amba-pl011.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288
  1. /*
  2. * Driver for AMBA serial ports
  3. *
  4. * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
  5. *
  6. * Copyright 1999 ARM Limited
  7. * Copyright (C) 2000 Deep Blue Solutions Ltd.
  8. * Copyright (C) 2010 ST-Ericsson SA
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. *
  24. * This is a generic driver for ARM AMBA-type serial ports. They
  25. * have a lot of 16550-like features, but are not register compatible.
  26. * Note that although they do have CTS, DCD and DSR inputs, they do
  27. * not have an RI input, nor do they have DTR or RTS outputs. If
  28. * required, these have to be supplied via some other means (eg, GPIO)
  29. * and hooked into this driver.
  30. */
  31. #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  32. #define SUPPORT_SYSRQ
  33. #endif
  34. #include <linux/module.h>
  35. #include <linux/ioport.h>
  36. #include <linux/init.h>
  37. #include <linux/console.h>
  38. #include <linux/sysrq.h>
  39. #include <linux/device.h>
  40. #include <linux/tty.h>
  41. #include <linux/tty_flip.h>
  42. #include <linux/serial_core.h>
  43. #include <linux/serial.h>
  44. #include <linux/amba/bus.h>
  45. #include <linux/amba/serial.h>
  46. #include <linux/clk.h>
  47. #include <linux/slab.h>
  48. #include <linux/dmaengine.h>
  49. #include <linux/dma-mapping.h>
  50. #include <linux/scatterlist.h>
  51. #include <linux/delay.h>
  52. #include <linux/types.h>
  53. #include <linux/of.h>
  54. #include <linux/of_device.h>
  55. #include <linux/pinctrl/consumer.h>
  56. #include <linux/sizes.h>
  57. #include <linux/io.h>
  58. #define UART_NR 14
  59. #define SERIAL_AMBA_MAJOR 204
  60. #define SERIAL_AMBA_MINOR 64
  61. #define SERIAL_AMBA_NR UART_NR
  62. #define AMBA_ISR_PASS_LIMIT 256
  63. #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  64. #define UART_DUMMY_DR_RX (1 << 16)
  65. /* There is by now at least one vendor with differing details, so handle it */
  66. struct vendor_data {
  67. unsigned int ifls;
  68. unsigned int lcrh_tx;
  69. unsigned int lcrh_rx;
  70. bool oversampling;
  71. bool dma_threshold;
  72. bool cts_event_workaround;
  73. unsigned int (*get_fifosize)(unsigned int periphid);
  74. };
  75. static unsigned int get_fifosize_arm(unsigned int periphid)
  76. {
  77. unsigned int rev = (periphid >> 20) & 0xf;
  78. return rev < 3 ? 16 : 32;
  79. }
  80. static struct vendor_data vendor_arm = {
  81. .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
  82. .lcrh_tx = UART011_LCRH,
  83. .lcrh_rx = UART011_LCRH,
  84. .oversampling = false,
  85. .dma_threshold = false,
  86. .cts_event_workaround = false,
  87. .get_fifosize = get_fifosize_arm,
  88. };
  89. static unsigned int get_fifosize_st(unsigned int periphid)
  90. {
  91. return 64;
  92. }
  93. static struct vendor_data vendor_st = {
  94. .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
  95. .lcrh_tx = ST_UART011_LCRH_TX,
  96. .lcrh_rx = ST_UART011_LCRH_RX,
  97. .oversampling = true,
  98. .dma_threshold = true,
  99. .cts_event_workaround = true,
  100. .get_fifosize = get_fifosize_st,
  101. };
  102. static struct uart_amba_port *amba_ports[UART_NR];
  103. /* Deals with DMA transactions */
  104. struct pl011_sgbuf {
  105. struct scatterlist sg;
  106. char *buf;
  107. };
  108. struct pl011_dmarx_data {
  109. struct dma_chan *chan;
  110. struct completion complete;
  111. bool use_buf_b;
  112. struct pl011_sgbuf sgbuf_a;
  113. struct pl011_sgbuf sgbuf_b;
  114. dma_cookie_t cookie;
  115. bool running;
  116. struct timer_list timer;
  117. unsigned int last_residue;
  118. unsigned long last_jiffies;
  119. bool auto_poll_rate;
  120. unsigned int poll_rate;
  121. unsigned int poll_timeout;
  122. };
  123. struct pl011_dmatx_data {
  124. struct dma_chan *chan;
  125. struct scatterlist sg;
  126. char *buf;
  127. bool queued;
  128. };
  129. /*
  130. * We wrap our port structure around the generic uart_port.
  131. */
  132. struct uart_amba_port {
  133. struct uart_port port;
  134. struct clk *clk;
  135. /* Two optional pin states - default & sleep */
  136. struct pinctrl *pinctrl;
  137. struct pinctrl_state *pins_default;
  138. struct pinctrl_state *pins_sleep;
  139. const struct vendor_data *vendor;
  140. unsigned int dmacr; /* dma control reg */
  141. unsigned int im; /* interrupt mask */
  142. unsigned int old_status;
  143. unsigned int fifosize; /* vendor-specific */
  144. unsigned int lcrh_tx; /* vendor-specific */
  145. unsigned int lcrh_rx; /* vendor-specific */
  146. unsigned int old_cr; /* state during shutdown */
  147. bool autorts;
  148. char type[12];
  149. #ifdef CONFIG_DMA_ENGINE
  150. /* DMA stuff */
  151. bool using_tx_dma;
  152. bool using_rx_dma;
  153. struct pl011_dmarx_data dmarx;
  154. struct pl011_dmatx_data dmatx;
  155. #endif
  156. };
  157. /*
  158. * Reads up to 256 characters from the FIFO or until it's empty and
  159. * inserts them into the TTY layer. Returns the number of characters
  160. * read from the FIFO.
  161. */
  162. static int pl011_fifo_to_tty(struct uart_amba_port *uap)
  163. {
  164. u16 status, ch;
  165. unsigned int flag, max_count = 256;
  166. int fifotaken = 0;
  167. while (max_count--) {
  168. status = readw(uap->port.membase + UART01x_FR);
  169. if (status & UART01x_FR_RXFE)
  170. break;
  171. /* Take chars from the FIFO and update status */
  172. ch = readw(uap->port.membase + UART01x_DR) |
  173. UART_DUMMY_DR_RX;
  174. flag = TTY_NORMAL;
  175. uap->port.icount.rx++;
  176. fifotaken++;
  177. if (unlikely(ch & UART_DR_ERROR)) {
  178. if (ch & UART011_DR_BE) {
  179. ch &= ~(UART011_DR_FE | UART011_DR_PE);
  180. uap->port.icount.brk++;
  181. if (uart_handle_break(&uap->port))
  182. continue;
  183. } else if (ch & UART011_DR_PE)
  184. uap->port.icount.parity++;
  185. else if (ch & UART011_DR_FE)
  186. uap->port.icount.frame++;
  187. if (ch & UART011_DR_OE)
  188. uap->port.icount.overrun++;
  189. ch &= uap->port.read_status_mask;
  190. if (ch & UART011_DR_BE)
  191. flag = TTY_BREAK;
  192. else if (ch & UART011_DR_PE)
  193. flag = TTY_PARITY;
  194. else if (ch & UART011_DR_FE)
  195. flag = TTY_FRAME;
  196. }
  197. if (uart_handle_sysrq_char(&uap->port, ch & 255))
  198. continue;
  199. uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
  200. }
  201. return fifotaken;
  202. }
  203. /*
  204. * All the DMA operation mode stuff goes inside this ifdef.
  205. * This assumes that you have a generic DMA device interface,
  206. * no custom DMA interfaces are supported.
  207. */
  208. #ifdef CONFIG_DMA_ENGINE
  209. #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
  210. static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
  211. enum dma_data_direction dir)
  212. {
  213. dma_addr_t dma_addr;
  214. sg->buf = dma_alloc_coherent(chan->device->dev,
  215. PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
  216. if (!sg->buf)
  217. return -ENOMEM;
  218. sg_init_table(&sg->sg, 1);
  219. sg_set_page(&sg->sg, phys_to_page(dma_addr),
  220. PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
  221. sg_dma_address(&sg->sg) = dma_addr;
  222. return 0;
  223. }
  224. static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
  225. enum dma_data_direction dir)
  226. {
  227. if (sg->buf) {
  228. dma_free_coherent(chan->device->dev,
  229. PL011_DMA_BUFFER_SIZE, sg->buf,
  230. sg_dma_address(&sg->sg));
  231. }
  232. }
  233. static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
  234. {
  235. /* DMA is the sole user of the platform data right now */
  236. struct amba_pl011_data *plat = uap->port.dev->platform_data;
  237. struct dma_slave_config tx_conf = {
  238. .dst_addr = uap->port.mapbase + UART01x_DR,
  239. .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  240. .direction = DMA_MEM_TO_DEV,
  241. .dst_maxburst = uap->fifosize >> 1,
  242. .device_fc = false,
  243. };
  244. struct dma_chan *chan;
  245. dma_cap_mask_t mask;
  246. chan = dma_request_slave_channel(dev, "tx");
  247. if (!chan) {
  248. /* We need platform data */
  249. if (!plat || !plat->dma_filter) {
  250. dev_info(uap->port.dev, "no DMA platform data\n");
  251. return;
  252. }
  253. /* Try to acquire a generic DMA engine slave TX channel */
  254. dma_cap_zero(mask);
  255. dma_cap_set(DMA_SLAVE, mask);
  256. chan = dma_request_channel(mask, plat->dma_filter,
  257. plat->dma_tx_param);
  258. if (!chan) {
  259. dev_err(uap->port.dev, "no TX DMA channel!\n");
  260. return;
  261. }
  262. }
  263. dmaengine_slave_config(chan, &tx_conf);
  264. uap->dmatx.chan = chan;
  265. dev_info(uap->port.dev, "DMA channel TX %s\n",
  266. dma_chan_name(uap->dmatx.chan));
  267. /* Optionally make use of an RX channel as well */
  268. chan = dma_request_slave_channel(dev, "rx");
  269. if (!chan && plat->dma_rx_param) {
  270. chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
  271. if (!chan) {
  272. dev_err(uap->port.dev, "no RX DMA channel!\n");
  273. return;
  274. }
  275. }
  276. if (chan) {
  277. struct dma_slave_config rx_conf = {
  278. .src_addr = uap->port.mapbase + UART01x_DR,
  279. .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  280. .direction = DMA_DEV_TO_MEM,
  281. .src_maxburst = uap->fifosize >> 1,
  282. .device_fc = false,
  283. };
  284. dmaengine_slave_config(chan, &rx_conf);
  285. uap->dmarx.chan = chan;
  286. if (plat->dma_rx_poll_enable) {
  287. /* Set poll rate if specified. */
  288. if (plat->dma_rx_poll_rate) {
  289. uap->dmarx.auto_poll_rate = false;
  290. uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
  291. } else {
  292. /*
  293. * 100 ms defaults to poll rate if not
  294. * specified. This will be adjusted with
  295. * the baud rate at set_termios.
  296. */
  297. uap->dmarx.auto_poll_rate = true;
  298. uap->dmarx.poll_rate = 100;
  299. }
  300. /* 3 secs defaults poll_timeout if not specified. */
  301. if (plat->dma_rx_poll_timeout)
  302. uap->dmarx.poll_timeout =
  303. plat->dma_rx_poll_timeout;
  304. else
  305. uap->dmarx.poll_timeout = 3000;
  306. } else
  307. uap->dmarx.auto_poll_rate = false;
  308. dev_info(uap->port.dev, "DMA channel RX %s\n",
  309. dma_chan_name(uap->dmarx.chan));
  310. }
  311. }
  312. #ifndef MODULE
  313. /*
  314. * Stack up the UARTs and let the above initcall be done at device
  315. * initcall time, because the serial driver is called as an arch
  316. * initcall, and at this time the DMA subsystem is not yet registered.
  317. * At this point the driver will switch over to using DMA where desired.
  318. */
  319. struct dma_uap {
  320. struct list_head node;
  321. struct uart_amba_port *uap;
  322. struct device *dev;
  323. };
  324. static LIST_HEAD(pl011_dma_uarts);
  325. static int __init pl011_dma_initcall(void)
  326. {
  327. struct list_head *node, *tmp;
  328. list_for_each_safe(node, tmp, &pl011_dma_uarts) {
  329. struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
  330. pl011_dma_probe_initcall(dmau->dev, dmau->uap);
  331. list_del(node);
  332. kfree(dmau);
  333. }
  334. return 0;
  335. }
  336. device_initcall(pl011_dma_initcall);
  337. static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
  338. {
  339. struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
  340. if (dmau) {
  341. dmau->uap = uap;
  342. dmau->dev = dev;
  343. list_add_tail(&dmau->node, &pl011_dma_uarts);
  344. }
  345. }
  346. #else
  347. static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
  348. {
  349. pl011_dma_probe_initcall(dev, uap);
  350. }
  351. #endif
  352. static void pl011_dma_remove(struct uart_amba_port *uap)
  353. {
  354. /* TODO: remove the initcall if it has not yet executed */
  355. if (uap->dmatx.chan)
  356. dma_release_channel(uap->dmatx.chan);
  357. if (uap->dmarx.chan)
  358. dma_release_channel(uap->dmarx.chan);
  359. }
  360. /* Forward declare this for the refill routine */
  361. static int pl011_dma_tx_refill(struct uart_amba_port *uap);
  362. /*
  363. * The current DMA TX buffer has been sent.
  364. * Try to queue up another DMA buffer.
  365. */
  366. static void pl011_dma_tx_callback(void *data)
  367. {
  368. struct uart_amba_port *uap = data;
  369. struct pl011_dmatx_data *dmatx = &uap->dmatx;
  370. unsigned long flags;
  371. u16 dmacr;
  372. spin_lock_irqsave(&uap->port.lock, flags);
  373. if (uap->dmatx.queued)
  374. dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
  375. DMA_TO_DEVICE);
  376. dmacr = uap->dmacr;
  377. uap->dmacr = dmacr & ~UART011_TXDMAE;
  378. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  379. /*
  380. * If TX DMA was disabled, it means that we've stopped the DMA for
  381. * some reason (eg, XOFF received, or we want to send an X-char.)
  382. *
  383. * Note: we need to be careful here of a potential race between DMA
  384. * and the rest of the driver - if the driver disables TX DMA while
  385. * a TX buffer completing, we must update the tx queued status to
  386. * get further refills (hence we check dmacr).
  387. */
  388. if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
  389. uart_circ_empty(&uap->port.state->xmit)) {
  390. uap->dmatx.queued = false;
  391. spin_unlock_irqrestore(&uap->port.lock, flags);
  392. return;
  393. }
  394. if (pl011_dma_tx_refill(uap) <= 0) {
  395. /*
  396. * We didn't queue a DMA buffer for some reason, but we
  397. * have data pending to be sent. Re-enable the TX IRQ.
  398. */
  399. uap->im |= UART011_TXIM;
  400. writew(uap->im, uap->port.membase + UART011_IMSC);
  401. }
  402. spin_unlock_irqrestore(&uap->port.lock, flags);
  403. }
  404. /*
  405. * Try to refill the TX DMA buffer.
  406. * Locking: called with port lock held and IRQs disabled.
  407. * Returns:
  408. * 1 if we queued up a TX DMA buffer.
  409. * 0 if we didn't want to handle this by DMA
  410. * <0 on error
  411. */
  412. static int pl011_dma_tx_refill(struct uart_amba_port *uap)
  413. {
  414. struct pl011_dmatx_data *dmatx = &uap->dmatx;
  415. struct dma_chan *chan = dmatx->chan;
  416. struct dma_device *dma_dev = chan->device;
  417. struct dma_async_tx_descriptor *desc;
  418. struct circ_buf *xmit = &uap->port.state->xmit;
  419. unsigned int count;
  420. /*
  421. * Try to avoid the overhead involved in using DMA if the
  422. * transaction fits in the first half of the FIFO, by using
  423. * the standard interrupt handling. This ensures that we
  424. * issue a uart_write_wakeup() at the appropriate time.
  425. */
  426. count = uart_circ_chars_pending(xmit);
  427. if (count < (uap->fifosize >> 1)) {
  428. uap->dmatx.queued = false;
  429. return 0;
  430. }
  431. /*
  432. * Bodge: don't send the last character by DMA, as this
  433. * will prevent XON from notifying us to restart DMA.
  434. */
  435. count -= 1;
  436. /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
  437. if (count > PL011_DMA_BUFFER_SIZE)
  438. count = PL011_DMA_BUFFER_SIZE;
  439. if (xmit->tail < xmit->head)
  440. memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
  441. else {
  442. size_t first = UART_XMIT_SIZE - xmit->tail;
  443. size_t second = xmit->head;
  444. memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
  445. if (second)
  446. memcpy(&dmatx->buf[first], &xmit->buf[0], second);
  447. }
  448. dmatx->sg.length = count;
  449. if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
  450. uap->dmatx.queued = false;
  451. dev_dbg(uap->port.dev, "unable to map TX DMA\n");
  452. return -EBUSY;
  453. }
  454. desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
  455. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  456. if (!desc) {
  457. dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
  458. uap->dmatx.queued = false;
  459. /*
  460. * If DMA cannot be used right now, we complete this
  461. * transaction via IRQ and let the TTY layer retry.
  462. */
  463. dev_dbg(uap->port.dev, "TX DMA busy\n");
  464. return -EBUSY;
  465. }
  466. /* Some data to go along to the callback */
  467. desc->callback = pl011_dma_tx_callback;
  468. desc->callback_param = uap;
  469. /* All errors should happen at prepare time */
  470. dmaengine_submit(desc);
  471. /* Fire the DMA transaction */
  472. dma_dev->device_issue_pending(chan);
  473. uap->dmacr |= UART011_TXDMAE;
  474. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  475. uap->dmatx.queued = true;
  476. /*
  477. * Now we know that DMA will fire, so advance the ring buffer
  478. * with the stuff we just dispatched.
  479. */
  480. xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
  481. uap->port.icount.tx += count;
  482. if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
  483. uart_write_wakeup(&uap->port);
  484. return 1;
  485. }
  486. /*
  487. * We received a transmit interrupt without a pending X-char but with
  488. * pending characters.
  489. * Locking: called with port lock held and IRQs disabled.
  490. * Returns:
  491. * false if we want to use PIO to transmit
  492. * true if we queued a DMA buffer
  493. */
  494. static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
  495. {
  496. if (!uap->using_tx_dma)
  497. return false;
  498. /*
  499. * If we already have a TX buffer queued, but received a
  500. * TX interrupt, it will be because we've just sent an X-char.
  501. * Ensure the TX DMA is enabled and the TX IRQ is disabled.
  502. */
  503. if (uap->dmatx.queued) {
  504. uap->dmacr |= UART011_TXDMAE;
  505. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  506. uap->im &= ~UART011_TXIM;
  507. writew(uap->im, uap->port.membase + UART011_IMSC);
  508. return true;
  509. }
  510. /*
  511. * We don't have a TX buffer queued, so try to queue one.
  512. * If we successfully queued a buffer, mask the TX IRQ.
  513. */
  514. if (pl011_dma_tx_refill(uap) > 0) {
  515. uap->im &= ~UART011_TXIM;
  516. writew(uap->im, uap->port.membase + UART011_IMSC);
  517. return true;
  518. }
  519. return false;
  520. }
  521. /*
  522. * Stop the DMA transmit (eg, due to received XOFF).
  523. * Locking: called with port lock held and IRQs disabled.
  524. */
  525. static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
  526. {
  527. if (uap->dmatx.queued) {
  528. uap->dmacr &= ~UART011_TXDMAE;
  529. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  530. }
  531. }
  532. /*
  533. * Try to start a DMA transmit, or in the case of an XON/OFF
  534. * character queued for send, try to get that character out ASAP.
  535. * Locking: called with port lock held and IRQs disabled.
  536. * Returns:
  537. * false if we want the TX IRQ to be enabled
  538. * true if we have a buffer queued
  539. */
  540. static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
  541. {
  542. u16 dmacr;
  543. if (!uap->using_tx_dma)
  544. return false;
  545. if (!uap->port.x_char) {
  546. /* no X-char, try to push chars out in DMA mode */
  547. bool ret = true;
  548. if (!uap->dmatx.queued) {
  549. if (pl011_dma_tx_refill(uap) > 0) {
  550. uap->im &= ~UART011_TXIM;
  551. ret = true;
  552. } else {
  553. uap->im |= UART011_TXIM;
  554. ret = false;
  555. }
  556. writew(uap->im, uap->port.membase + UART011_IMSC);
  557. } else if (!(uap->dmacr & UART011_TXDMAE)) {
  558. uap->dmacr |= UART011_TXDMAE;
  559. writew(uap->dmacr,
  560. uap->port.membase + UART011_DMACR);
  561. }
  562. return ret;
  563. }
  564. /*
  565. * We have an X-char to send. Disable DMA to prevent it loading
  566. * the TX fifo, and then see if we can stuff it into the FIFO.
  567. */
  568. dmacr = uap->dmacr;
  569. uap->dmacr &= ~UART011_TXDMAE;
  570. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  571. if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
  572. /*
  573. * No space in the FIFO, so enable the transmit interrupt
  574. * so we know when there is space. Note that once we've
  575. * loaded the character, we should just re-enable DMA.
  576. */
  577. return false;
  578. }
  579. writew(uap->port.x_char, uap->port.membase + UART01x_DR);
  580. uap->port.icount.tx++;
  581. uap->port.x_char = 0;
  582. /* Success - restore the DMA state */
  583. uap->dmacr = dmacr;
  584. writew(dmacr, uap->port.membase + UART011_DMACR);
  585. return true;
  586. }
  587. /*
  588. * Flush the transmit buffer.
  589. * Locking: called with port lock held and IRQs disabled.
  590. */
  591. static void pl011_dma_flush_buffer(struct uart_port *port)
  592. {
  593. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  594. if (!uap->using_tx_dma)
  595. return;
  596. /* Avoid deadlock with the DMA engine callback */
  597. spin_unlock(&uap->port.lock);
  598. dmaengine_terminate_all(uap->dmatx.chan);
  599. spin_lock(&uap->port.lock);
  600. if (uap->dmatx.queued) {
  601. dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
  602. DMA_TO_DEVICE);
  603. uap->dmatx.queued = false;
  604. uap->dmacr &= ~UART011_TXDMAE;
  605. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  606. }
  607. }
  608. static void pl011_dma_rx_callback(void *data);
  609. static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
  610. {
  611. struct dma_chan *rxchan = uap->dmarx.chan;
  612. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  613. struct dma_async_tx_descriptor *desc;
  614. struct pl011_sgbuf *sgbuf;
  615. if (!rxchan)
  616. return -EIO;
  617. /* Start the RX DMA job */
  618. sgbuf = uap->dmarx.use_buf_b ?
  619. &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
  620. desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
  621. DMA_DEV_TO_MEM,
  622. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  623. /*
  624. * If the DMA engine is busy and cannot prepare a
  625. * channel, no big deal, the driver will fall back
  626. * to interrupt mode as a result of this error code.
  627. */
  628. if (!desc) {
  629. uap->dmarx.running = false;
  630. dmaengine_terminate_all(rxchan);
  631. return -EBUSY;
  632. }
  633. /* Some data to go along to the callback */
  634. desc->callback = pl011_dma_rx_callback;
  635. desc->callback_param = uap;
  636. dmarx->cookie = dmaengine_submit(desc);
  637. dma_async_issue_pending(rxchan);
  638. uap->dmacr |= UART011_RXDMAE;
  639. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  640. uap->dmarx.running = true;
  641. uap->im &= ~UART011_RXIM;
  642. writew(uap->im, uap->port.membase + UART011_IMSC);
  643. return 0;
  644. }
  645. /*
  646. * This is called when either the DMA job is complete, or
  647. * the FIFO timeout interrupt occurred. This must be called
  648. * with the port spinlock uap->port.lock held.
  649. */
  650. static void pl011_dma_rx_chars(struct uart_amba_port *uap,
  651. u32 pending, bool use_buf_b,
  652. bool readfifo)
  653. {
  654. struct tty_port *port = &uap->port.state->port;
  655. struct pl011_sgbuf *sgbuf = use_buf_b ?
  656. &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
  657. int dma_count = 0;
  658. u32 fifotaken = 0; /* only used for vdbg() */
  659. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  660. int dmataken = 0;
  661. if (uap->dmarx.poll_rate) {
  662. /* The data can be taken by polling */
  663. dmataken = sgbuf->sg.length - dmarx->last_residue;
  664. /* Recalculate the pending size */
  665. if (pending >= dmataken)
  666. pending -= dmataken;
  667. }
  668. /* Pick the remain data from the DMA */
  669. if (pending) {
  670. /*
  671. * First take all chars in the DMA pipe, then look in the FIFO.
  672. * Note that tty_insert_flip_buf() tries to take as many chars
  673. * as it can.
  674. */
  675. dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
  676. pending);
  677. uap->port.icount.rx += dma_count;
  678. if (dma_count < pending)
  679. dev_warn(uap->port.dev,
  680. "couldn't insert all characters (TTY is full?)\n");
  681. }
  682. /* Reset the last_residue for Rx DMA poll */
  683. if (uap->dmarx.poll_rate)
  684. dmarx->last_residue = sgbuf->sg.length;
  685. /*
  686. * Only continue with trying to read the FIFO if all DMA chars have
  687. * been taken first.
  688. */
  689. if (dma_count == pending && readfifo) {
  690. /* Clear any error flags */
  691. writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
  692. uap->port.membase + UART011_ICR);
  693. /*
  694. * If we read all the DMA'd characters, and we had an
  695. * incomplete buffer, that could be due to an rx error, or
  696. * maybe we just timed out. Read any pending chars and check
  697. * the error status.
  698. *
  699. * Error conditions will only occur in the FIFO, these will
  700. * trigger an immediate interrupt and stop the DMA job, so we
  701. * will always find the error in the FIFO, never in the DMA
  702. * buffer.
  703. */
  704. fifotaken = pl011_fifo_to_tty(uap);
  705. }
  706. spin_unlock(&uap->port.lock);
  707. dev_vdbg(uap->port.dev,
  708. "Took %d chars from DMA buffer and %d chars from the FIFO\n",
  709. dma_count, fifotaken);
  710. tty_flip_buffer_push(port);
  711. spin_lock(&uap->port.lock);
  712. }
  713. static void pl011_dma_rx_irq(struct uart_amba_port *uap)
  714. {
  715. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  716. struct dma_chan *rxchan = dmarx->chan;
  717. struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
  718. &dmarx->sgbuf_b : &dmarx->sgbuf_a;
  719. size_t pending;
  720. struct dma_tx_state state;
  721. enum dma_status dmastat;
  722. /*
  723. * Pause the transfer so we can trust the current counter,
  724. * do this before we pause the PL011 block, else we may
  725. * overflow the FIFO.
  726. */
  727. if (dmaengine_pause(rxchan))
  728. dev_err(uap->port.dev, "unable to pause DMA transfer\n");
  729. dmastat = rxchan->device->device_tx_status(rxchan,
  730. dmarx->cookie, &state);
  731. if (dmastat != DMA_PAUSED)
  732. dev_err(uap->port.dev, "unable to pause DMA transfer\n");
  733. /* Disable RX DMA - incoming data will wait in the FIFO */
  734. uap->dmacr &= ~UART011_RXDMAE;
  735. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  736. uap->dmarx.running = false;
  737. pending = sgbuf->sg.length - state.residue;
  738. BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
  739. /* Then we terminate the transfer - we now know our residue */
  740. dmaengine_terminate_all(rxchan);
  741. /*
  742. * This will take the chars we have so far and insert
  743. * into the framework.
  744. */
  745. pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
  746. /* Switch buffer & re-trigger DMA job */
  747. dmarx->use_buf_b = !dmarx->use_buf_b;
  748. if (pl011_dma_rx_trigger_dma(uap)) {
  749. dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
  750. "fall back to interrupt mode\n");
  751. uap->im |= UART011_RXIM;
  752. writew(uap->im, uap->port.membase + UART011_IMSC);
  753. }
  754. }
  755. static void pl011_dma_rx_callback(void *data)
  756. {
  757. struct uart_amba_port *uap = data;
  758. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  759. struct dma_chan *rxchan = dmarx->chan;
  760. bool lastbuf = dmarx->use_buf_b;
  761. struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
  762. &dmarx->sgbuf_b : &dmarx->sgbuf_a;
  763. size_t pending;
  764. struct dma_tx_state state;
  765. int ret;
  766. /*
  767. * This completion interrupt occurs typically when the
  768. * RX buffer is totally stuffed but no timeout has yet
  769. * occurred. When that happens, we just want the RX
  770. * routine to flush out the secondary DMA buffer while
  771. * we immediately trigger the next DMA job.
  772. */
  773. spin_lock_irq(&uap->port.lock);
  774. /*
  775. * Rx data can be taken by the UART interrupts during
  776. * the DMA irq handler. So we check the residue here.
  777. */
  778. rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
  779. pending = sgbuf->sg.length - state.residue;
  780. BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
  781. /* Then we terminate the transfer - we now know our residue */
  782. dmaengine_terminate_all(rxchan);
  783. uap->dmarx.running = false;
  784. dmarx->use_buf_b = !lastbuf;
  785. ret = pl011_dma_rx_trigger_dma(uap);
  786. pl011_dma_rx_chars(uap, pending, lastbuf, false);
  787. spin_unlock_irq(&uap->port.lock);
  788. /*
  789. * Do this check after we picked the DMA chars so we don't
  790. * get some IRQ immediately from RX.
  791. */
  792. if (ret) {
  793. dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
  794. "fall back to interrupt mode\n");
  795. uap->im |= UART011_RXIM;
  796. writew(uap->im, uap->port.membase + UART011_IMSC);
  797. }
  798. }
  799. /*
  800. * Stop accepting received characters, when we're shutting down or
  801. * suspending this port.
  802. * Locking: called with port lock held and IRQs disabled.
  803. */
  804. static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
  805. {
  806. /* FIXME. Just disable the DMA enable */
  807. uap->dmacr &= ~UART011_RXDMAE;
  808. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  809. }
  810. /*
  811. * Timer handler for Rx DMA polling.
  812. * Every polling, It checks the residue in the dma buffer and transfer
  813. * data to the tty. Also, last_residue is updated for the next polling.
  814. */
  815. static void pl011_dma_rx_poll(unsigned long args)
  816. {
  817. struct uart_amba_port *uap = (struct uart_amba_port *)args;
  818. struct tty_port *port = &uap->port.state->port;
  819. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  820. struct dma_chan *rxchan = uap->dmarx.chan;
  821. unsigned long flags = 0;
  822. unsigned int dmataken = 0;
  823. unsigned int size = 0;
  824. struct pl011_sgbuf *sgbuf;
  825. int dma_count;
  826. struct dma_tx_state state;
  827. sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
  828. rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
  829. if (likely(state.residue < dmarx->last_residue)) {
  830. dmataken = sgbuf->sg.length - dmarx->last_residue;
  831. size = dmarx->last_residue - state.residue;
  832. dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
  833. size);
  834. if (dma_count == size)
  835. dmarx->last_residue = state.residue;
  836. dmarx->last_jiffies = jiffies;
  837. }
  838. tty_flip_buffer_push(port);
  839. /*
  840. * If no data is received in poll_timeout, the driver will fall back
  841. * to interrupt mode. We will retrigger DMA at the first interrupt.
  842. */
  843. if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
  844. > uap->dmarx.poll_timeout) {
  845. spin_lock_irqsave(&uap->port.lock, flags);
  846. pl011_dma_rx_stop(uap);
  847. spin_unlock_irqrestore(&uap->port.lock, flags);
  848. uap->dmarx.running = false;
  849. dmaengine_terminate_all(rxchan);
  850. del_timer(&uap->dmarx.timer);
  851. } else {
  852. mod_timer(&uap->dmarx.timer,
  853. jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
  854. }
  855. }
  856. static void pl011_dma_startup(struct uart_amba_port *uap)
  857. {
  858. int ret;
  859. if (!uap->dmatx.chan)
  860. return;
  861. uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
  862. if (!uap->dmatx.buf) {
  863. dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
  864. uap->port.fifosize = uap->fifosize;
  865. return;
  866. }
  867. sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
  868. /* The DMA buffer is now the FIFO the TTY subsystem can use */
  869. uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
  870. uap->using_tx_dma = true;
  871. if (!uap->dmarx.chan)
  872. goto skip_rx;
  873. /* Allocate and map DMA RX buffers */
  874. ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
  875. DMA_FROM_DEVICE);
  876. if (ret) {
  877. dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
  878. "RX buffer A", ret);
  879. goto skip_rx;
  880. }
  881. ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
  882. DMA_FROM_DEVICE);
  883. if (ret) {
  884. dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
  885. "RX buffer B", ret);
  886. pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
  887. DMA_FROM_DEVICE);
  888. goto skip_rx;
  889. }
  890. uap->using_rx_dma = true;
  891. skip_rx:
  892. /* Turn on DMA error (RX/TX will be enabled on demand) */
  893. uap->dmacr |= UART011_DMAONERR;
  894. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  895. /*
  896. * ST Micro variants has some specific dma burst threshold
  897. * compensation. Set this to 16 bytes, so burst will only
  898. * be issued above/below 16 bytes.
  899. */
  900. if (uap->vendor->dma_threshold)
  901. writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
  902. uap->port.membase + ST_UART011_DMAWM);
  903. if (uap->using_rx_dma) {
  904. if (pl011_dma_rx_trigger_dma(uap))
  905. dev_dbg(uap->port.dev, "could not trigger initial "
  906. "RX DMA job, fall back to interrupt mode\n");
  907. if (uap->dmarx.poll_rate) {
  908. init_timer(&(uap->dmarx.timer));
  909. uap->dmarx.timer.function = pl011_dma_rx_poll;
  910. uap->dmarx.timer.data = (unsigned long)uap;
  911. mod_timer(&uap->dmarx.timer,
  912. jiffies +
  913. msecs_to_jiffies(uap->dmarx.poll_rate));
  914. uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
  915. uap->dmarx.last_jiffies = jiffies;
  916. }
  917. }
  918. }
  919. static void pl011_dma_shutdown(struct uart_amba_port *uap)
  920. {
  921. if (!(uap->using_tx_dma || uap->using_rx_dma))
  922. return;
  923. /* Disable RX and TX DMA */
  924. while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
  925. barrier();
  926. spin_lock_irq(&uap->port.lock);
  927. uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
  928. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  929. spin_unlock_irq(&uap->port.lock);
  930. if (uap->using_tx_dma) {
  931. /* In theory, this should already be done by pl011_dma_flush_buffer */
  932. dmaengine_terminate_all(uap->dmatx.chan);
  933. if (uap->dmatx.queued) {
  934. dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
  935. DMA_TO_DEVICE);
  936. uap->dmatx.queued = false;
  937. }
  938. kfree(uap->dmatx.buf);
  939. uap->using_tx_dma = false;
  940. }
  941. if (uap->using_rx_dma) {
  942. dmaengine_terminate_all(uap->dmarx.chan);
  943. /* Clean up the RX DMA */
  944. pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
  945. pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
  946. if (uap->dmarx.poll_rate)
  947. del_timer_sync(&uap->dmarx.timer);
  948. uap->using_rx_dma = false;
  949. }
  950. }
  951. static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
  952. {
  953. return uap->using_rx_dma;
  954. }
  955. static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
  956. {
  957. return uap->using_rx_dma && uap->dmarx.running;
  958. }
  959. #else
  960. /* Blank functions if the DMA engine is not available */
  961. static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
  962. {
  963. }
  964. static inline void pl011_dma_remove(struct uart_amba_port *uap)
  965. {
  966. }
  967. static inline void pl011_dma_startup(struct uart_amba_port *uap)
  968. {
  969. }
  970. static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
  971. {
  972. }
  973. static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
  974. {
  975. return false;
  976. }
  977. static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
  978. {
  979. }
  980. static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
  981. {
  982. return false;
  983. }
  984. static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
  985. {
  986. }
  987. static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
  988. {
  989. }
  990. static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
  991. {
  992. return -EIO;
  993. }
  994. static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
  995. {
  996. return false;
  997. }
  998. static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
  999. {
  1000. return false;
  1001. }
  1002. #define pl011_dma_flush_buffer NULL
  1003. #endif
  1004. static void pl011_stop_tx(struct uart_port *port)
  1005. {
  1006. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1007. uap->im &= ~UART011_TXIM;
  1008. writew(uap->im, uap->port.membase + UART011_IMSC);
  1009. pl011_dma_tx_stop(uap);
  1010. }
  1011. static void pl011_start_tx(struct uart_port *port)
  1012. {
  1013. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1014. if (!pl011_dma_tx_start(uap)) {
  1015. uap->im |= UART011_TXIM;
  1016. writew(uap->im, uap->port.membase + UART011_IMSC);
  1017. }
  1018. }
  1019. static void pl011_stop_rx(struct uart_port *port)
  1020. {
  1021. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1022. uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
  1023. UART011_PEIM|UART011_BEIM|UART011_OEIM);
  1024. writew(uap->im, uap->port.membase + UART011_IMSC);
  1025. pl011_dma_rx_stop(uap);
  1026. }
  1027. static void pl011_enable_ms(struct uart_port *port)
  1028. {
  1029. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1030. uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
  1031. writew(uap->im, uap->port.membase + UART011_IMSC);
  1032. }
  1033. static void pl011_rx_chars(struct uart_amba_port *uap)
  1034. {
  1035. pl011_fifo_to_tty(uap);
  1036. spin_unlock(&uap->port.lock);
  1037. tty_flip_buffer_push(&uap->port.state->port);
  1038. /*
  1039. * If we were temporarily out of DMA mode for a while,
  1040. * attempt to switch back to DMA mode again.
  1041. */
  1042. if (pl011_dma_rx_available(uap)) {
  1043. if (pl011_dma_rx_trigger_dma(uap)) {
  1044. dev_dbg(uap->port.dev, "could not trigger RX DMA job "
  1045. "fall back to interrupt mode again\n");
  1046. uap->im |= UART011_RXIM;
  1047. } else {
  1048. uap->im &= ~UART011_RXIM;
  1049. #ifdef CONFIG_DMA_ENGINE
  1050. /* Start Rx DMA poll */
  1051. if (uap->dmarx.poll_rate) {
  1052. uap->dmarx.last_jiffies = jiffies;
  1053. uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
  1054. mod_timer(&uap->dmarx.timer,
  1055. jiffies +
  1056. msecs_to_jiffies(uap->dmarx.poll_rate));
  1057. }
  1058. #endif
  1059. }
  1060. writew(uap->im, uap->port.membase + UART011_IMSC);
  1061. }
  1062. spin_lock(&uap->port.lock);
  1063. }
  1064. static void pl011_tx_chars(struct uart_amba_port *uap)
  1065. {
  1066. struct circ_buf *xmit = &uap->port.state->xmit;
  1067. int count;
  1068. if (uap->port.x_char) {
  1069. writew(uap->port.x_char, uap->port.membase + UART01x_DR);
  1070. uap->port.icount.tx++;
  1071. uap->port.x_char = 0;
  1072. return;
  1073. }
  1074. if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
  1075. pl011_stop_tx(&uap->port);
  1076. return;
  1077. }
  1078. /* If we are using DMA mode, try to send some characters. */
  1079. if (pl011_dma_tx_irq(uap))
  1080. return;
  1081. count = uap->fifosize >> 1;
  1082. do {
  1083. writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
  1084. xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
  1085. uap->port.icount.tx++;
  1086. if (uart_circ_empty(xmit))
  1087. break;
  1088. } while (--count > 0);
  1089. if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
  1090. uart_write_wakeup(&uap->port);
  1091. if (uart_circ_empty(xmit))
  1092. pl011_stop_tx(&uap->port);
  1093. }
  1094. static void pl011_modem_status(struct uart_amba_port *uap)
  1095. {
  1096. unsigned int status, delta;
  1097. status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
  1098. delta = status ^ uap->old_status;
  1099. uap->old_status = status;
  1100. if (!delta)
  1101. return;
  1102. if (delta & UART01x_FR_DCD)
  1103. uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
  1104. if (delta & UART01x_FR_DSR)
  1105. uap->port.icount.dsr++;
  1106. if (delta & UART01x_FR_CTS)
  1107. uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
  1108. wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
  1109. }
  1110. static irqreturn_t pl011_int(int irq, void *dev_id)
  1111. {
  1112. struct uart_amba_port *uap = dev_id;
  1113. unsigned long flags;
  1114. unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
  1115. int handled = 0;
  1116. unsigned int dummy_read;
  1117. spin_lock_irqsave(&uap->port.lock, flags);
  1118. status = readw(uap->port.membase + UART011_MIS);
  1119. if (status) {
  1120. do {
  1121. if (uap->vendor->cts_event_workaround) {
  1122. /* workaround to make sure that all bits are unlocked.. */
  1123. writew(0x00, uap->port.membase + UART011_ICR);
  1124. /*
  1125. * WA: introduce 26ns(1 uart clk) delay before W1C;
  1126. * single apb access will incur 2 pclk(133.12Mhz) delay,
  1127. * so add 2 dummy reads
  1128. */
  1129. dummy_read = readw(uap->port.membase + UART011_ICR);
  1130. dummy_read = readw(uap->port.membase + UART011_ICR);
  1131. }
  1132. writew(status & ~(UART011_TXIS|UART011_RTIS|
  1133. UART011_RXIS),
  1134. uap->port.membase + UART011_ICR);
  1135. if (status & (UART011_RTIS|UART011_RXIS)) {
  1136. if (pl011_dma_rx_running(uap))
  1137. pl011_dma_rx_irq(uap);
  1138. else
  1139. pl011_rx_chars(uap);
  1140. }
  1141. if (status & (UART011_DSRMIS|UART011_DCDMIS|
  1142. UART011_CTSMIS|UART011_RIMIS))
  1143. pl011_modem_status(uap);
  1144. if (status & UART011_TXIS)
  1145. pl011_tx_chars(uap);
  1146. if (pass_counter-- == 0)
  1147. break;
  1148. status = readw(uap->port.membase + UART011_MIS);
  1149. } while (status != 0);
  1150. handled = 1;
  1151. }
  1152. spin_unlock_irqrestore(&uap->port.lock, flags);
  1153. return IRQ_RETVAL(handled);
  1154. }
  1155. static unsigned int pl011_tx_empty(struct uart_port *port)
  1156. {
  1157. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1158. unsigned int status = readw(uap->port.membase + UART01x_FR);
  1159. return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
  1160. }
  1161. static unsigned int pl011_get_mctrl(struct uart_port *port)
  1162. {
  1163. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1164. unsigned int result = 0;
  1165. unsigned int status = readw(uap->port.membase + UART01x_FR);
  1166. #define TIOCMBIT(uartbit, tiocmbit) \
  1167. if (status & uartbit) \
  1168. result |= tiocmbit
  1169. TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
  1170. TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
  1171. TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
  1172. TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
  1173. #undef TIOCMBIT
  1174. return result;
  1175. }
  1176. static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
  1177. {
  1178. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1179. unsigned int cr;
  1180. cr = readw(uap->port.membase + UART011_CR);
  1181. #define TIOCMBIT(tiocmbit, uartbit) \
  1182. if (mctrl & tiocmbit) \
  1183. cr |= uartbit; \
  1184. else \
  1185. cr &= ~uartbit
  1186. TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
  1187. TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
  1188. TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
  1189. TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
  1190. TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
  1191. if (uap->autorts) {
  1192. /* We need to disable auto-RTS if we want to turn RTS off */
  1193. TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
  1194. }
  1195. #undef TIOCMBIT
  1196. writew(cr, uap->port.membase + UART011_CR);
  1197. }
  1198. static void pl011_break_ctl(struct uart_port *port, int break_state)
  1199. {
  1200. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1201. unsigned long flags;
  1202. unsigned int lcr_h;
  1203. spin_lock_irqsave(&uap->port.lock, flags);
  1204. lcr_h = readw(uap->port.membase + uap->lcrh_tx);
  1205. if (break_state == -1)
  1206. lcr_h |= UART01x_LCRH_BRK;
  1207. else
  1208. lcr_h &= ~UART01x_LCRH_BRK;
  1209. writew(lcr_h, uap->port.membase + uap->lcrh_tx);
  1210. spin_unlock_irqrestore(&uap->port.lock, flags);
  1211. }
  1212. #ifdef CONFIG_CONSOLE_POLL
  1213. static void pl011_quiesce_irqs(struct uart_port *port)
  1214. {
  1215. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1216. unsigned char __iomem *regs = uap->port.membase;
  1217. writew(readw(regs + UART011_MIS), regs + UART011_ICR);
  1218. /*
  1219. * There is no way to clear TXIM as this is "ready to transmit IRQ", so
  1220. * we simply mask it. start_tx() will unmask it.
  1221. *
  1222. * Note we can race with start_tx(), and if the race happens, the
  1223. * polling user might get another interrupt just after we clear it.
  1224. * But it should be OK and can happen even w/o the race, e.g.
  1225. * controller immediately got some new data and raised the IRQ.
  1226. *
  1227. * And whoever uses polling routines assumes that it manages the device
  1228. * (including tx queue), so we're also fine with start_tx()'s caller
  1229. * side.
  1230. */
  1231. writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
  1232. }
  1233. static int pl011_get_poll_char(struct uart_port *port)
  1234. {
  1235. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1236. unsigned int status;
  1237. /*
  1238. * The caller might need IRQs lowered, e.g. if used with KDB NMI
  1239. * debugger.
  1240. */
  1241. pl011_quiesce_irqs(port);
  1242. status = readw(uap->port.membase + UART01x_FR);
  1243. if (status & UART01x_FR_RXFE)
  1244. return NO_POLL_CHAR;
  1245. return readw(uap->port.membase + UART01x_DR);
  1246. }
  1247. static void pl011_put_poll_char(struct uart_port *port,
  1248. unsigned char ch)
  1249. {
  1250. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1251. while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
  1252. barrier();
  1253. writew(ch, uap->port.membase + UART01x_DR);
  1254. }
  1255. #endif /* CONFIG_CONSOLE_POLL */
  1256. static int pl011_hwinit(struct uart_port *port)
  1257. {
  1258. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1259. int retval;
  1260. /* Optionaly enable pins to be muxed in and configured */
  1261. if (!IS_ERR(uap->pins_default)) {
  1262. retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
  1263. if (retval)
  1264. dev_err(port->dev,
  1265. "could not set default pins\n");
  1266. }
  1267. /*
  1268. * Try to enable the clock producer.
  1269. */
  1270. retval = clk_prepare_enable(uap->clk);
  1271. if (retval)
  1272. goto out;
  1273. uap->port.uartclk = clk_get_rate(uap->clk);
  1274. /* Clear pending error and receive interrupts */
  1275. writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
  1276. UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
  1277. /*
  1278. * Save interrupts enable mask, and enable RX interrupts in case if
  1279. * the interrupt is used for NMI entry.
  1280. */
  1281. uap->im = readw(uap->port.membase + UART011_IMSC);
  1282. writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
  1283. if (uap->port.dev->platform_data) {
  1284. struct amba_pl011_data *plat;
  1285. plat = uap->port.dev->platform_data;
  1286. if (plat->init)
  1287. plat->init();
  1288. }
  1289. return 0;
  1290. out:
  1291. return retval;
  1292. }
  1293. static int pl011_startup(struct uart_port *port)
  1294. {
  1295. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1296. unsigned int cr;
  1297. int retval;
  1298. retval = pl011_hwinit(port);
  1299. if (retval)
  1300. goto clk_dis;
  1301. writew(uap->im, uap->port.membase + UART011_IMSC);
  1302. /*
  1303. * Allocate the IRQ
  1304. */
  1305. retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
  1306. if (retval)
  1307. goto clk_dis;
  1308. writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
  1309. /*
  1310. * Provoke TX FIFO interrupt into asserting.
  1311. */
  1312. cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
  1313. writew(cr, uap->port.membase + UART011_CR);
  1314. writew(0, uap->port.membase + UART011_FBRD);
  1315. writew(1, uap->port.membase + UART011_IBRD);
  1316. writew(0, uap->port.membase + uap->lcrh_rx);
  1317. if (uap->lcrh_tx != uap->lcrh_rx) {
  1318. int i;
  1319. /*
  1320. * Wait 10 PCLKs before writing LCRH_TX register,
  1321. * to get this delay write read only register 10 times
  1322. */
  1323. for (i = 0; i < 10; ++i)
  1324. writew(0xff, uap->port.membase + UART011_MIS);
  1325. writew(0, uap->port.membase + uap->lcrh_tx);
  1326. }
  1327. writew(0, uap->port.membase + UART01x_DR);
  1328. while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
  1329. barrier();
  1330. /* restore RTS and DTR */
  1331. cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
  1332. cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
  1333. writew(cr, uap->port.membase + UART011_CR);
  1334. /*
  1335. * initialise the old status of the modem signals
  1336. */
  1337. uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
  1338. /* Startup DMA */
  1339. pl011_dma_startup(uap);
  1340. /*
  1341. * Finally, enable interrupts, only timeouts when using DMA
  1342. * if initial RX DMA job failed, start in interrupt mode
  1343. * as well.
  1344. */
  1345. spin_lock_irq(&uap->port.lock);
  1346. /* Clear out any spuriously appearing RX interrupts */
  1347. writew(UART011_RTIS | UART011_RXIS,
  1348. uap->port.membase + UART011_ICR);
  1349. uap->im = UART011_RTIM;
  1350. if (!pl011_dma_rx_running(uap))
  1351. uap->im |= UART011_RXIM;
  1352. writew(uap->im, uap->port.membase + UART011_IMSC);
  1353. spin_unlock_irq(&uap->port.lock);
  1354. return 0;
  1355. clk_dis:
  1356. clk_disable_unprepare(uap->clk);
  1357. return retval;
  1358. }
  1359. static void pl011_shutdown_channel(struct uart_amba_port *uap,
  1360. unsigned int lcrh)
  1361. {
  1362. unsigned long val;
  1363. val = readw(uap->port.membase + lcrh);
  1364. val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
  1365. writew(val, uap->port.membase + lcrh);
  1366. }
  1367. static void pl011_shutdown(struct uart_port *port)
  1368. {
  1369. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1370. unsigned int cr;
  1371. int retval;
  1372. /*
  1373. * disable all interrupts
  1374. */
  1375. spin_lock_irq(&uap->port.lock);
  1376. uap->im = 0;
  1377. writew(uap->im, uap->port.membase + UART011_IMSC);
  1378. writew(0xffff, uap->port.membase + UART011_ICR);
  1379. spin_unlock_irq(&uap->port.lock);
  1380. pl011_dma_shutdown(uap);
  1381. /*
  1382. * Free the interrupt
  1383. */
  1384. free_irq(uap->port.irq, uap);
  1385. /*
  1386. * disable the port
  1387. * disable the port. It should not disable RTS and DTR.
  1388. * Also RTS and DTR state should be preserved to restore
  1389. * it during startup().
  1390. */
  1391. uap->autorts = false;
  1392. cr = readw(uap->port.membase + UART011_CR);
  1393. uap->old_cr = cr;
  1394. cr &= UART011_CR_RTS | UART011_CR_DTR;
  1395. cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
  1396. writew(cr, uap->port.membase + UART011_CR);
  1397. /*
  1398. * disable break condition and fifos
  1399. */
  1400. pl011_shutdown_channel(uap, uap->lcrh_rx);
  1401. if (uap->lcrh_rx != uap->lcrh_tx)
  1402. pl011_shutdown_channel(uap, uap->lcrh_tx);
  1403. /*
  1404. * Shut down the clock producer
  1405. */
  1406. clk_disable_unprepare(uap->clk);
  1407. /* Optionally let pins go into sleep states */
  1408. if (!IS_ERR(uap->pins_sleep)) {
  1409. retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
  1410. if (retval)
  1411. dev_err(port->dev,
  1412. "could not set pins to sleep state\n");
  1413. }
  1414. if (uap->port.dev->platform_data) {
  1415. struct amba_pl011_data *plat;
  1416. plat = uap->port.dev->platform_data;
  1417. if (plat->exit)
  1418. plat->exit();
  1419. }
  1420. }
  1421. static void
  1422. pl011_set_termios(struct uart_port *port, struct ktermios *termios,
  1423. struct ktermios *old)
  1424. {
  1425. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1426. unsigned int lcr_h, old_cr;
  1427. unsigned long flags;
  1428. unsigned int baud, quot, clkdiv;
  1429. if (uap->vendor->oversampling)
  1430. clkdiv = 8;
  1431. else
  1432. clkdiv = 16;
  1433. /*
  1434. * Ask the core to calculate the divisor for us.
  1435. */
  1436. baud = uart_get_baud_rate(port, termios, old, 0,
  1437. port->uartclk / clkdiv);
  1438. #ifdef CONFIG_DMA_ENGINE
  1439. /*
  1440. * Adjust RX DMA polling rate with baud rate if not specified.
  1441. */
  1442. if (uap->dmarx.auto_poll_rate)
  1443. uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
  1444. #endif
  1445. if (baud > port->uartclk/16)
  1446. quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
  1447. else
  1448. quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
  1449. switch (termios->c_cflag & CSIZE) {
  1450. case CS5:
  1451. lcr_h = UART01x_LCRH_WLEN_5;
  1452. break;
  1453. case CS6:
  1454. lcr_h = UART01x_LCRH_WLEN_6;
  1455. break;
  1456. case CS7:
  1457. lcr_h = UART01x_LCRH_WLEN_7;
  1458. break;
  1459. default: // CS8
  1460. lcr_h = UART01x_LCRH_WLEN_8;
  1461. break;
  1462. }
  1463. if (termios->c_cflag & CSTOPB)
  1464. lcr_h |= UART01x_LCRH_STP2;
  1465. if (termios->c_cflag & PARENB) {
  1466. lcr_h |= UART01x_LCRH_PEN;
  1467. if (!(termios->c_cflag & PARODD))
  1468. lcr_h |= UART01x_LCRH_EPS;
  1469. }
  1470. if (uap->fifosize > 1)
  1471. lcr_h |= UART01x_LCRH_FEN;
  1472. spin_lock_irqsave(&port->lock, flags);
  1473. /*
  1474. * Update the per-port timeout.
  1475. */
  1476. uart_update_timeout(port, termios->c_cflag, baud);
  1477. port->read_status_mask = UART011_DR_OE | 255;
  1478. if (termios->c_iflag & INPCK)
  1479. port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
  1480. if (termios->c_iflag & (BRKINT | PARMRK))
  1481. port->read_status_mask |= UART011_DR_BE;
  1482. /*
  1483. * Characters to ignore
  1484. */
  1485. port->ignore_status_mask = 0;
  1486. if (termios->c_iflag & IGNPAR)
  1487. port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
  1488. if (termios->c_iflag & IGNBRK) {
  1489. port->ignore_status_mask |= UART011_DR_BE;
  1490. /*
  1491. * If we're ignoring parity and break indicators,
  1492. * ignore overruns too (for real raw support).
  1493. */
  1494. if (termios->c_iflag & IGNPAR)
  1495. port->ignore_status_mask |= UART011_DR_OE;
  1496. }
  1497. /*
  1498. * Ignore all characters if CREAD is not set.
  1499. */
  1500. if ((termios->c_cflag & CREAD) == 0)
  1501. port->ignore_status_mask |= UART_DUMMY_DR_RX;
  1502. if (UART_ENABLE_MS(port, termios->c_cflag))
  1503. pl011_enable_ms(port);
  1504. /* first, disable everything */
  1505. old_cr = readw(port->membase + UART011_CR);
  1506. writew(0, port->membase + UART011_CR);
  1507. if (termios->c_cflag & CRTSCTS) {
  1508. if (old_cr & UART011_CR_RTS)
  1509. old_cr |= UART011_CR_RTSEN;
  1510. old_cr |= UART011_CR_CTSEN;
  1511. uap->autorts = true;
  1512. } else {
  1513. old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
  1514. uap->autorts = false;
  1515. }
  1516. if (uap->vendor->oversampling) {
  1517. if (baud > port->uartclk / 16)
  1518. old_cr |= ST_UART011_CR_OVSFACT;
  1519. else
  1520. old_cr &= ~ST_UART011_CR_OVSFACT;
  1521. }
  1522. /*
  1523. * Workaround for the ST Micro oversampling variants to
  1524. * increase the bitrate slightly, by lowering the divisor,
  1525. * to avoid delayed sampling of start bit at high speeds,
  1526. * else we see data corruption.
  1527. */
  1528. if (uap->vendor->oversampling) {
  1529. if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
  1530. quot -= 1;
  1531. else if ((baud > 3250000) && (quot > 2))
  1532. quot -= 2;
  1533. }
  1534. /* Set baud rate */
  1535. writew(quot & 0x3f, port->membase + UART011_FBRD);
  1536. writew(quot >> 6, port->membase + UART011_IBRD);
  1537. /*
  1538. * ----------v----------v----------v----------v-----
  1539. * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
  1540. * UART011_FBRD & UART011_IBRD.
  1541. * ----------^----------^----------^----------^-----
  1542. */
  1543. writew(lcr_h, port->membase + uap->lcrh_rx);
  1544. if (uap->lcrh_rx != uap->lcrh_tx) {
  1545. int i;
  1546. /*
  1547. * Wait 10 PCLKs before writing LCRH_TX register,
  1548. * to get this delay write read only register 10 times
  1549. */
  1550. for (i = 0; i < 10; ++i)
  1551. writew(0xff, uap->port.membase + UART011_MIS);
  1552. writew(lcr_h, port->membase + uap->lcrh_tx);
  1553. }
  1554. writew(old_cr, port->membase + UART011_CR);
  1555. spin_unlock_irqrestore(&port->lock, flags);
  1556. }
  1557. static const char *pl011_type(struct uart_port *port)
  1558. {
  1559. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1560. return uap->port.type == PORT_AMBA ? uap->type : NULL;
  1561. }
  1562. /*
  1563. * Release the memory region(s) being used by 'port'
  1564. */
  1565. static void pl011_release_port(struct uart_port *port)
  1566. {
  1567. release_mem_region(port->mapbase, SZ_4K);
  1568. }
  1569. /*
  1570. * Request the memory region(s) being used by 'port'
  1571. */
  1572. static int pl011_request_port(struct uart_port *port)
  1573. {
  1574. return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
  1575. != NULL ? 0 : -EBUSY;
  1576. }
  1577. /*
  1578. * Configure/autoconfigure the port.
  1579. */
  1580. static void pl011_config_port(struct uart_port *port, int flags)
  1581. {
  1582. if (flags & UART_CONFIG_TYPE) {
  1583. port->type = PORT_AMBA;
  1584. pl011_request_port(port);
  1585. }
  1586. }
  1587. /*
  1588. * verify the new serial_struct (for TIOCSSERIAL).
  1589. */
  1590. static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
  1591. {
  1592. int ret = 0;
  1593. if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
  1594. ret = -EINVAL;
  1595. if (ser->irq < 0 || ser->irq >= nr_irqs)
  1596. ret = -EINVAL;
  1597. if (ser->baud_base < 9600)
  1598. ret = -EINVAL;
  1599. return ret;
  1600. }
  1601. static struct uart_ops amba_pl011_pops = {
  1602. .tx_empty = pl011_tx_empty,
  1603. .set_mctrl = pl011_set_mctrl,
  1604. .get_mctrl = pl011_get_mctrl,
  1605. .stop_tx = pl011_stop_tx,
  1606. .start_tx = pl011_start_tx,
  1607. .stop_rx = pl011_stop_rx,
  1608. .enable_ms = pl011_enable_ms,
  1609. .break_ctl = pl011_break_ctl,
  1610. .startup = pl011_startup,
  1611. .shutdown = pl011_shutdown,
  1612. .flush_buffer = pl011_dma_flush_buffer,
  1613. .set_termios = pl011_set_termios,
  1614. .type = pl011_type,
  1615. .release_port = pl011_release_port,
  1616. .request_port = pl011_request_port,
  1617. .config_port = pl011_config_port,
  1618. .verify_port = pl011_verify_port,
  1619. #ifdef CONFIG_CONSOLE_POLL
  1620. .poll_init = pl011_hwinit,
  1621. .poll_get_char = pl011_get_poll_char,
  1622. .poll_put_char = pl011_put_poll_char,
  1623. #endif
  1624. };
  1625. static struct uart_amba_port *amba_ports[UART_NR];
  1626. #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
  1627. static void pl011_console_putchar(struct uart_port *port, int ch)
  1628. {
  1629. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1630. while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
  1631. barrier();
  1632. writew(ch, uap->port.membase + UART01x_DR);
  1633. }
  1634. static void
  1635. pl011_console_write(struct console *co, const char *s, unsigned int count)
  1636. {
  1637. struct uart_amba_port *uap = amba_ports[co->index];
  1638. unsigned int status, old_cr, new_cr;
  1639. unsigned long flags;
  1640. int locked = 1;
  1641. clk_enable(uap->clk);
  1642. local_irq_save(flags);
  1643. if (uap->port.sysrq)
  1644. locked = 0;
  1645. else if (oops_in_progress)
  1646. locked = spin_trylock(&uap->port.lock);
  1647. else
  1648. spin_lock(&uap->port.lock);
  1649. /*
  1650. * First save the CR then disable the interrupts
  1651. */
  1652. old_cr = readw(uap->port.membase + UART011_CR);
  1653. new_cr = old_cr & ~UART011_CR_CTSEN;
  1654. new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
  1655. writew(new_cr, uap->port.membase + UART011_CR);
  1656. uart_console_write(&uap->port, s, count, pl011_console_putchar);
  1657. /*
  1658. * Finally, wait for transmitter to become empty
  1659. * and restore the TCR
  1660. */
  1661. do {
  1662. status = readw(uap->port.membase + UART01x_FR);
  1663. } while (status & UART01x_FR_BUSY);
  1664. writew(old_cr, uap->port.membase + UART011_CR);
  1665. if (locked)
  1666. spin_unlock(&uap->port.lock);
  1667. local_irq_restore(flags);
  1668. clk_disable(uap->clk);
  1669. }
  1670. static void __init
  1671. pl011_console_get_options(struct uart_amba_port *uap, int *baud,
  1672. int *parity, int *bits)
  1673. {
  1674. if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
  1675. unsigned int lcr_h, ibrd, fbrd;
  1676. lcr_h = readw(uap->port.membase + uap->lcrh_tx);
  1677. *parity = 'n';
  1678. if (lcr_h & UART01x_LCRH_PEN) {
  1679. if (lcr_h & UART01x_LCRH_EPS)
  1680. *parity = 'e';
  1681. else
  1682. *parity = 'o';
  1683. }
  1684. if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
  1685. *bits = 7;
  1686. else
  1687. *bits = 8;
  1688. ibrd = readw(uap->port.membase + UART011_IBRD);
  1689. fbrd = readw(uap->port.membase + UART011_FBRD);
  1690. *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
  1691. if (uap->vendor->oversampling) {
  1692. if (readw(uap->port.membase + UART011_CR)
  1693. & ST_UART011_CR_OVSFACT)
  1694. *baud *= 2;
  1695. }
  1696. }
  1697. }
  1698. static int __init pl011_console_setup(struct console *co, char *options)
  1699. {
  1700. struct uart_amba_port *uap;
  1701. int baud = 38400;
  1702. int bits = 8;
  1703. int parity = 'n';
  1704. int flow = 'n';
  1705. int ret;
  1706. /*
  1707. * Check whether an invalid uart number has been specified, and
  1708. * if so, search for the first available port that does have
  1709. * console support.
  1710. */
  1711. if (co->index >= UART_NR)
  1712. co->index = 0;
  1713. uap = amba_ports[co->index];
  1714. if (!uap)
  1715. return -ENODEV;
  1716. /* Allow pins to be muxed in and configured */
  1717. if (!IS_ERR(uap->pins_default)) {
  1718. ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
  1719. if (ret)
  1720. dev_err(uap->port.dev,
  1721. "could not set default pins\n");
  1722. }
  1723. ret = clk_prepare(uap->clk);
  1724. if (ret)
  1725. return ret;
  1726. if (uap->port.dev->platform_data) {
  1727. struct amba_pl011_data *plat;
  1728. plat = uap->port.dev->platform_data;
  1729. if (plat->init)
  1730. plat->init();
  1731. }
  1732. uap->port.uartclk = clk_get_rate(uap->clk);
  1733. if (options)
  1734. uart_parse_options(options, &baud, &parity, &bits, &flow);
  1735. else
  1736. pl011_console_get_options(uap, &baud, &parity, &bits);
  1737. return uart_set_options(&uap->port, co, baud, parity, bits, flow);
  1738. }
  1739. static struct uart_driver amba_reg;
  1740. static struct console amba_console = {
  1741. .name = "ttyAMA",
  1742. .write = pl011_console_write,
  1743. .device = uart_console_device,
  1744. .setup = pl011_console_setup,
  1745. .flags = CON_PRINTBUFFER,
  1746. .index = -1,
  1747. .data = &amba_reg,
  1748. };
  1749. #define AMBA_CONSOLE (&amba_console)
  1750. #else
  1751. #define AMBA_CONSOLE NULL
  1752. #endif
  1753. static struct uart_driver amba_reg = {
  1754. .owner = THIS_MODULE,
  1755. .driver_name = "ttyAMA",
  1756. .dev_name = "ttyAMA",
  1757. .major = SERIAL_AMBA_MAJOR,
  1758. .minor = SERIAL_AMBA_MINOR,
  1759. .nr = UART_NR,
  1760. .cons = AMBA_CONSOLE,
  1761. };
  1762. static int pl011_probe_dt_alias(int index, struct device *dev)
  1763. {
  1764. struct device_node *np;
  1765. static bool seen_dev_with_alias = false;
  1766. static bool seen_dev_without_alias = false;
  1767. int ret = index;
  1768. if (!IS_ENABLED(CONFIG_OF))
  1769. return ret;
  1770. np = dev->of_node;
  1771. if (!np)
  1772. return ret;
  1773. ret = of_alias_get_id(np, "serial");
  1774. if (IS_ERR_VALUE(ret)) {
  1775. seen_dev_without_alias = true;
  1776. ret = index;
  1777. } else {
  1778. seen_dev_with_alias = true;
  1779. if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
  1780. dev_warn(dev, "requested serial port %d not available.\n", ret);
  1781. ret = index;
  1782. }
  1783. }
  1784. if (seen_dev_with_alias && seen_dev_without_alias)
  1785. dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
  1786. return ret;
  1787. }
  1788. static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
  1789. {
  1790. struct uart_amba_port *uap;
  1791. struct vendor_data *vendor = id->data;
  1792. void __iomem *base;
  1793. int i, ret;
  1794. for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
  1795. if (amba_ports[i] == NULL)
  1796. break;
  1797. if (i == ARRAY_SIZE(amba_ports)) {
  1798. ret = -EBUSY;
  1799. goto out;
  1800. }
  1801. uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
  1802. GFP_KERNEL);
  1803. if (uap == NULL) {
  1804. ret = -ENOMEM;
  1805. goto out;
  1806. }
  1807. i = pl011_probe_dt_alias(i, &dev->dev);
  1808. base = devm_ioremap(&dev->dev, dev->res.start,
  1809. resource_size(&dev->res));
  1810. if (!base) {
  1811. ret = -ENOMEM;
  1812. goto out;
  1813. }
  1814. uap->pinctrl = devm_pinctrl_get(&dev->dev);
  1815. if (IS_ERR(uap->pinctrl)) {
  1816. ret = PTR_ERR(uap->pinctrl);
  1817. goto out;
  1818. }
  1819. uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
  1820. PINCTRL_STATE_DEFAULT);
  1821. if (IS_ERR(uap->pins_default))
  1822. dev_err(&dev->dev, "could not get default pinstate\n");
  1823. uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
  1824. PINCTRL_STATE_SLEEP);
  1825. if (IS_ERR(uap->pins_sleep))
  1826. dev_dbg(&dev->dev, "could not get sleep pinstate\n");
  1827. uap->clk = devm_clk_get(&dev->dev, NULL);
  1828. if (IS_ERR(uap->clk)) {
  1829. ret = PTR_ERR(uap->clk);
  1830. goto out;
  1831. }
  1832. uap->vendor = vendor;
  1833. uap->lcrh_rx = vendor->lcrh_rx;
  1834. uap->lcrh_tx = vendor->lcrh_tx;
  1835. uap->old_cr = 0;
  1836. uap->fifosize = vendor->get_fifosize(dev->periphid);
  1837. uap->port.dev = &dev->dev;
  1838. uap->port.mapbase = dev->res.start;
  1839. uap->port.membase = base;
  1840. uap->port.iotype = UPIO_MEM;
  1841. uap->port.irq = dev->irq[0];
  1842. uap->port.fifosize = uap->fifosize;
  1843. uap->port.ops = &amba_pl011_pops;
  1844. uap->port.flags = UPF_BOOT_AUTOCONF;
  1845. uap->port.line = i;
  1846. pl011_dma_probe(&dev->dev, uap);
  1847. /* Ensure interrupts from this UART are masked and cleared */
  1848. writew(0, uap->port.membase + UART011_IMSC);
  1849. writew(0xffff, uap->port.membase + UART011_ICR);
  1850. snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
  1851. amba_ports[i] = uap;
  1852. amba_set_drvdata(dev, uap);
  1853. ret = uart_add_one_port(&amba_reg, &uap->port);
  1854. if (ret) {
  1855. amba_set_drvdata(dev, NULL);
  1856. amba_ports[i] = NULL;
  1857. pl011_dma_remove(uap);
  1858. }
  1859. out:
  1860. return ret;
  1861. }
  1862. static int pl011_remove(struct amba_device *dev)
  1863. {
  1864. struct uart_amba_port *uap = amba_get_drvdata(dev);
  1865. int i;
  1866. amba_set_drvdata(dev, NULL);
  1867. uart_remove_one_port(&amba_reg, &uap->port);
  1868. for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
  1869. if (amba_ports[i] == uap)
  1870. amba_ports[i] = NULL;
  1871. pl011_dma_remove(uap);
  1872. return 0;
  1873. }
  1874. #ifdef CONFIG_PM
  1875. static int pl011_suspend(struct amba_device *dev, pm_message_t state)
  1876. {
  1877. struct uart_amba_port *uap = amba_get_drvdata(dev);
  1878. if (!uap)
  1879. return -EINVAL;
  1880. return uart_suspend_port(&amba_reg, &uap->port);
  1881. }
  1882. static int pl011_resume(struct amba_device *dev)
  1883. {
  1884. struct uart_amba_port *uap = amba_get_drvdata(dev);
  1885. if (!uap)
  1886. return -EINVAL;
  1887. return uart_resume_port(&amba_reg, &uap->port);
  1888. }
  1889. #endif
  1890. static struct amba_id pl011_ids[] = {
  1891. {
  1892. .id = 0x00041011,
  1893. .mask = 0x000fffff,
  1894. .data = &vendor_arm,
  1895. },
  1896. {
  1897. .id = 0x00380802,
  1898. .mask = 0x00ffffff,
  1899. .data = &vendor_st,
  1900. },
  1901. { 0, 0 },
  1902. };
  1903. MODULE_DEVICE_TABLE(amba, pl011_ids);
  1904. static struct amba_driver pl011_driver = {
  1905. .drv = {
  1906. .name = "uart-pl011",
  1907. },
  1908. .id_table = pl011_ids,
  1909. .probe = pl011_probe,
  1910. .remove = pl011_remove,
  1911. #ifdef CONFIG_PM
  1912. .suspend = pl011_suspend,
  1913. .resume = pl011_resume,
  1914. #endif
  1915. };
  1916. static int __init pl011_init(void)
  1917. {
  1918. int ret;
  1919. printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
  1920. ret = uart_register_driver(&amba_reg);
  1921. if (ret == 0) {
  1922. ret = amba_driver_register(&pl011_driver);
  1923. if (ret)
  1924. uart_unregister_driver(&amba_reg);
  1925. }
  1926. return ret;
  1927. }
  1928. static void __exit pl011_exit(void)
  1929. {
  1930. amba_driver_unregister(&pl011_driver);
  1931. uart_unregister_driver(&amba_reg);
  1932. }
  1933. /*
  1934. * While this can be a module, if builtin it's most likely the console
  1935. * So let's leave module_exit but move module_init to an earlier place
  1936. */
  1937. arch_initcall(pl011_init);
  1938. module_exit(pl011_exit);
  1939. MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
  1940. MODULE_DESCRIPTION("ARM AMBA serial port driver");
  1941. MODULE_LICENSE("GPL");