asmptr;
  867. int n, size, qbit = 0;
  868. if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
  869. return -EINVAL;
  870. if (sock_flag(sk, SOCK_ZAPPED))
  871. return -EADDRNOTAVAIL;
  872. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  873. send_sig(SIGPIPE, current, 0);
  874. return -EPIPE;
  875. }
  876. if (rose->neighbour == NULL || rose->device == NULL)
  877. return -ENETUNREACH;
  878. if (usrose != NULL) {
  879. if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
  880. return -EINVAL;
  881. memset(&srose, 0, sizeof(struct full_sockaddr_rose));
  882. memcpy(&srose, usrose, msg->msg_namelen);
  883. if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
  884. ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
  885. return -EISCONN;
  886. if (srose.srose_ndigis != rose->dest_ndigis)
  887. return -EISCONN;
  888. if (srose.srose_ndigis == rose->dest_ndigis) {
  889. for (n = 0 ; n < srose.srose_ndigis ; n++)
  890. if (ax25cmp(&rose->dest_digis[n],
  891. &srose.srose_digis[n]))
  892. return -EISCONN;
  893. }
  894. if (srose.srose_family != AF_ROSE)
  895. return -EINVAL;
  896. } else {
  897. if (sk->sk_state != TCP_ESTABLISHED)
  898. return -ENOTCONN;
  899. srose.srose_family = AF_ROSE;
  900. srose.srose_addr = rose->dest_addr;
  901. srose.srose_call = rose->dest_call;
  902. srose.srose_ndigis = rose->dest_ndigis;
  903. for (n = 0 ; n < rose->dest_ndigis ; n++)
  904. srose.srose_digis[n] = rose->dest_digis[n];
  905. }
  906. /* Build a packet */
  907. /* Sanity check the packet size */
  908. if (len > 65535)
  909. return -EMSGSIZE;
  910. size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
  911. if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
  912. return err;
  913. skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
  914. /*
  915. * Put the data on the end
  916. */
  917. skb_reset_transport_header(skb);
  918. skb_put(skb, len);
  919. err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
  920. if (err) {
  921. kfree_skb(skb);
  922. return err;
  923. }
  924. /*
  925. * If the Q BIT Include socket option is in force, the first
  926. * byte of the user data is the logical value of the Q Bit.
  927. */
  928. if (rose->qbitincl) {
  929. qbit = skb->data[0];
  930. skb_pull(skb, 1);
  931. }
  932. /*
  933. * Push down the ROSE header
  934. */
  935. asmptr = skb_push(skb, ROSE_MIN_LEN);
  936. /* Build a ROSE Network header */
  937. asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
  938. asmptr[1] = (rose->lci >> 0) & 0xFF;
  939. asmptr[2] = ROSE_DATA;
  940. if (qbit)
  941. asmptr[0] |= ROSE_Q_BIT;
  942. if (sk->sk_state != TCP_ESTABLISHED) {
  943. kfree_skb(skb);
  944. return -ENOTCONN;
  945. }
  946. #ifdef M_BIT
  947. #define ROSE_PACLEN (256-ROSE_MIN_LEN)
  948. if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
  949. unsigned char header[ROSE_MIN_LEN];
  950. struct sk_buff *skbn;
  951. int frontlen;
  952. int lg;
  953. /* Save a copy of the Header */
  954. skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
  955. skb_pull(skb, ROSE_MIN_LEN);
  956. frontlen = skb_headroom(skb);
  957. while (skb->len > 0) {
  958. if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
  959. kfree_skb(skb);
  960. return err;
  961. }
  962. skbn->sk = sk;
  963. skbn->free = 1;
  964. skbn->arp = 1;
  965. skb_reserve(skbn, frontlen);
  966. lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
  967. /* Copy the user data */
  968. skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
  969. skb_pull(skb, lg);
  970. /* Duplicate the Header */
  971. skb_push(skbn, ROSE_MIN_LEN);
  972. skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);
  973. if (skb->len > 0)
  974. skbn->data[2] |= M_BIT;
  975. skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
  976. }
  977. skb->free = 1;
  978. kfree_skb(skb);
  979. } else {
  980. skb_queue_tail(&sk->sk_write_queue, skb); /* Throw it on the queue */
  981. }
  982. #else
  983. skb_queue_tail(&sk->sk_write_queue, skb); /* Shove it onto the queue */
  984. #endif
  985. rose_kick(sk);
  986. return len;
  987. }
  988. static int rose_recvmsg(struct kiocb *iocb, struct socket *sock,
  989. struct msghdr *msg, size_t size, int flags)
  990. {
  991. struct sock *sk = sock->sk;
  992. struct rose_sock *rose = rose_sk(sk);
  993. struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
  994. size_t copied;
  995. unsigned char *asmptr;
  996. struct sk_buff *skb;
  997. int n, er, qbit;
  998. /*
  999. * This works for seqpacket too. The receiver has ordered the queue for
  1000. * us! We do one quick check first though
  1001. */
  1002. if (sk->sk_state != TCP_ESTABLISHED)
  1003. return -ENOTCONN;
  1004. /* Now we can treat all alike */
  1005. if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
  1006. return er;
  1007. qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
  1008. skb_pull(skb, ROSE_MIN_LEN);
  1009. if (rose->qbitincl) {
  1010. asmptr = skb_push(skb, 1);
  1011. *asmptr = qbit;
  1012. }
  1013. skb_reset_transport_header(skb);
  1014. copied = skb->len;
  1015. if (copied > size) {
  1016. copied = size;
  1017. msg->msg_flags |= MSG_TRUNC;
  1018. }
  1019. skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  1020. if (srose != NULL) {
  1021. memset(srose, 0, msg->msg_namelen);
  1022. srose->srose_family = AF_ROSE;
  1023. srose->srose_addr = rose->dest_addr;
  1024. srose->srose_call = rose->dest_call;
  1025. srose->srose_ndigis = rose->dest_ndigis;
  1026. if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
  1027. struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
  1028. for (n = 0 ; n < rose->dest_ndigis ; n++)
  1029. full_srose->srose_digis[n] = rose->dest_digis[n];
  1030. msg->msg_namelen = sizeof(struct full_sockaddr_rose);
  1031. } else {
  1032. if (rose->dest_ndigis >= 1) {
  1033. srose->srose_ndigis = 1;
  1034. srose->srose_digi = rose->dest_digis[0];
  1035. }
  1036. msg->msg_namelen = sizeof(struct sockaddr_rose);
  1037. }
  1038. }
  1039. skb_free_datagram(sk, skb);
  1040. return copied;
  1041. }
  1042. static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1043. {
  1044. struct sock *sk = sock->sk;
  1045. struct rose_sock *rose = rose_sk(sk);
  1046. void __user *argp = (void __user *)arg;
  1047. switch (cmd) {
  1048. case TIOCOUTQ: {
  1049. long amount;
  1050. amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
  1051. if (amount < 0)
  1052. amount = 0;
  1053. return put_user(amount, (unsigned int __user *) argp);
  1054. }
  1055. case TIOCINQ: {
  1056. struct sk_buff *skb;
  1057. long amount = 0L;
  1058. /* These two are safe on a single CPU system as only user tasks fiddle here */
  1059. if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
  1060. amount = skb->len;
  1061. return put_user(amount, (unsigned int __user *) argp);
  1062. }
  1063. case SIOCGSTAMP:
  1064. return sock_get_timestamp(sk, (struct timeval __user *) argp);
  1065. case SIOCGSTAMPNS:
  1066. return sock_get_timestampns(sk, (struct timespec __user *) argp);
  1067. case SIOCGIFADDR:
  1068. case SIOCSIFADDR:
  1069. case SIOCGIFDSTADDR:
  1070. case SIOCSIFDSTADDR:
  1071. case SIOCGIFBRDADDR:
  1072. case SIOCSIFBRDADDR:
  1073. case SIOCGIFNETMASK:
  1074. case SIOCSIFNETMASK:
  1075. case SIOCGIFMETRIC:
  1076. case SIOCSIFMETRIC:
  1077. return -EINVAL;
  1078. case SIOCADDRT:
  1079. case SIOCDELRT:
  1080. case SIOCRSCLRRT:
  1081. if (!capable(CAP_NET_ADMIN))
  1082. return -EPERM;
  1083. return rose_rt_ioctl(cmd, argp);
  1084. case SIOCRSGCAUSE: {
  1085. struct rose_cause_struct rose_cause;
  1086. rose_cause.cause = rose->cause;
  1087. rose_cause.diagnostic = rose->diagnostic;
  1088. return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
  1089. }
  1090. case SIOCRSSCAUSE: {
  1091. struct rose_cause_struct rose_cause;
  1092. if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
  1093. return -EFAULT;
  1094. rose->cause = rose_cause.cause;
  1095. rose->diagnostic = rose_cause.diagnostic;
  1096. return 0;
  1097. }
  1098. case SIOCRSSL2CALL:
  1099. if (!capable(CAP_NET_ADMIN)) return -EPERM;
  1100. if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
  1101. ax25_listen_release(&rose_callsign, NULL);
  1102. if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
  1103. return -EFAULT;
  1104. if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
  1105. return ax25_listen_register(&rose_callsign, NULL);
  1106. return 0;
  1107. case SIOCRSGL2CALL:
  1108. return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
  1109. case SIOCRSACCEPT:
  1110. if (rose->state == ROSE_STATE_5) {
  1111. rose_write_internal(sk, ROSE_CALL_ACCEPTED);
  1112. rose_start_idletimer(sk);
  1113. rose->condition = 0x00;
  1114. rose->vs = 0;
  1115. rose->va = 0;
  1116. rose->vr = 0;
  1117. rose->vl = 0;
  1118. rose->state = ROSE_STATE_3;
  1119. }
  1120. return 0;
  1121. default:
  1122. return -ENOIOCTLCMD;
  1123. }
  1124. return 0;
  1125. }
  1126. #ifdef CONFIG_PROC_FS
  1127. static void *rose_info_start(struct seq_file *seq, loff_t *pos)
  1128. __acquires(rose_list_lock)
  1129. {
  1130. spin_lock_bh(&rose_list_lock);
  1131. return seq_hlist_start_head(&rose_list, *pos);
  1132. }
  1133. static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
  1134. {
  1135. return seq_hlist_next(v, &rose_list, pos);
  1136. }
  1137. static void rose_info_stop(struct seq_file *seq, void *v)
  1138. __releases(rose_list_lock)
  1139. {
  1140. spin_unlock_bh(&rose_list_lock);
  1141. }
  1142. static int rose_info_show(struct seq_file *seq, void *v)
  1143. {
  1144. char buf[11], rsbuf[11];
  1145. if (v == SEQ_START_TOKEN)
  1146. seq_puts(seq,
  1147. "dest_addr dest_call src_addr src_call dev lci neigh st vs vr va t t1 t2 t3 hb idle Snd-Q Rcv-Q inode\n");
  1148. else {
  1149. struct sock *s = sk_entry(v);
  1150. struct rose_sock *rose = rose_sk(s);
  1151. const char *devname, *callsign;
  1152. const struct net_device *dev = rose->device;
  1153. if (!dev)
  1154. devname = "???";
  1155. else
  1156. devname = dev->name;
  1157. seq_printf(seq, "%-10s %-9s ",
  1158. rose2asc(rsbuf, &rose->dest_addr),
  1159. ax2asc(buf, &rose->dest_call));
  1160. if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
  1161. callsign = "??????-?";
  1162. else
  1163. callsign = ax2asc(buf, &rose->source_call);
  1164. seq_printf(seq,
  1165. "%-10s %-9s %-5s %3.3X %05d %d %d %d %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
  1166. rose2asc(rsbuf, &rose->source_addr),
  1167. callsign,
  1168. devname,
  1169. rose->lci & 0x0FFF,
  1170. (rose->neighbour) ? rose->neighbour->number : 0,
  1171. rose->state,
  1172. rose->vs,
  1173. rose->vr,
  1174. rose->va,
  1175. ax25_display_timer(&rose->timer) / HZ,
  1176. rose->t1 / HZ,
  1177. rose->t2 / HZ,
  1178. rose->t3 / HZ,
  1179. rose->hb / HZ,
  1180. ax25_display_timer(&rose->idletimer) / (60 * HZ),
  1181. rose->idle / (60 * HZ),
  1182. sk_wmem_alloc_get(s),
  1183. sk_rmem_alloc_get(s),
  1184. s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
  1185. }
  1186. return 0;
  1187. }
  1188. static const struct seq_operations rose_info_seqops = {
  1189. .start = rose_info_start,
  1190. .next = rose_info_next,
  1191. .stop = rose_info_stop,
  1192. .show = rose_info_show,
  1193. };
  1194. static int rose_info_open(struct inode *inode, struct file *file)
  1195. {
  1196. return seq_open(file, &rose_info_seqops);
  1197. }
  1198. static const struct file_operations rose_info_fops = {
  1199. .owner = THIS_MODULE,
  1200. .open = rose_info_open,
  1201. .read = seq_read,
  1202. .llseek = seq_lseek,
  1203. .release = seq_release,
  1204. };
  1205. #endif /* CONFIG_PROC_FS */
  1206. static const struct net_proto_family rose_family_ops = {
  1207. .family = PF_ROSE,
  1208. .create = rose_create,
  1209. .owner = THIS_MODULE,
  1210. };
  1211. static const struct proto_ops rose_proto_ops = {
  1212. .family = PF_ROSE,
  1213. .owner = THIS_MODULE,
  1214. .release = rose_release,
  1215. .bind = rose_bind,
  1216. .connect = rose_connect,
  1217. .socketpair = sock_no_socketpair,
  1218. .accept = rose_accept,
  1219. .getname = rose_getname,
  1220. .poll = datagram_poll,
  1221. .ioctl = rose_ioctl,
  1222. .listen = rose_listen,
  1223. .shutdown = sock_no_shutdown,
  1224. .setsockopt = rose_setsockopt,
  1225. .getsockopt = rose_getsockopt,
  1226. .sendmsg = rose_sendmsg,
  1227. .recvmsg = rose_recvmsg,
  1228. .mmap = sock_no_mmap,
  1229. .sendpage = sock_no_sendpage,
  1230. };
  1231. static struct notifier_block rose_dev_notifier = {
  1232. .notifier_call = rose_device_event,
  1233. };
  1234. static struct net_device **dev_rose;
  1235. static struct ax25_protocol rose_pid = {
  1236. .pid = AX25_P_ROSE,
  1237. .func = rose_route_frame
  1238. };
  1239. static struct ax25_linkfail rose_linkfail_notifier = {
  1240. .func = rose_link_failed
  1241. };
  1242. static int __init rose_proto_init(void)
  1243. {
  1244. int i;
  1245. int rc;
  1246. if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
  1247. printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
  1248. rc = -EINVAL;
  1249. goto out;
  1250. }
  1251. rc = proto_register(&rose_proto, 0);
  1252. if (rc != 0)
  1253. goto out;
  1254. rose_callsign = null_ax25_address;
  1255. dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
  1256. if (dev_rose == NULL) {
  1257. printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
  1258. rc = -ENOMEM;
  1259. goto out_proto_unregister;
  1260. }
  1261. for (i = 0; i < rose_ndevs; i++) {
  1262. struct net_device *dev;
  1263. char name[IFNAMSIZ];
  1264. sprintf(name, "rose%d", i);
  1265. dev = alloc_netdev(0, name, rose_setup);
  1266. if (!dev) {
  1267. printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
  1268. rc = -ENOMEM;
  1269. goto fail;
  1270. }
  1271. rc = register_netdev(dev);
  1272. if (rc) {
  1273. printk(KERN_ERR "ROSE: netdevice registration failed\n");
  1274. free_netdev(dev);
  1275. goto fail;
  1276. }
  1277. rose_set_lockdep_key(dev);
  1278. dev_rose[i] = dev;
  1279. }
  1280. sock_register(&rose_family_ops);
  1281. register_netdevice_notifier(&rose_dev_notifier);
  1282. ax25_register_pid(&rose_pid);
  1283. ax25_linkfail_register(&rose_linkfail_notifier);
  1284. #ifdef CONFIG_SYSCTL
  1285. rose_register_sysctl();
  1286. #endif
  1287. rose_loopback_init();
  1288. rose_add_loopback_neigh();
  1289. proc_create("rose", S_IRUGO, init_net.proc_net, &rose_info_fops);
  1290. proc_create("rose_neigh", S_IRUGO, init_net.proc_net,
  1291. &rose_neigh_fops);
  1292. proc_create("rose_nodes", S_IRUGO, init_net.proc_net,
  1293. &rose_nodes_fops);
  1294. proc_create("rose_routes", S_IRUGO, init_net.proc_net,
  1295. &rose_routes_fops);
  1296. out:
  1297. return rc;
  1298. fail:
  1299. while (--i >= 0) {
  1300. unregister_netdev(dev_rose[i]);
  1301. free_netdev(dev_rose[i]);
  1302. }
  1303. kfree(dev_rose);
  1304. out_proto_unregister:
  1305. proto_unregister(&rose_proto);
  1306. goto out;
  1307. }
  1308. module_init(rose_proto_init);
  1309. module_param(rose_ndevs, int, 0);
  1310. MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
  1311. MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
  1312. MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
  1313. MODULE_LICENSE("GPL");
  1314. MODULE_ALIAS_NETPROTO(PF_ROSE);
  1315. static void __exit rose_exit(void)
  1316. {
  1317. int i;
  1318. remove_proc_entry("rose", init_net.proc_net);
  1319. remove_proc_entry("rose_neigh", init_net.proc_net);
  1320. remove_proc_entry("rose_nodes", init_net.proc_net);
  1321. remove_proc_entry("rose_routes", init_net.proc_net);
  1322. rose_loopback_clear();
  1323. rose_rt_free();
  1324. ax25_protocol_release(AX25_P_ROSE);
  1325. ax25_linkfail_release(&rose_linkfail_notifier);
  1326. if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
  1327. ax25_listen_release(&rose_callsign, NULL);
  1328. #ifdef CONFIG_SYSCTL
  1329. rose_unregister_sysctl();
  1330. #endif
  1331. unregister_netdevice_notifier(&rose_dev_notifier);
  1332. sock_unregister(PF_ROSE);
  1333. for (i = 0; i < rose_ndevs; i++) {
  1334. struct net_device *dev = dev_rose[i];
  1335. if (dev) {
  1336. unregister_netdev(dev);
  1337. free_netdev(dev);
  1338. }
  1339. }
  1340. kfree(dev_rose);
  1341. proto_unregister(&rose_proto);
  1342. }
  1343. module_exit(rose_exit);