spi-s3c64xx.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597
  1. /*
  2. * Copyright (C) 2009 Samsung Electronics Ltd.
  3. * Jaswinder Singh <jassi.brar@samsung.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/workqueue.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/spi/spi.h>
  30. #include <linux/gpio.h>
  31. #include <linux/of.h>
  32. #include <linux/of_gpio.h>
  33. #include <linux/platform_data/spi-s3c64xx.h>
  34. #ifdef CONFIG_S3C_DMA
  35. #include <mach/dma.h>
  36. #endif
  37. #define MAX_SPI_PORTS 3
  38. /* Registers and bit-fields */
  39. #define S3C64XX_SPI_CH_CFG 0x00
  40. #define S3C64XX_SPI_CLK_CFG 0x04
  41. #define S3C64XX_SPI_MODE_CFG 0x08
  42. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  43. #define S3C64XX_SPI_INT_EN 0x10
  44. #define S3C64XX_SPI_STATUS 0x14
  45. #define S3C64XX_SPI_TX_DATA 0x18
  46. #define S3C64XX_SPI_RX_DATA 0x1C
  47. #define S3C64XX_SPI_PACKET_CNT 0x20
  48. #define S3C64XX_SPI_PENDING_CLR 0x24
  49. #define S3C64XX_SPI_SWAP_CFG 0x28
  50. #define S3C64XX_SPI_FB_CLK 0x2C
  51. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  52. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  53. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  54. #define S3C64XX_SPI_CPOL_L (1<<3)
  55. #define S3C64XX_SPI_CPHA_B (1<<2)
  56. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  57. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  58. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  59. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  60. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  61. #define S3C64XX_SPI_PSR_MASK 0xff
  62. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  63. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  64. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  65. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  66. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  67. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  68. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  69. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  70. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  71. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  72. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  73. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  74. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  75. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  76. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  77. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  78. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  79. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  80. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  81. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  82. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  83. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  84. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  85. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  86. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  87. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  88. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  89. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  90. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  91. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  92. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  93. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  94. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  95. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  96. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  97. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  98. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  99. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  100. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  101. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  102. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  103. #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
  104. #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
  105. (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
  106. #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
  107. #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
  108. FIFO_LVL_MASK(i))
  109. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  110. #define S3C64XX_SPI_TRAILCNT_OFF 19
  111. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  112. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  113. #define RXBUSY (1<<2)
  114. #define TXBUSY (1<<3)
  115. struct s3c64xx_spi_dma_data {
  116. struct dma_chan *ch;
  117. enum dma_transfer_direction direction;
  118. unsigned int dmach;
  119. };
  120. /**
  121. * struct s3c64xx_spi_info - SPI Controller hardware info
  122. * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
  123. * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
  124. * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
  125. * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
  126. * @clk_from_cmu: True, if the controller does not include a clock mux and
  127. * prescaler unit.
  128. *
  129. * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
  130. * differ in some aspects such as the size of the fifo and spi bus clock
  131. * setup. Such differences are specified to the driver using this structure
  132. * which is provided as driver data to the driver.
  133. */
  134. struct s3c64xx_spi_port_config {
  135. int fifo_lvl_mask[MAX_SPI_PORTS];
  136. int rx_lvl_offset;
  137. int tx_st_done;
  138. bool high_speed;
  139. bool clk_from_cmu;
  140. };
  141. /**
  142. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  143. * @clk: Pointer to the spi clock.
  144. * @src_clk: Pointer to the clock used to generate SPI signals.
  145. * @master: Pointer to the SPI Protocol master.
  146. * @cntrlr_info: Platform specific data for the controller this driver manages.
  147. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  148. * @queue: To log SPI xfer requests.
  149. * @lock: Controller specific lock.
  150. * @state: Set of FLAGS to indicate status.
  151. * @rx_dmach: Controller's DMA channel for Rx.
  152. * @tx_dmach: Controller's DMA channel for Tx.
  153. * @sfr_start: BUS address of SPI controller regs.
  154. * @regs: Pointer to ioremap'ed controller registers.
  155. * @irq: interrupt
  156. * @xfer_completion: To indicate completion of xfer task.
  157. * @cur_mode: Stores the active configuration of the controller.
  158. * @cur_bpw: Stores the active bits per word settings.
  159. * @cur_speed: Stores the active xfer clock speed.
  160. */
  161. struct s3c64xx_spi_driver_data {
  162. void __iomem *regs;
  163. struct clk *clk;
  164. struct clk *src_clk;
  165. struct platform_device *pdev;
  166. struct spi_master *master;
  167. struct s3c64xx_spi_info *cntrlr_info;
  168. struct spi_device *tgl_spi;
  169. struct list_head queue;
  170. spinlock_t lock;
  171. unsigned long sfr_start;
  172. struct completion xfer_completion;
  173. unsigned state;
  174. unsigned cur_mode, cur_bpw;
  175. unsigned cur_speed;
  176. struct s3c64xx_spi_dma_data rx_dma;
  177. struct s3c64xx_spi_dma_data tx_dma;
  178. #ifdef CONFIG_S3C_DMA
  179. struct samsung_dma_ops *ops;
  180. #endif
  181. struct s3c64xx_spi_port_config *port_conf;
  182. unsigned int port_id;
  183. unsigned long gpios[4];
  184. };
  185. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  186. {
  187. void __iomem *regs = sdd->regs;
  188. unsigned long loops;
  189. u32 val;
  190. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  191. val = readl(regs + S3C64XX_SPI_CH_CFG);
  192. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  193. writel(val, regs + S3C64XX_SPI_CH_CFG);
  194. val = readl(regs + S3C64XX_SPI_CH_CFG);
  195. val |= S3C64XX_SPI_CH_SW_RST;
  196. val &= ~S3C64XX_SPI_CH_HS_EN;
  197. writel(val, regs + S3C64XX_SPI_CH_CFG);
  198. /* Flush TxFIFO*/
  199. loops = msecs_to_loops(1);
  200. do {
  201. val = readl(regs + S3C64XX_SPI_STATUS);
  202. } while (TX_FIFO_LVL(val, sdd) && loops--);
  203. if (loops == 0)
  204. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  205. /* Flush RxFIFO*/
  206. loops = msecs_to_loops(1);
  207. do {
  208. val = readl(regs + S3C64XX_SPI_STATUS);
  209. if (RX_FIFO_LVL(val, sdd))
  210. readl(regs + S3C64XX_SPI_RX_DATA);
  211. else
  212. break;
  213. } while (loops--);
  214. if (loops == 0)
  215. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  216. val = readl(regs + S3C64XX_SPI_CH_CFG);
  217. val &= ~S3C64XX_SPI_CH_SW_RST;
  218. writel(val, regs + S3C64XX_SPI_CH_CFG);
  219. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  220. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  221. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  222. }
  223. static void s3c64xx_spi_dmacb(void *data)
  224. {
  225. struct s3c64xx_spi_driver_data *sdd;
  226. struct s3c64xx_spi_dma_data *dma = data;
  227. unsigned long flags;
  228. if (dma->direction == DMA_DEV_TO_MEM)
  229. sdd = container_of(data,
  230. struct s3c64xx_spi_driver_data, rx_dma);
  231. else
  232. sdd = container_of(data,
  233. struct s3c64xx_spi_driver_data, tx_dma);
  234. spin_lock_irqsave(&sdd->lock, flags);
  235. if (dma->direction == DMA_DEV_TO_MEM) {
  236. sdd->state &= ~RXBUSY;
  237. if (!(sdd->state & TXBUSY))
  238. complete(&sdd->xfer_completion);
  239. } else {
  240. sdd->state &= ~TXBUSY;
  241. if (!(sdd->state & RXBUSY))
  242. complete(&sdd->xfer_completion);
  243. }
  244. spin_unlock_irqrestore(&sdd->lock, flags);
  245. }
  246. #ifdef CONFIG_S3C_DMA
  247. /* FIXME: remove this section once arch/arm/mach-s3c64xx uses dmaengine */
  248. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  249. .name = "samsung-spi-dma",
  250. };
  251. static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
  252. unsigned len, dma_addr_t buf)
  253. {
  254. struct s3c64xx_spi_driver_data *sdd;
  255. struct samsung_dma_prep info;
  256. struct samsung_dma_config config;
  257. if (dma->direction == DMA_DEV_TO_MEM) {
  258. sdd = container_of((void *)dma,
  259. struct s3c64xx_spi_driver_data, rx_dma);
  260. config.direction = sdd->rx_dma.direction;
  261. config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
  262. config.width = sdd->cur_bpw / 8;
  263. sdd->ops->config((enum dma_ch)sdd->rx_dma.ch, &config);
  264. } else {
  265. sdd = container_of((void *)dma,
  266. struct s3c64xx_spi_driver_data, tx_dma);
  267. config.direction = sdd->tx_dma.direction;
  268. config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
  269. config.width = sdd->cur_bpw / 8;
  270. sdd->ops->config((enum dma_ch)sdd->tx_dma.ch, &config);
  271. }
  272. info.cap = DMA_SLAVE;
  273. info.len = len;
  274. info.fp = s3c64xx_spi_dmacb;
  275. info.fp_param = dma;
  276. info.direction = dma->direction;
  277. info.buf = buf;
  278. sdd->ops->prepare((enum dma_ch)dma->ch, &info);
  279. sdd->ops->trigger((enum dma_ch)dma->ch);
  280. }
  281. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  282. {
  283. struct samsung_dma_req req;
  284. struct device *dev = &sdd->pdev->dev;
  285. sdd->ops = samsung_dma_get_ops();
  286. req.cap = DMA_SLAVE;
  287. req.client = &s3c64xx_spi_dma_client;
  288. sdd->rx_dma.ch = (void *)sdd->ops->request(sdd->rx_dma.dmach, &req, dev, "rx");
  289. sdd->tx_dma.ch = (void *)sdd->ops->request(sdd->tx_dma.dmach, &req, dev, "tx");
  290. return 1;
  291. }
  292. static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
  293. {
  294. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  295. /* Acquire DMA channels */
  296. while (!acquire_dma(sdd))
  297. usleep_range(10000, 11000);
  298. pm_runtime_get_sync(&sdd->pdev->dev);
  299. return 0;
  300. }
  301. static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
  302. {
  303. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  304. /* Free DMA channels */
  305. sdd->ops->release((enum dma_ch)sdd->rx_dma.ch, &s3c64xx_spi_dma_client);
  306. sdd->ops->release((enum dma_ch)sdd->tx_dma.ch, &s3c64xx_spi_dma_client);
  307. pm_runtime_put(&sdd->pdev->dev);
  308. return 0;
  309. }
  310. static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
  311. struct s3c64xx_spi_dma_data *dma)
  312. {
  313. sdd->ops->stop((enum dma_ch)dma->ch);
  314. }
  315. #else
  316. static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
  317. unsigned len, dma_addr_t buf)
  318. {
  319. struct s3c64xx_spi_driver_data *sdd;
  320. struct dma_slave_config config;
  321. struct scatterlist sg;
  322. struct dma_async_tx_descriptor *desc;
  323. if (dma->direction == DMA_DEV_TO_MEM) {
  324. sdd = container_of((void *)dma,
  325. struct s3c64xx_spi_driver_data, rx_dma);
  326. config.direction = dma->direction;
  327. config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
  328. config.src_addr_width = sdd->cur_bpw / 8;
  329. config.src_maxburst = 1;
  330. dmaengine_slave_config(dma->ch, &config);
  331. } else {
  332. sdd = container_of((void *)dma,
  333. struct s3c64xx_spi_driver_data, tx_dma);
  334. config.direction = dma->direction;
  335. config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
  336. config.dst_addr_width = sdd->cur_bpw / 8;
  337. config.dst_maxburst = 1;
  338. dmaengine_slave_config(dma->ch, &config);
  339. }
  340. sg_init_table(&sg, 1);
  341. sg_dma_len(&sg) = len;
  342. sg_set_page(&sg, pfn_to_page(PFN_DOWN(buf)),
  343. len, offset_in_page(buf));
  344. sg_dma_address(&sg) = buf;
  345. desc = dmaengine_prep_slave_sg(dma->ch,
  346. &sg, 1, dma->direction, DMA_PREP_INTERRUPT);
  347. desc->callback = s3c64xx_spi_dmacb;
  348. desc->callback_param = dma;
  349. dmaengine_submit(desc);
  350. dma_async_issue_pending(dma->ch);
  351. }
  352. static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
  353. {
  354. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  355. dma_filter_fn filter = sdd->cntrlr_info->filter;
  356. struct device *dev = &sdd->pdev->dev;
  357. dma_cap_mask_t mask;
  358. int ret;
  359. dma_cap_zero(mask);
  360. dma_cap_set(DMA_SLAVE, mask);
  361. /* Acquire DMA channels */
  362. sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
  363. (void*)sdd->rx_dma.dmach, dev, "rx");
  364. if (!sdd->rx_dma.ch) {
  365. dev_err(dev, "Failed to get RX DMA channel\n");
  366. ret = -EBUSY;
  367. goto out;
  368. }
  369. sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
  370. (void*)sdd->tx_dma.dmach, dev, "tx");
  371. if (!sdd->tx_dma.ch) {
  372. dev_err(dev, "Failed to get TX DMA channel\n");
  373. ret = -EBUSY;
  374. goto out_rx;
  375. }
  376. ret = pm_runtime_get_sync(&sdd->pdev->dev);
  377. if (ret != 0) {
  378. dev_err(dev, "Failed to enable device: %d\n", ret);
  379. goto out_tx;
  380. }
  381. return 0;
  382. out_tx:
  383. dma_release_channel(sdd->tx_dma.ch);
  384. out_rx:
  385. dma_release_channel(sdd->rx_dma.ch);
  386. out:
  387. return ret;
  388. }
  389. static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
  390. {
  391. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  392. /* Free DMA channels */
  393. dma_release_channel(sdd->rx_dma.ch);
  394. dma_release_channel(sdd->tx_dma.ch);
  395. pm_runtime_put(&sdd->pdev->dev);
  396. return 0;
  397. }
  398. static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
  399. struct s3c64xx_spi_dma_data *dma)
  400. {
  401. dmaengine_terminate_all(dma->ch);
  402. }
  403. #endif
  404. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  405. struct spi_device *spi,
  406. struct spi_transfer *xfer, int dma_mode)
  407. {
  408. void __iomem *regs = sdd->regs;
  409. u32 modecfg, chcfg;
  410. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  411. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  412. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  413. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  414. if (dma_mode) {
  415. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  416. } else {
  417. /* Always shift in data in FIFO, even if xfer is Tx only,
  418. * this helps setting PCKT_CNT value for generating clocks
  419. * as exactly needed.
  420. */
  421. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  422. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  423. | S3C64XX_SPI_PACKET_CNT_EN,
  424. regs + S3C64XX_SPI_PACKET_CNT);
  425. }
  426. if (xfer->tx_buf != NULL) {
  427. sdd->state |= TXBUSY;
  428. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  429. if (dma_mode) {
  430. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  431. prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
  432. } else {
  433. switch (sdd->cur_bpw) {
  434. case 32:
  435. iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
  436. xfer->tx_buf, xfer->len / 4);
  437. break;
  438. case 16:
  439. iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
  440. xfer->tx_buf, xfer->len / 2);
  441. break;
  442. default:
  443. iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
  444. xfer->tx_buf, xfer->len);
  445. break;
  446. }
  447. }
  448. }
  449. if (xfer->rx_buf != NULL) {
  450. sdd->state |= RXBUSY;
  451. if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
  452. && !(sdd->cur_mode & SPI_CPHA))
  453. chcfg |= S3C64XX_SPI_CH_HS_EN;
  454. if (dma_mode) {
  455. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  456. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  457. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  458. | S3C64XX_SPI_PACKET_CNT_EN,
  459. regs + S3C64XX_SPI_PACKET_CNT);
  460. prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
  461. }
  462. }
  463. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  464. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  465. }
  466. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  467. struct spi_device *spi)
  468. {
  469. struct s3c64xx_spi_csinfo *cs;
  470. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  471. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  472. /* Deselect the last toggled device */
  473. cs = sdd->tgl_spi->controller_data;
  474. gpio_set_value(cs->line,
  475. spi->mode & SPI_CS_HIGH ? 0 : 1);
  476. }
  477. sdd->tgl_spi = NULL;
  478. }
  479. cs = spi->controller_data;
  480. gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
  481. }
  482. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  483. struct spi_transfer *xfer, int dma_mode)
  484. {
  485. void __iomem *regs = sdd->regs;
  486. unsigned long val;
  487. int ms;
  488. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  489. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  490. ms += 10; /* some tolerance */
  491. if (dma_mode) {
  492. val = msecs_to_jiffies(ms) + 10;
  493. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  494. } else {
  495. u32 status;
  496. val = msecs_to_loops(ms);
  497. do {
  498. status = readl(regs + S3C64XX_SPI_STATUS);
  499. } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
  500. }
  501. if (!val)
  502. return -EIO;
  503. if (dma_mode) {
  504. u32 status;
  505. /*
  506. * DmaTx returns after simply writing data in the FIFO,
  507. * w/o waiting for real transmission on the bus to finish.
  508. * DmaRx returns only after Dma read data from FIFO which
  509. * needs bus transmission to finish, so we don't worry if
  510. * Xfer involved Rx(with or without Tx).
  511. */
  512. if (xfer->rx_buf == NULL) {
  513. val = msecs_to_loops(10);
  514. status = readl(regs + S3C64XX_SPI_STATUS);
  515. while ((TX_FIFO_LVL(status, sdd)
  516. || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
  517. && --val) {
  518. cpu_relax();
  519. status = readl(regs + S3C64XX_SPI_STATUS);
  520. }
  521. if (!val)
  522. return -EIO;
  523. }
  524. } else {
  525. /* If it was only Tx */
  526. if (xfer->rx_buf == NULL) {
  527. sdd->state &= ~TXBUSY;
  528. return 0;
  529. }
  530. switch (sdd->cur_bpw) {
  531. case 32:
  532. ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
  533. xfer->rx_buf, xfer->len / 4);
  534. break;
  535. case 16:
  536. ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
  537. xfer->rx_buf, xfer->len / 2);
  538. break;
  539. default:
  540. ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
  541. xfer->rx_buf, xfer->len);
  542. break;
  543. }
  544. sdd->state &= ~RXBUSY;
  545. }
  546. return 0;
  547. }
  548. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  549. struct spi_device *spi)
  550. {
  551. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  552. if (sdd->tgl_spi == spi)
  553. sdd->tgl_spi = NULL;
  554. gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
  555. }
  556. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  557. {
  558. void __iomem *regs = sdd->regs;
  559. u32 val;
  560. /* Disable Clock */
  561. if (sdd->port_conf->clk_from_cmu) {
  562. clk_disable_unprepare(sdd->src_clk);
  563. } else {
  564. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  565. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  566. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  567. }
  568. /* Set Polarity and Phase */
  569. val = readl(regs + S3C64XX_SPI_CH_CFG);
  570. val &= ~(S3C64XX_SPI_CH_SLAVE |
  571. S3C64XX_SPI_CPOL_L |
  572. S3C64XX_SPI_CPHA_B);
  573. if (sdd->cur_mode & SPI_CPOL)
  574. val |= S3C64XX_SPI_CPOL_L;
  575. if (sdd->cur_mode & SPI_CPHA)
  576. val |= S3C64XX_SPI_CPHA_B;
  577. writel(val, regs + S3C64XX_SPI_CH_CFG);
  578. /* Set Channel & DMA Mode */
  579. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  580. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  581. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  582. switch (sdd->cur_bpw) {
  583. case 32:
  584. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  585. val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
  586. break;
  587. case 16:
  588. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  589. val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
  590. break;
  591. default:
  592. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  593. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
  594. break;
  595. }
  596. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  597. if (sdd->port_conf->clk_from_cmu) {
  598. /* Configure Clock */
  599. /* There is half-multiplier before the SPI */
  600. clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
  601. /* Enable Clock */
  602. clk_prepare_enable(sdd->src_clk);
  603. } else {
  604. /* Configure Clock */
  605. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  606. val &= ~S3C64XX_SPI_PSR_MASK;
  607. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  608. & S3C64XX_SPI_PSR_MASK);
  609. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  610. /* Enable Clock */
  611. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  612. val |= S3C64XX_SPI_ENCLK_ENABLE;
  613. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  614. }
  615. }
  616. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  617. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  618. struct spi_message *msg)
  619. {
  620. struct device *dev = &sdd->pdev->dev;
  621. struct spi_transfer *xfer;
  622. if (msg->is_dma_mapped)
  623. return 0;
  624. /* First mark all xfer unmapped */
  625. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  626. xfer->rx_dma = XFER_DMAADDR_INVALID;
  627. xfer->tx_dma = XFER_DMAADDR_INVALID;
  628. }
  629. /* Map until end or first fail */
  630. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  631. if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
  632. continue;
  633. if (xfer->tx_buf != NULL) {
  634. xfer->tx_dma = dma_map_single(dev,
  635. (void *)xfer->tx_buf, xfer->len,
  636. DMA_TO_DEVICE);
  637. if (dma_mapping_error(dev, xfer->tx_dma)) {
  638. dev_err(dev, "dma_map_single Tx failed\n");
  639. xfer->tx_dma = XFER_DMAADDR_INVALID;
  640. return -ENOMEM;
  641. }
  642. }
  643. if (xfer->rx_buf != NULL) {
  644. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  645. xfer->len, DMA_FROM_DEVICE);
  646. if (dma_mapping_error(dev, xfer->rx_dma)) {
  647. dev_err(dev, "dma_map_single Rx failed\n");
  648. dma_unmap_single(dev, xfer->tx_dma,
  649. xfer->len, DMA_TO_DEVICE);
  650. xfer->tx_dma = XFER_DMAADDR_INVALID;
  651. xfer->rx_dma = XFER_DMAADDR_INVALID;
  652. return -ENOMEM;
  653. }
  654. }
  655. }
  656. return 0;
  657. }
  658. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  659. struct spi_message *msg)
  660. {
  661. struct device *dev = &sdd->pdev->dev;
  662. struct spi_transfer *xfer;
  663. if (msg->is_dma_mapped)
  664. return;
  665. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  666. if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
  667. continue;
  668. if (xfer->rx_buf != NULL
  669. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  670. dma_unmap_single(dev, xfer->rx_dma,
  671. xfer->len, DMA_FROM_DEVICE);
  672. if (xfer->tx_buf != NULL
  673. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  674. dma_unmap_single(dev, xfer->tx_dma,
  675. xfer->len, DMA_TO_DEVICE);
  676. }
  677. }
  678. static int s3c64xx_spi_transfer_one_message(struct spi_master *master,
  679. struct spi_message *msg)
  680. {
  681. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  682. struct spi_device *spi = msg->spi;
  683. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  684. struct spi_transfer *xfer;
  685. int status = 0, cs_toggle = 0;
  686. u32 speed;
  687. u8 bpw;
  688. /* If Master's(controller) state differs from that needed by Slave */
  689. if (sdd->cur_speed != spi->max_speed_hz
  690. || sdd->cur_mode != spi->mode
  691. || sdd->cur_bpw != spi->bits_per_word) {
  692. sdd->cur_bpw = spi->bits_per_word;
  693. sdd->cur_speed = spi->max_speed_hz;
  694. sdd->cur_mode = spi->mode;
  695. s3c64xx_spi_config(sdd);
  696. }
  697. /* Map all the transfers if needed */
  698. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  699. dev_err(&spi->dev,
  700. "Xfer: Unable to map message buffers!\n");
  701. status = -ENOMEM;
  702. goto out;
  703. }
  704. /* Configure feedback delay */
  705. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  706. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  707. unsigned long flags;
  708. int use_dma;
  709. INIT_COMPLETION(sdd->xfer_completion);
  710. /* Only BPW and Speed may change across transfers */
  711. bpw = xfer->bits_per_word;
  712. speed = xfer->speed_hz ? : spi->max_speed_hz;
  713. if (xfer->len % (bpw / 8)) {
  714. dev_err(&spi->dev,
  715. "Xfer length(%u) not a multiple of word size(%u)\n",
  716. xfer->len, bpw / 8);
  717. status = -EIO;
  718. goto out;
  719. }
  720. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  721. sdd->cur_bpw = bpw;
  722. sdd->cur_speed = speed;
  723. s3c64xx_spi_config(sdd);
  724. }
  725. /* Polling method for xfers not bigger than FIFO capacity */
  726. use_dma = 0;
  727. if (sdd->rx_dma.ch && sdd->tx_dma.ch &&
  728. (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1)))
  729. use_dma = 1;
  730. spin_lock_irqsave(&sdd->lock, flags);
  731. /* Pending only which is to be done */
  732. sdd->state &= ~RXBUSY;
  733. sdd->state &= ~TXBUSY;
  734. enable_datapath(sdd, spi, xfer, use_dma);
  735. /* Slave Select */
  736. enable_cs(sdd, spi);
  737. /* Start the signals */
  738. writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  739. spin_unlock_irqrestore(&sdd->lock, flags);
  740. status = wait_for_xfer(sdd, xfer, use_dma);
  741. /* Quiese the signals */
  742. writel(S3C64XX_SPI_SLAVE_SIG_INACT,
  743. sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  744. if (status) {
  745. dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  746. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  747. (sdd->state & RXBUSY) ? 'f' : 'p',
  748. (sdd->state & TXBUSY) ? 'f' : 'p',
  749. xfer->len);
  750. if (use_dma) {
  751. if (xfer->tx_buf != NULL
  752. && (sdd->state & TXBUSY))
  753. s3c64xx_spi_dma_stop(sdd, &sdd->tx_dma);
  754. if (xfer->rx_buf != NULL
  755. && (sdd->state & RXBUSY))
  756. s3c64xx_spi_dma_stop(sdd, &sdd->rx_dma);
  757. }
  758. goto out;
  759. }
  760. if (xfer->delay_usecs)
  761. udelay(xfer->delay_usecs);
  762. if (xfer->cs_change) {
  763. /* Hint that the next mssg is gonna be
  764. for the same device */
  765. if (list_is_last(&xfer->transfer_list,
  766. &msg->transfers))
  767. cs_toggle = 1;
  768. }
  769. msg->actual_length += xfer->len;
  770. flush_fifo(sdd);
  771. }
  772. out:
  773. if (!cs_toggle || status)
  774. disable_cs(sdd, spi);
  775. else
  776. sdd->tgl_spi = spi;
  777. s3c64xx_spi_unmap_mssg(sdd, msg);
  778. msg->status = status;
  779. spi_finalize_current_message(master);
  780. return 0;
  781. }
  782. static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
  783. struct spi_device *spi)
  784. {
  785. struct s3c64xx_spi_csinfo *cs;
  786. struct device_node *slave_np, *data_np = NULL;
  787. u32 fb_delay = 0;
  788. slave_np = spi->dev.of_node;
  789. if (!slave_np) {
  790. dev_err(&spi->dev, "device node not found\n");
  791. return ERR_PTR(-EINVAL);
  792. }
  793. data_np = of_get_child_by_name(slave_np, "controller-data");
  794. if (!data_np) {
  795. dev_err(&spi->dev, "child node 'controller-data' not found\n");
  796. return ERR_PTR(-EINVAL);
  797. }
  798. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  799. if (!cs) {
  800. dev_err(&spi->dev, "could not allocate memory for controller data\n");
  801. of_node_put(data_np);
  802. return ERR_PTR(-ENOMEM);
  803. }
  804. cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
  805. if (!gpio_is_valid(cs->line)) {
  806. dev_err(&spi->dev, "chip select gpio is not specified or invalid\n");
  807. kfree(cs);
  808. of_node_put(data_np);
  809. return ERR_PTR(-EINVAL);
  810. }
  811. of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
  812. cs->fb_delay = fb_delay;
  813. of_node_put(data_np);
  814. return cs;
  815. }
  816. /*
  817. * Here we only check the validity of requested configuration
  818. * and save the configuration in a local data-structure.
  819. * The controller is actually configured only just before we
  820. * get a message to transfer.
  821. */
  822. static int s3c64xx_spi_setup(struct spi_device *spi)
  823. {
  824. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  825. struct s3c64xx_spi_driver_data *sdd;
  826. struct s3c64xx_spi_info *sci;
  827. struct spi_message *msg;
  828. unsigned long flags;
  829. int err;
  830. sdd = spi_master_get_devdata(spi->master);
  831. if (!cs && spi->dev.of_node) {
  832. cs = s3c64xx_get_slave_ctrldata(spi);
  833. spi->controller_data = cs;
  834. }
  835. if (IS_ERR_OR_NULL(cs)) {
  836. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  837. return -ENODEV;
  838. }
  839. if (!spi_get_ctldata(spi)) {
  840. err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
  841. dev_name(&spi->dev));
  842. if (err) {
  843. dev_err(&spi->dev,
  844. "Failed to get /CS gpio [%d]: %d\n",
  845. cs->line, err);
  846. goto err_gpio_req;
  847. }
  848. spi_set_ctldata(spi, cs);
  849. }
  850. sci = sdd->cntrlr_info;
  851. spin_lock_irqsave(&sdd->lock, flags);
  852. list_for_each_entry(msg, &sdd->queue, queue) {
  853. /* Is some mssg is already queued for this device */
  854. if (msg->spi == spi) {
  855. dev_err(&spi->dev,
  856. "setup: attempt while mssg in queue!\n");
  857. spin_unlock_irqrestore(&sdd->lock, flags);
  858. err = -EBUSY;
  859. goto err_msgq;
  860. }
  861. }
  862. spin_unlock_irqrestore(&sdd->lock, flags);
  863. pm_runtime_get_sync(&sdd->pdev->dev);
  864. /* Check if we can provide the requested rate */
  865. if (!sdd->port_conf->clk_from_cmu) {
  866. u32 psr, speed;
  867. /* Max possible */
  868. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
  869. if (spi->max_speed_hz > speed)
  870. spi->max_speed_hz = speed;
  871. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  872. psr &= S3C64XX_SPI_PSR_MASK;
  873. if (psr == S3C64XX_SPI_PSR_MASK)
  874. psr--;
  875. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  876. if (spi->max_speed_hz < speed) {
  877. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  878. psr++;
  879. } else {
  880. err = -EINVAL;
  881. goto setup_exit;
  882. }
  883. }
  884. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  885. if (spi->max_speed_hz >= speed) {
  886. spi->max_speed_hz = speed;
  887. } else {
  888. dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
  889. spi->max_speed_hz);
  890. err = -EINVAL;
  891. goto setup_exit;
  892. }
  893. }
  894. pm_runtime_put(&sdd->pdev->dev);
  895. disable_cs(sdd, spi);
  896. return 0;
  897. setup_exit:
  898. /* setup() returns with device de-selected */
  899. disable_cs(sdd, spi);
  900. err_msgq:
  901. gpio_free(cs->line);
  902. spi_set_ctldata(spi, NULL);
  903. err_gpio_req:
  904. if (spi->dev.of_node)
  905. kfree(cs);
  906. return err;
  907. }
  908. static void s3c64xx_spi_cleanup(struct spi_device *spi)
  909. {
  910. struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
  911. if (cs) {
  912. gpio_free(cs->line);
  913. if (spi->dev.of_node)
  914. kfree(cs);
  915. }
  916. spi_set_ctldata(spi, NULL);
  917. }
  918. static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
  919. {
  920. struct s3c64xx_spi_driver_data *sdd = data;
  921. struct spi_master *spi = sdd->master;
  922. unsigned int val, clr = 0;
  923. val = readl(sdd->regs + S3C64XX_SPI_STATUS);
  924. if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
  925. clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
  926. dev_err(&spi->dev, "RX overrun\n");
  927. }
  928. if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
  929. clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
  930. dev_err(&spi->dev, "RX underrun\n");
  931. }
  932. if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
  933. clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
  934. dev_err(&spi->dev, "TX overrun\n");
  935. }
  936. if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
  937. clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  938. dev_err(&spi->dev, "TX underrun\n");
  939. }
  940. /* Clear the pending irq by setting and then clearing it */
  941. writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  942. writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  943. return IRQ_HANDLED;
  944. }
  945. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  946. {
  947. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  948. void __iomem *regs = sdd->regs;
  949. unsigned int val;
  950. sdd->cur_speed = 0;
  951. writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  952. /* Disable Interrupts - we use Polling if not DMA mode */
  953. writel(0, regs + S3C64XX_SPI_INT_EN);
  954. if (!sdd->port_conf->clk_from_cmu)
  955. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  956. regs + S3C64XX_SPI_CLK_CFG);
  957. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  958. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  959. /* Clear any irq pending bits, should set and clear the bits */
  960. val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
  961. S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
  962. S3C64XX_SPI_PND_TX_OVERRUN_CLR |
  963. S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  964. writel(val, regs + S3C64XX_SPI_PENDING_CLR);
  965. writel(0, regs + S3C64XX_SPI_PENDING_CLR);
  966. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  967. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  968. val &= ~S3C64XX_SPI_MODE_4BURST;
  969. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  970. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  971. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  972. flush_fifo(sdd);
  973. }
  974. #ifdef CONFIG_OF
  975. static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
  976. {
  977. struct s3c64xx_spi_info *sci;
  978. u32 temp;
  979. sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
  980. if (!sci) {
  981. dev_err(dev, "memory allocation for spi_info failed\n");
  982. return ERR_PTR(-ENOMEM);
  983. }
  984. if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
  985. dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
  986. sci->src_clk_nr = 0;
  987. } else {
  988. sci->src_clk_nr = temp;
  989. }
  990. if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
  991. dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
  992. sci->num_cs = 1;
  993. } else {
  994. sci->num_cs = temp;
  995. }
  996. return sci;
  997. }
  998. #else
  999. static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
  1000. {
  1001. return dev->platform_data;
  1002. }
  1003. #endif
  1004. static const struct of_device_id s3c64xx_spi_dt_match[];
  1005. static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
  1006. struct platform_device *pdev)
  1007. {
  1008. #ifdef CONFIG_OF
  1009. if (pdev->dev.of_node) {
  1010. const struct of_device_id *match;
  1011. match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
  1012. return (struct s3c64xx_spi_port_config *)match->data;
  1013. }
  1014. #endif
  1015. return (struct s3c64xx_spi_port_config *)
  1016. platform_get_device_id(pdev)->driver_data;
  1017. }
  1018. static int s3c64xx_spi_probe(struct platform_device *pdev)
  1019. {
  1020. struct resource *mem_res;
  1021. struct resource *res;
  1022. struct s3c64xx_spi_driver_data *sdd;
  1023. struct s3c64xx_spi_info *sci = pdev->dev.platform_data;
  1024. struct spi_master *master;
  1025. int ret, irq;
  1026. char clk_name[16];
  1027. if (!sci && pdev->dev.of_node) {
  1028. sci = s3c64xx_spi_parse_dt(&pdev->dev);
  1029. if (IS_ERR(sci))
  1030. return PTR_ERR(sci);
  1031. }
  1032. if (!sci) {
  1033. dev_err(&pdev->dev, "platform_data missing!\n");
  1034. return -ENODEV;
  1035. }
  1036. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1037. if (mem_res == NULL) {
  1038. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  1039. return -ENXIO;
  1040. }
  1041. irq = platform_get_irq(pdev, 0);
  1042. if (irq < 0) {
  1043. dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
  1044. return irq;
  1045. }
  1046. master = spi_alloc_master(&pdev->dev,
  1047. sizeof(struct s3c64xx_spi_driver_data));
  1048. if (master == NULL) {
  1049. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  1050. return -ENOMEM;
  1051. }
  1052. platform_set_drvdata(pdev, master);
  1053. sdd = spi_master_get_devdata(master);
  1054. sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
  1055. sdd->master = master;
  1056. sdd->cntrlr_info = sci;
  1057. sdd->pdev = pdev;
  1058. sdd->sfr_start = mem_res->start;
  1059. if (pdev->dev.of_node) {
  1060. ret = of_alias_get_id(pdev->dev.of_node, "spi");
  1061. if (ret < 0) {
  1062. dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
  1063. ret);
  1064. goto err0;
  1065. }
  1066. sdd->port_id = ret;
  1067. } else {
  1068. sdd->port_id = pdev->id;
  1069. }
  1070. sdd->cur_bpw = 8;
  1071. if (!sdd->pdev->dev.of_node) {
  1072. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1073. if (!res) {
  1074. dev_err(&pdev->dev, "Unable to get SPI tx dma "
  1075. "resource\n");
  1076. return -ENXIO;
  1077. }
  1078. sdd->tx_dma.dmach = res->start;
  1079. res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  1080. if (!res) {
  1081. dev_err(&pdev->dev, "Unable to get SPI rx dma "
  1082. "resource\n");
  1083. return -ENXIO;
  1084. }
  1085. sdd->rx_dma.dmach = res->start;
  1086. }
  1087. sdd->tx_dma.direction = DMA_MEM_TO_DEV;
  1088. sdd->rx_dma.direction = DMA_DEV_TO_MEM;
  1089. master->dev.of_node = pdev->dev.of_node;
  1090. master->bus_num = sdd->port_id;
  1091. master->setup = s3c64xx_spi_setup;
  1092. master->cleanup = s3c64xx_spi_cleanup;
  1093. master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
  1094. master->transfer_one_message = s3c64xx_spi_transfer_one_message;
  1095. master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
  1096. master->num_chipselect = sci->num_cs;
  1097. master->dma_alignment = 8;
  1098. master->bits_per_word_mask = BIT(32 - 1) | BIT(16 - 1) | BIT(8 - 1);
  1099. /* the spi->mode bits understood by this driver: */
  1100. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1101. sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
  1102. if (IS_ERR(sdd->regs)) {
  1103. ret = PTR_ERR(sdd->regs);
  1104. goto err0;
  1105. }
  1106. if (sci->cfg_gpio && sci->cfg_gpio()) {
  1107. dev_err(&pdev->dev, "Unable to config gpio\n");
  1108. ret = -EBUSY;
  1109. goto err0;
  1110. }
  1111. /* Setup clocks */
  1112. sdd->clk = devm_clk_get(&pdev->dev, "spi");
  1113. if (IS_ERR(sdd->clk)) {
  1114. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  1115. ret = PTR_ERR(sdd->clk);
  1116. goto err0;
  1117. }
  1118. if (clk_prepare_enable(sdd->clk)) {
  1119. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  1120. ret = -EBUSY;
  1121. goto err0;
  1122. }
  1123. sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
  1124. sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
  1125. if (IS_ERR(sdd->src_clk)) {
  1126. dev_err(&pdev->dev,
  1127. "Unable to acquire clock '%s'\n", clk_name);
  1128. ret = PTR_ERR(sdd->src_clk);
  1129. goto err2;
  1130. }
  1131. if (clk_prepare_enable(sdd->src_clk)) {
  1132. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
  1133. ret = -EBUSY;
  1134. goto err2;
  1135. }
  1136. /* Setup Deufult Mode */
  1137. s3c64xx_spi_hwinit(sdd, sdd->port_id);
  1138. spin_lock_init(&sdd->lock);
  1139. init_completion(&sdd->xfer_completion);
  1140. INIT_LIST_HEAD(&sdd->queue);
  1141. ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
  1142. "spi-s3c64xx", sdd);
  1143. if (ret != 0) {
  1144. dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
  1145. irq, ret);
  1146. goto err3;
  1147. }
  1148. writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
  1149. S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
  1150. sdd->regs + S3C64XX_SPI_INT_EN);
  1151. if (spi_register_master(master)) {
  1152. dev_err(&pdev->dev, "cannot register SPI master\n");
  1153. ret = -EBUSY;
  1154. goto err3;
  1155. }
  1156. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
  1157. sdd->port_id, master->num_chipselect);
  1158. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
  1159. mem_res->end, mem_res->start,
  1160. sdd->rx_dma.dmach, sdd->tx_dma.dmach);
  1161. pm_runtime_enable(&pdev->dev);
  1162. return 0;
  1163. err3:
  1164. clk_disable_unprepare(sdd->src_clk);
  1165. err2:
  1166. clk_disable_unprepare(sdd->clk);
  1167. err0:
  1168. platform_set_drvdata(pdev, NULL);
  1169. spi_master_put(master);
  1170. return ret;
  1171. }
  1172. static int s3c64xx_spi_remove(struct platform_device *pdev)
  1173. {
  1174. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  1175. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1176. pm_runtime_disable(&pdev->dev);
  1177. spi_unregister_master(master);
  1178. writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
  1179. clk_disable_unprepare(sdd->src_clk);
  1180. clk_disable_unprepare(sdd->clk);
  1181. platform_set_drvdata(pdev, NULL);
  1182. spi_master_put(master);
  1183. return 0;
  1184. }
  1185. #ifdef CONFIG_PM_SLEEP
  1186. static int s3c64xx_spi_suspend(struct device *dev)
  1187. {
  1188. struct spi_master *master = dev_get_drvdata(dev);
  1189. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1190. spi_master_suspend(master);
  1191. /* Disable the clock */
  1192. clk_disable_unprepare(sdd->src_clk);
  1193. clk_disable_unprepare(sdd->clk);
  1194. sdd->cur_speed = 0; /* Output Clock is stopped */
  1195. return 0;
  1196. }
  1197. static int s3c64xx_spi_resume(struct device *dev)
  1198. {
  1199. struct spi_master *master = dev_get_drvdata(dev);
  1200. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1201. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  1202. if (sci->cfg_gpio)
  1203. sci->cfg_gpio();
  1204. /* Enable the clock */
  1205. clk_prepare_enable(sdd->src_clk);
  1206. clk_prepare_enable(sdd->clk);
  1207. s3c64xx_spi_hwinit(sdd, sdd->port_id);
  1208. spi_master_resume(master);
  1209. return 0;
  1210. }
  1211. #endif /* CONFIG_PM_SLEEP */
  1212. #ifdef CONFIG_PM_RUNTIME
  1213. static int s3c64xx_spi_runtime_suspend(struct device *dev)
  1214. {
  1215. struct spi_master *master = dev_get_drvdata(dev);
  1216. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1217. clk_disable_unprepare(sdd->clk);
  1218. clk_disable_unprepare(sdd->src_clk);
  1219. return 0;
  1220. }
  1221. static int s3c64xx_spi_runtime_resume(struct device *dev)
  1222. {
  1223. struct spi_master *master = dev_get_drvdata(dev);
  1224. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1225. clk_prepare_enable(sdd->src_clk);
  1226. clk_prepare_enable(sdd->clk);
  1227. return 0;
  1228. }
  1229. #endif /* CONFIG_PM_RUNTIME */
  1230. static const struct dev_pm_ops s3c64xx_spi_pm = {
  1231. SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
  1232. SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
  1233. s3c64xx_spi_runtime_resume, NULL)
  1234. };
  1235. static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
  1236. .fifo_lvl_mask = { 0x7f },
  1237. .rx_lvl_offset = 13,
  1238. .tx_st_done = 21,
  1239. .high_speed = true,
  1240. };
  1241. static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
  1242. .fifo_lvl_mask = { 0x7f, 0x7F },
  1243. .rx_lvl_offset = 13,
  1244. .tx_st_done = 21,
  1245. };
  1246. static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
  1247. .fifo_lvl_mask = { 0x1ff, 0x7F },
  1248. .rx_lvl_offset = 15,
  1249. .tx_st_done = 25,
  1250. };
  1251. static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
  1252. .fifo_lvl_mask = { 0x7f, 0x7F },
  1253. .rx_lvl_offset = 13,
  1254. .tx_st_done = 21,
  1255. .high_speed = true,
  1256. };
  1257. static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
  1258. .fifo_lvl_mask = { 0x1ff, 0x7F },
  1259. .rx_lvl_offset = 15,
  1260. .tx_st_done = 25,
  1261. .high_speed = true,
  1262. };
  1263. static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
  1264. .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
  1265. .rx_lvl_offset = 15,
  1266. .tx_st_done = 25,
  1267. .high_speed = true,
  1268. .clk_from_cmu = true,
  1269. };
  1270. static struct platform_device_id s3c64xx_spi_driver_ids[] = {
  1271. {
  1272. .name = "s3c2443-spi",
  1273. .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
  1274. }, {
  1275. .name = "s3c6410-spi",
  1276. .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
  1277. }, {
  1278. .name = "s5p64x0-spi",
  1279. .driver_data = (kernel_ulong_t)&s5p64x0_spi_port_config,
  1280. }, {
  1281. .name = "s5pc100-spi",
  1282. .driver_data = (kernel_ulong_t)&s5pc100_spi_port_config,
  1283. }, {
  1284. .name = "s5pv210-spi",
  1285. .driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
  1286. }, {
  1287. .name = "exynos4210-spi",
  1288. .driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
  1289. },
  1290. { },
  1291. };
  1292. #ifdef CONFIG_OF
  1293. static const struct of_device_id s3c64xx_spi_dt_match[] = {
  1294. { .compatible = "samsung,exynos4210-spi",
  1295. .data = (void *)&exynos4_spi_port_config,
  1296. },
  1297. { },
  1298. };
  1299. MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
  1300. #endif /* CONFIG_OF */
  1301. static struct platform_driver s3c64xx_spi_driver = {
  1302. .driver = {
  1303. .name = "s3c64xx-spi",
  1304. .owner = THIS_MODULE,
  1305. .pm = &s3c64xx_spi_pm,
  1306. .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
  1307. },
  1308. .remove = s3c64xx_spi_remove,
  1309. .id_table = s3c64xx_spi_driver_ids,
  1310. };
  1311. MODULE_ALIAS("platform:s3c64xx-spi");
  1312. static int __init s3c64xx_spi_init(void)
  1313. {
  1314. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  1315. }
  1316. subsys_initcall(s3c64xx_spi_init);
  1317. static void __exit s3c64xx_spi_exit(void)
  1318. {
  1319. platform_driver_unregister(&s3c64xx_spi_driver);
  1320. }
  1321. module_exit(s3c64xx_spi_exit);
  1322. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  1323. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  1324. MODULE_LICENSE("GPL");