txrx.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <net/ieee80211_radiotap.h>
  18. #include <linux/if_arp.h>
  19. #include <linux/moduleparam.h>
  20. #include "wil6210.h"
  21. #include "wmi.h"
  22. #include "txrx.h"
  23. static bool rtap_include_phy_info;
  24. module_param(rtap_include_phy_info, bool, S_IRUGO);
  25. MODULE_PARM_DESC(rtap_include_phy_info,
  26. " Include PHY info in the radiotap header, default - no");
  27. static inline int wil_vring_is_empty(struct vring *vring)
  28. {
  29. return vring->swhead == vring->swtail;
  30. }
  31. static inline u32 wil_vring_next_tail(struct vring *vring)
  32. {
  33. return (vring->swtail + 1) % vring->size;
  34. }
  35. static inline void wil_vring_advance_head(struct vring *vring, int n)
  36. {
  37. vring->swhead = (vring->swhead + n) % vring->size;
  38. }
  39. static inline int wil_vring_is_full(struct vring *vring)
  40. {
  41. return wil_vring_next_tail(vring) == vring->swhead;
  42. }
  43. /*
  44. * Available space in Tx Vring
  45. */
  46. static inline int wil_vring_avail_tx(struct vring *vring)
  47. {
  48. u32 swhead = vring->swhead;
  49. u32 swtail = vring->swtail;
  50. int used = (vring->size + swhead - swtail) % vring->size;
  51. return vring->size - used - 1;
  52. }
  53. static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
  54. {
  55. struct device *dev = wil_to_dev(wil);
  56. size_t sz = vring->size * sizeof(vring->va[0]);
  57. uint i;
  58. BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
  59. vring->swhead = 0;
  60. vring->swtail = 0;
  61. vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
  62. if (!vring->ctx) {
  63. vring->va = NULL;
  64. return -ENOMEM;
  65. }
  66. /*
  67. * vring->va should be aligned on its size rounded up to power of 2
  68. * This is granted by the dma_alloc_coherent
  69. */
  70. vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
  71. if (!vring->va) {
  72. kfree(vring->ctx);
  73. vring->ctx = NULL;
  74. return -ENOMEM;
  75. }
  76. /* initially, all descriptors are SW owned
  77. * For Tx and Rx, ownership bit is at the same location, thus
  78. * we can use any
  79. */
  80. for (i = 0; i < vring->size; i++) {
  81. volatile struct vring_tx_desc *d = &(vring->va[i].tx);
  82. d->dma.status = TX_DMA_STATUS_DU;
  83. }
  84. wil_dbg_misc(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
  85. vring->va, (unsigned long long)vring->pa, vring->ctx);
  86. return 0;
  87. }
  88. static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
  89. int tx)
  90. {
  91. struct device *dev = wil_to_dev(wil);
  92. size_t sz = vring->size * sizeof(vring->va[0]);
  93. while (!wil_vring_is_empty(vring)) {
  94. if (tx) {
  95. volatile struct vring_tx_desc *d =
  96. &vring->va[vring->swtail].tx;
  97. dma_addr_t pa = d->dma.addr_low |
  98. ((u64)d->dma.addr_high << 32);
  99. struct sk_buff *skb = vring->ctx[vring->swtail];
  100. if (skb) {
  101. dma_unmap_single(dev, pa, d->dma.length,
  102. DMA_TO_DEVICE);
  103. dev_kfree_skb_any(skb);
  104. vring->ctx[vring->swtail] = NULL;
  105. } else {
  106. dma_unmap_page(dev, pa, d->dma.length,
  107. DMA_TO_DEVICE);
  108. }
  109. vring->swtail = wil_vring_next_tail(vring);
  110. } else { /* rx */
  111. volatile struct vring_rx_desc *d =
  112. &vring->va[vring->swtail].rx;
  113. dma_addr_t pa = d->dma.addr_low |
  114. ((u64)d->dma.addr_high << 32);
  115. struct sk_buff *skb = vring->ctx[vring->swhead];
  116. dma_unmap_single(dev, pa, d->dma.length,
  117. DMA_FROM_DEVICE);
  118. kfree_skb(skb);
  119. wil_vring_advance_head(vring, 1);
  120. }
  121. }
  122. dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
  123. kfree(vring->ctx);
  124. vring->pa = 0;
  125. vring->va = NULL;
  126. vring->ctx = NULL;
  127. }
  128. /**
  129. * Allocate one skb for Rx VRING
  130. *
  131. * Safe to call from IRQ
  132. */
  133. static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
  134. u32 i, int headroom)
  135. {
  136. struct device *dev = wil_to_dev(wil);
  137. unsigned int sz = RX_BUF_LEN;
  138. volatile struct vring_rx_desc *d = &(vring->va[i].rx);
  139. dma_addr_t pa;
  140. /* TODO align */
  141. struct sk_buff *skb = dev_alloc_skb(sz + headroom);
  142. if (unlikely(!skb))
  143. return -ENOMEM;
  144. skb_reserve(skb, headroom);
  145. skb_put(skb, sz);
  146. pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
  147. if (unlikely(dma_mapping_error(dev, pa))) {
  148. kfree_skb(skb);
  149. return -ENOMEM;
  150. }
  151. d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
  152. d->dma.addr_low = lower_32_bits(pa);
  153. d->dma.addr_high = (u16)upper_32_bits(pa);
  154. /* ip_length don't care */
  155. /* b11 don't care */
  156. /* error don't care */
  157. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  158. d->dma.length = sz;
  159. vring->ctx[i] = skb;
  160. return 0;
  161. }
  162. /**
  163. * Adds radiotap header
  164. *
  165. * Any error indicated as "Bad FCS"
  166. *
  167. * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
  168. * - Rx descriptor: 32 bytes
  169. * - Phy info
  170. */
  171. static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
  172. struct sk_buff *skb)
  173. {
  174. struct wireless_dev *wdev = wil->wdev;
  175. struct wil6210_rtap {
  176. struct ieee80211_radiotap_header rthdr;
  177. /* fields should be in the order of bits in rthdr.it_present */
  178. /* flags */
  179. u8 flags;
  180. /* channel */
  181. __le16 chnl_freq __aligned(2);
  182. __le16 chnl_flags;
  183. /* MCS */
  184. u8 mcs_present;
  185. u8 mcs_flags;
  186. u8 mcs_index;
  187. } __packed;
  188. struct wil6210_rtap_vendor {
  189. struct wil6210_rtap rtap;
  190. /* vendor */
  191. u8 vendor_oui[3] __aligned(2);
  192. u8 vendor_ns;
  193. __le16 vendor_skip;
  194. u8 vendor_data[0];
  195. } __packed;
  196. struct vring_rx_desc *d = wil_skb_rxdesc(skb);
  197. struct wil6210_rtap_vendor *rtap_vendor;
  198. int rtap_len = sizeof(struct wil6210_rtap);
  199. int phy_length = 0; /* phy info header size, bytes */
  200. static char phy_data[128];
  201. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  202. if (rtap_include_phy_info) {
  203. rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
  204. /* calculate additional length */
  205. if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
  206. /**
  207. * PHY info starts from 8-byte boundary
  208. * there are 8-byte lines, last line may be partially
  209. * written (HW bug), thus FW configures for last line
  210. * to be excessive. Driver skips this last line.
  211. */
  212. int len = min_t(int, 8 + sizeof(phy_data),
  213. wil_rxdesc_phy_length(d));
  214. if (len > 8) {
  215. void *p = skb_tail_pointer(skb);
  216. void *pa = PTR_ALIGN(p, 8);
  217. if (skb_tailroom(skb) >= len + (pa - p)) {
  218. phy_length = len - 8;
  219. memcpy(phy_data, pa, phy_length);
  220. }
  221. }
  222. }
  223. rtap_len += phy_length;
  224. }
  225. if (skb_headroom(skb) < rtap_len &&
  226. pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
  227. wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
  228. return;
  229. }
  230. rtap_vendor = (void *)skb_push(skb, rtap_len);
  231. memset(rtap_vendor, 0, rtap_len);
  232. rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
  233. rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
  234. rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
  235. (1 << IEEE80211_RADIOTAP_FLAGS) |
  236. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  237. (1 << IEEE80211_RADIOTAP_MCS));
  238. if (d->dma.status & RX_DMA_STATUS_ERROR)
  239. rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
  240. rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
  241. rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
  242. rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
  243. rtap_vendor->rtap.mcs_flags = 0;
  244. rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
  245. if (rtap_include_phy_info) {
  246. rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
  247. IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
  248. /* OUI for Wilocity 04:ce:14 */
  249. rtap_vendor->vendor_oui[0] = 0x04;
  250. rtap_vendor->vendor_oui[1] = 0xce;
  251. rtap_vendor->vendor_oui[2] = 0x14;
  252. rtap_vendor->vendor_ns = 1;
  253. /* Rx descriptor + PHY data */
  254. rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
  255. phy_length);
  256. memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
  257. memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
  258. phy_length);
  259. }
  260. }
  261. /*
  262. * Fast swap in place between 2 registers
  263. */
  264. static void wil_swap_u16(u16 *a, u16 *b)
  265. {
  266. *a ^= *b;
  267. *b ^= *a;
  268. *a ^= *b;
  269. }
  270. static void wil_swap_ethaddr(void *data)
  271. {
  272. struct ethhdr *eth = data;
  273. u16 *s = (u16 *)eth->h_source;
  274. u16 *d = (u16 *)eth->h_dest;
  275. wil_swap_u16(s++, d++);
  276. wil_swap_u16(s++, d++);
  277. wil_swap_u16(s, d);
  278. }
  279. /**
  280. * reap 1 frame from @swhead
  281. *
  282. * Rx descriptor copied to skb->cb
  283. *
  284. * Safe to call from IRQ
  285. */
  286. static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
  287. struct vring *vring)
  288. {
  289. struct device *dev = wil_to_dev(wil);
  290. struct net_device *ndev = wil_to_ndev(wil);
  291. volatile struct vring_rx_desc *d;
  292. struct vring_rx_desc *d1;
  293. struct sk_buff *skb;
  294. dma_addr_t pa;
  295. unsigned int sz = RX_BUF_LEN;
  296. u8 ftype;
  297. u8 ds_bits;
  298. BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
  299. if (wil_vring_is_empty(vring))
  300. return NULL;
  301. d = &(vring->va[vring->swhead].rx);
  302. if (!(d->dma.status & RX_DMA_STATUS_DU)) {
  303. /* it is not error, we just reached end of Rx done area */
  304. return NULL;
  305. }
  306. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  307. skb = vring->ctx[vring->swhead];
  308. dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
  309. skb_trim(skb, d->dma.length);
  310. d1 = wil_skb_rxdesc(skb);
  311. *d1 = *d;
  312. wil->stats.last_mcs_rx = wil_rxdesc_mcs(d1);
  313. /* use radiotap header only if required */
  314. if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
  315. wil_rx_add_radiotap_header(wil, skb);
  316. wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", vring->swhead, d->dma.length);
  317. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4,
  318. (const void *)d, sizeof(*d), false);
  319. wil_vring_advance_head(vring, 1);
  320. /* no extra checks if in sniffer mode */
  321. if (ndev->type != ARPHRD_ETHER)
  322. return skb;
  323. /*
  324. * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
  325. * Driver should recognize it by frame type, that is found
  326. * in Rx descriptor. If type is not data, it is 802.11 frame as is
  327. */
  328. ftype = wil_rxdesc_ftype(d1) << 2;
  329. if (ftype != IEEE80211_FTYPE_DATA) {
  330. wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype);
  331. /* TODO: process it */
  332. kfree_skb(skb);
  333. return NULL;
  334. }
  335. if (skb->len < ETH_HLEN) {
  336. wil_err(wil, "Short frame, len = %d\n", skb->len);
  337. /* TODO: process it (i.e. BAR) */
  338. kfree_skb(skb);
  339. return NULL;
  340. }
  341. ds_bits = wil_rxdesc_ds_bits(d1);
  342. if (ds_bits == 1) {
  343. /*
  344. * HW bug - in ToDS mode, i.e. Rx on AP side,
  345. * addresses get swapped
  346. */
  347. wil_swap_ethaddr(skb->data);
  348. }
  349. return skb;
  350. }
  351. /**
  352. * allocate and fill up to @count buffers in rx ring
  353. * buffers posted at @swtail
  354. */
  355. static int wil_rx_refill(struct wil6210_priv *wil, int count)
  356. {
  357. struct net_device *ndev = wil_to_ndev(wil);
  358. struct vring *v = &wil->vring_rx;
  359. u32 next_tail;
  360. int rc = 0;
  361. int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
  362. WIL6210_RTAP_SIZE : 0;
  363. for (; next_tail = wil_vring_next_tail(v),
  364. (next_tail != v->swhead) && (count-- > 0);
  365. v->swtail = next_tail) {
  366. rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
  367. if (rc) {
  368. wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
  369. rc, v->swtail);
  370. break;
  371. }
  372. }
  373. iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));
  374. return rc;
  375. }
  376. /*
  377. * Pass Rx packet to the netif. Update statistics.
  378. */
  379. static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
  380. {
  381. int rc;
  382. unsigned int len = skb->len;
  383. skb_orphan(skb);
  384. if (in_interrupt())
  385. rc = netif_rx(skb);
  386. else
  387. rc = netif_rx_ni(skb);
  388. if (likely(rc == NET_RX_SUCCESS)) {
  389. ndev->stats.rx_packets++;
  390. ndev->stats.rx_bytes += len;
  391. } else {
  392. ndev->stats.rx_dropped++;
  393. }
  394. }
  395. /**
  396. * Proceed all completed skb's from Rx VRING
  397. *
  398. * Safe to call from IRQ
  399. */
  400. void wil_rx_handle(struct wil6210_priv *wil)
  401. {
  402. struct net_device *ndev = wil_to_ndev(wil);
  403. struct vring *v = &wil->vring_rx;
  404. struct sk_buff *skb;
  405. if (!v->va) {
  406. wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
  407. return;
  408. }
  409. wil_dbg_txrx(wil, "%s()\n", __func__);
  410. while (NULL != (skb = wil_vring_reap_rx(wil, v))) {
  411. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
  412. skb->data, skb_headlen(skb), false);
  413. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  414. skb->dev = ndev;
  415. skb_reset_mac_header(skb);
  416. skb->ip_summed = CHECKSUM_UNNECESSARY;
  417. skb->pkt_type = PACKET_OTHERHOST;
  418. skb->protocol = htons(ETH_P_802_2);
  419. } else {
  420. skb->protocol = eth_type_trans(skb, ndev);
  421. }
  422. wil_netif_rx_any(skb, ndev);
  423. }
  424. wil_rx_refill(wil, v->size);
  425. }
  426. int wil_rx_init(struct wil6210_priv *wil)
  427. {
  428. struct vring *vring = &wil->vring_rx;
  429. int rc;
  430. vring->size = WIL6210_RX_RING_SIZE;
  431. rc = wil_vring_alloc(wil, vring);
  432. if (rc)
  433. return rc;
  434. rc = wmi_rx_chain_add(wil, vring);
  435. if (rc)
  436. goto err_free;
  437. rc = wil_rx_refill(wil, vring->size);
  438. if (rc)
  439. goto err_free;
  440. return 0;
  441. err_free:
  442. wil_vring_free(wil, vring, 0);
  443. return rc;
  444. }
  445. void wil_rx_fini(struct wil6210_priv *wil)
  446. {
  447. struct vring *vring = &wil->vring_rx;
  448. if (vring->va)
  449. wil_vring_free(wil, vring, 0);
  450. }
  451. int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
  452. int cid, int tid)
  453. {
  454. int rc;
  455. struct wmi_vring_cfg_cmd cmd = {
  456. .action = cpu_to_le32(WMI_VRING_CMD_ADD),
  457. .vring_cfg = {
  458. .tx_sw_ring = {
  459. .max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
  460. .ring_size = cpu_to_le16(size),
  461. },
  462. .ringid = id,
  463. .cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
  464. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  465. .mac_ctrl = 0,
  466. .to_resolution = 0,
  467. .agg_max_wsize = 16,
  468. .schd_params = {
  469. .priority = cpu_to_le16(0),
  470. .timeslot_us = cpu_to_le16(0xfff),
  471. },
  472. },
  473. };
  474. struct {
  475. struct wil6210_mbox_hdr_wmi wmi;
  476. struct wmi_vring_cfg_done_event cmd;
  477. } __packed reply;
  478. struct vring *vring = &wil->vring_tx[id];
  479. if (vring->va) {
  480. wil_err(wil, "Tx ring [%d] already allocated\n", id);
  481. rc = -EINVAL;
  482. goto out;
  483. }
  484. vring->size = size;
  485. rc = wil_vring_alloc(wil, vring);
  486. if (rc)
  487. goto out;
  488. cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
  489. rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
  490. WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
  491. if (rc)
  492. goto out_free;
  493. if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
  494. wil_err(wil, "Tx config failed, status 0x%02x\n",
  495. reply.cmd.status);
  496. rc = -EINVAL;
  497. goto out_free;
  498. }
  499. vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
  500. return 0;
  501. out_free:
  502. wil_vring_free(wil, vring, 1);
  503. out:
  504. return rc;
  505. }
  506. void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
  507. {
  508. struct vring *vring = &wil->vring_tx[id];
  509. if (!vring->va)
  510. return;
  511. wil_vring_free(wil, vring, 1);
  512. }
  513. static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
  514. struct sk_buff *skb)
  515. {
  516. struct vring *v = &wil->vring_tx[0];
  517. if (v->va)
  518. return v;
  519. return NULL;
  520. }
  521. static int wil_tx_desc_map(volatile struct vring_tx_desc *d,
  522. dma_addr_t pa, u32 len)
  523. {
  524. d->dma.addr_low = lower_32_bits(pa);
  525. d->dma.addr_high = (u16)upper_32_bits(pa);
  526. d->dma.ip_length = 0;
  527. /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
  528. d->dma.b11 = 0/*14 | BIT(7)*/;
  529. d->dma.error = 0;
  530. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  531. d->dma.length = len;
  532. d->dma.d0 = 0;
  533. d->mac.d[0] = 0;
  534. d->mac.d[1] = 0;
  535. d->mac.d[2] = 0;
  536. d->mac.ucode_cmd = 0;
  537. /* use dst index 0 */
  538. d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
  539. (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
  540. /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
  541. d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
  542. (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
  543. return 0;
  544. }
  545. static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
  546. struct sk_buff *skb)
  547. {
  548. struct device *dev = wil_to_dev(wil);
  549. volatile struct vring_tx_desc *d;
  550. u32 swhead = vring->swhead;
  551. int avail = wil_vring_avail_tx(vring);
  552. int nr_frags = skb_shinfo(skb)->nr_frags;
  553. uint f;
  554. int vring_index = vring - wil->vring_tx;
  555. uint i = swhead;
  556. dma_addr_t pa;
  557. wil_dbg_txrx(wil, "%s()\n", __func__);
  558. if (avail < vring->size/8)
  559. netif_tx_stop_all_queues(wil_to_ndev(wil));
  560. if (avail < 1 + nr_frags) {
  561. wil_err(wil, "Tx ring full. No space for %d fragments\n",
  562. 1 + nr_frags);
  563. return -ENOMEM;
  564. }
  565. d = &(vring->va[i].tx);
  566. /* FIXME FW can accept only unicast frames for the peer */
  567. memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);
  568. pa = dma_map_single(dev, skb->data,
  569. skb_headlen(skb), DMA_TO_DEVICE);
  570. wil_dbg_txrx(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
  571. skb->data, (unsigned long long)pa);
  572. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
  573. skb->data, skb_headlen(skb), false);
  574. if (unlikely(dma_mapping_error(dev, pa)))
  575. return -EINVAL;
  576. /* 1-st segment */
  577. wil_tx_desc_map(d, pa, skb_headlen(skb));
  578. d->mac.d[2] |= ((nr_frags + 1) <<
  579. MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
  580. /* middle segments */
  581. for (f = 0; f < nr_frags; f++) {
  582. const struct skb_frag_struct *frag =
  583. &skb_shinfo(skb)->frags[f];
  584. int len = skb_frag_size(frag);
  585. i = (swhead + f + 1) % vring->size;
  586. d = &(vring->va[i].tx);
  587. pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
  588. DMA_TO_DEVICE);
  589. if (unlikely(dma_mapping_error(dev, pa)))
  590. goto dma_error;
  591. wil_tx_desc_map(d, pa, len);
  592. vring->ctx[i] = NULL;
  593. }
  594. /* for the last seg only */
  595. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
  596. d->dma.d0 |= BIT(9); /* BUG: undocumented bit */
  597. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
  598. d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
  599. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_NONE, 32, 4,
  600. (const void *)d, sizeof(*d), false);
  601. /* advance swhead */
  602. wil_vring_advance_head(vring, nr_frags + 1);
  603. wil_dbg_txrx(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
  604. iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
  605. /* hold reference to skb
  606. * to prevent skb release before accounting
  607. * in case of immediate "tx done"
  608. */
  609. vring->ctx[i] = skb_get(skb);
  610. return 0;
  611. dma_error:
  612. /* unmap what we have mapped */
  613. /* Note: increment @f to operate with positive index */
  614. for (f++; f > 0; f--) {
  615. i = (swhead + f) % vring->size;
  616. d = &(vring->va[i].tx);
  617. d->dma.status = TX_DMA_STATUS_DU;
  618. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  619. if (vring->ctx[i])
  620. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  621. else
  622. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  623. }
  624. return -EINVAL;
  625. }
  626. netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  627. {
  628. struct wil6210_priv *wil = ndev_to_wil(ndev);
  629. struct vring *vring;
  630. int rc;
  631. wil_dbg_txrx(wil, "%s()\n", __func__);
  632. if (!test_bit(wil_status_fwready, &wil->status)) {
  633. wil_err(wil, "FW not ready\n");
  634. goto drop;
  635. }
  636. if (!test_bit(wil_status_fwconnected, &wil->status)) {
  637. wil_err(wil, "FW not connected\n");
  638. goto drop;
  639. }
  640. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  641. wil_err(wil, "Xmit in monitor mode not supported\n");
  642. goto drop;
  643. }
  644. if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
  645. rc = wmi_tx_eapol(wil, skb);
  646. } else {
  647. /* find vring */
  648. vring = wil_find_tx_vring(wil, skb);
  649. if (!vring) {
  650. wil_err(wil, "No Tx VRING available\n");
  651. goto drop;
  652. }
  653. /* set up vring entry */
  654. rc = wil_tx_vring(wil, vring, skb);
  655. }
  656. switch (rc) {
  657. case 0:
  658. /* statistics will be updated on the tx_complete */
  659. dev_kfree_skb_any(skb);
  660. return NETDEV_TX_OK;
  661. case -ENOMEM:
  662. return NETDEV_TX_BUSY;
  663. default:
  664. break; /* goto drop; */
  665. }
  666. drop:
  667. netif_tx_stop_all_queues(ndev);
  668. ndev->stats.tx_dropped++;
  669. dev_kfree_skb_any(skb);
  670. return NET_XMIT_DROP;
  671. }
  672. /**
  673. * Clean up transmitted skb's from the Tx VRING
  674. *
  675. * Safe to call from IRQ
  676. */
  677. void wil_tx_complete(struct wil6210_priv *wil, int ringid)
  678. {
  679. struct net_device *ndev = wil_to_ndev(wil);
  680. struct device *dev = wil_to_dev(wil);
  681. struct vring *vring = &wil->vring_tx[ringid];
  682. if (!vring->va) {
  683. wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
  684. return;
  685. }
  686. wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
  687. while (!wil_vring_is_empty(vring)) {
  688. volatile struct vring_tx_desc *d1 =
  689. &vring->va[vring->swtail].tx;
  690. struct vring_tx_desc dd, *d = &dd;
  691. dma_addr_t pa;
  692. struct sk_buff *skb;
  693. dd = *d1;
  694. if (!(d->dma.status & TX_DMA_STATUS_DU))
  695. break;
  696. wil_dbg_txrx(wil,
  697. "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
  698. vring->swtail, d->dma.length, d->dma.status,
  699. d->dma.error);
  700. wil_hex_dump_txrx("TxC ", DUMP_PREFIX_NONE, 32, 4,
  701. (const void *)d, sizeof(*d), false);
  702. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  703. skb = vring->ctx[vring->swtail];
  704. if (skb) {
  705. if (d->dma.error == 0) {
  706. ndev->stats.tx_packets++;
  707. ndev->stats.tx_bytes += skb->len;
  708. } else {
  709. ndev->stats.tx_errors++;
  710. }
  711. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  712. dev_kfree_skb_any(skb);
  713. vring->ctx[vring->swtail] = NULL;
  714. } else {
  715. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  716. }
  717. d->dma.addr_low = 0;
  718. d->dma.addr_high = 0;
  719. d->dma.length = 0;
  720. d->dma.status = TX_DMA_STATUS_DU;
  721. vring->swtail = wil_vring_next_tail(vring);
  722. }
  723. if (wil_vring_avail_tx(vring) > vring->size/4)
  724. netif_tx_wake_all_queues(wil_to_ndev(wil));
  725. }