data.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include <trace/events/f2fs.h>
  25. /*
  26. * Lock ordering for the change of data block address:
  27. * ->data_page
  28. * ->node_page
  29. * update block addresses in the node page
  30. */
  31. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  32. {
  33. struct f2fs_node *rn;
  34. __le32 *addr_array;
  35. struct page *node_page = dn->node_page;
  36. unsigned int ofs_in_node = dn->ofs_in_node;
  37. wait_on_page_writeback(node_page);
  38. rn = (struct f2fs_node *)page_address(node_page);
  39. /* Get physical address of data block */
  40. addr_array = blkaddr_in_node(rn);
  41. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  42. set_page_dirty(node_page);
  43. }
  44. int reserve_new_block(struct dnode_of_data *dn)
  45. {
  46. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  47. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  48. return -EPERM;
  49. if (!inc_valid_block_count(sbi, dn->inode, 1))
  50. return -ENOSPC;
  51. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  52. __set_data_blkaddr(dn, NEW_ADDR);
  53. dn->data_blkaddr = NEW_ADDR;
  54. sync_inode_page(dn);
  55. return 0;
  56. }
  57. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  58. struct buffer_head *bh_result)
  59. {
  60. struct f2fs_inode_info *fi = F2FS_I(inode);
  61. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  62. pgoff_t start_fofs, end_fofs;
  63. block_t start_blkaddr;
  64. read_lock(&fi->ext.ext_lock);
  65. if (fi->ext.len == 0) {
  66. read_unlock(&fi->ext.ext_lock);
  67. return 0;
  68. }
  69. sbi->total_hit_ext++;
  70. start_fofs = fi->ext.fofs;
  71. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  72. start_blkaddr = fi->ext.blk_addr;
  73. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  74. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  75. size_t count;
  76. clear_buffer_new(bh_result);
  77. map_bh(bh_result, inode->i_sb,
  78. start_blkaddr + pgofs - start_fofs);
  79. count = end_fofs - pgofs + 1;
  80. if (count < (UINT_MAX >> blkbits))
  81. bh_result->b_size = (count << blkbits);
  82. else
  83. bh_result->b_size = UINT_MAX;
  84. sbi->read_hit_ext++;
  85. read_unlock(&fi->ext.ext_lock);
  86. return 1;
  87. }
  88. read_unlock(&fi->ext.ext_lock);
  89. return 0;
  90. }
  91. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  92. {
  93. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  94. pgoff_t fofs, start_fofs, end_fofs;
  95. block_t start_blkaddr, end_blkaddr;
  96. BUG_ON(blk_addr == NEW_ADDR);
  97. fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
  98. /* Update the page address in the parent node */
  99. __set_data_blkaddr(dn, blk_addr);
  100. write_lock(&fi->ext.ext_lock);
  101. start_fofs = fi->ext.fofs;
  102. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  103. start_blkaddr = fi->ext.blk_addr;
  104. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  105. /* Drop and initialize the matched extent */
  106. if (fi->ext.len == 1 && fofs == start_fofs)
  107. fi->ext.len = 0;
  108. /* Initial extent */
  109. if (fi->ext.len == 0) {
  110. if (blk_addr != NULL_ADDR) {
  111. fi->ext.fofs = fofs;
  112. fi->ext.blk_addr = blk_addr;
  113. fi->ext.len = 1;
  114. }
  115. goto end_update;
  116. }
  117. /* Front merge */
  118. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  119. fi->ext.fofs--;
  120. fi->ext.blk_addr--;
  121. fi->ext.len++;
  122. goto end_update;
  123. }
  124. /* Back merge */
  125. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  126. fi->ext.len++;
  127. goto end_update;
  128. }
  129. /* Split the existing extent */
  130. if (fi->ext.len > 1 &&
  131. fofs >= start_fofs && fofs <= end_fofs) {
  132. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  133. fi->ext.len = fofs - start_fofs;
  134. } else {
  135. fi->ext.fofs = fofs + 1;
  136. fi->ext.blk_addr = start_blkaddr +
  137. fofs - start_fofs + 1;
  138. fi->ext.len -= fofs - start_fofs + 1;
  139. }
  140. goto end_update;
  141. }
  142. write_unlock(&fi->ext.ext_lock);
  143. return;
  144. end_update:
  145. write_unlock(&fi->ext.ext_lock);
  146. sync_inode_page(dn);
  147. return;
  148. }
  149. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  150. {
  151. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  152. struct address_space *mapping = inode->i_mapping;
  153. struct dnode_of_data dn;
  154. struct page *page;
  155. int err;
  156. page = find_get_page(mapping, index);
  157. if (page && PageUptodate(page))
  158. return page;
  159. f2fs_put_page(page, 0);
  160. set_new_dnode(&dn, inode, NULL, NULL, 0);
  161. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  162. if (err)
  163. return ERR_PTR(err);
  164. f2fs_put_dnode(&dn);
  165. if (dn.data_blkaddr == NULL_ADDR)
  166. return ERR_PTR(-ENOENT);
  167. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  168. if (dn.data_blkaddr == NEW_ADDR)
  169. return ERR_PTR(-EINVAL);
  170. page = grab_cache_page(mapping, index);
  171. if (!page)
  172. return ERR_PTR(-ENOMEM);
  173. if (PageUptodate(page)) {
  174. unlock_page(page);
  175. return page;
  176. }
  177. err = f2fs_readpage(sbi, page, dn.data_blkaddr,
  178. sync ? READ_SYNC : READA);
  179. if (sync) {
  180. wait_on_page_locked(page);
  181. if (!PageUptodate(page)) {
  182. f2fs_put_page(page, 0);
  183. return ERR_PTR(-EIO);
  184. }
  185. }
  186. return page;
  187. }
  188. /*
  189. * If it tries to access a hole, return an error.
  190. * Because, the callers, functions in dir.c and GC, should be able to know
  191. * whether this page exists or not.
  192. */
  193. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  194. {
  195. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  196. struct address_space *mapping = inode->i_mapping;
  197. struct dnode_of_data dn;
  198. struct page *page;
  199. int err;
  200. set_new_dnode(&dn, inode, NULL, NULL, 0);
  201. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  202. if (err)
  203. return ERR_PTR(err);
  204. f2fs_put_dnode(&dn);
  205. if (dn.data_blkaddr == NULL_ADDR)
  206. return ERR_PTR(-ENOENT);
  207. repeat:
  208. page = grab_cache_page(mapping, index);
  209. if (!page)
  210. return ERR_PTR(-ENOMEM);
  211. if (PageUptodate(page))
  212. return page;
  213. BUG_ON(dn.data_blkaddr == NEW_ADDR);
  214. BUG_ON(dn.data_blkaddr == NULL_ADDR);
  215. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  216. if (err)
  217. return ERR_PTR(err);
  218. lock_page(page);
  219. if (!PageUptodate(page)) {
  220. f2fs_put_page(page, 1);
  221. return ERR_PTR(-EIO);
  222. }
  223. if (page->mapping != mapping) {
  224. f2fs_put_page(page, 1);
  225. goto repeat;
  226. }
  227. return page;
  228. }
  229. /*
  230. * Caller ensures that this data page is never allocated.
  231. * A new zero-filled data page is allocated in the page cache.
  232. *
  233. * Also, caller should grab and release a mutex by calling mutex_lock_op() and
  234. * mutex_unlock_op().
  235. */
  236. struct page *get_new_data_page(struct inode *inode, pgoff_t index,
  237. bool new_i_size)
  238. {
  239. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  240. struct address_space *mapping = inode->i_mapping;
  241. struct page *page;
  242. struct dnode_of_data dn;
  243. int err;
  244. set_new_dnode(&dn, inode, NULL, NULL, 0);
  245. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  246. if (err)
  247. return ERR_PTR(err);
  248. if (dn.data_blkaddr == NULL_ADDR) {
  249. if (reserve_new_block(&dn)) {
  250. f2fs_put_dnode(&dn);
  251. return ERR_PTR(-ENOSPC);
  252. }
  253. }
  254. f2fs_put_dnode(&dn);
  255. repeat:
  256. page = grab_cache_page(mapping, index);
  257. if (!page)
  258. return ERR_PTR(-ENOMEM);
  259. if (PageUptodate(page))
  260. return page;
  261. if (dn.data_blkaddr == NEW_ADDR) {
  262. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  263. SetPageUptodate(page);
  264. } else {
  265. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  266. if (err)
  267. return ERR_PTR(err);
  268. lock_page(page);
  269. if (!PageUptodate(page)) {
  270. f2fs_put_page(page, 1);
  271. return ERR_PTR(-EIO);
  272. }
  273. if (page->mapping != mapping) {
  274. f2fs_put_page(page, 1);
  275. goto repeat;
  276. }
  277. }
  278. if (new_i_size &&
  279. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  280. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  281. mark_inode_dirty_sync(inode);
  282. }
  283. return page;
  284. }
  285. static void read_end_io(struct bio *bio, int err)
  286. {
  287. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  288. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  289. do {
  290. struct page *page = bvec->bv_page;
  291. if (--bvec >= bio->bi_io_vec)
  292. prefetchw(&bvec->bv_page->flags);
  293. if (uptodate) {
  294. SetPageUptodate(page);
  295. } else {
  296. ClearPageUptodate(page);
  297. SetPageError(page);
  298. }
  299. unlock_page(page);
  300. } while (bvec >= bio->bi_io_vec);
  301. kfree(bio->bi_private);
  302. bio_put(bio);
  303. }
  304. /*
  305. * Fill the locked page with data located in the block address.
  306. * Return unlocked page.
  307. */
  308. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  309. block_t blk_addr, int type)
  310. {
  311. struct block_device *bdev = sbi->sb->s_bdev;
  312. struct bio *bio;
  313. trace_f2fs_readpage(page, blk_addr, type);
  314. down_read(&sbi->bio_sem);
  315. /* Allocate a new bio */
  316. bio = f2fs_bio_alloc(bdev, 1);
  317. /* Initialize the bio */
  318. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  319. bio->bi_end_io = read_end_io;
  320. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  321. kfree(bio->bi_private);
  322. bio_put(bio);
  323. up_read(&sbi->bio_sem);
  324. f2fs_put_page(page, 1);
  325. return -EFAULT;
  326. }
  327. submit_bio(type, bio);
  328. up_read(&sbi->bio_sem);
  329. return 0;
  330. }
  331. /*
  332. * This function should be used by the data read flow only where it
  333. * does not check the "create" flag that indicates block allocation.
  334. * The reason for this special functionality is to exploit VFS readahead
  335. * mechanism.
  336. */
  337. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  338. struct buffer_head *bh_result, int create)
  339. {
  340. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  341. unsigned maxblocks = bh_result->b_size >> blkbits;
  342. struct dnode_of_data dn;
  343. pgoff_t pgofs;
  344. int err;
  345. /* Get the page offset from the block offset(iblock) */
  346. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  347. if (check_extent_cache(inode, pgofs, bh_result)) {
  348. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  349. return 0;
  350. }
  351. /* When reading holes, we need its node page */
  352. set_new_dnode(&dn, inode, NULL, NULL, 0);
  353. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  354. if (err) {
  355. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  356. return (err == -ENOENT) ? 0 : err;
  357. }
  358. /* It does not support data allocation */
  359. BUG_ON(create);
  360. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  361. int i;
  362. unsigned int end_offset;
  363. end_offset = IS_INODE(dn.node_page) ?
  364. ADDRS_PER_INODE :
  365. ADDRS_PER_BLOCK;
  366. clear_buffer_new(bh_result);
  367. /* Give more consecutive addresses for the read ahead */
  368. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  369. if (((datablock_addr(dn.node_page,
  370. dn.ofs_in_node + i))
  371. != (dn.data_blkaddr + i)) || maxblocks == i)
  372. break;
  373. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  374. bh_result->b_size = (i << blkbits);
  375. }
  376. f2fs_put_dnode(&dn);
  377. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  378. return 0;
  379. }
  380. static int f2fs_read_data_page(struct file *file, struct page *page)
  381. {
  382. return mpage_readpage(page, get_data_block_ro);
  383. }
  384. static int f2fs_read_data_pages(struct file *file,
  385. struct address_space *mapping,
  386. struct list_head *pages, unsigned nr_pages)
  387. {
  388. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  389. }
  390. int do_write_data_page(struct page *page)
  391. {
  392. struct inode *inode = page->mapping->host;
  393. block_t old_blk_addr, new_blk_addr;
  394. struct dnode_of_data dn;
  395. int err = 0;
  396. set_new_dnode(&dn, inode, NULL, NULL, 0);
  397. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  398. if (err)
  399. return err;
  400. old_blk_addr = dn.data_blkaddr;
  401. /* This page is already truncated */
  402. if (old_blk_addr == NULL_ADDR)
  403. goto out_writepage;
  404. set_page_writeback(page);
  405. /*
  406. * If current allocation needs SSR,
  407. * it had better in-place writes for updated data.
  408. */
  409. if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
  410. need_inplace_update(inode)) {
  411. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  412. old_blk_addr);
  413. } else {
  414. write_data_page(inode, page, &dn,
  415. old_blk_addr, &new_blk_addr);
  416. update_extent_cache(new_blk_addr, &dn);
  417. }
  418. out_writepage:
  419. f2fs_put_dnode(&dn);
  420. return err;
  421. }
  422. static int f2fs_write_data_page(struct page *page,
  423. struct writeback_control *wbc)
  424. {
  425. struct inode *inode = page->mapping->host;
  426. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  427. loff_t i_size = i_size_read(inode);
  428. const pgoff_t end_index = ((unsigned long long) i_size)
  429. >> PAGE_CACHE_SHIFT;
  430. unsigned offset;
  431. bool need_balance_fs = false;
  432. int err = 0;
  433. if (page->index < end_index)
  434. goto write;
  435. /*
  436. * If the offset is out-of-range of file size,
  437. * this page does not have to be written to disk.
  438. */
  439. offset = i_size & (PAGE_CACHE_SIZE - 1);
  440. if ((page->index >= end_index + 1) || !offset) {
  441. if (S_ISDIR(inode->i_mode)) {
  442. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  443. inode_dec_dirty_dents(inode);
  444. }
  445. goto out;
  446. }
  447. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  448. write:
  449. if (sbi->por_doing) {
  450. err = AOP_WRITEPAGE_ACTIVATE;
  451. goto redirty_out;
  452. }
  453. /* Dentry blocks are controlled by checkpoint */
  454. if (S_ISDIR(inode->i_mode)) {
  455. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  456. inode_dec_dirty_dents(inode);
  457. err = do_write_data_page(page);
  458. } else {
  459. int ilock = mutex_lock_op(sbi);
  460. err = do_write_data_page(page);
  461. mutex_unlock_op(sbi, ilock);
  462. need_balance_fs = true;
  463. }
  464. if (err == -ENOENT)
  465. goto out;
  466. else if (err)
  467. goto redirty_out;
  468. if (wbc->for_reclaim)
  469. f2fs_submit_bio(sbi, DATA, true);
  470. clear_cold_data(page);
  471. out:
  472. unlock_page(page);
  473. if (need_balance_fs)
  474. f2fs_balance_fs(sbi);
  475. return 0;
  476. redirty_out:
  477. wbc->pages_skipped++;
  478. set_page_dirty(page);
  479. return err;
  480. }
  481. #define MAX_DESIRED_PAGES_WP 4096
  482. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  483. void *data)
  484. {
  485. struct address_space *mapping = data;
  486. int ret = mapping->a_ops->writepage(page, wbc);
  487. mapping_set_error(mapping, ret);
  488. return ret;
  489. }
  490. static int f2fs_write_data_pages(struct address_space *mapping,
  491. struct writeback_control *wbc)
  492. {
  493. struct inode *inode = mapping->host;
  494. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  495. bool locked = false;
  496. int ret;
  497. long excess_nrtw = 0, desired_nrtw;
  498. /* deal with chardevs and other special file */
  499. if (!mapping->a_ops->writepage)
  500. return 0;
  501. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  502. desired_nrtw = MAX_DESIRED_PAGES_WP;
  503. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  504. wbc->nr_to_write = desired_nrtw;
  505. }
  506. if (!S_ISDIR(inode->i_mode)) {
  507. mutex_lock(&sbi->writepages);
  508. locked = true;
  509. }
  510. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  511. if (locked)
  512. mutex_unlock(&sbi->writepages);
  513. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  514. remove_dirty_dir_inode(inode);
  515. wbc->nr_to_write -= excess_nrtw;
  516. return ret;
  517. }
  518. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  519. loff_t pos, unsigned len, unsigned flags,
  520. struct page **pagep, void **fsdata)
  521. {
  522. struct inode *inode = mapping->host;
  523. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  524. struct page *page;
  525. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  526. struct dnode_of_data dn;
  527. int err = 0;
  528. int ilock;
  529. /* for nobh_write_end */
  530. *fsdata = NULL;
  531. f2fs_balance_fs(sbi);
  532. repeat:
  533. page = grab_cache_page_write_begin(mapping, index, flags);
  534. if (!page)
  535. return -ENOMEM;
  536. *pagep = page;
  537. ilock = mutex_lock_op(sbi);
  538. set_new_dnode(&dn, inode, NULL, NULL, 0);
  539. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  540. if (err)
  541. goto err;
  542. if (dn.data_blkaddr == NULL_ADDR)
  543. err = reserve_new_block(&dn);
  544. f2fs_put_dnode(&dn);
  545. if (err)
  546. goto err;
  547. mutex_unlock_op(sbi, ilock);
  548. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  549. return 0;
  550. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  551. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  552. unsigned end = start + len;
  553. /* Reading beyond i_size is simple: memset to zero */
  554. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  555. goto out;
  556. }
  557. if (dn.data_blkaddr == NEW_ADDR) {
  558. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  559. } else {
  560. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  561. if (err)
  562. return err;
  563. lock_page(page);
  564. if (!PageUptodate(page)) {
  565. f2fs_put_page(page, 1);
  566. return -EIO;
  567. }
  568. if (page->mapping != mapping) {
  569. f2fs_put_page(page, 1);
  570. goto repeat;
  571. }
  572. }
  573. out:
  574. SetPageUptodate(page);
  575. clear_cold_data(page);
  576. return 0;
  577. err:
  578. mutex_unlock_op(sbi, ilock);
  579. f2fs_put_page(page, 1);
  580. return err;
  581. }
  582. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  583. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  584. {
  585. struct file *file = iocb->ki_filp;
  586. struct inode *inode = file->f_mapping->host;
  587. if (rw == WRITE)
  588. return 0;
  589. /* Needs synchronization with the cleaner */
  590. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  591. get_data_block_ro);
  592. }
  593. static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
  594. {
  595. struct inode *inode = page->mapping->host;
  596. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  597. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  598. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  599. inode_dec_dirty_dents(inode);
  600. }
  601. ClearPagePrivate(page);
  602. }
  603. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  604. {
  605. ClearPagePrivate(page);
  606. return 1;
  607. }
  608. static int f2fs_set_data_page_dirty(struct page *page)
  609. {
  610. struct address_space *mapping = page->mapping;
  611. struct inode *inode = mapping->host;
  612. SetPageUptodate(page);
  613. if (!PageDirty(page)) {
  614. __set_page_dirty_nobuffers(page);
  615. set_dirty_dir_page(inode, page);
  616. return 1;
  617. }
  618. return 0;
  619. }
  620. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  621. {
  622. return generic_block_bmap(mapping, block, get_data_block_ro);
  623. }
  624. const struct address_space_operations f2fs_dblock_aops = {
  625. .readpage = f2fs_read_data_page,
  626. .readpages = f2fs_read_data_pages,
  627. .writepage = f2fs_write_data_page,
  628. .writepages = f2fs_write_data_pages,
  629. .write_begin = f2fs_write_begin,
  630. .write_end = nobh_write_end,
  631. .set_page_dirty = f2fs_set_data_page_dirty,
  632. .invalidatepage = f2fs_invalidate_data_page,
  633. .releasepage = f2fs_release_data_page,
  634. .direct_IO = f2fs_direct_IO,
  635. .bmap = f2fs_bmap,
  636. };