file.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include "f2fs.h"
  23. #include "node.h"
  24. #include "segment.h"
  25. #include "xattr.h"
  26. #include "acl.h"
  27. #include <trace/events/f2fs.h>
  28. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  29. struct vm_fault *vmf)
  30. {
  31. struct page *page = vmf->page;
  32. struct inode *inode = file_inode(vma->vm_file);
  33. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  34. block_t old_blk_addr;
  35. struct dnode_of_data dn;
  36. int err, ilock;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* block allocation */
  40. ilock = mutex_lock_op(sbi);
  41. set_new_dnode(&dn, inode, NULL, NULL, 0);
  42. err = get_dnode_of_data(&dn, page->index, ALLOC_NODE);
  43. if (err) {
  44. mutex_unlock_op(sbi, ilock);
  45. goto out;
  46. }
  47. old_blk_addr = dn.data_blkaddr;
  48. if (old_blk_addr == NULL_ADDR) {
  49. err = reserve_new_block(&dn);
  50. if (err) {
  51. f2fs_put_dnode(&dn);
  52. mutex_unlock_op(sbi, ilock);
  53. goto out;
  54. }
  55. }
  56. f2fs_put_dnode(&dn);
  57. mutex_unlock_op(sbi, ilock);
  58. lock_page(page);
  59. if (page->mapping != inode->i_mapping ||
  60. page_offset(page) >= i_size_read(inode) ||
  61. !PageUptodate(page)) {
  62. unlock_page(page);
  63. err = -EFAULT;
  64. goto out;
  65. }
  66. /*
  67. * check to see if the page is mapped already (no holes)
  68. */
  69. if (PageMappedToDisk(page))
  70. goto out;
  71. /* fill the page */
  72. wait_on_page_writeback(page);
  73. /* page is wholly or partially inside EOF */
  74. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  75. unsigned offset;
  76. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  77. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  78. }
  79. set_page_dirty(page);
  80. SetPageUptodate(page);
  81. file_update_time(vma->vm_file);
  82. out:
  83. sb_end_pagefault(inode->i_sb);
  84. return block_page_mkwrite_return(err);
  85. }
  86. static const struct vm_operations_struct f2fs_file_vm_ops = {
  87. .fault = filemap_fault,
  88. .page_mkwrite = f2fs_vm_page_mkwrite,
  89. .remap_pages = generic_file_remap_pages,
  90. };
  91. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  92. {
  93. struct inode *inode = file->f_mapping->host;
  94. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  95. int ret = 0;
  96. bool need_cp = false;
  97. struct writeback_control wbc = {
  98. .sync_mode = WB_SYNC_ALL,
  99. .nr_to_write = LONG_MAX,
  100. .for_reclaim = 0,
  101. };
  102. if (inode->i_sb->s_flags & MS_RDONLY)
  103. return 0;
  104. trace_f2fs_sync_file_enter(inode);
  105. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  106. if (ret) {
  107. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  108. return ret;
  109. }
  110. /* guarantee free sections for fsync */
  111. f2fs_balance_fs(sbi);
  112. mutex_lock(&inode->i_mutex);
  113. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  114. goto out;
  115. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  116. need_cp = true;
  117. else if (is_cp_file(inode))
  118. need_cp = true;
  119. else if (!space_for_roll_forward(sbi))
  120. need_cp = true;
  121. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  122. need_cp = true;
  123. if (need_cp) {
  124. /* all the dirty node pages should be flushed for POR */
  125. ret = f2fs_sync_fs(inode->i_sb, 1);
  126. } else {
  127. /* if there is no written node page, write its inode page */
  128. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  129. ret = f2fs_write_inode(inode, NULL);
  130. if (ret)
  131. goto out;
  132. }
  133. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  134. 0, LONG_MAX);
  135. ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  136. }
  137. out:
  138. mutex_unlock(&inode->i_mutex);
  139. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  140. return ret;
  141. }
  142. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  143. {
  144. file_accessed(file);
  145. vma->vm_ops = &f2fs_file_vm_ops;
  146. return 0;
  147. }
  148. static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  149. {
  150. int nr_free = 0, ofs = dn->ofs_in_node;
  151. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  152. struct f2fs_node *raw_node;
  153. __le32 *addr;
  154. raw_node = page_address(dn->node_page);
  155. addr = blkaddr_in_node(raw_node) + ofs;
  156. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  157. block_t blkaddr = le32_to_cpu(*addr);
  158. if (blkaddr == NULL_ADDR)
  159. continue;
  160. update_extent_cache(NULL_ADDR, dn);
  161. invalidate_blocks(sbi, blkaddr);
  162. dec_valid_block_count(sbi, dn->inode, 1);
  163. nr_free++;
  164. }
  165. if (nr_free) {
  166. set_page_dirty(dn->node_page);
  167. sync_inode_page(dn);
  168. }
  169. dn->ofs_in_node = ofs;
  170. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  171. dn->ofs_in_node, nr_free);
  172. return nr_free;
  173. }
  174. void truncate_data_blocks(struct dnode_of_data *dn)
  175. {
  176. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  177. }
  178. static void truncate_partial_data_page(struct inode *inode, u64 from)
  179. {
  180. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  181. struct page *page;
  182. if (!offset)
  183. return;
  184. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  185. if (IS_ERR(page))
  186. return;
  187. lock_page(page);
  188. if (page->mapping != inode->i_mapping) {
  189. f2fs_put_page(page, 1);
  190. return;
  191. }
  192. wait_on_page_writeback(page);
  193. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  194. set_page_dirty(page);
  195. f2fs_put_page(page, 1);
  196. }
  197. static int truncate_blocks(struct inode *inode, u64 from)
  198. {
  199. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  200. unsigned int blocksize = inode->i_sb->s_blocksize;
  201. struct dnode_of_data dn;
  202. pgoff_t free_from;
  203. int count = 0, ilock = -1;
  204. int err;
  205. trace_f2fs_truncate_blocks_enter(inode, from);
  206. free_from = (pgoff_t)
  207. ((from + blocksize - 1) >> (sbi->log_blocksize));
  208. ilock = mutex_lock_op(sbi);
  209. set_new_dnode(&dn, inode, NULL, NULL, 0);
  210. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  211. if (err) {
  212. if (err == -ENOENT)
  213. goto free_next;
  214. mutex_unlock_op(sbi, ilock);
  215. trace_f2fs_truncate_blocks_exit(inode, err);
  216. return err;
  217. }
  218. if (IS_INODE(dn.node_page))
  219. count = ADDRS_PER_INODE;
  220. else
  221. count = ADDRS_PER_BLOCK;
  222. count -= dn.ofs_in_node;
  223. BUG_ON(count < 0);
  224. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  225. truncate_data_blocks_range(&dn, count);
  226. free_from += count;
  227. }
  228. f2fs_put_dnode(&dn);
  229. free_next:
  230. err = truncate_inode_blocks(inode, free_from);
  231. mutex_unlock_op(sbi, ilock);
  232. /* lastly zero out the first data page */
  233. truncate_partial_data_page(inode, from);
  234. trace_f2fs_truncate_blocks_exit(inode, err);
  235. return err;
  236. }
  237. void f2fs_truncate(struct inode *inode)
  238. {
  239. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  240. S_ISLNK(inode->i_mode)))
  241. return;
  242. trace_f2fs_truncate(inode);
  243. if (!truncate_blocks(inode, i_size_read(inode))) {
  244. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  245. mark_inode_dirty(inode);
  246. }
  247. }
  248. static int f2fs_getattr(struct vfsmount *mnt,
  249. struct dentry *dentry, struct kstat *stat)
  250. {
  251. struct inode *inode = dentry->d_inode;
  252. generic_fillattr(inode, stat);
  253. stat->blocks <<= 3;
  254. return 0;
  255. }
  256. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  257. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  258. {
  259. struct f2fs_inode_info *fi = F2FS_I(inode);
  260. unsigned int ia_valid = attr->ia_valid;
  261. if (ia_valid & ATTR_UID)
  262. inode->i_uid = attr->ia_uid;
  263. if (ia_valid & ATTR_GID)
  264. inode->i_gid = attr->ia_gid;
  265. if (ia_valid & ATTR_ATIME)
  266. inode->i_atime = timespec_trunc(attr->ia_atime,
  267. inode->i_sb->s_time_gran);
  268. if (ia_valid & ATTR_MTIME)
  269. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  270. inode->i_sb->s_time_gran);
  271. if (ia_valid & ATTR_CTIME)
  272. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  273. inode->i_sb->s_time_gran);
  274. if (ia_valid & ATTR_MODE) {
  275. umode_t mode = attr->ia_mode;
  276. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  277. mode &= ~S_ISGID;
  278. set_acl_inode(fi, mode);
  279. }
  280. }
  281. #else
  282. #define __setattr_copy setattr_copy
  283. #endif
  284. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  285. {
  286. struct inode *inode = dentry->d_inode;
  287. struct f2fs_inode_info *fi = F2FS_I(inode);
  288. int err;
  289. err = inode_change_ok(inode, attr);
  290. if (err)
  291. return err;
  292. if ((attr->ia_valid & ATTR_SIZE) &&
  293. attr->ia_size != i_size_read(inode)) {
  294. truncate_setsize(inode, attr->ia_size);
  295. f2fs_truncate(inode);
  296. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  297. }
  298. __setattr_copy(inode, attr);
  299. if (attr->ia_valid & ATTR_MODE) {
  300. err = f2fs_acl_chmod(inode);
  301. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  302. inode->i_mode = fi->i_acl_mode;
  303. clear_inode_flag(fi, FI_ACL_MODE);
  304. }
  305. }
  306. mark_inode_dirty(inode);
  307. return err;
  308. }
  309. const struct inode_operations f2fs_file_inode_operations = {
  310. .getattr = f2fs_getattr,
  311. .setattr = f2fs_setattr,
  312. .get_acl = f2fs_get_acl,
  313. #ifdef CONFIG_F2FS_FS_XATTR
  314. .setxattr = generic_setxattr,
  315. .getxattr = generic_getxattr,
  316. .listxattr = f2fs_listxattr,
  317. .removexattr = generic_removexattr,
  318. #endif
  319. };
  320. static void fill_zero(struct inode *inode, pgoff_t index,
  321. loff_t start, loff_t len)
  322. {
  323. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  324. struct page *page;
  325. int ilock;
  326. if (!len)
  327. return;
  328. f2fs_balance_fs(sbi);
  329. ilock = mutex_lock_op(sbi);
  330. page = get_new_data_page(inode, index, false);
  331. mutex_unlock_op(sbi, ilock);
  332. if (!IS_ERR(page)) {
  333. wait_on_page_writeback(page);
  334. zero_user(page, start, len);
  335. set_page_dirty(page);
  336. f2fs_put_page(page, 1);
  337. }
  338. }
  339. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  340. {
  341. pgoff_t index;
  342. int err;
  343. for (index = pg_start; index < pg_end; index++) {
  344. struct dnode_of_data dn;
  345. set_new_dnode(&dn, inode, NULL, NULL, 0);
  346. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  347. if (err) {
  348. if (err == -ENOENT)
  349. continue;
  350. return err;
  351. }
  352. if (dn.data_blkaddr != NULL_ADDR)
  353. truncate_data_blocks_range(&dn, 1);
  354. f2fs_put_dnode(&dn);
  355. }
  356. return 0;
  357. }
  358. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  359. {
  360. pgoff_t pg_start, pg_end;
  361. loff_t off_start, off_end;
  362. int ret = 0;
  363. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  364. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  365. off_start = offset & (PAGE_CACHE_SIZE - 1);
  366. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  367. if (pg_start == pg_end) {
  368. fill_zero(inode, pg_start, off_start,
  369. off_end - off_start);
  370. } else {
  371. if (off_start)
  372. fill_zero(inode, pg_start++, off_start,
  373. PAGE_CACHE_SIZE - off_start);
  374. if (off_end)
  375. fill_zero(inode, pg_end, 0, off_end);
  376. if (pg_start < pg_end) {
  377. struct address_space *mapping = inode->i_mapping;
  378. loff_t blk_start, blk_end;
  379. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  380. int ilock;
  381. f2fs_balance_fs(sbi);
  382. blk_start = pg_start << PAGE_CACHE_SHIFT;
  383. blk_end = pg_end << PAGE_CACHE_SHIFT;
  384. truncate_inode_pages_range(mapping, blk_start,
  385. blk_end - 1);
  386. ilock = mutex_lock_op(sbi);
  387. ret = truncate_hole(inode, pg_start, pg_end);
  388. mutex_unlock_op(sbi, ilock);
  389. }
  390. }
  391. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  392. i_size_read(inode) <= (offset + len)) {
  393. i_size_write(inode, offset);
  394. mark_inode_dirty(inode);
  395. }
  396. return ret;
  397. }
  398. static int expand_inode_data(struct inode *inode, loff_t offset,
  399. loff_t len, int mode)
  400. {
  401. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  402. pgoff_t index, pg_start, pg_end;
  403. loff_t new_size = i_size_read(inode);
  404. loff_t off_start, off_end;
  405. int ret = 0;
  406. ret = inode_newsize_ok(inode, (len + offset));
  407. if (ret)
  408. return ret;
  409. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  410. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  411. off_start = offset & (PAGE_CACHE_SIZE - 1);
  412. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  413. for (index = pg_start; index <= pg_end; index++) {
  414. struct dnode_of_data dn;
  415. int ilock;
  416. ilock = mutex_lock_op(sbi);
  417. set_new_dnode(&dn, inode, NULL, NULL, 0);
  418. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  419. if (ret) {
  420. mutex_unlock_op(sbi, ilock);
  421. break;
  422. }
  423. if (dn.data_blkaddr == NULL_ADDR) {
  424. ret = reserve_new_block(&dn);
  425. if (ret) {
  426. f2fs_put_dnode(&dn);
  427. mutex_unlock_op(sbi, ilock);
  428. break;
  429. }
  430. }
  431. f2fs_put_dnode(&dn);
  432. mutex_unlock_op(sbi, ilock);
  433. if (pg_start == pg_end)
  434. new_size = offset + len;
  435. else if (index == pg_start && off_start)
  436. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  437. else if (index == pg_end)
  438. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  439. else
  440. new_size += PAGE_CACHE_SIZE;
  441. }
  442. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  443. i_size_read(inode) < new_size) {
  444. i_size_write(inode, new_size);
  445. mark_inode_dirty(inode);
  446. }
  447. return ret;
  448. }
  449. static long f2fs_fallocate(struct file *file, int mode,
  450. loff_t offset, loff_t len)
  451. {
  452. struct inode *inode = file_inode(file);
  453. long ret;
  454. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  455. return -EOPNOTSUPP;
  456. if (mode & FALLOC_FL_PUNCH_HOLE)
  457. ret = punch_hole(inode, offset, len, mode);
  458. else
  459. ret = expand_inode_data(inode, offset, len, mode);
  460. if (!ret) {
  461. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  462. mark_inode_dirty(inode);
  463. }
  464. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  465. return ret;
  466. }
  467. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  468. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  469. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  470. {
  471. if (S_ISDIR(mode))
  472. return flags;
  473. else if (S_ISREG(mode))
  474. return flags & F2FS_REG_FLMASK;
  475. else
  476. return flags & F2FS_OTHER_FLMASK;
  477. }
  478. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  479. {
  480. struct inode *inode = file_inode(filp);
  481. struct f2fs_inode_info *fi = F2FS_I(inode);
  482. unsigned int flags;
  483. int ret;
  484. switch (cmd) {
  485. case FS_IOC_GETFLAGS:
  486. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  487. return put_user(flags, (int __user *) arg);
  488. case FS_IOC_SETFLAGS:
  489. {
  490. unsigned int oldflags;
  491. ret = mnt_want_write_file(filp);
  492. if (ret)
  493. return ret;
  494. if (!inode_owner_or_capable(inode)) {
  495. ret = -EACCES;
  496. goto out;
  497. }
  498. if (get_user(flags, (int __user *) arg)) {
  499. ret = -EFAULT;
  500. goto out;
  501. }
  502. flags = f2fs_mask_flags(inode->i_mode, flags);
  503. mutex_lock(&inode->i_mutex);
  504. oldflags = fi->i_flags;
  505. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  506. if (!capable(CAP_LINUX_IMMUTABLE)) {
  507. mutex_unlock(&inode->i_mutex);
  508. ret = -EPERM;
  509. goto out;
  510. }
  511. }
  512. flags = flags & FS_FL_USER_MODIFIABLE;
  513. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  514. fi->i_flags = flags;
  515. mutex_unlock(&inode->i_mutex);
  516. f2fs_set_inode_flags(inode);
  517. inode->i_ctime = CURRENT_TIME;
  518. mark_inode_dirty(inode);
  519. out:
  520. mnt_drop_write_file(filp);
  521. return ret;
  522. }
  523. default:
  524. return -ENOTTY;
  525. }
  526. }
  527. #ifdef CONFIG_COMPAT
  528. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  529. {
  530. switch (cmd) {
  531. case F2FS_IOC32_GETFLAGS:
  532. cmd = F2FS_IOC_GETFLAGS;
  533. break;
  534. case F2FS_IOC32_SETFLAGS:
  535. cmd = F2FS_IOC_SETFLAGS;
  536. break;
  537. default:
  538. return -ENOIOCTLCMD;
  539. }
  540. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  541. }
  542. #endif
  543. const struct file_operations f2fs_file_operations = {
  544. .llseek = generic_file_llseek,
  545. .read = do_sync_read,
  546. .write = do_sync_write,
  547. .aio_read = generic_file_aio_read,
  548. .aio_write = generic_file_aio_write,
  549. .open = generic_file_open,
  550. .mmap = f2fs_file_mmap,
  551. .fsync = f2fs_sync_file,
  552. .fallocate = f2fs_fallocate,
  553. .unlocked_ioctl = f2fs_ioctl,
  554. #ifdef CONFIG_COMPAT
  555. .compat_ioctl = f2fs_compat_ioctl,
  556. #endif
  557. .splice_read = generic_file_splice_read,
  558. .splice_write = generic_file_splice_write,
  559. };