qlge_main.c 133 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/module.h>
  13. #include <linux/list.h>
  14. #include <linux/pci.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sched.h>
  18. #include <linux/slab.h>
  19. #include <linux/dmapool.h>
  20. #include <linux/mempool.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/kthread.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/errno.h>
  25. #include <linux/ioport.h>
  26. #include <linux/in.h>
  27. #include <linux/ip.h>
  28. #include <linux/ipv6.h>
  29. #include <net/ipv6.h>
  30. #include <linux/tcp.h>
  31. #include <linux/udp.h>
  32. #include <linux/if_arp.h>
  33. #include <linux/if_ether.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/prefetch.h>
  43. #include <net/ip6_checksum.h>
  44. #include "qlge.h"
  45. char qlge_driver_name[] = DRV_NAME;
  46. const char qlge_driver_version[] = DRV_VERSION;
  47. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  48. MODULE_DESCRIPTION(DRV_STRING " ");
  49. MODULE_LICENSE("GPL");
  50. MODULE_VERSION(DRV_VERSION);
  51. static const u32 default_msg =
  52. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  53. /* NETIF_MSG_TIMER | */
  54. NETIF_MSG_IFDOWN |
  55. NETIF_MSG_IFUP |
  56. NETIF_MSG_RX_ERR |
  57. NETIF_MSG_TX_ERR |
  58. /* NETIF_MSG_TX_QUEUED | */
  59. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  60. /* NETIF_MSG_PKTDATA | */
  61. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  62. static int debug = -1; /* defaults above */
  63. module_param(debug, int, 0664);
  64. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65. #define MSIX_IRQ 0
  66. #define MSI_IRQ 1
  67. #define LEG_IRQ 2
  68. static int qlge_irq_type = MSIX_IRQ;
  69. module_param(qlge_irq_type, int, 0664);
  70. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  71. static int qlge_mpi_coredump;
  72. module_param(qlge_mpi_coredump, int, 0);
  73. MODULE_PARM_DESC(qlge_mpi_coredump,
  74. "Option to enable MPI firmware dump. "
  75. "Default is OFF - Do Not allocate memory. ");
  76. static int qlge_force_coredump;
  77. module_param(qlge_force_coredump, int, 0);
  78. MODULE_PARM_DESC(qlge_force_coredump,
  79. "Option to allow force of firmware core dump. "
  80. "Default is OFF - Do not allow.");
  81. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  83. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  84. /* required last entry */
  85. {0,}
  86. };
  87. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  88. static int ql_wol(struct ql_adapter *qdev);
  89. static void qlge_set_multicast_list(struct net_device *ndev);
  90. /* This hardware semaphore causes exclusive access to
  91. * resources shared between the NIC driver, MPI firmware,
  92. * FCOE firmware and the FC driver.
  93. */
  94. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  95. {
  96. u32 sem_bits = 0;
  97. switch (sem_mask) {
  98. case SEM_XGMAC0_MASK:
  99. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  100. break;
  101. case SEM_XGMAC1_MASK:
  102. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  103. break;
  104. case SEM_ICB_MASK:
  105. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  106. break;
  107. case SEM_MAC_ADDR_MASK:
  108. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  109. break;
  110. case SEM_FLASH_MASK:
  111. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  112. break;
  113. case SEM_PROBE_MASK:
  114. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  115. break;
  116. case SEM_RT_IDX_MASK:
  117. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  118. break;
  119. case SEM_PROC_REG_MASK:
  120. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  121. break;
  122. default:
  123. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  124. return -EINVAL;
  125. }
  126. ql_write32(qdev, SEM, sem_bits | sem_mask);
  127. return !(ql_read32(qdev, SEM) & sem_bits);
  128. }
  129. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  130. {
  131. unsigned int wait_count = 30;
  132. do {
  133. if (!ql_sem_trylock(qdev, sem_mask))
  134. return 0;
  135. udelay(100);
  136. } while (--wait_count);
  137. return -ETIMEDOUT;
  138. }
  139. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  140. {
  141. ql_write32(qdev, SEM, sem_mask);
  142. ql_read32(qdev, SEM); /* flush */
  143. }
  144. /* This function waits for a specific bit to come ready
  145. * in a given register. It is used mostly by the initialize
  146. * process, but is also used in kernel thread API such as
  147. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  148. */
  149. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  150. {
  151. u32 temp;
  152. int count = UDELAY_COUNT;
  153. while (count) {
  154. temp = ql_read32(qdev, reg);
  155. /* check for errors */
  156. if (temp & err_bit) {
  157. netif_alert(qdev, probe, qdev->ndev,
  158. "register 0x%.08x access error, value = 0x%.08x!.\n",
  159. reg, temp);
  160. return -EIO;
  161. } else if (temp & bit)
  162. return 0;
  163. udelay(UDELAY_DELAY);
  164. count--;
  165. }
  166. netif_alert(qdev, probe, qdev->ndev,
  167. "Timed out waiting for reg %x to come ready.\n", reg);
  168. return -ETIMEDOUT;
  169. }
  170. /* The CFG register is used to download TX and RX control blocks
  171. * to the chip. This function waits for an operation to complete.
  172. */
  173. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  174. {
  175. int count = UDELAY_COUNT;
  176. u32 temp;
  177. while (count) {
  178. temp = ql_read32(qdev, CFG);
  179. if (temp & CFG_LE)
  180. return -EIO;
  181. if (!(temp & bit))
  182. return 0;
  183. udelay(UDELAY_DELAY);
  184. count--;
  185. }
  186. return -ETIMEDOUT;
  187. }
  188. /* Used to issue init control blocks to hw. Maps control block,
  189. * sets address, triggers download, waits for completion.
  190. */
  191. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  192. u16 q_id)
  193. {
  194. u64 map;
  195. int status = 0;
  196. int direction;
  197. u32 mask;
  198. u32 value;
  199. direction =
  200. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  201. PCI_DMA_FROMDEVICE;
  202. map = pci_map_single(qdev->pdev, ptr, size, direction);
  203. if (pci_dma_mapping_error(qdev->pdev, map)) {
  204. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  205. return -ENOMEM;
  206. }
  207. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  208. if (status)
  209. return status;
  210. status = ql_wait_cfg(qdev, bit);
  211. if (status) {
  212. netif_err(qdev, ifup, qdev->ndev,
  213. "Timed out waiting for CFG to come ready.\n");
  214. goto exit;
  215. }
  216. ql_write32(qdev, ICB_L, (u32) map);
  217. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  218. mask = CFG_Q_MASK | (bit << 16);
  219. value = bit | (q_id << CFG_Q_SHIFT);
  220. ql_write32(qdev, CFG, (mask | value));
  221. /*
  222. * Wait for the bit to clear after signaling hw.
  223. */
  224. status = ql_wait_cfg(qdev, bit);
  225. exit:
  226. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  227. pci_unmap_single(qdev->pdev, map, size, direction);
  228. return status;
  229. }
  230. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  231. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  232. u32 *value)
  233. {
  234. u32 offset = 0;
  235. int status;
  236. switch (type) {
  237. case MAC_ADDR_TYPE_MULTI_MAC:
  238. case MAC_ADDR_TYPE_CAM_MAC:
  239. {
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. status =
  255. ql_wait_reg_rdy(qdev,
  256. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  257. if (status)
  258. goto exit;
  259. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  260. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  261. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  262. status =
  263. ql_wait_reg_rdy(qdev,
  264. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  265. if (status)
  266. goto exit;
  267. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  268. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  269. status =
  270. ql_wait_reg_rdy(qdev,
  271. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  272. if (status)
  273. goto exit;
  274. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  275. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  276. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  277. status =
  278. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  279. MAC_ADDR_MR, 0);
  280. if (status)
  281. goto exit;
  282. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  283. }
  284. break;
  285. }
  286. case MAC_ADDR_TYPE_VLAN:
  287. case MAC_ADDR_TYPE_MULTI_FLTR:
  288. default:
  289. netif_crit(qdev, ifup, qdev->ndev,
  290. "Address type %d not yet supported.\n", type);
  291. status = -EPERM;
  292. }
  293. exit:
  294. return status;
  295. }
  296. /* Set up a MAC, multicast or VLAN address for the
  297. * inbound frame matching.
  298. */
  299. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  300. u16 index)
  301. {
  302. u32 offset = 0;
  303. int status = 0;
  304. switch (type) {
  305. case MAC_ADDR_TYPE_MULTI_MAC:
  306. {
  307. u32 upper = (addr[0] << 8) | addr[1];
  308. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  309. (addr[4] << 8) | (addr[5]);
  310. status =
  311. ql_wait_reg_rdy(qdev,
  312. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  313. if (status)
  314. goto exit;
  315. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  316. (index << MAC_ADDR_IDX_SHIFT) |
  317. type | MAC_ADDR_E);
  318. ql_write32(qdev, MAC_ADDR_DATA, lower);
  319. status =
  320. ql_wait_reg_rdy(qdev,
  321. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  322. if (status)
  323. goto exit;
  324. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  325. (index << MAC_ADDR_IDX_SHIFT) |
  326. type | MAC_ADDR_E);
  327. ql_write32(qdev, MAC_ADDR_DATA, upper);
  328. status =
  329. ql_wait_reg_rdy(qdev,
  330. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  331. if (status)
  332. goto exit;
  333. break;
  334. }
  335. case MAC_ADDR_TYPE_CAM_MAC:
  336. {
  337. u32 cam_output;
  338. u32 upper = (addr[0] << 8) | addr[1];
  339. u32 lower =
  340. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  341. (addr[5]);
  342. status =
  343. ql_wait_reg_rdy(qdev,
  344. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  345. if (status)
  346. goto exit;
  347. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  348. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  349. type); /* type */
  350. ql_write32(qdev, MAC_ADDR_DATA, lower);
  351. status =
  352. ql_wait_reg_rdy(qdev,
  353. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  354. if (status)
  355. goto exit;
  356. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  357. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  358. type); /* type */
  359. ql_write32(qdev, MAC_ADDR_DATA, upper);
  360. status =
  361. ql_wait_reg_rdy(qdev,
  362. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  363. if (status)
  364. goto exit;
  365. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  366. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  367. type); /* type */
  368. /* This field should also include the queue id
  369. and possibly the function id. Right now we hardcode
  370. the route field to NIC core.
  371. */
  372. cam_output = (CAM_OUT_ROUTE_NIC |
  373. (qdev->
  374. func << CAM_OUT_FUNC_SHIFT) |
  375. (0 << CAM_OUT_CQ_ID_SHIFT));
  376. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
  377. cam_output |= CAM_OUT_RV;
  378. /* route to NIC core */
  379. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  380. break;
  381. }
  382. case MAC_ADDR_TYPE_VLAN:
  383. {
  384. u32 enable_bit = *((u32 *) &addr[0]);
  385. /* For VLAN, the addr actually holds a bit that
  386. * either enables or disables the vlan id we are
  387. * addressing. It's either MAC_ADDR_E on or off.
  388. * That's bit-27 we're talking about.
  389. */
  390. status =
  391. ql_wait_reg_rdy(qdev,
  392. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  393. if (status)
  394. goto exit;
  395. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  396. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  397. type | /* type */
  398. enable_bit); /* enable/disable */
  399. break;
  400. }
  401. case MAC_ADDR_TYPE_MULTI_FLTR:
  402. default:
  403. netif_crit(qdev, ifup, qdev->ndev,
  404. "Address type %d not yet supported.\n", type);
  405. status = -EPERM;
  406. }
  407. exit:
  408. return status;
  409. }
  410. /* Set or clear MAC address in hardware. We sometimes
  411. * have to clear it to prevent wrong frame routing
  412. * especially in a bonding environment.
  413. */
  414. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  415. {
  416. int status;
  417. char zero_mac_addr[ETH_ALEN];
  418. char *addr;
  419. if (set) {
  420. addr = &qdev->current_mac_addr[0];
  421. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  422. "Set Mac addr %pM\n", addr);
  423. } else {
  424. memset(zero_mac_addr, 0, ETH_ALEN);
  425. addr = &zero_mac_addr[0];
  426. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  427. "Clearing MAC address\n");
  428. }
  429. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  430. if (status)
  431. return status;
  432. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  433. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  434. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  435. if (status)
  436. netif_err(qdev, ifup, qdev->ndev,
  437. "Failed to init mac address.\n");
  438. return status;
  439. }
  440. void ql_link_on(struct ql_adapter *qdev)
  441. {
  442. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  443. netif_carrier_on(qdev->ndev);
  444. ql_set_mac_addr(qdev, 1);
  445. }
  446. void ql_link_off(struct ql_adapter *qdev)
  447. {
  448. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  449. netif_carrier_off(qdev->ndev);
  450. ql_set_mac_addr(qdev, 0);
  451. }
  452. /* Get a specific frame routing value from the CAM.
  453. * Used for debug and reg dump.
  454. */
  455. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  456. {
  457. int status = 0;
  458. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  459. if (status)
  460. goto exit;
  461. ql_write32(qdev, RT_IDX,
  462. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  463. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  464. if (status)
  465. goto exit;
  466. *value = ql_read32(qdev, RT_DATA);
  467. exit:
  468. return status;
  469. }
  470. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  471. * to route different frame types to various inbound queues. We send broadcast/
  472. * multicast/error frames to the default queue for slow handling,
  473. * and CAM hit/RSS frames to the fast handling queues.
  474. */
  475. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  476. int enable)
  477. {
  478. int status = -EINVAL; /* Return error if no mask match. */
  479. u32 value = 0;
  480. switch (mask) {
  481. case RT_IDX_CAM_HIT:
  482. {
  483. value = RT_IDX_DST_CAM_Q | /* dest */
  484. RT_IDX_TYPE_NICQ | /* type */
  485. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  486. break;
  487. }
  488. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  489. {
  490. value = RT_IDX_DST_DFLT_Q | /* dest */
  491. RT_IDX_TYPE_NICQ | /* type */
  492. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  493. break;
  494. }
  495. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  496. {
  497. value = RT_IDX_DST_DFLT_Q | /* dest */
  498. RT_IDX_TYPE_NICQ | /* type */
  499. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  500. break;
  501. }
  502. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  503. {
  504. value = RT_IDX_DST_DFLT_Q | /* dest */
  505. RT_IDX_TYPE_NICQ | /* type */
  506. (RT_IDX_IP_CSUM_ERR_SLOT <<
  507. RT_IDX_IDX_SHIFT); /* index */
  508. break;
  509. }
  510. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  511. {
  512. value = RT_IDX_DST_DFLT_Q | /* dest */
  513. RT_IDX_TYPE_NICQ | /* type */
  514. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  515. RT_IDX_IDX_SHIFT); /* index */
  516. break;
  517. }
  518. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  519. {
  520. value = RT_IDX_DST_DFLT_Q | /* dest */
  521. RT_IDX_TYPE_NICQ | /* type */
  522. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  523. break;
  524. }
  525. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  526. {
  527. value = RT_IDX_DST_DFLT_Q | /* dest */
  528. RT_IDX_TYPE_NICQ | /* type */
  529. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  530. break;
  531. }
  532. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  533. {
  534. value = RT_IDX_DST_DFLT_Q | /* dest */
  535. RT_IDX_TYPE_NICQ | /* type */
  536. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  537. break;
  538. }
  539. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  540. {
  541. value = RT_IDX_DST_RSS | /* dest */
  542. RT_IDX_TYPE_NICQ | /* type */
  543. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  544. break;
  545. }
  546. case 0: /* Clear the E-bit on an entry. */
  547. {
  548. value = RT_IDX_DST_DFLT_Q | /* dest */
  549. RT_IDX_TYPE_NICQ | /* type */
  550. (index << RT_IDX_IDX_SHIFT);/* index */
  551. break;
  552. }
  553. default:
  554. netif_err(qdev, ifup, qdev->ndev,
  555. "Mask type %d not yet supported.\n", mask);
  556. status = -EPERM;
  557. goto exit;
  558. }
  559. if (value) {
  560. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  561. if (status)
  562. goto exit;
  563. value |= (enable ? RT_IDX_E : 0);
  564. ql_write32(qdev, RT_IDX, value);
  565. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  566. }
  567. exit:
  568. return status;
  569. }
  570. static void ql_enable_interrupts(struct ql_adapter *qdev)
  571. {
  572. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  573. }
  574. static void ql_disable_interrupts(struct ql_adapter *qdev)
  575. {
  576. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  577. }
  578. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  579. * Otherwise, we may have multiple outstanding workers and don't want to
  580. * enable until the last one finishes. In this case, the irq_cnt gets
  581. * incremented every time we queue a worker and decremented every time
  582. * a worker finishes. Once it hits zero we enable the interrupt.
  583. */
  584. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  585. {
  586. u32 var = 0;
  587. unsigned long hw_flags = 0;
  588. struct intr_context *ctx = qdev->intr_context + intr;
  589. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  590. /* Always enable if we're MSIX multi interrupts and
  591. * it's not the default (zeroeth) interrupt.
  592. */
  593. ql_write32(qdev, INTR_EN,
  594. ctx->intr_en_mask);
  595. var = ql_read32(qdev, STS);
  596. return var;
  597. }
  598. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  599. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  600. ql_write32(qdev, INTR_EN,
  601. ctx->intr_en_mask);
  602. var = ql_read32(qdev, STS);
  603. }
  604. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  605. return var;
  606. }
  607. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  608. {
  609. u32 var = 0;
  610. struct intr_context *ctx;
  611. /* HW disables for us if we're MSIX multi interrupts and
  612. * it's not the default (zeroeth) interrupt.
  613. */
  614. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  615. return 0;
  616. ctx = qdev->intr_context + intr;
  617. spin_lock(&qdev->hw_lock);
  618. if (!atomic_read(&ctx->irq_cnt)) {
  619. ql_write32(qdev, INTR_EN,
  620. ctx->intr_dis_mask);
  621. var = ql_read32(qdev, STS);
  622. }
  623. atomic_inc(&ctx->irq_cnt);
  624. spin_unlock(&qdev->hw_lock);
  625. return var;
  626. }
  627. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  628. {
  629. int i;
  630. for (i = 0; i < qdev->intr_count; i++) {
  631. /* The enable call does a atomic_dec_and_test
  632. * and enables only if the result is zero.
  633. * So we precharge it here.
  634. */
  635. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  636. i == 0))
  637. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  638. ql_enable_completion_interrupt(qdev, i);
  639. }
  640. }
  641. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  642. {
  643. int status, i;
  644. u16 csum = 0;
  645. __le16 *flash = (__le16 *)&qdev->flash;
  646. status = strncmp((char *)&qdev->flash, str, 4);
  647. if (status) {
  648. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  649. return status;
  650. }
  651. for (i = 0; i < size; i++)
  652. csum += le16_to_cpu(*flash++);
  653. if (csum)
  654. netif_err(qdev, ifup, qdev->ndev,
  655. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  656. return csum;
  657. }
  658. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  659. {
  660. int status = 0;
  661. /* wait for reg to come ready */
  662. status = ql_wait_reg_rdy(qdev,
  663. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  664. if (status)
  665. goto exit;
  666. /* set up for reg read */
  667. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  668. /* wait for reg to come ready */
  669. status = ql_wait_reg_rdy(qdev,
  670. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  671. if (status)
  672. goto exit;
  673. /* This data is stored on flash as an array of
  674. * __le32. Since ql_read32() returns cpu endian
  675. * we need to swap it back.
  676. */
  677. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  678. exit:
  679. return status;
  680. }
  681. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  682. {
  683. u32 i, size;
  684. int status;
  685. __le32 *p = (__le32 *)&qdev->flash;
  686. u32 offset;
  687. u8 mac_addr[6];
  688. /* Get flash offset for function and adjust
  689. * for dword access.
  690. */
  691. if (!qdev->port)
  692. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  693. else
  694. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  695. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  696. return -ETIMEDOUT;
  697. size = sizeof(struct flash_params_8000) / sizeof(u32);
  698. for (i = 0; i < size; i++, p++) {
  699. status = ql_read_flash_word(qdev, i+offset, p);
  700. if (status) {
  701. netif_err(qdev, ifup, qdev->ndev,
  702. "Error reading flash.\n");
  703. goto exit;
  704. }
  705. }
  706. status = ql_validate_flash(qdev,
  707. sizeof(struct flash_params_8000) / sizeof(u16),
  708. "8000");
  709. if (status) {
  710. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  711. status = -EINVAL;
  712. goto exit;
  713. }
  714. /* Extract either manufacturer or BOFM modified
  715. * MAC address.
  716. */
  717. if (qdev->flash.flash_params_8000.data_type1 == 2)
  718. memcpy(mac_addr,
  719. qdev->flash.flash_params_8000.mac_addr1,
  720. qdev->ndev->addr_len);
  721. else
  722. memcpy(mac_addr,
  723. qdev->flash.flash_params_8000.mac_addr,
  724. qdev->ndev->addr_len);
  725. if (!is_valid_ether_addr(mac_addr)) {
  726. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  727. status = -EINVAL;
  728. goto exit;
  729. }
  730. memcpy(qdev->ndev->dev_addr,
  731. mac_addr,
  732. qdev->ndev->addr_len);
  733. exit:
  734. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  735. return status;
  736. }
  737. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  738. {
  739. int i;
  740. int status;
  741. __le32 *p = (__le32 *)&qdev->flash;
  742. u32 offset = 0;
  743. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  744. /* Second function's parameters follow the first
  745. * function's.
  746. */
  747. if (qdev->port)
  748. offset = size;
  749. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  750. return -ETIMEDOUT;
  751. for (i = 0; i < size; i++, p++) {
  752. status = ql_read_flash_word(qdev, i+offset, p);
  753. if (status) {
  754. netif_err(qdev, ifup, qdev->ndev,
  755. "Error reading flash.\n");
  756. goto exit;
  757. }
  758. }
  759. status = ql_validate_flash(qdev,
  760. sizeof(struct flash_params_8012) / sizeof(u16),
  761. "8012");
  762. if (status) {
  763. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  764. status = -EINVAL;
  765. goto exit;
  766. }
  767. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  768. status = -EINVAL;
  769. goto exit;
  770. }
  771. memcpy(qdev->ndev->dev_addr,
  772. qdev->flash.flash_params_8012.mac_addr,
  773. qdev->ndev->addr_len);
  774. exit:
  775. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  776. return status;
  777. }
  778. /* xgmac register are located behind the xgmac_addr and xgmac_data
  779. * register pair. Each read/write requires us to wait for the ready
  780. * bit before reading/writing the data.
  781. */
  782. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  783. {
  784. int status;
  785. /* wait for reg to come ready */
  786. status = ql_wait_reg_rdy(qdev,
  787. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  788. if (status)
  789. return status;
  790. /* write the data to the data reg */
  791. ql_write32(qdev, XGMAC_DATA, data);
  792. /* trigger the write */
  793. ql_write32(qdev, XGMAC_ADDR, reg);
  794. return status;
  795. }
  796. /* xgmac register are located behind the xgmac_addr and xgmac_data
  797. * register pair. Each read/write requires us to wait for the ready
  798. * bit before reading/writing the data.
  799. */
  800. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  801. {
  802. int status = 0;
  803. /* wait for reg to come ready */
  804. status = ql_wait_reg_rdy(qdev,
  805. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  806. if (status)
  807. goto exit;
  808. /* set up for reg read */
  809. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  810. /* wait for reg to come ready */
  811. status = ql_wait_reg_rdy(qdev,
  812. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  813. if (status)
  814. goto exit;
  815. /* get the data */
  816. *data = ql_read32(qdev, XGMAC_DATA);
  817. exit:
  818. return status;
  819. }
  820. /* This is used for reading the 64-bit statistics regs. */
  821. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  822. {
  823. int status = 0;
  824. u32 hi = 0;
  825. u32 lo = 0;
  826. status = ql_read_xgmac_reg(qdev, reg, &lo);
  827. if (status)
  828. goto exit;
  829. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  830. if (status)
  831. goto exit;
  832. *data = (u64) lo | ((u64) hi << 32);
  833. exit:
  834. return status;
  835. }
  836. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  837. {
  838. int status;
  839. /*
  840. * Get MPI firmware version for driver banner
  841. * and ethool info.
  842. */
  843. status = ql_mb_about_fw(qdev);
  844. if (status)
  845. goto exit;
  846. status = ql_mb_get_fw_state(qdev);
  847. if (status)
  848. goto exit;
  849. /* Wake up a worker to get/set the TX/RX frame sizes. */
  850. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  851. exit:
  852. return status;
  853. }
  854. /* Take the MAC Core out of reset.
  855. * Enable statistics counting.
  856. * Take the transmitter/receiver out of reset.
  857. * This functionality may be done in the MPI firmware at a
  858. * later date.
  859. */
  860. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  861. {
  862. int status = 0;
  863. u32 data;
  864. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  865. /* Another function has the semaphore, so
  866. * wait for the port init bit to come ready.
  867. */
  868. netif_info(qdev, link, qdev->ndev,
  869. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  870. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  871. if (status) {
  872. netif_crit(qdev, link, qdev->ndev,
  873. "Port initialize timed out.\n");
  874. }
  875. return status;
  876. }
  877. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  878. /* Set the core reset. */
  879. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  880. if (status)
  881. goto end;
  882. data |= GLOBAL_CFG_RESET;
  883. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  884. if (status)
  885. goto end;
  886. /* Clear the core reset and turn on jumbo for receiver. */
  887. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  888. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  889. data |= GLOBAL_CFG_TX_STAT_EN;
  890. data |= GLOBAL_CFG_RX_STAT_EN;
  891. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  892. if (status)
  893. goto end;
  894. /* Enable transmitter, and clear it's reset. */
  895. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  896. if (status)
  897. goto end;
  898. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  899. data |= TX_CFG_EN; /* Enable the transmitter. */
  900. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  901. if (status)
  902. goto end;
  903. /* Enable receiver and clear it's reset. */
  904. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  905. if (status)
  906. goto end;
  907. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  908. data |= RX_CFG_EN; /* Enable the receiver. */
  909. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  910. if (status)
  911. goto end;
  912. /* Turn on jumbo. */
  913. status =
  914. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  915. if (status)
  916. goto end;
  917. status =
  918. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  919. if (status)
  920. goto end;
  921. /* Signal to the world that the port is enabled. */
  922. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  923. end:
  924. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  925. return status;
  926. }
  927. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  928. {
  929. return PAGE_SIZE << qdev->lbq_buf_order;
  930. }
  931. /* Get the next large buffer. */
  932. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  933. {
  934. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  935. rx_ring->lbq_curr_idx++;
  936. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  937. rx_ring->lbq_curr_idx = 0;
  938. rx_ring->lbq_free_cnt++;
  939. return lbq_desc;
  940. }
  941. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  942. struct rx_ring *rx_ring)
  943. {
  944. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  945. pci_dma_sync_single_for_cpu(qdev->pdev,
  946. dma_unmap_addr(lbq_desc, mapaddr),
  947. rx_ring->lbq_buf_size,
  948. PCI_DMA_FROMDEVICE);
  949. /* If it's the last chunk of our master page then
  950. * we unmap it.
  951. */
  952. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  953. == ql_lbq_block_size(qdev))
  954. pci_unmap_page(qdev->pdev,
  955. lbq_desc->p.pg_chunk.map,
  956. ql_lbq_block_size(qdev),
  957. PCI_DMA_FROMDEVICE);
  958. return lbq_desc;
  959. }
  960. /* Get the next small buffer. */
  961. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  962. {
  963. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  964. rx_ring->sbq_curr_idx++;
  965. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  966. rx_ring->sbq_curr_idx = 0;
  967. rx_ring->sbq_free_cnt++;
  968. return sbq_desc;
  969. }
  970. /* Update an rx ring index. */
  971. static void ql_update_cq(struct rx_ring *rx_ring)
  972. {
  973. rx_ring->cnsmr_idx++;
  974. rx_ring->curr_entry++;
  975. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  976. rx_ring->cnsmr_idx = 0;
  977. rx_ring->curr_entry = rx_ring->cq_base;
  978. }
  979. }
  980. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  981. {
  982. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  983. }
  984. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  985. struct bq_desc *lbq_desc)
  986. {
  987. if (!rx_ring->pg_chunk.page) {
  988. u64 map;
  989. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  990. GFP_ATOMIC,
  991. qdev->lbq_buf_order);
  992. if (unlikely(!rx_ring->pg_chunk.page)) {
  993. netif_err(qdev, drv, qdev->ndev,
  994. "page allocation failed.\n");
  995. return -ENOMEM;
  996. }
  997. rx_ring->pg_chunk.offset = 0;
  998. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  999. 0, ql_lbq_block_size(qdev),
  1000. PCI_DMA_FROMDEVICE);
  1001. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1002. __free_pages(rx_ring->pg_chunk.page,
  1003. qdev->lbq_buf_order);
  1004. netif_err(qdev, drv, qdev->ndev,
  1005. "PCI mapping failed.\n");
  1006. return -ENOMEM;
  1007. }
  1008. rx_ring->pg_chunk.map = map;
  1009. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1010. }
  1011. /* Copy the current master pg_chunk info
  1012. * to the current descriptor.
  1013. */
  1014. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1015. /* Adjust the master page chunk for next
  1016. * buffer get.
  1017. */
  1018. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1019. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1020. rx_ring->pg_chunk.page = NULL;
  1021. lbq_desc->p.pg_chunk.last_flag = 1;
  1022. } else {
  1023. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1024. get_page(rx_ring->pg_chunk.page);
  1025. lbq_desc->p.pg_chunk.last_flag = 0;
  1026. }
  1027. return 0;
  1028. }
  1029. /* Process (refill) a large buffer queue. */
  1030. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1031. {
  1032. u32 clean_idx = rx_ring->lbq_clean_idx;
  1033. u32 start_idx = clean_idx;
  1034. struct bq_desc *lbq_desc;
  1035. u64 map;
  1036. int i;
  1037. while (rx_ring->lbq_free_cnt > 32) {
  1038. for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
  1039. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1040. "lbq: try cleaning clean_idx = %d.\n",
  1041. clean_idx);
  1042. lbq_desc = &rx_ring->lbq[clean_idx];
  1043. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1044. rx_ring->lbq_clean_idx = clean_idx;
  1045. netif_err(qdev, ifup, qdev->ndev,
  1046. "Could not get a page chunk, i=%d, clean_idx =%d .\n",
  1047. i, clean_idx);
  1048. return;
  1049. }
  1050. map = lbq_desc->p.pg_chunk.map +
  1051. lbq_desc->p.pg_chunk.offset;
  1052. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1053. dma_unmap_len_set(lbq_desc, maplen,
  1054. rx_ring->lbq_buf_size);
  1055. *lbq_desc->addr = cpu_to_le64(map);
  1056. pci_dma_sync_single_for_device(qdev->pdev, map,
  1057. rx_ring->lbq_buf_size,
  1058. PCI_DMA_FROMDEVICE);
  1059. clean_idx++;
  1060. if (clean_idx == rx_ring->lbq_len)
  1061. clean_idx = 0;
  1062. }
  1063. rx_ring->lbq_clean_idx = clean_idx;
  1064. rx_ring->lbq_prod_idx += 16;
  1065. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1066. rx_ring->lbq_prod_idx = 0;
  1067. rx_ring->lbq_free_cnt -= 16;
  1068. }
  1069. if (start_idx != clean_idx) {
  1070. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1071. "lbq: updating prod idx = %d.\n",
  1072. rx_ring->lbq_prod_idx);
  1073. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1074. rx_ring->lbq_prod_idx_db_reg);
  1075. }
  1076. }
  1077. /* Process (refill) a small buffer queue. */
  1078. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1079. {
  1080. u32 clean_idx = rx_ring->sbq_clean_idx;
  1081. u32 start_idx = clean_idx;
  1082. struct bq_desc *sbq_desc;
  1083. u64 map;
  1084. int i;
  1085. while (rx_ring->sbq_free_cnt > 16) {
  1086. for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
  1087. sbq_desc = &rx_ring->sbq[clean_idx];
  1088. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1089. "sbq: try cleaning clean_idx = %d.\n",
  1090. clean_idx);
  1091. if (sbq_desc->p.skb == NULL) {
  1092. netif_printk(qdev, rx_status, KERN_DEBUG,
  1093. qdev->ndev,
  1094. "sbq: getting new skb for index %d.\n",
  1095. sbq_desc->index);
  1096. sbq_desc->p.skb =
  1097. netdev_alloc_skb(qdev->ndev,
  1098. SMALL_BUFFER_SIZE);
  1099. if (sbq_desc->p.skb == NULL) {
  1100. rx_ring->sbq_clean_idx = clean_idx;
  1101. return;
  1102. }
  1103. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1104. map = pci_map_single(qdev->pdev,
  1105. sbq_desc->p.skb->data,
  1106. rx_ring->sbq_buf_size,
  1107. PCI_DMA_FROMDEVICE);
  1108. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1109. netif_err(qdev, ifup, qdev->ndev,
  1110. "PCI mapping failed.\n");
  1111. rx_ring->sbq_clean_idx = clean_idx;
  1112. dev_kfree_skb_any(sbq_desc->p.skb);
  1113. sbq_desc->p.skb = NULL;
  1114. return;
  1115. }
  1116. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1117. dma_unmap_len_set(sbq_desc, maplen,
  1118. rx_ring->sbq_buf_size);
  1119. *sbq_desc->addr = cpu_to_le64(map);
  1120. }
  1121. clean_idx++;
  1122. if (clean_idx == rx_ring->sbq_len)
  1123. clean_idx = 0;
  1124. }
  1125. rx_ring->sbq_clean_idx = clean_idx;
  1126. rx_ring->sbq_prod_idx += 16;
  1127. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1128. rx_ring->sbq_prod_idx = 0;
  1129. rx_ring->sbq_free_cnt -= 16;
  1130. }
  1131. if (start_idx != clean_idx) {
  1132. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1133. "sbq: updating prod idx = %d.\n",
  1134. rx_ring->sbq_prod_idx);
  1135. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1136. rx_ring->sbq_prod_idx_db_reg);
  1137. }
  1138. }
  1139. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1140. struct rx_ring *rx_ring)
  1141. {
  1142. ql_update_sbq(qdev, rx_ring);
  1143. ql_update_lbq(qdev, rx_ring);
  1144. }
  1145. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1146. * fails at some stage, or from the interrupt when a tx completes.
  1147. */
  1148. static void ql_unmap_send(struct ql_adapter *qdev,
  1149. struct tx_ring_desc *tx_ring_desc, int mapped)
  1150. {
  1151. int i;
  1152. for (i = 0; i < mapped; i++) {
  1153. if (i == 0 || (i == 7 && mapped > 7)) {
  1154. /*
  1155. * Unmap the skb->data area, or the
  1156. * external sglist (AKA the Outbound
  1157. * Address List (OAL)).
  1158. * If its the zeroeth element, then it's
  1159. * the skb->data area. If it's the 7th
  1160. * element and there is more than 6 frags,
  1161. * then its an OAL.
  1162. */
  1163. if (i == 7) {
  1164. netif_printk(qdev, tx_done, KERN_DEBUG,
  1165. qdev->ndev,
  1166. "unmapping OAL area.\n");
  1167. }
  1168. pci_unmap_single(qdev->pdev,
  1169. dma_unmap_addr(&tx_ring_desc->map[i],
  1170. mapaddr),
  1171. dma_unmap_len(&tx_ring_desc->map[i],
  1172. maplen),
  1173. PCI_DMA_TODEVICE);
  1174. } else {
  1175. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1176. "unmapping frag %d.\n", i);
  1177. pci_unmap_page(qdev->pdev,
  1178. dma_unmap_addr(&tx_ring_desc->map[i],
  1179. mapaddr),
  1180. dma_unmap_len(&tx_ring_desc->map[i],
  1181. maplen), PCI_DMA_TODEVICE);
  1182. }
  1183. }
  1184. }
  1185. /* Map the buffers for this transmit. This will return
  1186. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1187. */
  1188. static int ql_map_send(struct ql_adapter *qdev,
  1189. struct ob_mac_iocb_req *mac_iocb_ptr,
  1190. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1191. {
  1192. int len = skb_headlen(skb);
  1193. dma_addr_t map;
  1194. int frag_idx, err, map_idx = 0;
  1195. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1196. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1197. if (frag_cnt) {
  1198. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1199. "frag_cnt = %d.\n", frag_cnt);
  1200. }
  1201. /*
  1202. * Map the skb buffer first.
  1203. */
  1204. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1205. err = pci_dma_mapping_error(qdev->pdev, map);
  1206. if (err) {
  1207. netif_err(qdev, tx_queued, qdev->ndev,
  1208. "PCI mapping failed with error: %d\n", err);
  1209. return NETDEV_TX_BUSY;
  1210. }
  1211. tbd->len = cpu_to_le32(len);
  1212. tbd->addr = cpu_to_le64(map);
  1213. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1214. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1215. map_idx++;
  1216. /*
  1217. * This loop fills the remainder of the 8 address descriptors
  1218. * in the IOCB. If there are more than 7 fragments, then the
  1219. * eighth address desc will point to an external list (OAL).
  1220. * When this happens, the remainder of the frags will be stored
  1221. * in this list.
  1222. */
  1223. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1224. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1225. tbd++;
  1226. if (frag_idx == 6 && frag_cnt > 7) {
  1227. /* Let's tack on an sglist.
  1228. * Our control block will now
  1229. * look like this:
  1230. * iocb->seg[0] = skb->data
  1231. * iocb->seg[1] = frag[0]
  1232. * iocb->seg[2] = frag[1]
  1233. * iocb->seg[3] = frag[2]
  1234. * iocb->seg[4] = frag[3]
  1235. * iocb->seg[5] = frag[4]
  1236. * iocb->seg[6] = frag[5]
  1237. * iocb->seg[7] = ptr to OAL (external sglist)
  1238. * oal->seg[0] = frag[6]
  1239. * oal->seg[1] = frag[7]
  1240. * oal->seg[2] = frag[8]
  1241. * oal->seg[3] = frag[9]
  1242. * oal->seg[4] = frag[10]
  1243. * etc...
  1244. */
  1245. /* Tack on the OAL in the eighth segment of IOCB. */
  1246. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1247. sizeof(struct oal),
  1248. PCI_DMA_TODEVICE);
  1249. err = pci_dma_mapping_error(qdev->pdev, map);
  1250. if (err) {
  1251. netif_err(qdev, tx_queued, qdev->ndev,
  1252. "PCI mapping outbound address list with error: %d\n",
  1253. err);
  1254. goto map_error;
  1255. }
  1256. tbd->addr = cpu_to_le64(map);
  1257. /*
  1258. * The length is the number of fragments
  1259. * that remain to be mapped times the length
  1260. * of our sglist (OAL).
  1261. */
  1262. tbd->len =
  1263. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1264. (frag_cnt - frag_idx)) | TX_DESC_C);
  1265. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1266. map);
  1267. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1268. sizeof(struct oal));
  1269. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1270. map_idx++;
  1271. }
  1272. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  1273. DMA_TO_DEVICE);
  1274. err = dma_mapping_error(&qdev->pdev->dev, map);
  1275. if (err) {
  1276. netif_err(qdev, tx_queued, qdev->ndev,
  1277. "PCI mapping frags failed with error: %d.\n",
  1278. err);
  1279. goto map_error;
  1280. }
  1281. tbd->addr = cpu_to_le64(map);
  1282. tbd->len = cpu_to_le32(skb_frag_size(frag));
  1283. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1284. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1285. skb_frag_size(frag));
  1286. }
  1287. /* Save the number of segments we've mapped. */
  1288. tx_ring_desc->map_cnt = map_idx;
  1289. /* Terminate the last segment. */
  1290. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1291. return NETDEV_TX_OK;
  1292. map_error:
  1293. /*
  1294. * If the first frag mapping failed, then i will be zero.
  1295. * This causes the unmap of the skb->data area. Otherwise
  1296. * we pass in the number of frags that mapped successfully
  1297. * so they can be umapped.
  1298. */
  1299. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1300. return NETDEV_TX_BUSY;
  1301. }
  1302. /* Categorizing receive firmware frame errors */
  1303. static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
  1304. struct rx_ring *rx_ring)
  1305. {
  1306. struct nic_stats *stats = &qdev->nic_stats;
  1307. stats->rx_err_count++;
  1308. rx_ring->rx_errors++;
  1309. switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
  1310. case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
  1311. stats->rx_code_err++;
  1312. break;
  1313. case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
  1314. stats->rx_oversize_err++;
  1315. break;
  1316. case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
  1317. stats->rx_undersize_err++;
  1318. break;
  1319. case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
  1320. stats->rx_preamble_err++;
  1321. break;
  1322. case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
  1323. stats->rx_frame_len_err++;
  1324. break;
  1325. case IB_MAC_IOCB_RSP_ERR_CRC:
  1326. stats->rx_crc_err++;
  1327. default:
  1328. break;
  1329. }
  1330. }
  1331. /* Process an inbound completion from an rx ring. */
  1332. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1333. struct rx_ring *rx_ring,
  1334. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1335. u32 length,
  1336. u16 vlan_id)
  1337. {
  1338. struct sk_buff *skb;
  1339. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1340. struct napi_struct *napi = &rx_ring->napi;
  1341. /* Frame error, so drop the packet. */
  1342. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1343. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1344. put_page(lbq_desc->p.pg_chunk.page);
  1345. return;
  1346. }
  1347. napi->dev = qdev->ndev;
  1348. skb = napi_get_frags(napi);
  1349. if (!skb) {
  1350. netif_err(qdev, drv, qdev->ndev,
  1351. "Couldn't get an skb, exiting.\n");
  1352. rx_ring->rx_dropped++;
  1353. put_page(lbq_desc->p.pg_chunk.page);
  1354. return;
  1355. }
  1356. prefetch(lbq_desc->p.pg_chunk.va);
  1357. __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1358. lbq_desc->p.pg_chunk.page,
  1359. lbq_desc->p.pg_chunk.offset,
  1360. length);
  1361. skb->len += length;
  1362. skb->data_len += length;
  1363. skb->truesize += length;
  1364. skb_shinfo(skb)->nr_frags++;
  1365. rx_ring->rx_packets++;
  1366. rx_ring->rx_bytes += length;
  1367. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1368. skb_record_rx_queue(skb, rx_ring->cq_id);
  1369. if (vlan_id != 0xffff)
  1370. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1371. napi_gro_frags(napi);
  1372. }
  1373. /* Process an inbound completion from an rx ring. */
  1374. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1375. struct rx_ring *rx_ring,
  1376. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1377. u32 length,
  1378. u16 vlan_id)
  1379. {
  1380. struct net_device *ndev = qdev->ndev;
  1381. struct sk_buff *skb = NULL;
  1382. void *addr;
  1383. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1384. struct napi_struct *napi = &rx_ring->napi;
  1385. skb = netdev_alloc_skb(ndev, length);
  1386. if (!skb) {
  1387. rx_ring->rx_dropped++;
  1388. put_page(lbq_desc->p.pg_chunk.page);
  1389. return;
  1390. }
  1391. addr = lbq_desc->p.pg_chunk.va;
  1392. prefetch(addr);
  1393. /* Frame error, so drop the packet. */
  1394. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1395. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1396. goto err_out;
  1397. }
  1398. /* The max framesize filter on this chip is set higher than
  1399. * MTU since FCoE uses 2k frames.
  1400. */
  1401. if (skb->len > ndev->mtu + ETH_HLEN) {
  1402. netif_err(qdev, drv, qdev->ndev,
  1403. "Segment too small, dropping.\n");
  1404. rx_ring->rx_dropped++;
  1405. goto err_out;
  1406. }
  1407. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1408. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1409. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1410. length);
  1411. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1412. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1413. length-ETH_HLEN);
  1414. skb->len += length-ETH_HLEN;
  1415. skb->data_len += length-ETH_HLEN;
  1416. skb->truesize += length-ETH_HLEN;
  1417. rx_ring->rx_packets++;
  1418. rx_ring->rx_bytes += skb->len;
  1419. skb->protocol = eth_type_trans(skb, ndev);
  1420. skb_checksum_none_assert(skb);
  1421. if ((ndev->features & NETIF_F_RXCSUM) &&
  1422. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1423. /* TCP frame. */
  1424. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1425. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1426. "TCP checksum done!\n");
  1427. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1428. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1429. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1430. /* Unfragmented ipv4 UDP frame. */
  1431. struct iphdr *iph =
  1432. (struct iphdr *) ((u8 *)addr + ETH_HLEN);
  1433. if (!(iph->frag_off &
  1434. htons(IP_MF|IP_OFFSET))) {
  1435. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1436. netif_printk(qdev, rx_status, KERN_DEBUG,
  1437. qdev->ndev,
  1438. "UDP checksum done!\n");
  1439. }
  1440. }
  1441. }
  1442. skb_record_rx_queue(skb, rx_ring->cq_id);
  1443. if (vlan_id != 0xffff)
  1444. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1445. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1446. napi_gro_receive(napi, skb);
  1447. else
  1448. netif_receive_skb(skb);
  1449. return;
  1450. err_out:
  1451. dev_kfree_skb_any(skb);
  1452. put_page(lbq_desc->p.pg_chunk.page);
  1453. }
  1454. /* Process an inbound completion from an rx ring. */
  1455. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1456. struct rx_ring *rx_ring,
  1457. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1458. u32 length,
  1459. u16 vlan_id)
  1460. {
  1461. struct net_device *ndev = qdev->ndev;
  1462. struct sk_buff *skb = NULL;
  1463. struct sk_buff *new_skb = NULL;
  1464. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1465. skb = sbq_desc->p.skb;
  1466. /* Allocate new_skb and copy */
  1467. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1468. if (new_skb == NULL) {
  1469. rx_ring->rx_dropped++;
  1470. return;
  1471. }
  1472. skb_reserve(new_skb, NET_IP_ALIGN);
  1473. memcpy(skb_put(new_skb, length), skb->data, length);
  1474. skb = new_skb;
  1475. /* Frame error, so drop the packet. */
  1476. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1477. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1478. dev_kfree_skb_any(skb);
  1479. return;
  1480. }
  1481. /* loopback self test for ethtool */
  1482. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1483. ql_check_lb_frame(qdev, skb);
  1484. dev_kfree_skb_any(skb);
  1485. return;
  1486. }
  1487. /* The max framesize filter on this chip is set higher than
  1488. * MTU since FCoE uses 2k frames.
  1489. */
  1490. if (skb->len > ndev->mtu + ETH_HLEN) {
  1491. dev_kfree_skb_any(skb);
  1492. rx_ring->rx_dropped++;
  1493. return;
  1494. }
  1495. prefetch(skb->data);
  1496. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1497. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1498. "%s Multicast.\n",
  1499. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1500. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1501. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1502. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1503. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1504. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1505. }
  1506. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1507. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1508. "Promiscuous Packet.\n");
  1509. rx_ring->rx_packets++;
  1510. rx_ring->rx_bytes += skb->len;
  1511. skb->protocol = eth_type_trans(skb, ndev);
  1512. skb_checksum_none_assert(skb);
  1513. /* If rx checksum is on, and there are no
  1514. * csum or frame errors.
  1515. */
  1516. if ((ndev->features & NETIF_F_RXCSUM) &&
  1517. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1518. /* TCP frame. */
  1519. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1520. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1521. "TCP checksum done!\n");
  1522. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1523. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1524. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1525. /* Unfragmented ipv4 UDP frame. */
  1526. struct iphdr *iph = (struct iphdr *) skb->data;
  1527. if (!(iph->frag_off &
  1528. htons(IP_MF|IP_OFFSET))) {
  1529. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1530. netif_printk(qdev, rx_status, KERN_DEBUG,
  1531. qdev->ndev,
  1532. "UDP checksum done!\n");
  1533. }
  1534. }
  1535. }
  1536. skb_record_rx_queue(skb, rx_ring->cq_id);
  1537. if (vlan_id != 0xffff)
  1538. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1539. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1540. napi_gro_receive(&rx_ring->napi, skb);
  1541. else
  1542. netif_receive_skb(skb);
  1543. }
  1544. static void ql_realign_skb(struct sk_buff *skb, int len)
  1545. {
  1546. void *temp_addr = skb->data;
  1547. /* Undo the skb_reserve(skb,32) we did before
  1548. * giving to hardware, and realign data on
  1549. * a 2-byte boundary.
  1550. */
  1551. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1552. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1553. skb_copy_to_linear_data(skb, temp_addr,
  1554. (unsigned int)len);
  1555. }
  1556. /*
  1557. * This function builds an skb for the given inbound
  1558. * completion. It will be rewritten for readability in the near
  1559. * future, but for not it works well.
  1560. */
  1561. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1562. struct rx_ring *rx_ring,
  1563. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1564. {
  1565. struct bq_desc *lbq_desc;
  1566. struct bq_desc *sbq_desc;
  1567. struct sk_buff *skb = NULL;
  1568. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1569. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1570. /*
  1571. * Handle the header buffer if present.
  1572. */
  1573. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1574. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1575. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1576. "Header of %d bytes in small buffer.\n", hdr_len);
  1577. /*
  1578. * Headers fit nicely into a small buffer.
  1579. */
  1580. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1581. pci_unmap_single(qdev->pdev,
  1582. dma_unmap_addr(sbq_desc, mapaddr),
  1583. dma_unmap_len(sbq_desc, maplen),
  1584. PCI_DMA_FROMDEVICE);
  1585. skb = sbq_desc->p.skb;
  1586. ql_realign_skb(skb, hdr_len);
  1587. skb_put(skb, hdr_len);
  1588. sbq_desc->p.skb = NULL;
  1589. }
  1590. /*
  1591. * Handle the data buffer(s).
  1592. */
  1593. if (unlikely(!length)) { /* Is there data too? */
  1594. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1595. "No Data buffer in this packet.\n");
  1596. return skb;
  1597. }
  1598. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1599. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1600. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1601. "Headers in small, data of %d bytes in small, combine them.\n",
  1602. length);
  1603. /*
  1604. * Data is less than small buffer size so it's
  1605. * stuffed in a small buffer.
  1606. * For this case we append the data
  1607. * from the "data" small buffer to the "header" small
  1608. * buffer.
  1609. */
  1610. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1611. pci_dma_sync_single_for_cpu(qdev->pdev,
  1612. dma_unmap_addr
  1613. (sbq_desc, mapaddr),
  1614. dma_unmap_len
  1615. (sbq_desc, maplen),
  1616. PCI_DMA_FROMDEVICE);
  1617. memcpy(skb_put(skb, length),
  1618. sbq_desc->p.skb->data, length);
  1619. pci_dma_sync_single_for_device(qdev->pdev,
  1620. dma_unmap_addr
  1621. (sbq_desc,
  1622. mapaddr),
  1623. dma_unmap_len
  1624. (sbq_desc,
  1625. maplen),
  1626. PCI_DMA_FROMDEVICE);
  1627. } else {
  1628. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1629. "%d bytes in a single small buffer.\n",
  1630. length);
  1631. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1632. skb = sbq_desc->p.skb;
  1633. ql_realign_skb(skb, length);
  1634. skb_put(skb, length);
  1635. pci_unmap_single(qdev->pdev,
  1636. dma_unmap_addr(sbq_desc,
  1637. mapaddr),
  1638. dma_unmap_len(sbq_desc,
  1639. maplen),
  1640. PCI_DMA_FROMDEVICE);
  1641. sbq_desc->p.skb = NULL;
  1642. }
  1643. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1644. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1645. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1646. "Header in small, %d bytes in large. Chain large to small!\n",
  1647. length);
  1648. /*
  1649. * The data is in a single large buffer. We
  1650. * chain it to the header buffer's skb and let
  1651. * it rip.
  1652. */
  1653. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1654. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1655. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1656. lbq_desc->p.pg_chunk.offset, length);
  1657. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1658. lbq_desc->p.pg_chunk.offset,
  1659. length);
  1660. skb->len += length;
  1661. skb->data_len += length;
  1662. skb->truesize += length;
  1663. } else {
  1664. /*
  1665. * The headers and data are in a single large buffer. We
  1666. * copy it to a new skb and let it go. This can happen with
  1667. * jumbo mtu on a non-TCP/UDP frame.
  1668. */
  1669. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1670. skb = netdev_alloc_skb(qdev->ndev, length);
  1671. if (skb == NULL) {
  1672. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1673. "No skb available, drop the packet.\n");
  1674. return NULL;
  1675. }
  1676. pci_unmap_page(qdev->pdev,
  1677. dma_unmap_addr(lbq_desc,
  1678. mapaddr),
  1679. dma_unmap_len(lbq_desc, maplen),
  1680. PCI_DMA_FROMDEVICE);
  1681. skb_reserve(skb, NET_IP_ALIGN);
  1682. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1683. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1684. length);
  1685. skb_fill_page_desc(skb, 0,
  1686. lbq_desc->p.pg_chunk.page,
  1687. lbq_desc->p.pg_chunk.offset,
  1688. length);
  1689. skb->len += length;
  1690. skb->data_len += length;
  1691. skb->truesize += length;
  1692. length -= length;
  1693. __pskb_pull_tail(skb,
  1694. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1695. VLAN_ETH_HLEN : ETH_HLEN);
  1696. }
  1697. } else {
  1698. /*
  1699. * The data is in a chain of large buffers
  1700. * pointed to by a small buffer. We loop
  1701. * thru and chain them to the our small header
  1702. * buffer's skb.
  1703. * frags: There are 18 max frags and our small
  1704. * buffer will hold 32 of them. The thing is,
  1705. * we'll use 3 max for our 9000 byte jumbo
  1706. * frames. If the MTU goes up we could
  1707. * eventually be in trouble.
  1708. */
  1709. int size, i = 0;
  1710. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1711. pci_unmap_single(qdev->pdev,
  1712. dma_unmap_addr(sbq_desc, mapaddr),
  1713. dma_unmap_len(sbq_desc, maplen),
  1714. PCI_DMA_FROMDEVICE);
  1715. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1716. /*
  1717. * This is an non TCP/UDP IP frame, so
  1718. * the headers aren't split into a small
  1719. * buffer. We have to use the small buffer
  1720. * that contains our sg list as our skb to
  1721. * send upstairs. Copy the sg list here to
  1722. * a local buffer and use it to find the
  1723. * pages to chain.
  1724. */
  1725. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1726. "%d bytes of headers & data in chain of large.\n",
  1727. length);
  1728. skb = sbq_desc->p.skb;
  1729. sbq_desc->p.skb = NULL;
  1730. skb_reserve(skb, NET_IP_ALIGN);
  1731. }
  1732. while (length > 0) {
  1733. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1734. size = (length < rx_ring->lbq_buf_size) ? length :
  1735. rx_ring->lbq_buf_size;
  1736. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1737. "Adding page %d to skb for %d bytes.\n",
  1738. i, size);
  1739. skb_fill_page_desc(skb, i,
  1740. lbq_desc->p.pg_chunk.page,
  1741. lbq_desc->p.pg_chunk.offset,
  1742. size);
  1743. skb->len += size;
  1744. skb->data_len += size;
  1745. skb->truesize += size;
  1746. length -= size;
  1747. i++;
  1748. }
  1749. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1750. VLAN_ETH_HLEN : ETH_HLEN);
  1751. }
  1752. return skb;
  1753. }
  1754. /* Process an inbound completion from an rx ring. */
  1755. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1756. struct rx_ring *rx_ring,
  1757. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1758. u16 vlan_id)
  1759. {
  1760. struct net_device *ndev = qdev->ndev;
  1761. struct sk_buff *skb = NULL;
  1762. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1763. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1764. if (unlikely(!skb)) {
  1765. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1766. "No skb available, drop packet.\n");
  1767. rx_ring->rx_dropped++;
  1768. return;
  1769. }
  1770. /* Frame error, so drop the packet. */
  1771. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1772. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1773. dev_kfree_skb_any(skb);
  1774. return;
  1775. }
  1776. /* The max framesize filter on this chip is set higher than
  1777. * MTU since FCoE uses 2k frames.
  1778. */
  1779. if (skb->len > ndev->mtu + ETH_HLEN) {
  1780. dev_kfree_skb_any(skb);
  1781. rx_ring->rx_dropped++;
  1782. return;
  1783. }
  1784. /* loopback self test for ethtool */
  1785. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1786. ql_check_lb_frame(qdev, skb);
  1787. dev_kfree_skb_any(skb);
  1788. return;
  1789. }
  1790. prefetch(skb->data);
  1791. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1792. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1793. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1794. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1795. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1796. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1797. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1798. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1799. rx_ring->rx_multicast++;
  1800. }
  1801. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1802. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1803. "Promiscuous Packet.\n");
  1804. }
  1805. skb->protocol = eth_type_trans(skb, ndev);
  1806. skb_checksum_none_assert(skb);
  1807. /* If rx checksum is on, and there are no
  1808. * csum or frame errors.
  1809. */
  1810. if ((ndev->features & NETIF_F_RXCSUM) &&
  1811. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1812. /* TCP frame. */
  1813. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1814. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1815. "TCP checksum done!\n");
  1816. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1817. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1818. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1819. /* Unfragmented ipv4 UDP frame. */
  1820. struct iphdr *iph = (struct iphdr *) skb->data;
  1821. if (!(iph->frag_off &
  1822. htons(IP_MF|IP_OFFSET))) {
  1823. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1824. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1825. "TCP checksum done!\n");
  1826. }
  1827. }
  1828. }
  1829. rx_ring->rx_packets++;
  1830. rx_ring->rx_bytes += skb->len;
  1831. skb_record_rx_queue(skb, rx_ring->cq_id);
  1832. if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
  1833. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1834. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1835. napi_gro_receive(&rx_ring->napi, skb);
  1836. else
  1837. netif_receive_skb(skb);
  1838. }
  1839. /* Process an inbound completion from an rx ring. */
  1840. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1841. struct rx_ring *rx_ring,
  1842. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1843. {
  1844. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1845. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1846. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1847. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1848. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1849. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1850. /* The data and headers are split into
  1851. * separate buffers.
  1852. */
  1853. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1854. vlan_id);
  1855. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1856. /* The data fit in a single small buffer.
  1857. * Allocate a new skb, copy the data and
  1858. * return the buffer to the free pool.
  1859. */
  1860. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1861. length, vlan_id);
  1862. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1863. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1864. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1865. /* TCP packet in a page chunk that's been checksummed.
  1866. * Tack it on to our GRO skb and let it go.
  1867. */
  1868. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1869. length, vlan_id);
  1870. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1871. /* Non-TCP packet in a page chunk. Allocate an
  1872. * skb, tack it on frags, and send it up.
  1873. */
  1874. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1875. length, vlan_id);
  1876. } else {
  1877. /* Non-TCP/UDP large frames that span multiple buffers
  1878. * can be processed corrrectly by the split frame logic.
  1879. */
  1880. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1881. vlan_id);
  1882. }
  1883. return (unsigned long)length;
  1884. }
  1885. /* Process an outbound completion from an rx ring. */
  1886. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1887. struct ob_mac_iocb_rsp *mac_rsp)
  1888. {
  1889. struct tx_ring *tx_ring;
  1890. struct tx_ring_desc *tx_ring_desc;
  1891. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1892. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1893. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1894. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1895. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1896. tx_ring->tx_packets++;
  1897. dev_kfree_skb(tx_ring_desc->skb);
  1898. tx_ring_desc->skb = NULL;
  1899. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1900. OB_MAC_IOCB_RSP_S |
  1901. OB_MAC_IOCB_RSP_L |
  1902. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1903. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1904. netif_warn(qdev, tx_done, qdev->ndev,
  1905. "Total descriptor length did not match transfer length.\n");
  1906. }
  1907. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1908. netif_warn(qdev, tx_done, qdev->ndev,
  1909. "Frame too short to be valid, not sent.\n");
  1910. }
  1911. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1912. netif_warn(qdev, tx_done, qdev->ndev,
  1913. "Frame too long, but sent anyway.\n");
  1914. }
  1915. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1916. netif_warn(qdev, tx_done, qdev->ndev,
  1917. "PCI backplane error. Frame not sent.\n");
  1918. }
  1919. }
  1920. atomic_inc(&tx_ring->tx_count);
  1921. }
  1922. /* Fire up a handler to reset the MPI processor. */
  1923. void ql_queue_fw_error(struct ql_adapter *qdev)
  1924. {
  1925. ql_link_off(qdev);
  1926. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1927. }
  1928. void ql_queue_asic_error(struct ql_adapter *qdev)
  1929. {
  1930. ql_link_off(qdev);
  1931. ql_disable_interrupts(qdev);
  1932. /* Clear adapter up bit to signal the recovery
  1933. * process that it shouldn't kill the reset worker
  1934. * thread
  1935. */
  1936. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1937. /* Set asic recovery bit to indicate reset process that we are
  1938. * in fatal error recovery process rather than normal close
  1939. */
  1940. set_bit(QL_ASIC_RECOVERY, &qdev->flags);
  1941. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1942. }
  1943. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1944. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1945. {
  1946. switch (ib_ae_rsp->event) {
  1947. case MGMT_ERR_EVENT:
  1948. netif_err(qdev, rx_err, qdev->ndev,
  1949. "Management Processor Fatal Error.\n");
  1950. ql_queue_fw_error(qdev);
  1951. return;
  1952. case CAM_LOOKUP_ERR_EVENT:
  1953. netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
  1954. netdev_err(qdev->ndev, "This event shouldn't occur.\n");
  1955. ql_queue_asic_error(qdev);
  1956. return;
  1957. case SOFT_ECC_ERROR_EVENT:
  1958. netdev_err(qdev->ndev, "Soft ECC error detected.\n");
  1959. ql_queue_asic_error(qdev);
  1960. break;
  1961. case PCI_ERR_ANON_BUF_RD:
  1962. netdev_err(qdev->ndev, "PCI error occurred when reading "
  1963. "anonymous buffers from rx_ring %d.\n",
  1964. ib_ae_rsp->q_id);
  1965. ql_queue_asic_error(qdev);
  1966. break;
  1967. default:
  1968. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  1969. ib_ae_rsp->event);
  1970. ql_queue_asic_error(qdev);
  1971. break;
  1972. }
  1973. }
  1974. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1975. {
  1976. struct ql_adapter *qdev = rx_ring->qdev;
  1977. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1978. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1979. int count = 0;
  1980. struct tx_ring *tx_ring;
  1981. /* While there are entries in the completion queue. */
  1982. while (prod != rx_ring->cnsmr_idx) {
  1983. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1984. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  1985. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  1986. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1987. rmb();
  1988. switch (net_rsp->opcode) {
  1989. case OPCODE_OB_MAC_TSO_IOCB:
  1990. case OPCODE_OB_MAC_IOCB:
  1991. ql_process_mac_tx_intr(qdev, net_rsp);
  1992. break;
  1993. default:
  1994. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1995. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1996. net_rsp->opcode);
  1997. }
  1998. count++;
  1999. ql_update_cq(rx_ring);
  2000. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2001. }
  2002. if (!net_rsp)
  2003. return 0;
  2004. ql_write_cq_idx(rx_ring);
  2005. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2006. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  2007. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2008. /*
  2009. * The queue got stopped because the tx_ring was full.
  2010. * Wake it up, because it's now at least 25% empty.
  2011. */
  2012. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2013. }
  2014. return count;
  2015. }
  2016. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2017. {
  2018. struct ql_adapter *qdev = rx_ring->qdev;
  2019. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2020. struct ql_net_rsp_iocb *net_rsp;
  2021. int count = 0;
  2022. /* While there are entries in the completion queue. */
  2023. while (prod != rx_ring->cnsmr_idx) {
  2024. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2025. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2026. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2027. net_rsp = rx_ring->curr_entry;
  2028. rmb();
  2029. switch (net_rsp->opcode) {
  2030. case OPCODE_IB_MAC_IOCB:
  2031. ql_process_mac_rx_intr(qdev, rx_ring,
  2032. (struct ib_mac_iocb_rsp *)
  2033. net_rsp);
  2034. break;
  2035. case OPCODE_IB_AE_IOCB:
  2036. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2037. net_rsp);
  2038. break;
  2039. default:
  2040. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2041. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2042. net_rsp->opcode);
  2043. break;
  2044. }
  2045. count++;
  2046. ql_update_cq(rx_ring);
  2047. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2048. if (count == budget)
  2049. break;
  2050. }
  2051. ql_update_buffer_queues(qdev, rx_ring);
  2052. ql_write_cq_idx(rx_ring);
  2053. return count;
  2054. }
  2055. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2056. {
  2057. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2058. struct ql_adapter *qdev = rx_ring->qdev;
  2059. struct rx_ring *trx_ring;
  2060. int i, work_done = 0;
  2061. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2062. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2063. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2064. /* Service the TX rings first. They start
  2065. * right after the RSS rings. */
  2066. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2067. trx_ring = &qdev->rx_ring[i];
  2068. /* If this TX completion ring belongs to this vector and
  2069. * it's not empty then service it.
  2070. */
  2071. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2072. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2073. trx_ring->cnsmr_idx)) {
  2074. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2075. "%s: Servicing TX completion ring %d.\n",
  2076. __func__, trx_ring->cq_id);
  2077. ql_clean_outbound_rx_ring(trx_ring);
  2078. }
  2079. }
  2080. /*
  2081. * Now service the RSS ring if it's active.
  2082. */
  2083. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2084. rx_ring->cnsmr_idx) {
  2085. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2086. "%s: Servicing RX completion ring %d.\n",
  2087. __func__, rx_ring->cq_id);
  2088. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2089. }
  2090. if (work_done < budget) {
  2091. napi_complete(napi);
  2092. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2093. }
  2094. return work_done;
  2095. }
  2096. static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
  2097. {
  2098. struct ql_adapter *qdev = netdev_priv(ndev);
  2099. if (features & NETIF_F_HW_VLAN_CTAG_RX) {
  2100. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2101. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2102. } else {
  2103. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2104. }
  2105. }
  2106. static netdev_features_t qlge_fix_features(struct net_device *ndev,
  2107. netdev_features_t features)
  2108. {
  2109. /*
  2110. * Since there is no support for separate rx/tx vlan accel
  2111. * enable/disable make sure tx flag is always in same state as rx.
  2112. */
  2113. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  2114. features |= NETIF_F_HW_VLAN_CTAG_TX;
  2115. else
  2116. features &= ~NETIF_F_HW_VLAN_CTAG_TX;
  2117. return features;
  2118. }
  2119. static int qlge_set_features(struct net_device *ndev,
  2120. netdev_features_t features)
  2121. {
  2122. netdev_features_t changed = ndev->features ^ features;
  2123. if (changed & NETIF_F_HW_VLAN_CTAG_RX)
  2124. qlge_vlan_mode(ndev, features);
  2125. return 0;
  2126. }
  2127. static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
  2128. {
  2129. u32 enable_bit = MAC_ADDR_E;
  2130. int err;
  2131. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2132. MAC_ADDR_TYPE_VLAN, vid);
  2133. if (err)
  2134. netif_err(qdev, ifup, qdev->ndev,
  2135. "Failed to init vlan address.\n");
  2136. return err;
  2137. }
  2138. static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
  2139. {
  2140. struct ql_adapter *qdev = netdev_priv(ndev);
  2141. int status;
  2142. int err;
  2143. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2144. if (status)
  2145. return status;
  2146. err = __qlge_vlan_rx_add_vid(qdev, vid);
  2147. set_bit(vid, qdev->active_vlans);
  2148. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2149. return err;
  2150. }
  2151. static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
  2152. {
  2153. u32 enable_bit = 0;
  2154. int err;
  2155. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2156. MAC_ADDR_TYPE_VLAN, vid);
  2157. if (err)
  2158. netif_err(qdev, ifup, qdev->ndev,
  2159. "Failed to clear vlan address.\n");
  2160. return err;
  2161. }
  2162. static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
  2163. {
  2164. struct ql_adapter *qdev = netdev_priv(ndev);
  2165. int status;
  2166. int err;
  2167. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2168. if (status)
  2169. return status;
  2170. err = __qlge_vlan_rx_kill_vid(qdev, vid);
  2171. clear_bit(vid, qdev->active_vlans);
  2172. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2173. return err;
  2174. }
  2175. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2176. {
  2177. int status;
  2178. u16 vid;
  2179. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2180. if (status)
  2181. return;
  2182. for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
  2183. __qlge_vlan_rx_add_vid(qdev, vid);
  2184. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2185. }
  2186. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2187. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2188. {
  2189. struct rx_ring *rx_ring = dev_id;
  2190. napi_schedule(&rx_ring->napi);
  2191. return IRQ_HANDLED;
  2192. }
  2193. /* This handles a fatal error, MPI activity, and the default
  2194. * rx_ring in an MSI-X multiple vector environment.
  2195. * In MSI/Legacy environment it also process the rest of
  2196. * the rx_rings.
  2197. */
  2198. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2199. {
  2200. struct rx_ring *rx_ring = dev_id;
  2201. struct ql_adapter *qdev = rx_ring->qdev;
  2202. struct intr_context *intr_context = &qdev->intr_context[0];
  2203. u32 var;
  2204. int work_done = 0;
  2205. spin_lock(&qdev->hw_lock);
  2206. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2207. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2208. "Shared Interrupt, Not ours!\n");
  2209. spin_unlock(&qdev->hw_lock);
  2210. return IRQ_NONE;
  2211. }
  2212. spin_unlock(&qdev->hw_lock);
  2213. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2214. /*
  2215. * Check for fatal error.
  2216. */
  2217. if (var & STS_FE) {
  2218. ql_queue_asic_error(qdev);
  2219. netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
  2220. var = ql_read32(qdev, ERR_STS);
  2221. netdev_err(qdev->ndev, "Resetting chip. "
  2222. "Error Status Register = 0x%x\n", var);
  2223. return IRQ_HANDLED;
  2224. }
  2225. /*
  2226. * Check MPI processor activity.
  2227. */
  2228. if ((var & STS_PI) &&
  2229. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2230. /*
  2231. * We've got an async event or mailbox completion.
  2232. * Handle it and clear the source of the interrupt.
  2233. */
  2234. netif_err(qdev, intr, qdev->ndev,
  2235. "Got MPI processor interrupt.\n");
  2236. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2237. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2238. queue_delayed_work_on(smp_processor_id(),
  2239. qdev->workqueue, &qdev->mpi_work, 0);
  2240. work_done++;
  2241. }
  2242. /*
  2243. * Get the bit-mask that shows the active queues for this
  2244. * pass. Compare it to the queues that this irq services
  2245. * and call napi if there's a match.
  2246. */
  2247. var = ql_read32(qdev, ISR1);
  2248. if (var & intr_context->irq_mask) {
  2249. netif_info(qdev, intr, qdev->ndev,
  2250. "Waking handler for rx_ring[0].\n");
  2251. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2252. napi_schedule(&rx_ring->napi);
  2253. work_done++;
  2254. }
  2255. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2256. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2257. }
  2258. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2259. {
  2260. if (skb_is_gso(skb)) {
  2261. int err;
  2262. if (skb_header_cloned(skb)) {
  2263. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2264. if (err)
  2265. return err;
  2266. }
  2267. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2268. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2269. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2270. mac_iocb_ptr->total_hdrs_len =
  2271. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2272. mac_iocb_ptr->net_trans_offset =
  2273. cpu_to_le16(skb_network_offset(skb) |
  2274. skb_transport_offset(skb)
  2275. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2276. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2277. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2278. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2279. struct iphdr *iph = ip_hdr(skb);
  2280. iph->check = 0;
  2281. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2282. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2283. iph->daddr, 0,
  2284. IPPROTO_TCP,
  2285. 0);
  2286. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2287. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2288. tcp_hdr(skb)->check =
  2289. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2290. &ipv6_hdr(skb)->daddr,
  2291. 0, IPPROTO_TCP, 0);
  2292. }
  2293. return 1;
  2294. }
  2295. return 0;
  2296. }
  2297. static void ql_hw_csum_setup(struct sk_buff *skb,
  2298. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2299. {
  2300. int len;
  2301. struct iphdr *iph = ip_hdr(skb);
  2302. __sum16 *check;
  2303. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2304. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2305. mac_iocb_ptr->net_trans_offset =
  2306. cpu_to_le16(skb_network_offset(skb) |
  2307. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2308. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2309. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2310. if (likely(iph->protocol == IPPROTO_TCP)) {
  2311. check = &(tcp_hdr(skb)->check);
  2312. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2313. mac_iocb_ptr->total_hdrs_len =
  2314. cpu_to_le16(skb_transport_offset(skb) +
  2315. (tcp_hdr(skb)->doff << 2));
  2316. } else {
  2317. check = &(udp_hdr(skb)->check);
  2318. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2319. mac_iocb_ptr->total_hdrs_len =
  2320. cpu_to_le16(skb_transport_offset(skb) +
  2321. sizeof(struct udphdr));
  2322. }
  2323. *check = ~csum_tcpudp_magic(iph->saddr,
  2324. iph->daddr, len, iph->protocol, 0);
  2325. }
  2326. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2327. {
  2328. struct tx_ring_desc *tx_ring_desc;
  2329. struct ob_mac_iocb_req *mac_iocb_ptr;
  2330. struct ql_adapter *qdev = netdev_priv(ndev);
  2331. int tso;
  2332. struct tx_ring *tx_ring;
  2333. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2334. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2335. if (skb_padto(skb, ETH_ZLEN))
  2336. return NETDEV_TX_OK;
  2337. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2338. netif_info(qdev, tx_queued, qdev->ndev,
  2339. "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
  2340. __func__, tx_ring_idx);
  2341. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2342. tx_ring->tx_errors++;
  2343. return NETDEV_TX_BUSY;
  2344. }
  2345. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2346. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2347. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2348. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2349. mac_iocb_ptr->tid = tx_ring_desc->index;
  2350. /* We use the upper 32-bits to store the tx queue for this IO.
  2351. * When we get the completion we can use it to establish the context.
  2352. */
  2353. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2354. tx_ring_desc->skb = skb;
  2355. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2356. if (vlan_tx_tag_present(skb)) {
  2357. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2358. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2359. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2360. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2361. }
  2362. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2363. if (tso < 0) {
  2364. dev_kfree_skb_any(skb);
  2365. return NETDEV_TX_OK;
  2366. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2367. ql_hw_csum_setup(skb,
  2368. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2369. }
  2370. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2371. NETDEV_TX_OK) {
  2372. netif_err(qdev, tx_queued, qdev->ndev,
  2373. "Could not map the segments.\n");
  2374. tx_ring->tx_errors++;
  2375. return NETDEV_TX_BUSY;
  2376. }
  2377. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2378. tx_ring->prod_idx++;
  2379. if (tx_ring->prod_idx == tx_ring->wq_len)
  2380. tx_ring->prod_idx = 0;
  2381. wmb();
  2382. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2383. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2384. "tx queued, slot %d, len %d\n",
  2385. tx_ring->prod_idx, skb->len);
  2386. atomic_dec(&tx_ring->tx_count);
  2387. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2388. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2389. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2390. /*
  2391. * The queue got stopped because the tx_ring was full.
  2392. * Wake it up, because it's now at least 25% empty.
  2393. */
  2394. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2395. }
  2396. return NETDEV_TX_OK;
  2397. }
  2398. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2399. {
  2400. if (qdev->rx_ring_shadow_reg_area) {
  2401. pci_free_consistent(qdev->pdev,
  2402. PAGE_SIZE,
  2403. qdev->rx_ring_shadow_reg_area,
  2404. qdev->rx_ring_shadow_reg_dma);
  2405. qdev->rx_ring_shadow_reg_area = NULL;
  2406. }
  2407. if (qdev->tx_ring_shadow_reg_area) {
  2408. pci_free_consistent(qdev->pdev,
  2409. PAGE_SIZE,
  2410. qdev->tx_ring_shadow_reg_area,
  2411. qdev->tx_ring_shadow_reg_dma);
  2412. qdev->tx_ring_shadow_reg_area = NULL;
  2413. }
  2414. }
  2415. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2416. {
  2417. qdev->rx_ring_shadow_reg_area =
  2418. pci_alloc_consistent(qdev->pdev,
  2419. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2420. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2421. netif_err(qdev, ifup, qdev->ndev,
  2422. "Allocation of RX shadow space failed.\n");
  2423. return -ENOMEM;
  2424. }
  2425. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2426. qdev->tx_ring_shadow_reg_area =
  2427. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2428. &qdev->tx_ring_shadow_reg_dma);
  2429. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2430. netif_err(qdev, ifup, qdev->ndev,
  2431. "Allocation of TX shadow space failed.\n");
  2432. goto err_wqp_sh_area;
  2433. }
  2434. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2435. return 0;
  2436. err_wqp_sh_area:
  2437. pci_free_consistent(qdev->pdev,
  2438. PAGE_SIZE,
  2439. qdev->rx_ring_shadow_reg_area,
  2440. qdev->rx_ring_shadow_reg_dma);
  2441. return -ENOMEM;
  2442. }
  2443. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2444. {
  2445. struct tx_ring_desc *tx_ring_desc;
  2446. int i;
  2447. struct ob_mac_iocb_req *mac_iocb_ptr;
  2448. mac_iocb_ptr = tx_ring->wq_base;
  2449. tx_ring_desc = tx_ring->q;
  2450. for (i = 0; i < tx_ring->wq_len; i++) {
  2451. tx_ring_desc->index = i;
  2452. tx_ring_desc->skb = NULL;
  2453. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2454. mac_iocb_ptr++;
  2455. tx_ring_desc++;
  2456. }
  2457. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2458. }
  2459. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2460. struct tx_ring *tx_ring)
  2461. {
  2462. if (tx_ring->wq_base) {
  2463. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2464. tx_ring->wq_base, tx_ring->wq_base_dma);
  2465. tx_ring->wq_base = NULL;
  2466. }
  2467. kfree(tx_ring->q);
  2468. tx_ring->q = NULL;
  2469. }
  2470. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2471. struct tx_ring *tx_ring)
  2472. {
  2473. tx_ring->wq_base =
  2474. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2475. &tx_ring->wq_base_dma);
  2476. if ((tx_ring->wq_base == NULL) ||
  2477. tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
  2478. goto pci_alloc_err;
  2479. tx_ring->q =
  2480. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2481. if (tx_ring->q == NULL)
  2482. goto err;
  2483. return 0;
  2484. err:
  2485. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2486. tx_ring->wq_base, tx_ring->wq_base_dma);
  2487. tx_ring->wq_base = NULL;
  2488. pci_alloc_err:
  2489. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2490. return -ENOMEM;
  2491. }
  2492. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2493. {
  2494. struct bq_desc *lbq_desc;
  2495. uint32_t curr_idx, clean_idx;
  2496. curr_idx = rx_ring->lbq_curr_idx;
  2497. clean_idx = rx_ring->lbq_clean_idx;
  2498. while (curr_idx != clean_idx) {
  2499. lbq_desc = &rx_ring->lbq[curr_idx];
  2500. if (lbq_desc->p.pg_chunk.last_flag) {
  2501. pci_unmap_page(qdev->pdev,
  2502. lbq_desc->p.pg_chunk.map,
  2503. ql_lbq_block_size(qdev),
  2504. PCI_DMA_FROMDEVICE);
  2505. lbq_desc->p.pg_chunk.last_flag = 0;
  2506. }
  2507. put_page(lbq_desc->p.pg_chunk.page);
  2508. lbq_desc->p.pg_chunk.page = NULL;
  2509. if (++curr_idx == rx_ring->lbq_len)
  2510. curr_idx = 0;
  2511. }
  2512. }
  2513. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2514. {
  2515. int i;
  2516. struct bq_desc *sbq_desc;
  2517. for (i = 0; i < rx_ring->sbq_len; i++) {
  2518. sbq_desc = &rx_ring->sbq[i];
  2519. if (sbq_desc == NULL) {
  2520. netif_err(qdev, ifup, qdev->ndev,
  2521. "sbq_desc %d is NULL.\n", i);
  2522. return;
  2523. }
  2524. if (sbq_desc->p.skb) {
  2525. pci_unmap_single(qdev->pdev,
  2526. dma_unmap_addr(sbq_desc, mapaddr),
  2527. dma_unmap_len(sbq_desc, maplen),
  2528. PCI_DMA_FROMDEVICE);
  2529. dev_kfree_skb(sbq_desc->p.skb);
  2530. sbq_desc->p.skb = NULL;
  2531. }
  2532. }
  2533. }
  2534. /* Free all large and small rx buffers associated
  2535. * with the completion queues for this device.
  2536. */
  2537. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2538. {
  2539. int i;
  2540. struct rx_ring *rx_ring;
  2541. for (i = 0; i < qdev->rx_ring_count; i++) {
  2542. rx_ring = &qdev->rx_ring[i];
  2543. if (rx_ring->lbq)
  2544. ql_free_lbq_buffers(qdev, rx_ring);
  2545. if (rx_ring->sbq)
  2546. ql_free_sbq_buffers(qdev, rx_ring);
  2547. }
  2548. }
  2549. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2550. {
  2551. struct rx_ring *rx_ring;
  2552. int i;
  2553. for (i = 0; i < qdev->rx_ring_count; i++) {
  2554. rx_ring = &qdev->rx_ring[i];
  2555. if (rx_ring->type != TX_Q)
  2556. ql_update_buffer_queues(qdev, rx_ring);
  2557. }
  2558. }
  2559. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2560. struct rx_ring *rx_ring)
  2561. {
  2562. int i;
  2563. struct bq_desc *lbq_desc;
  2564. __le64 *bq = rx_ring->lbq_base;
  2565. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2566. for (i = 0; i < rx_ring->lbq_len; i++) {
  2567. lbq_desc = &rx_ring->lbq[i];
  2568. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2569. lbq_desc->index = i;
  2570. lbq_desc->addr = bq;
  2571. bq++;
  2572. }
  2573. }
  2574. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2575. struct rx_ring *rx_ring)
  2576. {
  2577. int i;
  2578. struct bq_desc *sbq_desc;
  2579. __le64 *bq = rx_ring->sbq_base;
  2580. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2581. for (i = 0; i < rx_ring->sbq_len; i++) {
  2582. sbq_desc = &rx_ring->sbq[i];
  2583. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2584. sbq_desc->index = i;
  2585. sbq_desc->addr = bq;
  2586. bq++;
  2587. }
  2588. }
  2589. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2590. struct rx_ring *rx_ring)
  2591. {
  2592. /* Free the small buffer queue. */
  2593. if (rx_ring->sbq_base) {
  2594. pci_free_consistent(qdev->pdev,
  2595. rx_ring->sbq_size,
  2596. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2597. rx_ring->sbq_base = NULL;
  2598. }
  2599. /* Free the small buffer queue control blocks. */
  2600. kfree(rx_ring->sbq);
  2601. rx_ring->sbq = NULL;
  2602. /* Free the large buffer queue. */
  2603. if (rx_ring->lbq_base) {
  2604. pci_free_consistent(qdev->pdev,
  2605. rx_ring->lbq_size,
  2606. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2607. rx_ring->lbq_base = NULL;
  2608. }
  2609. /* Free the large buffer queue control blocks. */
  2610. kfree(rx_ring->lbq);
  2611. rx_ring->lbq = NULL;
  2612. /* Free the rx queue. */
  2613. if (rx_ring->cq_base) {
  2614. pci_free_consistent(qdev->pdev,
  2615. rx_ring->cq_size,
  2616. rx_ring->cq_base, rx_ring->cq_base_dma);
  2617. rx_ring->cq_base = NULL;
  2618. }
  2619. }
  2620. /* Allocate queues and buffers for this completions queue based
  2621. * on the values in the parameter structure. */
  2622. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2623. struct rx_ring *rx_ring)
  2624. {
  2625. /*
  2626. * Allocate the completion queue for this rx_ring.
  2627. */
  2628. rx_ring->cq_base =
  2629. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2630. &rx_ring->cq_base_dma);
  2631. if (rx_ring->cq_base == NULL) {
  2632. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2633. return -ENOMEM;
  2634. }
  2635. if (rx_ring->sbq_len) {
  2636. /*
  2637. * Allocate small buffer queue.
  2638. */
  2639. rx_ring->sbq_base =
  2640. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2641. &rx_ring->sbq_base_dma);
  2642. if (rx_ring->sbq_base == NULL) {
  2643. netif_err(qdev, ifup, qdev->ndev,
  2644. "Small buffer queue allocation failed.\n");
  2645. goto err_mem;
  2646. }
  2647. /*
  2648. * Allocate small buffer queue control blocks.
  2649. */
  2650. rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
  2651. sizeof(struct bq_desc),
  2652. GFP_KERNEL);
  2653. if (rx_ring->sbq == NULL)
  2654. goto err_mem;
  2655. ql_init_sbq_ring(qdev, rx_ring);
  2656. }
  2657. if (rx_ring->lbq_len) {
  2658. /*
  2659. * Allocate large buffer queue.
  2660. */
  2661. rx_ring->lbq_base =
  2662. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2663. &rx_ring->lbq_base_dma);
  2664. if (rx_ring->lbq_base == NULL) {
  2665. netif_err(qdev, ifup, qdev->ndev,
  2666. "Large buffer queue allocation failed.\n");
  2667. goto err_mem;
  2668. }
  2669. /*
  2670. * Allocate large buffer queue control blocks.
  2671. */
  2672. rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
  2673. sizeof(struct bq_desc),
  2674. GFP_KERNEL);
  2675. if (rx_ring->lbq == NULL)
  2676. goto err_mem;
  2677. ql_init_lbq_ring(qdev, rx_ring);
  2678. }
  2679. return 0;
  2680. err_mem:
  2681. ql_free_rx_resources(qdev, rx_ring);
  2682. return -ENOMEM;
  2683. }
  2684. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2685. {
  2686. struct tx_ring *tx_ring;
  2687. struct tx_ring_desc *tx_ring_desc;
  2688. int i, j;
  2689. /*
  2690. * Loop through all queues and free
  2691. * any resources.
  2692. */
  2693. for (j = 0; j < qdev->tx_ring_count; j++) {
  2694. tx_ring = &qdev->tx_ring[j];
  2695. for (i = 0; i < tx_ring->wq_len; i++) {
  2696. tx_ring_desc = &tx_ring->q[i];
  2697. if (tx_ring_desc && tx_ring_desc->skb) {
  2698. netif_err(qdev, ifdown, qdev->ndev,
  2699. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2700. tx_ring_desc->skb, j,
  2701. tx_ring_desc->index);
  2702. ql_unmap_send(qdev, tx_ring_desc,
  2703. tx_ring_desc->map_cnt);
  2704. dev_kfree_skb(tx_ring_desc->skb);
  2705. tx_ring_desc->skb = NULL;
  2706. }
  2707. }
  2708. }
  2709. }
  2710. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2711. {
  2712. int i;
  2713. for (i = 0; i < qdev->tx_ring_count; i++)
  2714. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2715. for (i = 0; i < qdev->rx_ring_count; i++)
  2716. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2717. ql_free_shadow_space(qdev);
  2718. }
  2719. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2720. {
  2721. int i;
  2722. /* Allocate space for our shadow registers and such. */
  2723. if (ql_alloc_shadow_space(qdev))
  2724. return -ENOMEM;
  2725. for (i = 0; i < qdev->rx_ring_count; i++) {
  2726. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2727. netif_err(qdev, ifup, qdev->ndev,
  2728. "RX resource allocation failed.\n");
  2729. goto err_mem;
  2730. }
  2731. }
  2732. /* Allocate tx queue resources */
  2733. for (i = 0; i < qdev->tx_ring_count; i++) {
  2734. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2735. netif_err(qdev, ifup, qdev->ndev,
  2736. "TX resource allocation failed.\n");
  2737. goto err_mem;
  2738. }
  2739. }
  2740. return 0;
  2741. err_mem:
  2742. ql_free_mem_resources(qdev);
  2743. return -ENOMEM;
  2744. }
  2745. /* Set up the rx ring control block and pass it to the chip.
  2746. * The control block is defined as
  2747. * "Completion Queue Initialization Control Block", or cqicb.
  2748. */
  2749. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2750. {
  2751. struct cqicb *cqicb = &rx_ring->cqicb;
  2752. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2753. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2754. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2755. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2756. void __iomem *doorbell_area =
  2757. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2758. int err = 0;
  2759. u16 bq_len;
  2760. u64 tmp;
  2761. __le64 *base_indirect_ptr;
  2762. int page_entries;
  2763. /* Set up the shadow registers for this ring. */
  2764. rx_ring->prod_idx_sh_reg = shadow_reg;
  2765. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2766. *rx_ring->prod_idx_sh_reg = 0;
  2767. shadow_reg += sizeof(u64);
  2768. shadow_reg_dma += sizeof(u64);
  2769. rx_ring->lbq_base_indirect = shadow_reg;
  2770. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2771. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2772. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2773. rx_ring->sbq_base_indirect = shadow_reg;
  2774. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2775. /* PCI doorbell mem area + 0x00 for consumer index register */
  2776. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2777. rx_ring->cnsmr_idx = 0;
  2778. rx_ring->curr_entry = rx_ring->cq_base;
  2779. /* PCI doorbell mem area + 0x04 for valid register */
  2780. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2781. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2782. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2783. /* PCI doorbell mem area + 0x1c */
  2784. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2785. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2786. cqicb->msix_vect = rx_ring->irq;
  2787. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2788. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2789. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2790. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2791. /*
  2792. * Set up the control block load flags.
  2793. */
  2794. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2795. FLAGS_LV | /* Load MSI-X vector */
  2796. FLAGS_LI; /* Load irq delay values */
  2797. if (rx_ring->lbq_len) {
  2798. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2799. tmp = (u64)rx_ring->lbq_base_dma;
  2800. base_indirect_ptr = rx_ring->lbq_base_indirect;
  2801. page_entries = 0;
  2802. do {
  2803. *base_indirect_ptr = cpu_to_le64(tmp);
  2804. tmp += DB_PAGE_SIZE;
  2805. base_indirect_ptr++;
  2806. page_entries++;
  2807. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2808. cqicb->lbq_addr =
  2809. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2810. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2811. (u16) rx_ring->lbq_buf_size;
  2812. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2813. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2814. (u16) rx_ring->lbq_len;
  2815. cqicb->lbq_len = cpu_to_le16(bq_len);
  2816. rx_ring->lbq_prod_idx = 0;
  2817. rx_ring->lbq_curr_idx = 0;
  2818. rx_ring->lbq_clean_idx = 0;
  2819. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2820. }
  2821. if (rx_ring->sbq_len) {
  2822. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2823. tmp = (u64)rx_ring->sbq_base_dma;
  2824. base_indirect_ptr = rx_ring->sbq_base_indirect;
  2825. page_entries = 0;
  2826. do {
  2827. *base_indirect_ptr = cpu_to_le64(tmp);
  2828. tmp += DB_PAGE_SIZE;
  2829. base_indirect_ptr++;
  2830. page_entries++;
  2831. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2832. cqicb->sbq_addr =
  2833. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2834. cqicb->sbq_buf_size =
  2835. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2836. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2837. (u16) rx_ring->sbq_len;
  2838. cqicb->sbq_len = cpu_to_le16(bq_len);
  2839. rx_ring->sbq_prod_idx = 0;
  2840. rx_ring->sbq_curr_idx = 0;
  2841. rx_ring->sbq_clean_idx = 0;
  2842. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2843. }
  2844. switch (rx_ring->type) {
  2845. case TX_Q:
  2846. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2847. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2848. break;
  2849. case RX_Q:
  2850. /* Inbound completion handling rx_rings run in
  2851. * separate NAPI contexts.
  2852. */
  2853. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2854. 64);
  2855. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2856. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2857. break;
  2858. default:
  2859. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2860. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2861. }
  2862. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2863. CFG_LCQ, rx_ring->cq_id);
  2864. if (err) {
  2865. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2866. return err;
  2867. }
  2868. return err;
  2869. }
  2870. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2871. {
  2872. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2873. void __iomem *doorbell_area =
  2874. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2875. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2876. (tx_ring->wq_id * sizeof(u64));
  2877. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2878. (tx_ring->wq_id * sizeof(u64));
  2879. int err = 0;
  2880. /*
  2881. * Assign doorbell registers for this tx_ring.
  2882. */
  2883. /* TX PCI doorbell mem area for tx producer index */
  2884. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2885. tx_ring->prod_idx = 0;
  2886. /* TX PCI doorbell mem area + 0x04 */
  2887. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2888. /*
  2889. * Assign shadow registers for this tx_ring.
  2890. */
  2891. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2892. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2893. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2894. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2895. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2896. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2897. wqicb->rid = 0;
  2898. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2899. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2900. ql_init_tx_ring(qdev, tx_ring);
  2901. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2902. (u16) tx_ring->wq_id);
  2903. if (err) {
  2904. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2905. return err;
  2906. }
  2907. return err;
  2908. }
  2909. static void ql_disable_msix(struct ql_adapter *qdev)
  2910. {
  2911. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2912. pci_disable_msix(qdev->pdev);
  2913. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2914. kfree(qdev->msi_x_entry);
  2915. qdev->msi_x_entry = NULL;
  2916. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2917. pci_disable_msi(qdev->pdev);
  2918. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2919. }
  2920. }
  2921. /* We start by trying to get the number of vectors
  2922. * stored in qdev->intr_count. If we don't get that
  2923. * many then we reduce the count and try again.
  2924. */
  2925. static void ql_enable_msix(struct ql_adapter *qdev)
  2926. {
  2927. int i, err;
  2928. /* Get the MSIX vectors. */
  2929. if (qlge_irq_type == MSIX_IRQ) {
  2930. /* Try to alloc space for the msix struct,
  2931. * if it fails then go to MSI/legacy.
  2932. */
  2933. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2934. sizeof(struct msix_entry),
  2935. GFP_KERNEL);
  2936. if (!qdev->msi_x_entry) {
  2937. qlge_irq_type = MSI_IRQ;
  2938. goto msi;
  2939. }
  2940. for (i = 0; i < qdev->intr_count; i++)
  2941. qdev->msi_x_entry[i].entry = i;
  2942. /* Loop to get our vectors. We start with
  2943. * what we want and settle for what we get.
  2944. */
  2945. do {
  2946. err = pci_enable_msix(qdev->pdev,
  2947. qdev->msi_x_entry, qdev->intr_count);
  2948. if (err > 0)
  2949. qdev->intr_count = err;
  2950. } while (err > 0);
  2951. if (err < 0) {
  2952. kfree(qdev->msi_x_entry);
  2953. qdev->msi_x_entry = NULL;
  2954. netif_warn(qdev, ifup, qdev->ndev,
  2955. "MSI-X Enable failed, trying MSI.\n");
  2956. qdev->intr_count = 1;
  2957. qlge_irq_type = MSI_IRQ;
  2958. } else if (err == 0) {
  2959. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2960. netif_info(qdev, ifup, qdev->ndev,
  2961. "MSI-X Enabled, got %d vectors.\n",
  2962. qdev->intr_count);
  2963. return;
  2964. }
  2965. }
  2966. msi:
  2967. qdev->intr_count = 1;
  2968. if (qlge_irq_type == MSI_IRQ) {
  2969. if (!pci_enable_msi(qdev->pdev)) {
  2970. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2971. netif_info(qdev, ifup, qdev->ndev,
  2972. "Running with MSI interrupts.\n");
  2973. return;
  2974. }
  2975. }
  2976. qlge_irq_type = LEG_IRQ;
  2977. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2978. "Running with legacy interrupts.\n");
  2979. }
  2980. /* Each vector services 1 RSS ring and and 1 or more
  2981. * TX completion rings. This function loops through
  2982. * the TX completion rings and assigns the vector that
  2983. * will service it. An example would be if there are
  2984. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2985. * This would mean that vector 0 would service RSS ring 0
  2986. * and TX completion rings 0,1,2 and 3. Vector 1 would
  2987. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2988. */
  2989. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2990. {
  2991. int i, j, vect;
  2992. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2993. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2994. /* Assign irq vectors to TX rx_rings.*/
  2995. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2996. i < qdev->rx_ring_count; i++) {
  2997. if (j == tx_rings_per_vector) {
  2998. vect++;
  2999. j = 0;
  3000. }
  3001. qdev->rx_ring[i].irq = vect;
  3002. j++;
  3003. }
  3004. } else {
  3005. /* For single vector all rings have an irq
  3006. * of zero.
  3007. */
  3008. for (i = 0; i < qdev->rx_ring_count; i++)
  3009. qdev->rx_ring[i].irq = 0;
  3010. }
  3011. }
  3012. /* Set the interrupt mask for this vector. Each vector
  3013. * will service 1 RSS ring and 1 or more TX completion
  3014. * rings. This function sets up a bit mask per vector
  3015. * that indicates which rings it services.
  3016. */
  3017. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  3018. {
  3019. int j, vect = ctx->intr;
  3020. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3021. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3022. /* Add the RSS ring serviced by this vector
  3023. * to the mask.
  3024. */
  3025. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3026. /* Add the TX ring(s) serviced by this vector
  3027. * to the mask. */
  3028. for (j = 0; j < tx_rings_per_vector; j++) {
  3029. ctx->irq_mask |=
  3030. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3031. (vect * tx_rings_per_vector) + j].cq_id);
  3032. }
  3033. } else {
  3034. /* For single vector we just shift each queue's
  3035. * ID into the mask.
  3036. */
  3037. for (j = 0; j < qdev->rx_ring_count; j++)
  3038. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3039. }
  3040. }
  3041. /*
  3042. * Here we build the intr_context structures based on
  3043. * our rx_ring count and intr vector count.
  3044. * The intr_context structure is used to hook each vector
  3045. * to possibly different handlers.
  3046. */
  3047. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3048. {
  3049. int i = 0;
  3050. struct intr_context *intr_context = &qdev->intr_context[0];
  3051. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3052. /* Each rx_ring has it's
  3053. * own intr_context since we have separate
  3054. * vectors for each queue.
  3055. */
  3056. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3057. qdev->rx_ring[i].irq = i;
  3058. intr_context->intr = i;
  3059. intr_context->qdev = qdev;
  3060. /* Set up this vector's bit-mask that indicates
  3061. * which queues it services.
  3062. */
  3063. ql_set_irq_mask(qdev, intr_context);
  3064. /*
  3065. * We set up each vectors enable/disable/read bits so
  3066. * there's no bit/mask calculations in the critical path.
  3067. */
  3068. intr_context->intr_en_mask =
  3069. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3070. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3071. | i;
  3072. intr_context->intr_dis_mask =
  3073. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3074. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3075. INTR_EN_IHD | i;
  3076. intr_context->intr_read_mask =
  3077. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3078. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3079. i;
  3080. if (i == 0) {
  3081. /* The first vector/queue handles
  3082. * broadcast/multicast, fatal errors,
  3083. * and firmware events. This in addition
  3084. * to normal inbound NAPI processing.
  3085. */
  3086. intr_context->handler = qlge_isr;
  3087. sprintf(intr_context->name, "%s-rx-%d",
  3088. qdev->ndev->name, i);
  3089. } else {
  3090. /*
  3091. * Inbound queues handle unicast frames only.
  3092. */
  3093. intr_context->handler = qlge_msix_rx_isr;
  3094. sprintf(intr_context->name, "%s-rx-%d",
  3095. qdev->ndev->name, i);
  3096. }
  3097. }
  3098. } else {
  3099. /*
  3100. * All rx_rings use the same intr_context since
  3101. * there is only one vector.
  3102. */
  3103. intr_context->intr = 0;
  3104. intr_context->qdev = qdev;
  3105. /*
  3106. * We set up each vectors enable/disable/read bits so
  3107. * there's no bit/mask calculations in the critical path.
  3108. */
  3109. intr_context->intr_en_mask =
  3110. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3111. intr_context->intr_dis_mask =
  3112. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3113. INTR_EN_TYPE_DISABLE;
  3114. intr_context->intr_read_mask =
  3115. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3116. /*
  3117. * Single interrupt means one handler for all rings.
  3118. */
  3119. intr_context->handler = qlge_isr;
  3120. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3121. /* Set up this vector's bit-mask that indicates
  3122. * which queues it services. In this case there is
  3123. * a single vector so it will service all RSS and
  3124. * TX completion rings.
  3125. */
  3126. ql_set_irq_mask(qdev, intr_context);
  3127. }
  3128. /* Tell the TX completion rings which MSIx vector
  3129. * they will be using.
  3130. */
  3131. ql_set_tx_vect(qdev);
  3132. }
  3133. static void ql_free_irq(struct ql_adapter *qdev)
  3134. {
  3135. int i;
  3136. struct intr_context *intr_context = &qdev->intr_context[0];
  3137. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3138. if (intr_context->hooked) {
  3139. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3140. free_irq(qdev->msi_x_entry[i].vector,
  3141. &qdev->rx_ring[i]);
  3142. } else {
  3143. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3144. }
  3145. }
  3146. }
  3147. ql_disable_msix(qdev);
  3148. }
  3149. static int ql_request_irq(struct ql_adapter *qdev)
  3150. {
  3151. int i;
  3152. int status = 0;
  3153. struct pci_dev *pdev = qdev->pdev;
  3154. struct intr_context *intr_context = &qdev->intr_context[0];
  3155. ql_resolve_queues_to_irqs(qdev);
  3156. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3157. atomic_set(&intr_context->irq_cnt, 0);
  3158. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3159. status = request_irq(qdev->msi_x_entry[i].vector,
  3160. intr_context->handler,
  3161. 0,
  3162. intr_context->name,
  3163. &qdev->rx_ring[i]);
  3164. if (status) {
  3165. netif_err(qdev, ifup, qdev->ndev,
  3166. "Failed request for MSIX interrupt %d.\n",
  3167. i);
  3168. goto err_irq;
  3169. }
  3170. } else {
  3171. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3172. "trying msi or legacy interrupts.\n");
  3173. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3174. "%s: irq = %d.\n", __func__, pdev->irq);
  3175. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3176. "%s: context->name = %s.\n", __func__,
  3177. intr_context->name);
  3178. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3179. "%s: dev_id = 0x%p.\n", __func__,
  3180. &qdev->rx_ring[0]);
  3181. status =
  3182. request_irq(pdev->irq, qlge_isr,
  3183. test_bit(QL_MSI_ENABLED,
  3184. &qdev->
  3185. flags) ? 0 : IRQF_SHARED,
  3186. intr_context->name, &qdev->rx_ring[0]);
  3187. if (status)
  3188. goto err_irq;
  3189. netif_err(qdev, ifup, qdev->ndev,
  3190. "Hooked intr %d, queue type %s, with name %s.\n",
  3191. i,
  3192. qdev->rx_ring[0].type == DEFAULT_Q ?
  3193. "DEFAULT_Q" :
  3194. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3195. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3196. intr_context->name);
  3197. }
  3198. intr_context->hooked = 1;
  3199. }
  3200. return status;
  3201. err_irq:
  3202. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3203. ql_free_irq(qdev);
  3204. return status;
  3205. }
  3206. static int ql_start_rss(struct ql_adapter *qdev)
  3207. {
  3208. static const u8 init_hash_seed[] = {
  3209. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3210. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3211. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3212. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3213. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3214. };
  3215. struct ricb *ricb = &qdev->ricb;
  3216. int status = 0;
  3217. int i;
  3218. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3219. memset((void *)ricb, 0, sizeof(*ricb));
  3220. ricb->base_cq = RSS_L4K;
  3221. ricb->flags =
  3222. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3223. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3224. /*
  3225. * Fill out the Indirection Table.
  3226. */
  3227. for (i = 0; i < 1024; i++)
  3228. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3229. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3230. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3231. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3232. if (status) {
  3233. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3234. return status;
  3235. }
  3236. return status;
  3237. }
  3238. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3239. {
  3240. int i, status = 0;
  3241. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3242. if (status)
  3243. return status;
  3244. /* Clear all the entries in the routing table. */
  3245. for (i = 0; i < 16; i++) {
  3246. status = ql_set_routing_reg(qdev, i, 0, 0);
  3247. if (status) {
  3248. netif_err(qdev, ifup, qdev->ndev,
  3249. "Failed to init routing register for CAM packets.\n");
  3250. break;
  3251. }
  3252. }
  3253. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3254. return status;
  3255. }
  3256. /* Initialize the frame-to-queue routing. */
  3257. static int ql_route_initialize(struct ql_adapter *qdev)
  3258. {
  3259. int status = 0;
  3260. /* Clear all the entries in the routing table. */
  3261. status = ql_clear_routing_entries(qdev);
  3262. if (status)
  3263. return status;
  3264. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3265. if (status)
  3266. return status;
  3267. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3268. RT_IDX_IP_CSUM_ERR, 1);
  3269. if (status) {
  3270. netif_err(qdev, ifup, qdev->ndev,
  3271. "Failed to init routing register "
  3272. "for IP CSUM error packets.\n");
  3273. goto exit;
  3274. }
  3275. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3276. RT_IDX_TU_CSUM_ERR, 1);
  3277. if (status) {
  3278. netif_err(qdev, ifup, qdev->ndev,
  3279. "Failed to init routing register "
  3280. "for TCP/UDP CSUM error packets.\n");
  3281. goto exit;
  3282. }
  3283. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3284. if (status) {
  3285. netif_err(qdev, ifup, qdev->ndev,
  3286. "Failed to init routing register for broadcast packets.\n");
  3287. goto exit;
  3288. }
  3289. /* If we have more than one inbound queue, then turn on RSS in the
  3290. * routing block.
  3291. */
  3292. if (qdev->rss_ring_count > 1) {
  3293. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3294. RT_IDX_RSS_MATCH, 1);
  3295. if (status) {
  3296. netif_err(qdev, ifup, qdev->ndev,
  3297. "Failed to init routing register for MATCH RSS packets.\n");
  3298. goto exit;
  3299. }
  3300. }
  3301. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3302. RT_IDX_CAM_HIT, 1);
  3303. if (status)
  3304. netif_err(qdev, ifup, qdev->ndev,
  3305. "Failed to init routing register for CAM packets.\n");
  3306. exit:
  3307. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3308. return status;
  3309. }
  3310. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3311. {
  3312. int status, set;
  3313. /* If check if the link is up and use to
  3314. * determine if we are setting or clearing
  3315. * the MAC address in the CAM.
  3316. */
  3317. set = ql_read32(qdev, STS);
  3318. set &= qdev->port_link_up;
  3319. status = ql_set_mac_addr(qdev, set);
  3320. if (status) {
  3321. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3322. return status;
  3323. }
  3324. status = ql_route_initialize(qdev);
  3325. if (status)
  3326. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3327. return status;
  3328. }
  3329. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3330. {
  3331. u32 value, mask;
  3332. int i;
  3333. int status = 0;
  3334. /*
  3335. * Set up the System register to halt on errors.
  3336. */
  3337. value = SYS_EFE | SYS_FAE;
  3338. mask = value << 16;
  3339. ql_write32(qdev, SYS, mask | value);
  3340. /* Set the default queue, and VLAN behavior. */
  3341. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3342. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3343. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3344. /* Set the MPI interrupt to enabled. */
  3345. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3346. /* Enable the function, set pagesize, enable error checking. */
  3347. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3348. FSC_EC | FSC_VM_PAGE_4K;
  3349. value |= SPLT_SETTING;
  3350. /* Set/clear header splitting. */
  3351. mask = FSC_VM_PAGESIZE_MASK |
  3352. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3353. ql_write32(qdev, FSC, mask | value);
  3354. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3355. /* Set RX packet routing to use port/pci function on which the
  3356. * packet arrived on in addition to usual frame routing.
  3357. * This is helpful on bonding where both interfaces can have
  3358. * the same MAC address.
  3359. */
  3360. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3361. /* Reroute all packets to our Interface.
  3362. * They may have been routed to MPI firmware
  3363. * due to WOL.
  3364. */
  3365. value = ql_read32(qdev, MGMT_RCV_CFG);
  3366. value &= ~MGMT_RCV_CFG_RM;
  3367. mask = 0xffff0000;
  3368. /* Sticky reg needs clearing due to WOL. */
  3369. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3370. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3371. /* Default WOL is enable on Mezz cards */
  3372. if (qdev->pdev->subsystem_device == 0x0068 ||
  3373. qdev->pdev->subsystem_device == 0x0180)
  3374. qdev->wol = WAKE_MAGIC;
  3375. /* Start up the rx queues. */
  3376. for (i = 0; i < qdev->rx_ring_count; i++) {
  3377. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3378. if (status) {
  3379. netif_err(qdev, ifup, qdev->ndev,
  3380. "Failed to start rx ring[%d].\n", i);
  3381. return status;
  3382. }
  3383. }
  3384. /* If there is more than one inbound completion queue
  3385. * then download a RICB to configure RSS.
  3386. */
  3387. if (qdev->rss_ring_count > 1) {
  3388. status = ql_start_rss(qdev);
  3389. if (status) {
  3390. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3391. return status;
  3392. }
  3393. }
  3394. /* Start up the tx queues. */
  3395. for (i = 0; i < qdev->tx_ring_count; i++) {
  3396. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3397. if (status) {
  3398. netif_err(qdev, ifup, qdev->ndev,
  3399. "Failed to start tx ring[%d].\n", i);
  3400. return status;
  3401. }
  3402. }
  3403. /* Initialize the port and set the max framesize. */
  3404. status = qdev->nic_ops->port_initialize(qdev);
  3405. if (status)
  3406. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3407. /* Set up the MAC address and frame routing filter. */
  3408. status = ql_cam_route_initialize(qdev);
  3409. if (status) {
  3410. netif_err(qdev, ifup, qdev->ndev,
  3411. "Failed to init CAM/Routing tables.\n");
  3412. return status;
  3413. }
  3414. /* Start NAPI for the RSS queues. */
  3415. for (i = 0; i < qdev->rss_ring_count; i++)
  3416. napi_enable(&qdev->rx_ring[i].napi);
  3417. return status;
  3418. }
  3419. /* Issue soft reset to chip. */
  3420. static int ql_adapter_reset(struct ql_adapter *qdev)
  3421. {
  3422. u32 value;
  3423. int status = 0;
  3424. unsigned long end_jiffies;
  3425. /* Clear all the entries in the routing table. */
  3426. status = ql_clear_routing_entries(qdev);
  3427. if (status) {
  3428. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3429. return status;
  3430. }
  3431. end_jiffies = jiffies +
  3432. max((unsigned long)1, usecs_to_jiffies(30));
  3433. /* Check if bit is set then skip the mailbox command and
  3434. * clear the bit, else we are in normal reset process.
  3435. */
  3436. if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
  3437. /* Stop management traffic. */
  3438. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3439. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3440. ql_wait_fifo_empty(qdev);
  3441. } else
  3442. clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
  3443. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3444. do {
  3445. value = ql_read32(qdev, RST_FO);
  3446. if ((value & RST_FO_FR) == 0)
  3447. break;
  3448. cpu_relax();
  3449. } while (time_before(jiffies, end_jiffies));
  3450. if (value & RST_FO_FR) {
  3451. netif_err(qdev, ifdown, qdev->ndev,
  3452. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3453. status = -ETIMEDOUT;
  3454. }
  3455. /* Resume management traffic. */
  3456. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3457. return status;
  3458. }
  3459. static void ql_display_dev_info(struct net_device *ndev)
  3460. {
  3461. struct ql_adapter *qdev = netdev_priv(ndev);
  3462. netif_info(qdev, probe, qdev->ndev,
  3463. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3464. "XG Roll = %d, XG Rev = %d.\n",
  3465. qdev->func,
  3466. qdev->port,
  3467. qdev->chip_rev_id & 0x0000000f,
  3468. qdev->chip_rev_id >> 4 & 0x0000000f,
  3469. qdev->chip_rev_id >> 8 & 0x0000000f,
  3470. qdev->chip_rev_id >> 12 & 0x0000000f);
  3471. netif_info(qdev, probe, qdev->ndev,
  3472. "MAC address %pM\n", ndev->dev_addr);
  3473. }
  3474. static int ql_wol(struct ql_adapter *qdev)
  3475. {
  3476. int status = 0;
  3477. u32 wol = MB_WOL_DISABLE;
  3478. /* The CAM is still intact after a reset, but if we
  3479. * are doing WOL, then we may need to program the
  3480. * routing regs. We would also need to issue the mailbox
  3481. * commands to instruct the MPI what to do per the ethtool
  3482. * settings.
  3483. */
  3484. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3485. WAKE_MCAST | WAKE_BCAST)) {
  3486. netif_err(qdev, ifdown, qdev->ndev,
  3487. "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
  3488. qdev->wol);
  3489. return -EINVAL;
  3490. }
  3491. if (qdev->wol & WAKE_MAGIC) {
  3492. status = ql_mb_wol_set_magic(qdev, 1);
  3493. if (status) {
  3494. netif_err(qdev, ifdown, qdev->ndev,
  3495. "Failed to set magic packet on %s.\n",
  3496. qdev->ndev->name);
  3497. return status;
  3498. } else
  3499. netif_info(qdev, drv, qdev->ndev,
  3500. "Enabled magic packet successfully on %s.\n",
  3501. qdev->ndev->name);
  3502. wol |= MB_WOL_MAGIC_PKT;
  3503. }
  3504. if (qdev->wol) {
  3505. wol |= MB_WOL_MODE_ON;
  3506. status = ql_mb_wol_mode(qdev, wol);
  3507. netif_err(qdev, drv, qdev->ndev,
  3508. "WOL %s (wol code 0x%x) on %s\n",
  3509. (status == 0) ? "Successfully set" : "Failed",
  3510. wol, qdev->ndev->name);
  3511. }
  3512. return status;
  3513. }
  3514. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3515. {
  3516. /* Don't kill the reset worker thread if we
  3517. * are in the process of recovery.
  3518. */
  3519. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3520. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3521. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3522. cancel_delayed_work_sync(&qdev->mpi_work);
  3523. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3524. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3525. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3526. }
  3527. static int ql_adapter_down(struct ql_adapter *qdev)
  3528. {
  3529. int i, status = 0;
  3530. ql_link_off(qdev);
  3531. ql_cancel_all_work_sync(qdev);
  3532. for (i = 0; i < qdev->rss_ring_count; i++)
  3533. napi_disable(&qdev->rx_ring[i].napi);
  3534. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3535. ql_disable_interrupts(qdev);
  3536. ql_tx_ring_clean(qdev);
  3537. /* Call netif_napi_del() from common point.
  3538. */
  3539. for (i = 0; i < qdev->rss_ring_count; i++)
  3540. netif_napi_del(&qdev->rx_ring[i].napi);
  3541. status = ql_adapter_reset(qdev);
  3542. if (status)
  3543. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3544. qdev->func);
  3545. ql_free_rx_buffers(qdev);
  3546. return status;
  3547. }
  3548. static int ql_adapter_up(struct ql_adapter *qdev)
  3549. {
  3550. int err = 0;
  3551. err = ql_adapter_initialize(qdev);
  3552. if (err) {
  3553. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3554. goto err_init;
  3555. }
  3556. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3557. ql_alloc_rx_buffers(qdev);
  3558. /* If the port is initialized and the
  3559. * link is up the turn on the carrier.
  3560. */
  3561. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3562. (ql_read32(qdev, STS) & qdev->port_link_up))
  3563. ql_link_on(qdev);
  3564. /* Restore rx mode. */
  3565. clear_bit(QL_ALLMULTI, &qdev->flags);
  3566. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3567. qlge_set_multicast_list(qdev->ndev);
  3568. /* Restore vlan setting. */
  3569. qlge_restore_vlan(qdev);
  3570. ql_enable_interrupts(qdev);
  3571. ql_enable_all_completion_interrupts(qdev);
  3572. netif_tx_start_all_queues(qdev->ndev);
  3573. return 0;
  3574. err_init:
  3575. ql_adapter_reset(qdev);
  3576. return err;
  3577. }
  3578. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3579. {
  3580. ql_free_mem_resources(qdev);
  3581. ql_free_irq(qdev);
  3582. }
  3583. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3584. {
  3585. int status = 0;
  3586. if (ql_alloc_mem_resources(qdev)) {
  3587. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3588. return -ENOMEM;
  3589. }
  3590. status = ql_request_irq(qdev);
  3591. return status;
  3592. }
  3593. static int qlge_close(struct net_device *ndev)
  3594. {
  3595. struct ql_adapter *qdev = netdev_priv(ndev);
  3596. /* If we hit pci_channel_io_perm_failure
  3597. * failure condition, then we already
  3598. * brought the adapter down.
  3599. */
  3600. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3601. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3602. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3603. return 0;
  3604. }
  3605. /*
  3606. * Wait for device to recover from a reset.
  3607. * (Rarely happens, but possible.)
  3608. */
  3609. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3610. msleep(1);
  3611. ql_adapter_down(qdev);
  3612. ql_release_adapter_resources(qdev);
  3613. return 0;
  3614. }
  3615. static int ql_configure_rings(struct ql_adapter *qdev)
  3616. {
  3617. int i;
  3618. struct rx_ring *rx_ring;
  3619. struct tx_ring *tx_ring;
  3620. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3621. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3622. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3623. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3624. /* In a perfect world we have one RSS ring for each CPU
  3625. * and each has it's own vector. To do that we ask for
  3626. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3627. * vector count to what we actually get. We then
  3628. * allocate an RSS ring for each.
  3629. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3630. */
  3631. qdev->intr_count = cpu_cnt;
  3632. ql_enable_msix(qdev);
  3633. /* Adjust the RSS ring count to the actual vector count. */
  3634. qdev->rss_ring_count = qdev->intr_count;
  3635. qdev->tx_ring_count = cpu_cnt;
  3636. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3637. for (i = 0; i < qdev->tx_ring_count; i++) {
  3638. tx_ring = &qdev->tx_ring[i];
  3639. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3640. tx_ring->qdev = qdev;
  3641. tx_ring->wq_id = i;
  3642. tx_ring->wq_len = qdev->tx_ring_size;
  3643. tx_ring->wq_size =
  3644. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3645. /*
  3646. * The completion queue ID for the tx rings start
  3647. * immediately after the rss rings.
  3648. */
  3649. tx_ring->cq_id = qdev->rss_ring_count + i;
  3650. }
  3651. for (i = 0; i < qdev->rx_ring_count; i++) {
  3652. rx_ring = &qdev->rx_ring[i];
  3653. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3654. rx_ring->qdev = qdev;
  3655. rx_ring->cq_id = i;
  3656. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3657. if (i < qdev->rss_ring_count) {
  3658. /*
  3659. * Inbound (RSS) queues.
  3660. */
  3661. rx_ring->cq_len = qdev->rx_ring_size;
  3662. rx_ring->cq_size =
  3663. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3664. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3665. rx_ring->lbq_size =
  3666. rx_ring->lbq_len * sizeof(__le64);
  3667. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3668. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3669. rx_ring->sbq_size =
  3670. rx_ring->sbq_len * sizeof(__le64);
  3671. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3672. rx_ring->type = RX_Q;
  3673. } else {
  3674. /*
  3675. * Outbound queue handles outbound completions only.
  3676. */
  3677. /* outbound cq is same size as tx_ring it services. */
  3678. rx_ring->cq_len = qdev->tx_ring_size;
  3679. rx_ring->cq_size =
  3680. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3681. rx_ring->lbq_len = 0;
  3682. rx_ring->lbq_size = 0;
  3683. rx_ring->lbq_buf_size = 0;
  3684. rx_ring->sbq_len = 0;
  3685. rx_ring->sbq_size = 0;
  3686. rx_ring->sbq_buf_size = 0;
  3687. rx_ring->type = TX_Q;
  3688. }
  3689. }
  3690. return 0;
  3691. }
  3692. static int qlge_open(struct net_device *ndev)
  3693. {
  3694. int err = 0;
  3695. struct ql_adapter *qdev = netdev_priv(ndev);
  3696. err = ql_adapter_reset(qdev);
  3697. if (err)
  3698. return err;
  3699. err = ql_configure_rings(qdev);
  3700. if (err)
  3701. return err;
  3702. err = ql_get_adapter_resources(qdev);
  3703. if (err)
  3704. goto error_up;
  3705. err = ql_adapter_up(qdev);
  3706. if (err)
  3707. goto error_up;
  3708. return err;
  3709. error_up:
  3710. ql_release_adapter_resources(qdev);
  3711. return err;
  3712. }
  3713. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3714. {
  3715. struct rx_ring *rx_ring;
  3716. int i, status;
  3717. u32 lbq_buf_len;
  3718. /* Wait for an outstanding reset to complete. */
  3719. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3720. int i = 3;
  3721. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3722. netif_err(qdev, ifup, qdev->ndev,
  3723. "Waiting for adapter UP...\n");
  3724. ssleep(1);
  3725. }
  3726. if (!i) {
  3727. netif_err(qdev, ifup, qdev->ndev,
  3728. "Timed out waiting for adapter UP\n");
  3729. return -ETIMEDOUT;
  3730. }
  3731. }
  3732. status = ql_adapter_down(qdev);
  3733. if (status)
  3734. goto error;
  3735. /* Get the new rx buffer size. */
  3736. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3737. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3738. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3739. for (i = 0; i < qdev->rss_ring_count; i++) {
  3740. rx_ring = &qdev->rx_ring[i];
  3741. /* Set the new size. */
  3742. rx_ring->lbq_buf_size = lbq_buf_len;
  3743. }
  3744. status = ql_adapter_up(qdev);
  3745. if (status)
  3746. goto error;
  3747. return status;
  3748. error:
  3749. netif_alert(qdev, ifup, qdev->ndev,
  3750. "Driver up/down cycle failed, closing device.\n");
  3751. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3752. dev_close(qdev->ndev);
  3753. return status;
  3754. }
  3755. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3756. {
  3757. struct ql_adapter *qdev = netdev_priv(ndev);
  3758. int status;
  3759. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3760. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3761. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3762. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3763. } else
  3764. return -EINVAL;
  3765. queue_delayed_work(qdev->workqueue,
  3766. &qdev->mpi_port_cfg_work, 3*HZ);
  3767. ndev->mtu = new_mtu;
  3768. if (!netif_running(qdev->ndev)) {
  3769. return 0;
  3770. }
  3771. status = ql_change_rx_buffers(qdev);
  3772. if (status) {
  3773. netif_err(qdev, ifup, qdev->ndev,
  3774. "Changing MTU failed.\n");
  3775. }
  3776. return status;
  3777. }
  3778. static struct net_device_stats *qlge_get_stats(struct net_device
  3779. *ndev)
  3780. {
  3781. struct ql_adapter *qdev = netdev_priv(ndev);
  3782. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3783. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3784. unsigned long pkts, mcast, dropped, errors, bytes;
  3785. int i;
  3786. /* Get RX stats. */
  3787. pkts = mcast = dropped = errors = bytes = 0;
  3788. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3789. pkts += rx_ring->rx_packets;
  3790. bytes += rx_ring->rx_bytes;
  3791. dropped += rx_ring->rx_dropped;
  3792. errors += rx_ring->rx_errors;
  3793. mcast += rx_ring->rx_multicast;
  3794. }
  3795. ndev->stats.rx_packets = pkts;
  3796. ndev->stats.rx_bytes = bytes;
  3797. ndev->stats.rx_dropped = dropped;
  3798. ndev->stats.rx_errors = errors;
  3799. ndev->stats.multicast = mcast;
  3800. /* Get TX stats. */
  3801. pkts = errors = bytes = 0;
  3802. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3803. pkts += tx_ring->tx_packets;
  3804. bytes += tx_ring->tx_bytes;
  3805. errors += tx_ring->tx_errors;
  3806. }
  3807. ndev->stats.tx_packets = pkts;
  3808. ndev->stats.tx_bytes = bytes;
  3809. ndev->stats.tx_errors = errors;
  3810. return &ndev->stats;
  3811. }
  3812. static void qlge_set_multicast_list(struct net_device *ndev)
  3813. {
  3814. struct ql_adapter *qdev = netdev_priv(ndev);
  3815. struct netdev_hw_addr *ha;
  3816. int i, status;
  3817. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3818. if (status)
  3819. return;
  3820. /*
  3821. * Set or clear promiscuous mode if a
  3822. * transition is taking place.
  3823. */
  3824. if (ndev->flags & IFF_PROMISC) {
  3825. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3826. if (ql_set_routing_reg
  3827. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3828. netif_err(qdev, hw, qdev->ndev,
  3829. "Failed to set promiscuous mode.\n");
  3830. } else {
  3831. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3832. }
  3833. }
  3834. } else {
  3835. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3836. if (ql_set_routing_reg
  3837. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3838. netif_err(qdev, hw, qdev->ndev,
  3839. "Failed to clear promiscuous mode.\n");
  3840. } else {
  3841. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3842. }
  3843. }
  3844. }
  3845. /*
  3846. * Set or clear all multicast mode if a
  3847. * transition is taking place.
  3848. */
  3849. if ((ndev->flags & IFF_ALLMULTI) ||
  3850. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3851. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3852. if (ql_set_routing_reg
  3853. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3854. netif_err(qdev, hw, qdev->ndev,
  3855. "Failed to set all-multi mode.\n");
  3856. } else {
  3857. set_bit(QL_ALLMULTI, &qdev->flags);
  3858. }
  3859. }
  3860. } else {
  3861. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3862. if (ql_set_routing_reg
  3863. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3864. netif_err(qdev, hw, qdev->ndev,
  3865. "Failed to clear all-multi mode.\n");
  3866. } else {
  3867. clear_bit(QL_ALLMULTI, &qdev->flags);
  3868. }
  3869. }
  3870. }
  3871. if (!netdev_mc_empty(ndev)) {
  3872. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3873. if (status)
  3874. goto exit;
  3875. i = 0;
  3876. netdev_for_each_mc_addr(ha, ndev) {
  3877. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3878. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3879. netif_err(qdev, hw, qdev->ndev,
  3880. "Failed to loadmulticast address.\n");
  3881. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3882. goto exit;
  3883. }
  3884. i++;
  3885. }
  3886. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3887. if (ql_set_routing_reg
  3888. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3889. netif_err(qdev, hw, qdev->ndev,
  3890. "Failed to set multicast match mode.\n");
  3891. } else {
  3892. set_bit(QL_ALLMULTI, &qdev->flags);
  3893. }
  3894. }
  3895. exit:
  3896. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3897. }
  3898. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3899. {
  3900. struct ql_adapter *qdev = netdev_priv(ndev);
  3901. struct sockaddr *addr = p;
  3902. int status;
  3903. if (!is_valid_ether_addr(addr->sa_data))
  3904. return -EADDRNOTAVAIL;
  3905. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3906. /* Update local copy of current mac address. */
  3907. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3908. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3909. if (status)
  3910. return status;
  3911. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3912. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3913. if (status)
  3914. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3915. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3916. return status;
  3917. }
  3918. static void qlge_tx_timeout(struct net_device *ndev)
  3919. {
  3920. struct ql_adapter *qdev = netdev_priv(ndev);
  3921. ql_queue_asic_error(qdev);
  3922. }
  3923. static void ql_asic_reset_work(struct work_struct *work)
  3924. {
  3925. struct ql_adapter *qdev =
  3926. container_of(work, struct ql_adapter, asic_reset_work.work);
  3927. int status;
  3928. rtnl_lock();
  3929. status = ql_adapter_down(qdev);
  3930. if (status)
  3931. goto error;
  3932. status = ql_adapter_up(qdev);
  3933. if (status)
  3934. goto error;
  3935. /* Restore rx mode. */
  3936. clear_bit(QL_ALLMULTI, &qdev->flags);
  3937. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3938. qlge_set_multicast_list(qdev->ndev);
  3939. rtnl_unlock();
  3940. return;
  3941. error:
  3942. netif_alert(qdev, ifup, qdev->ndev,
  3943. "Driver up/down cycle failed, closing device\n");
  3944. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3945. dev_close(qdev->ndev);
  3946. rtnl_unlock();
  3947. }
  3948. static const struct nic_operations qla8012_nic_ops = {
  3949. .get_flash = ql_get_8012_flash_params,
  3950. .port_initialize = ql_8012_port_initialize,
  3951. };
  3952. static const struct nic_operations qla8000_nic_ops = {
  3953. .get_flash = ql_get_8000_flash_params,
  3954. .port_initialize = ql_8000_port_initialize,
  3955. };
  3956. /* Find the pcie function number for the other NIC
  3957. * on this chip. Since both NIC functions share a
  3958. * common firmware we have the lowest enabled function
  3959. * do any common work. Examples would be resetting
  3960. * after a fatal firmware error, or doing a firmware
  3961. * coredump.
  3962. */
  3963. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3964. {
  3965. int status = 0;
  3966. u32 temp;
  3967. u32 nic_func1, nic_func2;
  3968. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3969. &temp);
  3970. if (status)
  3971. return status;
  3972. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3973. MPI_TEST_NIC_FUNC_MASK);
  3974. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3975. MPI_TEST_NIC_FUNC_MASK);
  3976. if (qdev->func == nic_func1)
  3977. qdev->alt_func = nic_func2;
  3978. else if (qdev->func == nic_func2)
  3979. qdev->alt_func = nic_func1;
  3980. else
  3981. status = -EIO;
  3982. return status;
  3983. }
  3984. static int ql_get_board_info(struct ql_adapter *qdev)
  3985. {
  3986. int status;
  3987. qdev->func =
  3988. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3989. if (qdev->func > 3)
  3990. return -EIO;
  3991. status = ql_get_alt_pcie_func(qdev);
  3992. if (status)
  3993. return status;
  3994. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3995. if (qdev->port) {
  3996. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3997. qdev->port_link_up = STS_PL1;
  3998. qdev->port_init = STS_PI1;
  3999. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  4000. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  4001. } else {
  4002. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  4003. qdev->port_link_up = STS_PL0;
  4004. qdev->port_init = STS_PI0;
  4005. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  4006. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  4007. }
  4008. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  4009. qdev->device_id = qdev->pdev->device;
  4010. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  4011. qdev->nic_ops = &qla8012_nic_ops;
  4012. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  4013. qdev->nic_ops = &qla8000_nic_ops;
  4014. return status;
  4015. }
  4016. static void ql_release_all(struct pci_dev *pdev)
  4017. {
  4018. struct net_device *ndev = pci_get_drvdata(pdev);
  4019. struct ql_adapter *qdev = netdev_priv(ndev);
  4020. if (qdev->workqueue) {
  4021. destroy_workqueue(qdev->workqueue);
  4022. qdev->workqueue = NULL;
  4023. }
  4024. if (qdev->reg_base)
  4025. iounmap(qdev->reg_base);
  4026. if (qdev->doorbell_area)
  4027. iounmap(qdev->doorbell_area);
  4028. vfree(qdev->mpi_coredump);
  4029. pci_release_regions(pdev);
  4030. pci_set_drvdata(pdev, NULL);
  4031. }
  4032. static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
  4033. int cards_found)
  4034. {
  4035. struct ql_adapter *qdev = netdev_priv(ndev);
  4036. int err = 0;
  4037. memset((void *)qdev, 0, sizeof(*qdev));
  4038. err = pci_enable_device(pdev);
  4039. if (err) {
  4040. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4041. return err;
  4042. }
  4043. qdev->ndev = ndev;
  4044. qdev->pdev = pdev;
  4045. pci_set_drvdata(pdev, ndev);
  4046. /* Set PCIe read request size */
  4047. err = pcie_set_readrq(pdev, 4096);
  4048. if (err) {
  4049. dev_err(&pdev->dev, "Set readrq failed.\n");
  4050. goto err_out1;
  4051. }
  4052. err = pci_request_regions(pdev, DRV_NAME);
  4053. if (err) {
  4054. dev_err(&pdev->dev, "PCI region request failed.\n");
  4055. return err;
  4056. }
  4057. pci_set_master(pdev);
  4058. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4059. set_bit(QL_DMA64, &qdev->flags);
  4060. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4061. } else {
  4062. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4063. if (!err)
  4064. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4065. }
  4066. if (err) {
  4067. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4068. goto err_out2;
  4069. }
  4070. /* Set PCIe reset type for EEH to fundamental. */
  4071. pdev->needs_freset = 1;
  4072. pci_save_state(pdev);
  4073. qdev->reg_base =
  4074. ioremap_nocache(pci_resource_start(pdev, 1),
  4075. pci_resource_len(pdev, 1));
  4076. if (!qdev->reg_base) {
  4077. dev_err(&pdev->dev, "Register mapping failed.\n");
  4078. err = -ENOMEM;
  4079. goto err_out2;
  4080. }
  4081. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4082. qdev->doorbell_area =
  4083. ioremap_nocache(pci_resource_start(pdev, 3),
  4084. pci_resource_len(pdev, 3));
  4085. if (!qdev->doorbell_area) {
  4086. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4087. err = -ENOMEM;
  4088. goto err_out2;
  4089. }
  4090. err = ql_get_board_info(qdev);
  4091. if (err) {
  4092. dev_err(&pdev->dev, "Register access failed.\n");
  4093. err = -EIO;
  4094. goto err_out2;
  4095. }
  4096. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4097. spin_lock_init(&qdev->hw_lock);
  4098. spin_lock_init(&qdev->stats_lock);
  4099. if (qlge_mpi_coredump) {
  4100. qdev->mpi_coredump =
  4101. vmalloc(sizeof(struct ql_mpi_coredump));
  4102. if (qdev->mpi_coredump == NULL) {
  4103. err = -ENOMEM;
  4104. goto err_out2;
  4105. }
  4106. if (qlge_force_coredump)
  4107. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4108. }
  4109. /* make sure the EEPROM is good */
  4110. err = qdev->nic_ops->get_flash(qdev);
  4111. if (err) {
  4112. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4113. goto err_out2;
  4114. }
  4115. /* Keep local copy of current mac address. */
  4116. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4117. /* Set up the default ring sizes. */
  4118. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4119. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4120. /* Set up the coalescing parameters. */
  4121. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4122. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4123. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4124. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4125. /*
  4126. * Set up the operating parameters.
  4127. */
  4128. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4129. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4130. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4131. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4132. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4133. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4134. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4135. init_completion(&qdev->ide_completion);
  4136. mutex_init(&qdev->mpi_mutex);
  4137. if (!cards_found) {
  4138. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4139. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4140. DRV_NAME, DRV_VERSION);
  4141. }
  4142. return 0;
  4143. err_out2:
  4144. ql_release_all(pdev);
  4145. err_out1:
  4146. pci_disable_device(pdev);
  4147. return err;
  4148. }
  4149. static const struct net_device_ops qlge_netdev_ops = {
  4150. .ndo_open = qlge_open,
  4151. .ndo_stop = qlge_close,
  4152. .ndo_start_xmit = qlge_send,
  4153. .ndo_change_mtu = qlge_change_mtu,
  4154. .ndo_get_stats = qlge_get_stats,
  4155. .ndo_set_rx_mode = qlge_set_multicast_list,
  4156. .ndo_set_mac_address = qlge_set_mac_address,
  4157. .ndo_validate_addr = eth_validate_addr,
  4158. .ndo_tx_timeout = qlge_tx_timeout,
  4159. .ndo_fix_features = qlge_fix_features,
  4160. .ndo_set_features = qlge_set_features,
  4161. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4162. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4163. };
  4164. static void ql_timer(unsigned long data)
  4165. {
  4166. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4167. u32 var = 0;
  4168. var = ql_read32(qdev, STS);
  4169. if (pci_channel_offline(qdev->pdev)) {
  4170. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4171. return;
  4172. }
  4173. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4174. }
  4175. static int qlge_probe(struct pci_dev *pdev,
  4176. const struct pci_device_id *pci_entry)
  4177. {
  4178. struct net_device *ndev = NULL;
  4179. struct ql_adapter *qdev = NULL;
  4180. static int cards_found = 0;
  4181. int err = 0;
  4182. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4183. min(MAX_CPUS, netif_get_num_default_rss_queues()));
  4184. if (!ndev)
  4185. return -ENOMEM;
  4186. err = ql_init_device(pdev, ndev, cards_found);
  4187. if (err < 0) {
  4188. free_netdev(ndev);
  4189. return err;
  4190. }
  4191. qdev = netdev_priv(ndev);
  4192. SET_NETDEV_DEV(ndev, &pdev->dev);
  4193. ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  4194. NETIF_F_TSO | NETIF_F_TSO_ECN |
  4195. NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_RXCSUM;
  4196. ndev->features = ndev->hw_features |
  4197. NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
  4198. ndev->vlan_features = ndev->hw_features;
  4199. if (test_bit(QL_DMA64, &qdev->flags))
  4200. ndev->features |= NETIF_F_HIGHDMA;
  4201. /*
  4202. * Set up net_device structure.
  4203. */
  4204. ndev->tx_queue_len = qdev->tx_ring_size;
  4205. ndev->irq = pdev->irq;
  4206. ndev->netdev_ops = &qlge_netdev_ops;
  4207. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4208. ndev->watchdog_timeo = 10 * HZ;
  4209. err = register_netdev(ndev);
  4210. if (err) {
  4211. dev_err(&pdev->dev, "net device registration failed.\n");
  4212. ql_release_all(pdev);
  4213. pci_disable_device(pdev);
  4214. return err;
  4215. }
  4216. /* Start up the timer to trigger EEH if
  4217. * the bus goes dead
  4218. */
  4219. init_timer_deferrable(&qdev->timer);
  4220. qdev->timer.data = (unsigned long)qdev;
  4221. qdev->timer.function = ql_timer;
  4222. qdev->timer.expires = jiffies + (5*HZ);
  4223. add_timer(&qdev->timer);
  4224. ql_link_off(qdev);
  4225. ql_display_dev_info(ndev);
  4226. atomic_set(&qdev->lb_count, 0);
  4227. cards_found++;
  4228. return 0;
  4229. }
  4230. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4231. {
  4232. return qlge_send(skb, ndev);
  4233. }
  4234. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4235. {
  4236. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4237. }
  4238. static void qlge_remove(struct pci_dev *pdev)
  4239. {
  4240. struct net_device *ndev = pci_get_drvdata(pdev);
  4241. struct ql_adapter *qdev = netdev_priv(ndev);
  4242. del_timer_sync(&qdev->timer);
  4243. ql_cancel_all_work_sync(qdev);
  4244. unregister_netdev(ndev);
  4245. ql_release_all(pdev);
  4246. pci_disable_device(pdev);
  4247. free_netdev(ndev);
  4248. }
  4249. /* Clean up resources without touching hardware. */
  4250. static void ql_eeh_close(struct net_device *ndev)
  4251. {
  4252. int i;
  4253. struct ql_adapter *qdev = netdev_priv(ndev);
  4254. if (netif_carrier_ok(ndev)) {
  4255. netif_carrier_off(ndev);
  4256. netif_stop_queue(ndev);
  4257. }
  4258. /* Disabling the timer */
  4259. del_timer_sync(&qdev->timer);
  4260. ql_cancel_all_work_sync(qdev);
  4261. for (i = 0; i < qdev->rss_ring_count; i++)
  4262. netif_napi_del(&qdev->rx_ring[i].napi);
  4263. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4264. ql_tx_ring_clean(qdev);
  4265. ql_free_rx_buffers(qdev);
  4266. ql_release_adapter_resources(qdev);
  4267. }
  4268. /*
  4269. * This callback is called by the PCI subsystem whenever
  4270. * a PCI bus error is detected.
  4271. */
  4272. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4273. enum pci_channel_state state)
  4274. {
  4275. struct net_device *ndev = pci_get_drvdata(pdev);
  4276. struct ql_adapter *qdev = netdev_priv(ndev);
  4277. switch (state) {
  4278. case pci_channel_io_normal:
  4279. return PCI_ERS_RESULT_CAN_RECOVER;
  4280. case pci_channel_io_frozen:
  4281. netif_device_detach(ndev);
  4282. if (netif_running(ndev))
  4283. ql_eeh_close(ndev);
  4284. pci_disable_device(pdev);
  4285. return PCI_ERS_RESULT_NEED_RESET;
  4286. case pci_channel_io_perm_failure:
  4287. dev_err(&pdev->dev,
  4288. "%s: pci_channel_io_perm_failure.\n", __func__);
  4289. ql_eeh_close(ndev);
  4290. set_bit(QL_EEH_FATAL, &qdev->flags);
  4291. return PCI_ERS_RESULT_DISCONNECT;
  4292. }
  4293. /* Request a slot reset. */
  4294. return PCI_ERS_RESULT_NEED_RESET;
  4295. }
  4296. /*
  4297. * This callback is called after the PCI buss has been reset.
  4298. * Basically, this tries to restart the card from scratch.
  4299. * This is a shortened version of the device probe/discovery code,
  4300. * it resembles the first-half of the () routine.
  4301. */
  4302. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4303. {
  4304. struct net_device *ndev = pci_get_drvdata(pdev);
  4305. struct ql_adapter *qdev = netdev_priv(ndev);
  4306. pdev->error_state = pci_channel_io_normal;
  4307. pci_restore_state(pdev);
  4308. if (pci_enable_device(pdev)) {
  4309. netif_err(qdev, ifup, qdev->ndev,
  4310. "Cannot re-enable PCI device after reset.\n");
  4311. return PCI_ERS_RESULT_DISCONNECT;
  4312. }
  4313. pci_set_master(pdev);
  4314. if (ql_adapter_reset(qdev)) {
  4315. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4316. set_bit(QL_EEH_FATAL, &qdev->flags);
  4317. return PCI_ERS_RESULT_DISCONNECT;
  4318. }
  4319. return PCI_ERS_RESULT_RECOVERED;
  4320. }
  4321. static void qlge_io_resume(struct pci_dev *pdev)
  4322. {
  4323. struct net_device *ndev = pci_get_drvdata(pdev);
  4324. struct ql_adapter *qdev = netdev_priv(ndev);
  4325. int err = 0;
  4326. if (netif_running(ndev)) {
  4327. err = qlge_open(ndev);
  4328. if (err) {
  4329. netif_err(qdev, ifup, qdev->ndev,
  4330. "Device initialization failed after reset.\n");
  4331. return;
  4332. }
  4333. } else {
  4334. netif_err(qdev, ifup, qdev->ndev,
  4335. "Device was not running prior to EEH.\n");
  4336. }
  4337. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4338. netif_device_attach(ndev);
  4339. }
  4340. static const struct pci_error_handlers qlge_err_handler = {
  4341. .error_detected = qlge_io_error_detected,
  4342. .slot_reset = qlge_io_slot_reset,
  4343. .resume = qlge_io_resume,
  4344. };
  4345. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4346. {
  4347. struct net_device *ndev = pci_get_drvdata(pdev);
  4348. struct ql_adapter *qdev = netdev_priv(ndev);
  4349. int err;
  4350. netif_device_detach(ndev);
  4351. del_timer_sync(&qdev->timer);
  4352. if (netif_running(ndev)) {
  4353. err = ql_adapter_down(qdev);
  4354. if (!err)
  4355. return err;
  4356. }
  4357. ql_wol(qdev);
  4358. err = pci_save_state(pdev);
  4359. if (err)
  4360. return err;
  4361. pci_disable_device(pdev);
  4362. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4363. return 0;
  4364. }
  4365. #ifdef CONFIG_PM
  4366. static int qlge_resume(struct pci_dev *pdev)
  4367. {
  4368. struct net_device *ndev = pci_get_drvdata(pdev);
  4369. struct ql_adapter *qdev = netdev_priv(ndev);
  4370. int err;
  4371. pci_set_power_state(pdev, PCI_D0);
  4372. pci_restore_state(pdev);
  4373. err = pci_enable_device(pdev);
  4374. if (err) {
  4375. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4376. return err;
  4377. }
  4378. pci_set_master(pdev);
  4379. pci_enable_wake(pdev, PCI_D3hot, 0);
  4380. pci_enable_wake(pdev, PCI_D3cold, 0);
  4381. if (netif_running(ndev)) {
  4382. err = ql_adapter_up(qdev);
  4383. if (err)
  4384. return err;
  4385. }
  4386. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4387. netif_device_attach(ndev);
  4388. return 0;
  4389. }
  4390. #endif /* CONFIG_PM */
  4391. static void qlge_shutdown(struct pci_dev *pdev)
  4392. {
  4393. qlge_suspend(pdev, PMSG_SUSPEND);
  4394. }
  4395. static struct pci_driver qlge_driver = {
  4396. .name = DRV_NAME,
  4397. .id_table = qlge_pci_tbl,
  4398. .probe = qlge_probe,
  4399. .remove = qlge_remove,
  4400. #ifdef CONFIG_PM
  4401. .suspend = qlge_suspend,
  4402. .resume = qlge_resume,
  4403. #endif
  4404. .shutdown = qlge_shutdown,
  4405. .err_handler = &qlge_err_handler
  4406. };
  4407. static int __init qlge_init_module(void)
  4408. {
  4409. return pci_register_driver(&qlge_driver);
  4410. }
  4411. static void __exit qlge_exit(void)
  4412. {
  4413. pci_unregister_driver(&qlge_driver);
  4414. }
  4415. module_init(qlge_init_module);
  4416. module_exit(qlge_exit);