en_tx.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789
  1. /*
  2. * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <asm/page.h>
  34. #include <linux/mlx4/cq.h>
  35. #include <linux/slab.h>
  36. #include <linux/mlx4/qp.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/tcp.h>
  41. #include <linux/moduleparam.h>
  42. #include "mlx4_en.h"
  43. enum {
  44. MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
  45. MAX_BF = 256,
  46. };
  47. static int inline_thold __read_mostly = MAX_INLINE;
  48. module_param_named(inline_thold, inline_thold, int, 0444);
  49. MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
  50. int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
  51. struct mlx4_en_tx_ring *ring, int qpn, u32 size,
  52. u16 stride)
  53. {
  54. struct mlx4_en_dev *mdev = priv->mdev;
  55. int tmp;
  56. int err;
  57. ring->size = size;
  58. ring->size_mask = size - 1;
  59. ring->stride = stride;
  60. inline_thold = min(inline_thold, MAX_INLINE);
  61. tmp = size * sizeof(struct mlx4_en_tx_info);
  62. ring->tx_info = vmalloc(tmp);
  63. if (!ring->tx_info)
  64. return -ENOMEM;
  65. en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
  66. ring->tx_info, tmp);
  67. ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
  68. if (!ring->bounce_buf) {
  69. err = -ENOMEM;
  70. goto err_tx;
  71. }
  72. ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
  73. err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
  74. 2 * PAGE_SIZE);
  75. if (err) {
  76. en_err(priv, "Failed allocating hwq resources\n");
  77. goto err_bounce;
  78. }
  79. err = mlx4_en_map_buffer(&ring->wqres.buf);
  80. if (err) {
  81. en_err(priv, "Failed to map TX buffer\n");
  82. goto err_hwq_res;
  83. }
  84. ring->buf = ring->wqres.buf.direct.buf;
  85. en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
  86. "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
  87. ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
  88. ring->qpn = qpn;
  89. err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
  90. if (err) {
  91. en_err(priv, "Failed allocating qp %d\n", ring->qpn);
  92. goto err_map;
  93. }
  94. ring->qp.event = mlx4_en_sqp_event;
  95. err = mlx4_bf_alloc(mdev->dev, &ring->bf);
  96. if (err) {
  97. en_dbg(DRV, priv, "working without blueflame (%d)", err);
  98. ring->bf.uar = &mdev->priv_uar;
  99. ring->bf.uar->map = mdev->uar_map;
  100. ring->bf_enabled = false;
  101. } else
  102. ring->bf_enabled = true;
  103. ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type;
  104. return 0;
  105. err_map:
  106. mlx4_en_unmap_buffer(&ring->wqres.buf);
  107. err_hwq_res:
  108. mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
  109. err_bounce:
  110. kfree(ring->bounce_buf);
  111. ring->bounce_buf = NULL;
  112. err_tx:
  113. vfree(ring->tx_info);
  114. ring->tx_info = NULL;
  115. return err;
  116. }
  117. void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
  118. struct mlx4_en_tx_ring *ring)
  119. {
  120. struct mlx4_en_dev *mdev = priv->mdev;
  121. en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
  122. if (ring->bf_enabled)
  123. mlx4_bf_free(mdev->dev, &ring->bf);
  124. mlx4_qp_remove(mdev->dev, &ring->qp);
  125. mlx4_qp_free(mdev->dev, &ring->qp);
  126. mlx4_en_unmap_buffer(&ring->wqres.buf);
  127. mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
  128. kfree(ring->bounce_buf);
  129. ring->bounce_buf = NULL;
  130. vfree(ring->tx_info);
  131. ring->tx_info = NULL;
  132. }
  133. int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
  134. struct mlx4_en_tx_ring *ring,
  135. int cq, int user_prio)
  136. {
  137. struct mlx4_en_dev *mdev = priv->mdev;
  138. int err;
  139. ring->cqn = cq;
  140. ring->prod = 0;
  141. ring->cons = 0xffffffff;
  142. ring->last_nr_txbb = 1;
  143. ring->poll_cnt = 0;
  144. memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
  145. memset(ring->buf, 0, ring->buf_size);
  146. ring->qp_state = MLX4_QP_STATE_RST;
  147. ring->doorbell_qpn = ring->qp.qpn << 8;
  148. mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
  149. ring->cqn, user_prio, &ring->context);
  150. if (ring->bf_enabled)
  151. ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
  152. err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
  153. &ring->qp, &ring->qp_state);
  154. return err;
  155. }
  156. void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
  157. struct mlx4_en_tx_ring *ring)
  158. {
  159. struct mlx4_en_dev *mdev = priv->mdev;
  160. mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
  161. MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
  162. }
  163. static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
  164. struct mlx4_en_tx_ring *ring,
  165. int index, u8 owner, u64 timestamp)
  166. {
  167. struct mlx4_en_dev *mdev = priv->mdev;
  168. struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
  169. struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
  170. struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
  171. struct sk_buff *skb = tx_info->skb;
  172. struct skb_frag_struct *frag;
  173. void *end = ring->buf + ring->buf_size;
  174. int frags = skb_shinfo(skb)->nr_frags;
  175. int i;
  176. __be32 *ptr = (__be32 *)tx_desc;
  177. __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
  178. struct skb_shared_hwtstamps hwts;
  179. if (timestamp) {
  180. mlx4_en_fill_hwtstamps(mdev, &hwts, timestamp);
  181. skb_tstamp_tx(skb, &hwts);
  182. }
  183. /* Optimize the common case when there are no wraparounds */
  184. if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
  185. if (!tx_info->inl) {
  186. if (tx_info->linear) {
  187. dma_unmap_single(priv->ddev,
  188. (dma_addr_t) be64_to_cpu(data->addr),
  189. be32_to_cpu(data->byte_count),
  190. PCI_DMA_TODEVICE);
  191. ++data;
  192. }
  193. for (i = 0; i < frags; i++) {
  194. frag = &skb_shinfo(skb)->frags[i];
  195. dma_unmap_page(priv->ddev,
  196. (dma_addr_t) be64_to_cpu(data[i].addr),
  197. skb_frag_size(frag), PCI_DMA_TODEVICE);
  198. }
  199. }
  200. /* Stamp the freed descriptor */
  201. for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
  202. *ptr = stamp;
  203. ptr += STAMP_DWORDS;
  204. }
  205. } else {
  206. if (!tx_info->inl) {
  207. if ((void *) data >= end) {
  208. data = ring->buf + ((void *)data - end);
  209. }
  210. if (tx_info->linear) {
  211. dma_unmap_single(priv->ddev,
  212. (dma_addr_t) be64_to_cpu(data->addr),
  213. be32_to_cpu(data->byte_count),
  214. PCI_DMA_TODEVICE);
  215. ++data;
  216. }
  217. for (i = 0; i < frags; i++) {
  218. /* Check for wraparound before unmapping */
  219. if ((void *) data >= end)
  220. data = ring->buf;
  221. frag = &skb_shinfo(skb)->frags[i];
  222. dma_unmap_page(priv->ddev,
  223. (dma_addr_t) be64_to_cpu(data->addr),
  224. skb_frag_size(frag), PCI_DMA_TODEVICE);
  225. ++data;
  226. }
  227. }
  228. /* Stamp the freed descriptor */
  229. for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
  230. *ptr = stamp;
  231. ptr += STAMP_DWORDS;
  232. if ((void *) ptr >= end) {
  233. ptr = ring->buf;
  234. stamp ^= cpu_to_be32(0x80000000);
  235. }
  236. }
  237. }
  238. dev_kfree_skb_any(skb);
  239. return tx_info->nr_txbb;
  240. }
  241. int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
  242. {
  243. struct mlx4_en_priv *priv = netdev_priv(dev);
  244. int cnt = 0;
  245. /* Skip last polled descriptor */
  246. ring->cons += ring->last_nr_txbb;
  247. en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
  248. ring->cons, ring->prod);
  249. if ((u32) (ring->prod - ring->cons) > ring->size) {
  250. if (netif_msg_tx_err(priv))
  251. en_warn(priv, "Tx consumer passed producer!\n");
  252. return 0;
  253. }
  254. while (ring->cons != ring->prod) {
  255. ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
  256. ring->cons & ring->size_mask,
  257. !!(ring->cons & ring->size), 0);
  258. ring->cons += ring->last_nr_txbb;
  259. cnt++;
  260. }
  261. netdev_tx_reset_queue(ring->tx_queue);
  262. if (cnt)
  263. en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
  264. return cnt;
  265. }
  266. static void mlx4_en_process_tx_cq(struct net_device *dev, struct mlx4_en_cq *cq)
  267. {
  268. struct mlx4_en_priv *priv = netdev_priv(dev);
  269. struct mlx4_cq *mcq = &cq->mcq;
  270. struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring];
  271. struct mlx4_cqe *cqe;
  272. u16 index;
  273. u16 new_index, ring_index;
  274. u32 txbbs_skipped = 0;
  275. u32 cons_index = mcq->cons_index;
  276. int size = cq->size;
  277. u32 size_mask = ring->size_mask;
  278. struct mlx4_cqe *buf = cq->buf;
  279. u32 packets = 0;
  280. u32 bytes = 0;
  281. int factor = priv->cqe_factor;
  282. u64 timestamp = 0;
  283. if (!priv->port_up)
  284. return;
  285. index = cons_index & size_mask;
  286. cqe = &buf[(index << factor) + factor];
  287. ring_index = ring->cons & size_mask;
  288. /* Process all completed CQEs */
  289. while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
  290. cons_index & size)) {
  291. /*
  292. * make sure we read the CQE after we read the
  293. * ownership bit
  294. */
  295. rmb();
  296. /* Skip over last polled CQE */
  297. new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
  298. do {
  299. txbbs_skipped += ring->last_nr_txbb;
  300. ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
  301. if (ring->tx_info[ring_index].ts_requested)
  302. timestamp = mlx4_en_get_cqe_ts(cqe);
  303. /* free next descriptor */
  304. ring->last_nr_txbb = mlx4_en_free_tx_desc(
  305. priv, ring, ring_index,
  306. !!((ring->cons + txbbs_skipped) &
  307. ring->size), timestamp);
  308. packets++;
  309. bytes += ring->tx_info[ring_index].nr_bytes;
  310. } while (ring_index != new_index);
  311. ++cons_index;
  312. index = cons_index & size_mask;
  313. cqe = &buf[(index << factor) + factor];
  314. }
  315. /*
  316. * To prevent CQ overflow we first update CQ consumer and only then
  317. * the ring consumer.
  318. */
  319. mcq->cons_index = cons_index;
  320. mlx4_cq_set_ci(mcq);
  321. wmb();
  322. ring->cons += txbbs_skipped;
  323. netdev_tx_completed_queue(ring->tx_queue, packets, bytes);
  324. /*
  325. * Wakeup Tx queue if this stopped, and at least 1 packet
  326. * was completed
  327. */
  328. if (netif_tx_queue_stopped(ring->tx_queue) && txbbs_skipped > 0) {
  329. netif_tx_wake_queue(ring->tx_queue);
  330. priv->port_stats.wake_queue++;
  331. }
  332. }
  333. void mlx4_en_tx_irq(struct mlx4_cq *mcq)
  334. {
  335. struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
  336. struct mlx4_en_priv *priv = netdev_priv(cq->dev);
  337. mlx4_en_process_tx_cq(cq->dev, cq);
  338. mlx4_en_arm_cq(priv, cq);
  339. }
  340. static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
  341. struct mlx4_en_tx_ring *ring,
  342. u32 index,
  343. unsigned int desc_size)
  344. {
  345. u32 copy = (ring->size - index) * TXBB_SIZE;
  346. int i;
  347. for (i = desc_size - copy - 4; i >= 0; i -= 4) {
  348. if ((i & (TXBB_SIZE - 1)) == 0)
  349. wmb();
  350. *((u32 *) (ring->buf + i)) =
  351. *((u32 *) (ring->bounce_buf + copy + i));
  352. }
  353. for (i = copy - 4; i >= 4 ; i -= 4) {
  354. if ((i & (TXBB_SIZE - 1)) == 0)
  355. wmb();
  356. *((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
  357. *((u32 *) (ring->bounce_buf + i));
  358. }
  359. /* Return real descriptor location */
  360. return ring->buf + index * TXBB_SIZE;
  361. }
  362. static int is_inline(struct sk_buff *skb, void **pfrag)
  363. {
  364. void *ptr;
  365. if (inline_thold && !skb_is_gso(skb) && skb->len <= inline_thold) {
  366. if (skb_shinfo(skb)->nr_frags == 1) {
  367. ptr = skb_frag_address_safe(&skb_shinfo(skb)->frags[0]);
  368. if (unlikely(!ptr))
  369. return 0;
  370. if (pfrag)
  371. *pfrag = ptr;
  372. return 1;
  373. } else if (unlikely(skb_shinfo(skb)->nr_frags))
  374. return 0;
  375. else
  376. return 1;
  377. }
  378. return 0;
  379. }
  380. static int inline_size(struct sk_buff *skb)
  381. {
  382. if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
  383. <= MLX4_INLINE_ALIGN)
  384. return ALIGN(skb->len + CTRL_SIZE +
  385. sizeof(struct mlx4_wqe_inline_seg), 16);
  386. else
  387. return ALIGN(skb->len + CTRL_SIZE + 2 *
  388. sizeof(struct mlx4_wqe_inline_seg), 16);
  389. }
  390. static int get_real_size(struct sk_buff *skb, struct net_device *dev,
  391. int *lso_header_size)
  392. {
  393. struct mlx4_en_priv *priv = netdev_priv(dev);
  394. int real_size;
  395. if (skb_is_gso(skb)) {
  396. *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb);
  397. real_size = CTRL_SIZE + skb_shinfo(skb)->nr_frags * DS_SIZE +
  398. ALIGN(*lso_header_size + 4, DS_SIZE);
  399. if (unlikely(*lso_header_size != skb_headlen(skb))) {
  400. /* We add a segment for the skb linear buffer only if
  401. * it contains data */
  402. if (*lso_header_size < skb_headlen(skb))
  403. real_size += DS_SIZE;
  404. else {
  405. if (netif_msg_tx_err(priv))
  406. en_warn(priv, "Non-linear headers\n");
  407. return 0;
  408. }
  409. }
  410. } else {
  411. *lso_header_size = 0;
  412. if (!is_inline(skb, NULL))
  413. real_size = CTRL_SIZE + (skb_shinfo(skb)->nr_frags + 1) * DS_SIZE;
  414. else
  415. real_size = inline_size(skb);
  416. }
  417. return real_size;
  418. }
  419. static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, struct sk_buff *skb,
  420. int real_size, u16 *vlan_tag, int tx_ind, void *fragptr)
  421. {
  422. struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
  423. int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
  424. if (skb->len <= spc) {
  425. inl->byte_count = cpu_to_be32(1 << 31 | skb->len);
  426. skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb));
  427. if (skb_shinfo(skb)->nr_frags)
  428. memcpy(((void *)(inl + 1)) + skb_headlen(skb), fragptr,
  429. skb_frag_size(&skb_shinfo(skb)->frags[0]));
  430. } else {
  431. inl->byte_count = cpu_to_be32(1 << 31 | spc);
  432. if (skb_headlen(skb) <= spc) {
  433. skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb));
  434. if (skb_headlen(skb) < spc) {
  435. memcpy(((void *)(inl + 1)) + skb_headlen(skb),
  436. fragptr, spc - skb_headlen(skb));
  437. fragptr += spc - skb_headlen(skb);
  438. }
  439. inl = (void *) (inl + 1) + spc;
  440. memcpy(((void *)(inl + 1)), fragptr, skb->len - spc);
  441. } else {
  442. skb_copy_from_linear_data(skb, inl + 1, spc);
  443. inl = (void *) (inl + 1) + spc;
  444. skb_copy_from_linear_data_offset(skb, spc, inl + 1,
  445. skb_headlen(skb) - spc);
  446. if (skb_shinfo(skb)->nr_frags)
  447. memcpy(((void *)(inl + 1)) + skb_headlen(skb) - spc,
  448. fragptr, skb_frag_size(&skb_shinfo(skb)->frags[0]));
  449. }
  450. wmb();
  451. inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc));
  452. }
  453. }
  454. u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb)
  455. {
  456. struct mlx4_en_priv *priv = netdev_priv(dev);
  457. u16 rings_p_up = priv->num_tx_rings_p_up;
  458. u8 up = 0;
  459. if (dev->num_tc)
  460. return skb_tx_hash(dev, skb);
  461. if (vlan_tx_tag_present(skb))
  462. up = vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT;
  463. return __skb_tx_hash(dev, skb, rings_p_up) + up * rings_p_up;
  464. }
  465. static void mlx4_bf_copy(void __iomem *dst, unsigned long *src, unsigned bytecnt)
  466. {
  467. __iowrite64_copy(dst, src, bytecnt / 8);
  468. }
  469. netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev)
  470. {
  471. struct mlx4_en_priv *priv = netdev_priv(dev);
  472. struct mlx4_en_dev *mdev = priv->mdev;
  473. struct mlx4_en_tx_ring *ring;
  474. struct mlx4_en_tx_desc *tx_desc;
  475. struct mlx4_wqe_data_seg *data;
  476. struct skb_frag_struct *frag;
  477. struct mlx4_en_tx_info *tx_info;
  478. struct ethhdr *ethh;
  479. int tx_ind = 0;
  480. int nr_txbb;
  481. int desc_size;
  482. int real_size;
  483. dma_addr_t dma;
  484. u32 index, bf_index;
  485. __be32 op_own;
  486. u16 vlan_tag = 0;
  487. int i;
  488. int lso_header_size;
  489. void *fragptr;
  490. bool bounce = false;
  491. if (!priv->port_up)
  492. goto tx_drop;
  493. real_size = get_real_size(skb, dev, &lso_header_size);
  494. if (unlikely(!real_size))
  495. goto tx_drop;
  496. /* Align descriptor to TXBB size */
  497. desc_size = ALIGN(real_size, TXBB_SIZE);
  498. nr_txbb = desc_size / TXBB_SIZE;
  499. if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
  500. if (netif_msg_tx_err(priv))
  501. en_warn(priv, "Oversized header or SG list\n");
  502. goto tx_drop;
  503. }
  504. tx_ind = skb->queue_mapping;
  505. ring = &priv->tx_ring[tx_ind];
  506. if (vlan_tx_tag_present(skb))
  507. vlan_tag = vlan_tx_tag_get(skb);
  508. /* Check available TXBBs And 2K spare for prefetch */
  509. if (unlikely(((int)(ring->prod - ring->cons)) >
  510. ring->size - HEADROOM - MAX_DESC_TXBBS)) {
  511. /* every full Tx ring stops queue */
  512. netif_tx_stop_queue(ring->tx_queue);
  513. priv->port_stats.queue_stopped++;
  514. /* If queue was emptied after the if, and before the
  515. * stop_queue - need to wake the queue, or else it will remain
  516. * stopped forever.
  517. * Need a memory barrier to make sure ring->cons was not
  518. * updated before queue was stopped.
  519. */
  520. wmb();
  521. if (unlikely(((int)(ring->prod - ring->cons)) <=
  522. ring->size - HEADROOM - MAX_DESC_TXBBS)) {
  523. netif_tx_wake_queue(ring->tx_queue);
  524. priv->port_stats.wake_queue++;
  525. } else {
  526. return NETDEV_TX_BUSY;
  527. }
  528. }
  529. /* Track current inflight packets for performance analysis */
  530. AVG_PERF_COUNTER(priv->pstats.inflight_avg,
  531. (u32) (ring->prod - ring->cons - 1));
  532. /* Packet is good - grab an index and transmit it */
  533. index = ring->prod & ring->size_mask;
  534. bf_index = ring->prod;
  535. /* See if we have enough space for whole descriptor TXBB for setting
  536. * SW ownership on next descriptor; if not, use a bounce buffer. */
  537. if (likely(index + nr_txbb <= ring->size))
  538. tx_desc = ring->buf + index * TXBB_SIZE;
  539. else {
  540. tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
  541. bounce = true;
  542. }
  543. /* Save skb in tx_info ring */
  544. tx_info = &ring->tx_info[index];
  545. tx_info->skb = skb;
  546. tx_info->nr_txbb = nr_txbb;
  547. /*
  548. * For timestamping add flag to skb_shinfo and
  549. * set flag for further reference
  550. */
  551. if (ring->hwtstamp_tx_type == HWTSTAMP_TX_ON &&
  552. skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
  553. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  554. tx_info->ts_requested = 1;
  555. }
  556. /* Prepare ctrl segement apart opcode+ownership, which depends on
  557. * whether LSO is used */
  558. tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
  559. tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN *
  560. !!vlan_tx_tag_present(skb);
  561. tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
  562. tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
  563. if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
  564. tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
  565. MLX4_WQE_CTRL_TCP_UDP_CSUM);
  566. ring->tx_csum++;
  567. }
  568. if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) {
  569. /* Copy dst mac address to wqe. This allows loopback in eSwitch,
  570. * so that VFs and PF can communicate with each other
  571. */
  572. ethh = (struct ethhdr *)skb->data;
  573. tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest);
  574. tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2));
  575. }
  576. /* Handle LSO (TSO) packets */
  577. if (lso_header_size) {
  578. /* Mark opcode as LSO */
  579. op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
  580. ((ring->prod & ring->size) ?
  581. cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
  582. /* Fill in the LSO prefix */
  583. tx_desc->lso.mss_hdr_size = cpu_to_be32(
  584. skb_shinfo(skb)->gso_size << 16 | lso_header_size);
  585. /* Copy headers;
  586. * note that we already verified that it is linear */
  587. memcpy(tx_desc->lso.header, skb->data, lso_header_size);
  588. data = ((void *) &tx_desc->lso +
  589. ALIGN(lso_header_size + 4, DS_SIZE));
  590. priv->port_stats.tso_packets++;
  591. i = ((skb->len - lso_header_size) / skb_shinfo(skb)->gso_size) +
  592. !!((skb->len - lso_header_size) % skb_shinfo(skb)->gso_size);
  593. tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size;
  594. ring->packets += i;
  595. } else {
  596. /* Normal (Non LSO) packet */
  597. op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
  598. ((ring->prod & ring->size) ?
  599. cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
  600. data = &tx_desc->data;
  601. tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
  602. ring->packets++;
  603. }
  604. ring->bytes += tx_info->nr_bytes;
  605. netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes);
  606. AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len);
  607. /* valid only for none inline segments */
  608. tx_info->data_offset = (void *) data - (void *) tx_desc;
  609. tx_info->linear = (lso_header_size < skb_headlen(skb) && !is_inline(skb, NULL)) ? 1 : 0;
  610. data += skb_shinfo(skb)->nr_frags + tx_info->linear - 1;
  611. if (!is_inline(skb, &fragptr)) {
  612. /* Map fragments */
  613. for (i = skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) {
  614. frag = &skb_shinfo(skb)->frags[i];
  615. dma = skb_frag_dma_map(priv->ddev, frag,
  616. 0, skb_frag_size(frag),
  617. DMA_TO_DEVICE);
  618. data->addr = cpu_to_be64(dma);
  619. data->lkey = cpu_to_be32(mdev->mr.key);
  620. wmb();
  621. data->byte_count = cpu_to_be32(skb_frag_size(frag));
  622. --data;
  623. }
  624. /* Map linear part */
  625. if (tx_info->linear) {
  626. dma = dma_map_single(priv->ddev, skb->data + lso_header_size,
  627. skb_headlen(skb) - lso_header_size, PCI_DMA_TODEVICE);
  628. data->addr = cpu_to_be64(dma);
  629. data->lkey = cpu_to_be32(mdev->mr.key);
  630. wmb();
  631. data->byte_count = cpu_to_be32(skb_headlen(skb) - lso_header_size);
  632. }
  633. tx_info->inl = 0;
  634. } else {
  635. build_inline_wqe(tx_desc, skb, real_size, &vlan_tag, tx_ind, fragptr);
  636. tx_info->inl = 1;
  637. }
  638. ring->prod += nr_txbb;
  639. /* If we used a bounce buffer then copy descriptor back into place */
  640. if (bounce)
  641. tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
  642. skb_tx_timestamp(skb);
  643. if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && !vlan_tx_tag_present(skb)) {
  644. *(__be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
  645. op_own |= htonl((bf_index & 0xffff) << 8);
  646. /* Ensure new descirptor hits memory
  647. * before setting ownership of this descriptor to HW */
  648. wmb();
  649. tx_desc->ctrl.owner_opcode = op_own;
  650. wmb();
  651. mlx4_bf_copy(ring->bf.reg + ring->bf.offset, (unsigned long *) &tx_desc->ctrl,
  652. desc_size);
  653. wmb();
  654. ring->bf.offset ^= ring->bf.buf_size;
  655. } else {
  656. /* Ensure new descirptor hits memory
  657. * before setting ownership of this descriptor to HW */
  658. wmb();
  659. tx_desc->ctrl.owner_opcode = op_own;
  660. wmb();
  661. iowrite32be(ring->doorbell_qpn, ring->bf.uar->map + MLX4_SEND_DOORBELL);
  662. }
  663. return NETDEV_TX_OK;
  664. tx_drop:
  665. dev_kfree_skb_any(skb);
  666. priv->stats.tx_dropped++;
  667. return NETDEV_TX_OK;
  668. }