t4_hw.c 117 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /**
  116. * t4_write_indirect - write indirectly addressed registers
  117. * @adap: the adapter
  118. * @addr_reg: register holding the indirect addresses
  119. * @data_reg: register holding the value for the indirect registers
  120. * @vals: values to write
  121. * @nregs: how many indirect registers to write
  122. * @start_idx: address of first indirect register to write
  123. *
  124. * Writes a sequential block of registers that are accessed indirectly
  125. * through an address/data register pair.
  126. */
  127. void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  128. unsigned int data_reg, const u32 *vals,
  129. unsigned int nregs, unsigned int start_idx)
  130. {
  131. while (nregs--) {
  132. t4_write_reg(adap, addr_reg, start_idx++);
  133. t4_write_reg(adap, data_reg, *vals++);
  134. }
  135. }
  136. /*
  137. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  138. */
  139. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  140. u32 mbox_addr)
  141. {
  142. for ( ; nflit; nflit--, mbox_addr += 8)
  143. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  144. }
  145. /*
  146. * Handle a FW assertion reported in a mailbox.
  147. */
  148. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  149. {
  150. struct fw_debug_cmd asrt;
  151. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  152. dev_alert(adap->pdev_dev,
  153. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  154. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  155. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  156. }
  157. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  158. {
  159. dev_err(adap->pdev_dev,
  160. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  161. (unsigned long long)t4_read_reg64(adap, data_reg),
  162. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  163. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  164. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  165. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  166. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  167. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  168. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  169. }
  170. /**
  171. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  172. * @adap: the adapter
  173. * @mbox: index of the mailbox to use
  174. * @cmd: the command to write
  175. * @size: command length in bytes
  176. * @rpl: where to optionally store the reply
  177. * @sleep_ok: if true we may sleep while awaiting command completion
  178. *
  179. * Sends the given command to FW through the selected mailbox and waits
  180. * for the FW to execute the command. If @rpl is not %NULL it is used to
  181. * store the FW's reply to the command. The command and its optional
  182. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  183. * to respond. @sleep_ok determines whether we may sleep while awaiting
  184. * the response. If sleeping is allowed we use progressive backoff
  185. * otherwise we spin.
  186. *
  187. * The return value is 0 on success or a negative errno on failure. A
  188. * failure can happen either because we are not able to execute the
  189. * command or FW executes it but signals an error. In the latter case
  190. * the return value is the error code indicated by FW (negated).
  191. */
  192. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  193. void *rpl, bool sleep_ok)
  194. {
  195. static const int delay[] = {
  196. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  197. };
  198. u32 v;
  199. u64 res;
  200. int i, ms, delay_idx;
  201. const __be64 *p = cmd;
  202. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  203. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  204. if ((size & 15) || size > MBOX_LEN)
  205. return -EINVAL;
  206. /*
  207. * If the device is off-line, as in EEH, commands will time out.
  208. * Fail them early so we don't waste time waiting.
  209. */
  210. if (adap->pdev->error_state != pci_channel_io_normal)
  211. return -EIO;
  212. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  213. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  214. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  215. if (v != MBOX_OWNER_DRV)
  216. return v ? -EBUSY : -ETIMEDOUT;
  217. for (i = 0; i < size; i += 8)
  218. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  219. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  220. t4_read_reg(adap, ctl_reg); /* flush write */
  221. delay_idx = 0;
  222. ms = delay[0];
  223. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  224. if (sleep_ok) {
  225. ms = delay[delay_idx]; /* last element may repeat */
  226. if (delay_idx < ARRAY_SIZE(delay) - 1)
  227. delay_idx++;
  228. msleep(ms);
  229. } else
  230. mdelay(ms);
  231. v = t4_read_reg(adap, ctl_reg);
  232. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  233. if (!(v & MBMSGVALID)) {
  234. t4_write_reg(adap, ctl_reg, 0);
  235. continue;
  236. }
  237. res = t4_read_reg64(adap, data_reg);
  238. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  239. fw_asrt(adap, data_reg);
  240. res = FW_CMD_RETVAL(EIO);
  241. } else if (rpl)
  242. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  243. if (FW_CMD_RETVAL_GET((int)res))
  244. dump_mbox(adap, mbox, data_reg);
  245. t4_write_reg(adap, ctl_reg, 0);
  246. return -FW_CMD_RETVAL_GET((int)res);
  247. }
  248. }
  249. dump_mbox(adap, mbox, data_reg);
  250. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  251. *(const u8 *)cmd, mbox);
  252. return -ETIMEDOUT;
  253. }
  254. /**
  255. * t4_mc_read - read from MC through backdoor accesses
  256. * @adap: the adapter
  257. * @addr: address of first byte requested
  258. * @idx: which MC to access
  259. * @data: 64 bytes of data containing the requested address
  260. * @ecc: where to store the corresponding 64-bit ECC word
  261. *
  262. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  263. * that covers the requested address @addr. If @parity is not %NULL it
  264. * is assigned the 64-bit ECC word for the read data.
  265. */
  266. int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  267. {
  268. int i;
  269. u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
  270. u32 mc_bist_status_rdata, mc_bist_data_pattern;
  271. if (is_t4(adap->chip)) {
  272. mc_bist_cmd = MC_BIST_CMD;
  273. mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
  274. mc_bist_cmd_len = MC_BIST_CMD_LEN;
  275. mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
  276. mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
  277. } else {
  278. mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
  279. mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
  280. mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
  281. mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
  282. mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
  283. }
  284. if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
  285. return -EBUSY;
  286. t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
  287. t4_write_reg(adap, mc_bist_cmd_len, 64);
  288. t4_write_reg(adap, mc_bist_data_pattern, 0xc);
  289. t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
  290. BIST_CMD_GAP(1));
  291. i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
  292. if (i)
  293. return i;
  294. #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
  295. for (i = 15; i >= 0; i--)
  296. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  297. if (ecc)
  298. *ecc = t4_read_reg64(adap, MC_DATA(16));
  299. #undef MC_DATA
  300. return 0;
  301. }
  302. /**
  303. * t4_edc_read - read from EDC through backdoor accesses
  304. * @adap: the adapter
  305. * @idx: which EDC to access
  306. * @addr: address of first byte requested
  307. * @data: 64 bytes of data containing the requested address
  308. * @ecc: where to store the corresponding 64-bit ECC word
  309. *
  310. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  311. * that covers the requested address @addr. If @parity is not %NULL it
  312. * is assigned the 64-bit ECC word for the read data.
  313. */
  314. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  315. {
  316. int i;
  317. u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
  318. u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
  319. if (is_t4(adap->chip)) {
  320. edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
  321. edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
  322. edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
  323. edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
  324. idx);
  325. edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
  326. idx);
  327. } else {
  328. edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
  329. edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
  330. edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
  331. edc_bist_cmd_data_pattern =
  332. EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
  333. edc_bist_status_rdata =
  334. EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
  335. }
  336. if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
  337. return -EBUSY;
  338. t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
  339. t4_write_reg(adap, edc_bist_cmd_len, 64);
  340. t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
  341. t4_write_reg(adap, edc_bist_cmd,
  342. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  343. i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
  344. if (i)
  345. return i;
  346. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
  347. for (i = 15; i >= 0; i--)
  348. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  349. if (ecc)
  350. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  351. #undef EDC_DATA
  352. return 0;
  353. }
  354. /*
  355. * t4_mem_win_rw - read/write memory through PCIE memory window
  356. * @adap: the adapter
  357. * @addr: address of first byte requested
  358. * @data: MEMWIN0_APERTURE bytes of data containing the requested address
  359. * @dir: direction of transfer 1 => read, 0 => write
  360. *
  361. * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
  362. * MEMWIN0_APERTURE-byte-aligned address that covers the requested
  363. * address @addr.
  364. */
  365. static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
  366. {
  367. int i;
  368. u32 win_pf = is_t4(adap->chip) ? 0 : V_PFNUM(adap->fn);
  369. /*
  370. * Setup offset into PCIE memory window. Address must be a
  371. * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
  372. * ensure that changes propagate before we attempt to use the new
  373. * values.)
  374. */
  375. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  376. (addr & ~(MEMWIN0_APERTURE - 1)) | win_pf);
  377. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  378. /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
  379. for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
  380. if (dir)
  381. *data++ = (__force __be32) t4_read_reg(adap,
  382. (MEMWIN0_BASE + i));
  383. else
  384. t4_write_reg(adap, (MEMWIN0_BASE + i),
  385. (__force u32) *data++);
  386. }
  387. return 0;
  388. }
  389. /**
  390. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  391. * @adap: the adapter
  392. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  393. * @addr: address within indicated memory type
  394. * @len: amount of memory to transfer
  395. * @buf: host memory buffer
  396. * @dir: direction of transfer 1 => read, 0 => write
  397. *
  398. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  399. * firmware memory address, length and host buffer must be aligned on
  400. * 32-bit boudaries. The memory is transferred as a raw byte sequence
  401. * from/to the firmware's memory. If this memory contains data
  402. * structures which contain multi-byte integers, it's the callers
  403. * responsibility to perform appropriate byte order conversions.
  404. */
  405. static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
  406. __be32 *buf, int dir)
  407. {
  408. u32 pos, start, end, offset, memoffset;
  409. u32 edc_size, mc_size;
  410. int ret = 0;
  411. __be32 *data;
  412. /*
  413. * Argument sanity checks ...
  414. */
  415. if ((addr & 0x3) || (len & 0x3))
  416. return -EINVAL;
  417. data = vmalloc(MEMWIN0_APERTURE);
  418. if (!data)
  419. return -ENOMEM;
  420. /* Offset into the region of memory which is being accessed
  421. * MEM_EDC0 = 0
  422. * MEM_EDC1 = 1
  423. * MEM_MC = 2 -- T4
  424. * MEM_MC0 = 2 -- For T5
  425. * MEM_MC1 = 3 -- For T5
  426. */
  427. edc_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR));
  428. if (mtype != MEM_MC1)
  429. memoffset = (mtype * (edc_size * 1024 * 1024));
  430. else {
  431. mc_size = EXT_MEM_SIZE_GET(t4_read_reg(adap,
  432. MA_EXT_MEMORY_BAR));
  433. memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
  434. }
  435. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  436. addr = addr + memoffset;
  437. /*
  438. * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
  439. * at a time so we need to round down the start and round up the end.
  440. * We'll start copying out of the first line at (addr - start) a word
  441. * at a time.
  442. */
  443. start = addr & ~(MEMWIN0_APERTURE-1);
  444. end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
  445. offset = (addr - start)/sizeof(__be32);
  446. for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
  447. /*
  448. * If we're writing, copy the data from the caller's memory
  449. * buffer
  450. */
  451. if (!dir) {
  452. /*
  453. * If we're doing a partial write, then we need to do
  454. * a read-modify-write ...
  455. */
  456. if (offset || len < MEMWIN0_APERTURE) {
  457. ret = t4_mem_win_rw(adap, pos, data, 1);
  458. if (ret)
  459. break;
  460. }
  461. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  462. len > 0) {
  463. data[offset++] = *buf++;
  464. len -= sizeof(__be32);
  465. }
  466. }
  467. /*
  468. * Transfer a block of memory and bail if there's an error.
  469. */
  470. ret = t4_mem_win_rw(adap, pos, data, dir);
  471. if (ret)
  472. break;
  473. /*
  474. * If we're reading, copy the data into the caller's memory
  475. * buffer.
  476. */
  477. if (dir)
  478. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  479. len > 0) {
  480. *buf++ = data[offset++];
  481. len -= sizeof(__be32);
  482. }
  483. }
  484. vfree(data);
  485. return ret;
  486. }
  487. int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
  488. __be32 *buf)
  489. {
  490. return t4_memory_rw(adap, mtype, addr, len, buf, 0);
  491. }
  492. #define EEPROM_STAT_ADDR 0x7bfc
  493. #define VPD_BASE 0x400
  494. #define VPD_BASE_OLD 0
  495. #define VPD_LEN 1024
  496. /**
  497. * t4_seeprom_wp - enable/disable EEPROM write protection
  498. * @adapter: the adapter
  499. * @enable: whether to enable or disable write protection
  500. *
  501. * Enables or disables write protection on the serial EEPROM.
  502. */
  503. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  504. {
  505. unsigned int v = enable ? 0xc : 0;
  506. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  507. return ret < 0 ? ret : 0;
  508. }
  509. /**
  510. * get_vpd_params - read VPD parameters from VPD EEPROM
  511. * @adapter: adapter to read
  512. * @p: where to store the parameters
  513. *
  514. * Reads card parameters stored in VPD EEPROM.
  515. */
  516. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  517. {
  518. u32 cclk_param, cclk_val;
  519. int i, ret, addr;
  520. int ec, sn;
  521. u8 *vpd, csum;
  522. unsigned int vpdr_len, kw_offset, id_len;
  523. vpd = vmalloc(VPD_LEN);
  524. if (!vpd)
  525. return -ENOMEM;
  526. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
  527. if (ret < 0)
  528. goto out;
  529. addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
  530. ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
  531. if (ret < 0)
  532. goto out;
  533. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  534. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  535. ret = -EINVAL;
  536. goto out;
  537. }
  538. id_len = pci_vpd_lrdt_size(vpd);
  539. if (id_len > ID_LEN)
  540. id_len = ID_LEN;
  541. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  542. if (i < 0) {
  543. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  544. ret = -EINVAL;
  545. goto out;
  546. }
  547. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  548. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  549. if (vpdr_len + kw_offset > VPD_LEN) {
  550. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  551. ret = -EINVAL;
  552. goto out;
  553. }
  554. #define FIND_VPD_KW(var, name) do { \
  555. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  556. if (var < 0) { \
  557. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  558. ret = -EINVAL; \
  559. goto out; \
  560. } \
  561. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  562. } while (0)
  563. FIND_VPD_KW(i, "RV");
  564. for (csum = 0; i >= 0; i--)
  565. csum += vpd[i];
  566. if (csum) {
  567. dev_err(adapter->pdev_dev,
  568. "corrupted VPD EEPROM, actual csum %u\n", csum);
  569. ret = -EINVAL;
  570. goto out;
  571. }
  572. FIND_VPD_KW(ec, "EC");
  573. FIND_VPD_KW(sn, "SN");
  574. #undef FIND_VPD_KW
  575. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  576. strim(p->id);
  577. memcpy(p->ec, vpd + ec, EC_LEN);
  578. strim(p->ec);
  579. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  580. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  581. strim(p->sn);
  582. /*
  583. * Ask firmware for the Core Clock since it knows how to translate the
  584. * Reference Clock ('V2') VPD field into a Core Clock value ...
  585. */
  586. cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
  587. FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
  588. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  589. 1, &cclk_param, &cclk_val);
  590. out:
  591. vfree(vpd);
  592. if (ret)
  593. return ret;
  594. p->cclk = cclk_val;
  595. return 0;
  596. }
  597. /* serial flash and firmware constants */
  598. enum {
  599. SF_ATTEMPTS = 10, /* max retries for SF operations */
  600. /* flash command opcodes */
  601. SF_PROG_PAGE = 2, /* program page */
  602. SF_WR_DISABLE = 4, /* disable writes */
  603. SF_RD_STATUS = 5, /* read status register */
  604. SF_WR_ENABLE = 6, /* enable writes */
  605. SF_RD_DATA_FAST = 0xb, /* read flash */
  606. SF_RD_ID = 0x9f, /* read ID */
  607. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  608. FW_MAX_SIZE = 512 * 1024,
  609. };
  610. /**
  611. * sf1_read - read data from the serial flash
  612. * @adapter: the adapter
  613. * @byte_cnt: number of bytes to read
  614. * @cont: whether another operation will be chained
  615. * @lock: whether to lock SF for PL access only
  616. * @valp: where to store the read data
  617. *
  618. * Reads up to 4 bytes of data from the serial flash. The location of
  619. * the read needs to be specified prior to calling this by issuing the
  620. * appropriate commands to the serial flash.
  621. */
  622. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  623. int lock, u32 *valp)
  624. {
  625. int ret;
  626. if (!byte_cnt || byte_cnt > 4)
  627. return -EINVAL;
  628. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  629. return -EBUSY;
  630. cont = cont ? SF_CONT : 0;
  631. lock = lock ? SF_LOCK : 0;
  632. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  633. ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  634. if (!ret)
  635. *valp = t4_read_reg(adapter, SF_DATA);
  636. return ret;
  637. }
  638. /**
  639. * sf1_write - write data to the serial flash
  640. * @adapter: the adapter
  641. * @byte_cnt: number of bytes to write
  642. * @cont: whether another operation will be chained
  643. * @lock: whether to lock SF for PL access only
  644. * @val: value to write
  645. *
  646. * Writes up to 4 bytes of data to the serial flash. The location of
  647. * the write needs to be specified prior to calling this by issuing the
  648. * appropriate commands to the serial flash.
  649. */
  650. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  651. int lock, u32 val)
  652. {
  653. if (!byte_cnt || byte_cnt > 4)
  654. return -EINVAL;
  655. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  656. return -EBUSY;
  657. cont = cont ? SF_CONT : 0;
  658. lock = lock ? SF_LOCK : 0;
  659. t4_write_reg(adapter, SF_DATA, val);
  660. t4_write_reg(adapter, SF_OP, lock |
  661. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  662. return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  663. }
  664. /**
  665. * flash_wait_op - wait for a flash operation to complete
  666. * @adapter: the adapter
  667. * @attempts: max number of polls of the status register
  668. * @delay: delay between polls in ms
  669. *
  670. * Wait for a flash operation to complete by polling the status register.
  671. */
  672. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  673. {
  674. int ret;
  675. u32 status;
  676. while (1) {
  677. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  678. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  679. return ret;
  680. if (!(status & 1))
  681. return 0;
  682. if (--attempts == 0)
  683. return -EAGAIN;
  684. if (delay)
  685. msleep(delay);
  686. }
  687. }
  688. /**
  689. * t4_read_flash - read words from serial flash
  690. * @adapter: the adapter
  691. * @addr: the start address for the read
  692. * @nwords: how many 32-bit words to read
  693. * @data: where to store the read data
  694. * @byte_oriented: whether to store data as bytes or as words
  695. *
  696. * Read the specified number of 32-bit words from the serial flash.
  697. * If @byte_oriented is set the read data is stored as a byte array
  698. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  699. * natural endianess.
  700. */
  701. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  702. unsigned int nwords, u32 *data, int byte_oriented)
  703. {
  704. int ret;
  705. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  706. return -EINVAL;
  707. addr = swab32(addr) | SF_RD_DATA_FAST;
  708. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  709. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  710. return ret;
  711. for ( ; nwords; nwords--, data++) {
  712. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  713. if (nwords == 1)
  714. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  715. if (ret)
  716. return ret;
  717. if (byte_oriented)
  718. *data = (__force __u32) (htonl(*data));
  719. }
  720. return 0;
  721. }
  722. /**
  723. * t4_write_flash - write up to a page of data to the serial flash
  724. * @adapter: the adapter
  725. * @addr: the start address to write
  726. * @n: length of data to write in bytes
  727. * @data: the data to write
  728. *
  729. * Writes up to a page of data (256 bytes) to the serial flash starting
  730. * at the given address. All the data must be written to the same page.
  731. */
  732. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  733. unsigned int n, const u8 *data)
  734. {
  735. int ret;
  736. u32 buf[64];
  737. unsigned int i, c, left, val, offset = addr & 0xff;
  738. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  739. return -EINVAL;
  740. val = swab32(addr) | SF_PROG_PAGE;
  741. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  742. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  743. goto unlock;
  744. for (left = n; left; left -= c) {
  745. c = min(left, 4U);
  746. for (val = 0, i = 0; i < c; ++i)
  747. val = (val << 8) + *data++;
  748. ret = sf1_write(adapter, c, c != left, 1, val);
  749. if (ret)
  750. goto unlock;
  751. }
  752. ret = flash_wait_op(adapter, 8, 1);
  753. if (ret)
  754. goto unlock;
  755. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  756. /* Read the page to verify the write succeeded */
  757. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  758. if (ret)
  759. return ret;
  760. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  761. dev_err(adapter->pdev_dev,
  762. "failed to correctly write the flash page at %#x\n",
  763. addr);
  764. return -EIO;
  765. }
  766. return 0;
  767. unlock:
  768. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  769. return ret;
  770. }
  771. /**
  772. * get_fw_version - read the firmware version
  773. * @adapter: the adapter
  774. * @vers: where to place the version
  775. *
  776. * Reads the FW version from flash.
  777. */
  778. static int get_fw_version(struct adapter *adapter, u32 *vers)
  779. {
  780. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  781. offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
  782. }
  783. /**
  784. * get_tp_version - read the TP microcode version
  785. * @adapter: the adapter
  786. * @vers: where to place the version
  787. *
  788. * Reads the TP microcode version from flash.
  789. */
  790. static int get_tp_version(struct adapter *adapter, u32 *vers)
  791. {
  792. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  793. offsetof(struct fw_hdr, tp_microcode_ver),
  794. 1, vers, 0);
  795. }
  796. /**
  797. * t4_check_fw_version - check if the FW is compatible with this driver
  798. * @adapter: the adapter
  799. *
  800. * Checks if an adapter's FW is compatible with the driver. Returns 0
  801. * if there's exact match, a negative error if the version could not be
  802. * read or there's a major version mismatch, and a positive value if the
  803. * expected major version is found but there's a minor version mismatch.
  804. */
  805. int t4_check_fw_version(struct adapter *adapter)
  806. {
  807. u32 api_vers[2];
  808. int ret, major, minor, micro;
  809. int exp_major, exp_minor, exp_micro;
  810. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  811. if (!ret)
  812. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  813. if (!ret)
  814. ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
  815. offsetof(struct fw_hdr, intfver_nic),
  816. 2, api_vers, 1);
  817. if (ret)
  818. return ret;
  819. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  820. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  821. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  822. switch (CHELSIO_CHIP_VERSION(adapter->chip)) {
  823. case CHELSIO_T4:
  824. exp_major = FW_VERSION_MAJOR;
  825. exp_minor = FW_VERSION_MINOR;
  826. exp_micro = FW_VERSION_MICRO;
  827. break;
  828. case CHELSIO_T5:
  829. exp_major = FW_VERSION_MAJOR_T5;
  830. exp_minor = FW_VERSION_MINOR_T5;
  831. exp_micro = FW_VERSION_MICRO_T5;
  832. break;
  833. default:
  834. dev_err(adapter->pdev_dev, "Unsupported chip type, %x\n",
  835. adapter->chip);
  836. return -EINVAL;
  837. }
  838. memcpy(adapter->params.api_vers, api_vers,
  839. sizeof(adapter->params.api_vers));
  840. if (major != exp_major) { /* major mismatch - fail */
  841. dev_err(adapter->pdev_dev,
  842. "card FW has major version %u, driver wants %u\n",
  843. major, exp_major);
  844. return -EINVAL;
  845. }
  846. if (minor == exp_minor && micro == exp_micro)
  847. return 0; /* perfect match */
  848. /* Minor/micro version mismatch. Report it but often it's OK. */
  849. return 1;
  850. }
  851. /**
  852. * t4_flash_erase_sectors - erase a range of flash sectors
  853. * @adapter: the adapter
  854. * @start: the first sector to erase
  855. * @end: the last sector to erase
  856. *
  857. * Erases the sectors in the given inclusive range.
  858. */
  859. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  860. {
  861. int ret = 0;
  862. while (start <= end) {
  863. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  864. (ret = sf1_write(adapter, 4, 0, 1,
  865. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  866. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  867. dev_err(adapter->pdev_dev,
  868. "erase of flash sector %d failed, error %d\n",
  869. start, ret);
  870. break;
  871. }
  872. start++;
  873. }
  874. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  875. return ret;
  876. }
  877. /**
  878. * t4_flash_cfg_addr - return the address of the flash configuration file
  879. * @adapter: the adapter
  880. *
  881. * Return the address within the flash where the Firmware Configuration
  882. * File is stored.
  883. */
  884. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  885. {
  886. if (adapter->params.sf_size == 0x100000)
  887. return FLASH_FPGA_CFG_START;
  888. else
  889. return FLASH_CFG_START;
  890. }
  891. /**
  892. * t4_load_cfg - download config file
  893. * @adap: the adapter
  894. * @cfg_data: the cfg text file to write
  895. * @size: text file size
  896. *
  897. * Write the supplied config text file to the card's serial flash.
  898. */
  899. int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
  900. {
  901. int ret, i, n;
  902. unsigned int addr;
  903. unsigned int flash_cfg_start_sec;
  904. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  905. addr = t4_flash_cfg_addr(adap);
  906. flash_cfg_start_sec = addr / SF_SEC_SIZE;
  907. if (size > FLASH_CFG_MAX_SIZE) {
  908. dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
  909. FLASH_CFG_MAX_SIZE);
  910. return -EFBIG;
  911. }
  912. i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
  913. sf_sec_size);
  914. ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
  915. flash_cfg_start_sec + i - 1);
  916. /*
  917. * If size == 0 then we're simply erasing the FLASH sectors associated
  918. * with the on-adapter Firmware Configuration File.
  919. */
  920. if (ret || size == 0)
  921. goto out;
  922. /* this will write to the flash up to SF_PAGE_SIZE at a time */
  923. for (i = 0; i < size; i += SF_PAGE_SIZE) {
  924. if ((size - i) < SF_PAGE_SIZE)
  925. n = size - i;
  926. else
  927. n = SF_PAGE_SIZE;
  928. ret = t4_write_flash(adap, addr, n, cfg_data);
  929. if (ret)
  930. goto out;
  931. addr += SF_PAGE_SIZE;
  932. cfg_data += SF_PAGE_SIZE;
  933. }
  934. out:
  935. if (ret)
  936. dev_err(adap->pdev_dev, "config file %s failed %d\n",
  937. (size == 0 ? "clear" : "download"), ret);
  938. return ret;
  939. }
  940. /**
  941. * t4_load_fw - download firmware
  942. * @adap: the adapter
  943. * @fw_data: the firmware image to write
  944. * @size: image size
  945. *
  946. * Write the supplied firmware image to the card's serial flash.
  947. */
  948. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  949. {
  950. u32 csum;
  951. int ret, addr;
  952. unsigned int i;
  953. u8 first_page[SF_PAGE_SIZE];
  954. const __be32 *p = (const __be32 *)fw_data;
  955. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  956. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  957. unsigned int fw_img_start = adap->params.sf_fw_start;
  958. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  959. if (!size) {
  960. dev_err(adap->pdev_dev, "FW image has no data\n");
  961. return -EINVAL;
  962. }
  963. if (size & 511) {
  964. dev_err(adap->pdev_dev,
  965. "FW image size not multiple of 512 bytes\n");
  966. return -EINVAL;
  967. }
  968. if (ntohs(hdr->len512) * 512 != size) {
  969. dev_err(adap->pdev_dev,
  970. "FW image size differs from size in FW header\n");
  971. return -EINVAL;
  972. }
  973. if (size > FW_MAX_SIZE) {
  974. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  975. FW_MAX_SIZE);
  976. return -EFBIG;
  977. }
  978. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  979. csum += ntohl(p[i]);
  980. if (csum != 0xffffffff) {
  981. dev_err(adap->pdev_dev,
  982. "corrupted firmware image, checksum %#x\n", csum);
  983. return -EINVAL;
  984. }
  985. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  986. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  987. if (ret)
  988. goto out;
  989. /*
  990. * We write the correct version at the end so the driver can see a bad
  991. * version if the FW write fails. Start by writing a copy of the
  992. * first page with a bad version.
  993. */
  994. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  995. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  996. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  997. if (ret)
  998. goto out;
  999. addr = fw_img_start;
  1000. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  1001. addr += SF_PAGE_SIZE;
  1002. fw_data += SF_PAGE_SIZE;
  1003. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  1004. if (ret)
  1005. goto out;
  1006. }
  1007. ret = t4_write_flash(adap,
  1008. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  1009. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  1010. out:
  1011. if (ret)
  1012. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  1013. ret);
  1014. return ret;
  1015. }
  1016. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  1017. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  1018. /**
  1019. * t4_link_start - apply link configuration to MAC/PHY
  1020. * @phy: the PHY to setup
  1021. * @mac: the MAC to setup
  1022. * @lc: the requested link configuration
  1023. *
  1024. * Set up a port's MAC and PHY according to a desired link configuration.
  1025. * - If the PHY can auto-negotiate first decide what to advertise, then
  1026. * enable/disable auto-negotiation as desired, and reset.
  1027. * - If the PHY does not auto-negotiate just reset it.
  1028. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1029. * otherwise do it later based on the outcome of auto-negotiation.
  1030. */
  1031. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  1032. struct link_config *lc)
  1033. {
  1034. struct fw_port_cmd c;
  1035. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  1036. lc->link_ok = 0;
  1037. if (lc->requested_fc & PAUSE_RX)
  1038. fc |= FW_PORT_CAP_FC_RX;
  1039. if (lc->requested_fc & PAUSE_TX)
  1040. fc |= FW_PORT_CAP_FC_TX;
  1041. memset(&c, 0, sizeof(c));
  1042. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1043. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1044. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1045. FW_LEN16(c));
  1046. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  1047. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  1048. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1049. } else if (lc->autoneg == AUTONEG_DISABLE) {
  1050. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  1051. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1052. } else
  1053. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  1054. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1055. }
  1056. /**
  1057. * t4_restart_aneg - restart autonegotiation
  1058. * @adap: the adapter
  1059. * @mbox: mbox to use for the FW command
  1060. * @port: the port id
  1061. *
  1062. * Restarts autonegotiation for the selected port.
  1063. */
  1064. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  1065. {
  1066. struct fw_port_cmd c;
  1067. memset(&c, 0, sizeof(c));
  1068. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1069. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1070. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1071. FW_LEN16(c));
  1072. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  1073. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1074. }
  1075. typedef void (*int_handler_t)(struct adapter *adap);
  1076. struct intr_info {
  1077. unsigned int mask; /* bits to check in interrupt status */
  1078. const char *msg; /* message to print or NULL */
  1079. short stat_idx; /* stat counter to increment or -1 */
  1080. unsigned short fatal; /* whether the condition reported is fatal */
  1081. int_handler_t int_handler; /* platform-specific int handler */
  1082. };
  1083. /**
  1084. * t4_handle_intr_status - table driven interrupt handler
  1085. * @adapter: the adapter that generated the interrupt
  1086. * @reg: the interrupt status register to process
  1087. * @acts: table of interrupt actions
  1088. *
  1089. * A table driven interrupt handler that applies a set of masks to an
  1090. * interrupt status word and performs the corresponding actions if the
  1091. * interrupts described by the mask have occurred. The actions include
  1092. * optionally emitting a warning or alert message. The table is terminated
  1093. * by an entry specifying mask 0. Returns the number of fatal interrupt
  1094. * conditions.
  1095. */
  1096. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1097. const struct intr_info *acts)
  1098. {
  1099. int fatal = 0;
  1100. unsigned int mask = 0;
  1101. unsigned int status = t4_read_reg(adapter, reg);
  1102. for ( ; acts->mask; ++acts) {
  1103. if (!(status & acts->mask))
  1104. continue;
  1105. if (acts->fatal) {
  1106. fatal++;
  1107. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1108. status & acts->mask);
  1109. } else if (acts->msg && printk_ratelimit())
  1110. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1111. status & acts->mask);
  1112. if (acts->int_handler)
  1113. acts->int_handler(adapter);
  1114. mask |= acts->mask;
  1115. }
  1116. status &= mask;
  1117. if (status) /* clear processed interrupts */
  1118. t4_write_reg(adapter, reg, status);
  1119. return fatal;
  1120. }
  1121. /*
  1122. * Interrupt handler for the PCIE module.
  1123. */
  1124. static void pcie_intr_handler(struct adapter *adapter)
  1125. {
  1126. static const struct intr_info sysbus_intr_info[] = {
  1127. { RNPP, "RXNP array parity error", -1, 1 },
  1128. { RPCP, "RXPC array parity error", -1, 1 },
  1129. { RCIP, "RXCIF array parity error", -1, 1 },
  1130. { RCCP, "Rx completions control array parity error", -1, 1 },
  1131. { RFTP, "RXFT array parity error", -1, 1 },
  1132. { 0 }
  1133. };
  1134. static const struct intr_info pcie_port_intr_info[] = {
  1135. { TPCP, "TXPC array parity error", -1, 1 },
  1136. { TNPP, "TXNP array parity error", -1, 1 },
  1137. { TFTP, "TXFT array parity error", -1, 1 },
  1138. { TCAP, "TXCA array parity error", -1, 1 },
  1139. { TCIP, "TXCIF array parity error", -1, 1 },
  1140. { RCAP, "RXCA array parity error", -1, 1 },
  1141. { OTDD, "outbound request TLP discarded", -1, 1 },
  1142. { RDPE, "Rx data parity error", -1, 1 },
  1143. { TDUE, "Tx uncorrectable data error", -1, 1 },
  1144. { 0 }
  1145. };
  1146. static const struct intr_info pcie_intr_info[] = {
  1147. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  1148. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  1149. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  1150. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1151. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1152. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1153. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1154. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  1155. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  1156. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1157. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  1158. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1159. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1160. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  1161. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1162. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1163. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  1164. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1165. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1166. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1167. { FIDPERR, "PCI FID parity error", -1, 1 },
  1168. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  1169. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  1170. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1171. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  1172. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  1173. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  1174. { PCIESINT, "PCI core secondary fault", -1, 1 },
  1175. { PCIEPINT, "PCI core primary fault", -1, 1 },
  1176. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  1177. { 0 }
  1178. };
  1179. static struct intr_info t5_pcie_intr_info[] = {
  1180. { MSTGRPPERR, "Master Response Read Queue parity error",
  1181. -1, 1 },
  1182. { MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
  1183. { MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
  1184. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1185. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1186. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1187. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1188. { PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
  1189. -1, 1 },
  1190. { PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
  1191. -1, 1 },
  1192. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1193. { MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
  1194. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1195. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1196. { DREQWRPERR, "PCI DMA channel write request parity error",
  1197. -1, 1 },
  1198. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1199. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1200. { HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
  1201. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1202. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1203. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1204. { FIDPERR, "PCI FID parity error", -1, 1 },
  1205. { VFIDPERR, "PCI INTx clear parity error", -1, 1 },
  1206. { MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
  1207. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1208. { IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
  1209. -1, 1 },
  1210. { IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 },
  1211. { RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
  1212. { IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
  1213. { TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
  1214. { READRSPERR, "Outbound read error", -1, 0 },
  1215. { 0 }
  1216. };
  1217. int fat;
  1218. fat = t4_handle_intr_status(adapter,
  1219. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1220. sysbus_intr_info) +
  1221. t4_handle_intr_status(adapter,
  1222. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1223. pcie_port_intr_info) +
  1224. t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
  1225. is_t4(adapter->chip) ?
  1226. pcie_intr_info : t5_pcie_intr_info);
  1227. if (fat)
  1228. t4_fatal_err(adapter);
  1229. }
  1230. /*
  1231. * TP interrupt handler.
  1232. */
  1233. static void tp_intr_handler(struct adapter *adapter)
  1234. {
  1235. static const struct intr_info tp_intr_info[] = {
  1236. { 0x3fffffff, "TP parity error", -1, 1 },
  1237. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  1238. { 0 }
  1239. };
  1240. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  1241. t4_fatal_err(adapter);
  1242. }
  1243. /*
  1244. * SGE interrupt handler.
  1245. */
  1246. static void sge_intr_handler(struct adapter *adapter)
  1247. {
  1248. u64 v;
  1249. static const struct intr_info sge_intr_info[] = {
  1250. { ERR_CPL_EXCEED_IQE_SIZE,
  1251. "SGE received CPL exceeding IQE size", -1, 1 },
  1252. { ERR_INVALID_CIDX_INC,
  1253. "SGE GTS CIDX increment too large", -1, 0 },
  1254. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  1255. { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
  1256. { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
  1257. { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
  1258. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  1259. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1260. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  1261. 0 },
  1262. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  1263. 0 },
  1264. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  1265. 0 },
  1266. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  1267. 0 },
  1268. { ERR_ING_CTXT_PRIO,
  1269. "SGE too many priority ingress contexts", -1, 0 },
  1270. { ERR_EGR_CTXT_PRIO,
  1271. "SGE too many priority egress contexts", -1, 0 },
  1272. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  1273. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  1274. { 0 }
  1275. };
  1276. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  1277. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  1278. if (v) {
  1279. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1280. (unsigned long long)v);
  1281. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  1282. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  1283. }
  1284. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  1285. v != 0)
  1286. t4_fatal_err(adapter);
  1287. }
  1288. /*
  1289. * CIM interrupt handler.
  1290. */
  1291. static void cim_intr_handler(struct adapter *adapter)
  1292. {
  1293. static const struct intr_info cim_intr_info[] = {
  1294. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  1295. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  1296. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  1297. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  1298. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  1299. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  1300. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  1301. { 0 }
  1302. };
  1303. static const struct intr_info cim_upintr_info[] = {
  1304. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  1305. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  1306. { ILLWRINT, "CIM illegal write", -1, 1 },
  1307. { ILLRDINT, "CIM illegal read", -1, 1 },
  1308. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  1309. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  1310. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1311. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1312. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1313. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1314. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1315. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1316. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1317. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1318. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1319. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1320. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1321. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1322. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1323. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1324. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1325. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1326. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1327. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1328. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1329. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1330. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1331. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1332. { 0 }
  1333. };
  1334. int fat;
  1335. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1336. cim_intr_info) +
  1337. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1338. cim_upintr_info);
  1339. if (fat)
  1340. t4_fatal_err(adapter);
  1341. }
  1342. /*
  1343. * ULP RX interrupt handler.
  1344. */
  1345. static void ulprx_intr_handler(struct adapter *adapter)
  1346. {
  1347. static const struct intr_info ulprx_intr_info[] = {
  1348. { 0x1800000, "ULPRX context error", -1, 1 },
  1349. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1350. { 0 }
  1351. };
  1352. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1353. t4_fatal_err(adapter);
  1354. }
  1355. /*
  1356. * ULP TX interrupt handler.
  1357. */
  1358. static void ulptx_intr_handler(struct adapter *adapter)
  1359. {
  1360. static const struct intr_info ulptx_intr_info[] = {
  1361. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1362. 0 },
  1363. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1364. 0 },
  1365. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1366. 0 },
  1367. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1368. 0 },
  1369. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1370. { 0 }
  1371. };
  1372. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1373. t4_fatal_err(adapter);
  1374. }
  1375. /*
  1376. * PM TX interrupt handler.
  1377. */
  1378. static void pmtx_intr_handler(struct adapter *adapter)
  1379. {
  1380. static const struct intr_info pmtx_intr_info[] = {
  1381. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1382. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1383. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1384. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1385. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1386. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1387. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1388. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1389. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1390. { 0 }
  1391. };
  1392. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1393. t4_fatal_err(adapter);
  1394. }
  1395. /*
  1396. * PM RX interrupt handler.
  1397. */
  1398. static void pmrx_intr_handler(struct adapter *adapter)
  1399. {
  1400. static const struct intr_info pmrx_intr_info[] = {
  1401. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1402. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1403. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1404. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1405. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1406. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1407. { 0 }
  1408. };
  1409. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1410. t4_fatal_err(adapter);
  1411. }
  1412. /*
  1413. * CPL switch interrupt handler.
  1414. */
  1415. static void cplsw_intr_handler(struct adapter *adapter)
  1416. {
  1417. static const struct intr_info cplsw_intr_info[] = {
  1418. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1419. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1420. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1421. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1422. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1423. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1424. { 0 }
  1425. };
  1426. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1427. t4_fatal_err(adapter);
  1428. }
  1429. /*
  1430. * LE interrupt handler.
  1431. */
  1432. static void le_intr_handler(struct adapter *adap)
  1433. {
  1434. static const struct intr_info le_intr_info[] = {
  1435. { LIPMISS, "LE LIP miss", -1, 0 },
  1436. { LIP0, "LE 0 LIP error", -1, 0 },
  1437. { PARITYERR, "LE parity error", -1, 1 },
  1438. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1439. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1440. { 0 }
  1441. };
  1442. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1443. t4_fatal_err(adap);
  1444. }
  1445. /*
  1446. * MPS interrupt handler.
  1447. */
  1448. static void mps_intr_handler(struct adapter *adapter)
  1449. {
  1450. static const struct intr_info mps_rx_intr_info[] = {
  1451. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1452. { 0 }
  1453. };
  1454. static const struct intr_info mps_tx_intr_info[] = {
  1455. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1456. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1457. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1458. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1459. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1460. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1461. { FRMERR, "MPS Tx framing error", -1, 1 },
  1462. { 0 }
  1463. };
  1464. static const struct intr_info mps_trc_intr_info[] = {
  1465. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1466. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1467. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1468. { 0 }
  1469. };
  1470. static const struct intr_info mps_stat_sram_intr_info[] = {
  1471. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1472. { 0 }
  1473. };
  1474. static const struct intr_info mps_stat_tx_intr_info[] = {
  1475. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1476. { 0 }
  1477. };
  1478. static const struct intr_info mps_stat_rx_intr_info[] = {
  1479. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1480. { 0 }
  1481. };
  1482. static const struct intr_info mps_cls_intr_info[] = {
  1483. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1484. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1485. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1486. { 0 }
  1487. };
  1488. int fat;
  1489. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1490. mps_rx_intr_info) +
  1491. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1492. mps_tx_intr_info) +
  1493. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1494. mps_trc_intr_info) +
  1495. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1496. mps_stat_sram_intr_info) +
  1497. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1498. mps_stat_tx_intr_info) +
  1499. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1500. mps_stat_rx_intr_info) +
  1501. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1502. mps_cls_intr_info);
  1503. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1504. RXINT | TXINT | STATINT);
  1505. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1506. if (fat)
  1507. t4_fatal_err(adapter);
  1508. }
  1509. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1510. /*
  1511. * EDC/MC interrupt handler.
  1512. */
  1513. static void mem_intr_handler(struct adapter *adapter, int idx)
  1514. {
  1515. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1516. unsigned int addr, cnt_addr, v;
  1517. if (idx <= MEM_EDC1) {
  1518. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1519. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1520. } else {
  1521. addr = MC_INT_CAUSE;
  1522. cnt_addr = MC_ECC_STATUS;
  1523. }
  1524. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1525. if (v & PERR_INT_CAUSE)
  1526. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1527. name[idx]);
  1528. if (v & ECC_CE_INT_CAUSE) {
  1529. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1530. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1531. if (printk_ratelimit())
  1532. dev_warn(adapter->pdev_dev,
  1533. "%u %s correctable ECC data error%s\n",
  1534. cnt, name[idx], cnt > 1 ? "s" : "");
  1535. }
  1536. if (v & ECC_UE_INT_CAUSE)
  1537. dev_alert(adapter->pdev_dev,
  1538. "%s uncorrectable ECC data error\n", name[idx]);
  1539. t4_write_reg(adapter, addr, v);
  1540. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1541. t4_fatal_err(adapter);
  1542. }
  1543. /*
  1544. * MA interrupt handler.
  1545. */
  1546. static void ma_intr_handler(struct adapter *adap)
  1547. {
  1548. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1549. if (status & MEM_PERR_INT_CAUSE)
  1550. dev_alert(adap->pdev_dev,
  1551. "MA parity error, parity status %#x\n",
  1552. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1553. if (status & MEM_WRAP_INT_CAUSE) {
  1554. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1555. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1556. "client %u to address %#x\n",
  1557. MEM_WRAP_CLIENT_NUM_GET(v),
  1558. MEM_WRAP_ADDRESS_GET(v) << 4);
  1559. }
  1560. t4_write_reg(adap, MA_INT_CAUSE, status);
  1561. t4_fatal_err(adap);
  1562. }
  1563. /*
  1564. * SMB interrupt handler.
  1565. */
  1566. static void smb_intr_handler(struct adapter *adap)
  1567. {
  1568. static const struct intr_info smb_intr_info[] = {
  1569. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1570. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1571. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1572. { 0 }
  1573. };
  1574. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1575. t4_fatal_err(adap);
  1576. }
  1577. /*
  1578. * NC-SI interrupt handler.
  1579. */
  1580. static void ncsi_intr_handler(struct adapter *adap)
  1581. {
  1582. static const struct intr_info ncsi_intr_info[] = {
  1583. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1584. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1585. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1586. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1587. { 0 }
  1588. };
  1589. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1590. t4_fatal_err(adap);
  1591. }
  1592. /*
  1593. * XGMAC interrupt handler.
  1594. */
  1595. static void xgmac_intr_handler(struct adapter *adap, int port)
  1596. {
  1597. u32 v, int_cause_reg;
  1598. if (is_t4(adap->chip))
  1599. int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
  1600. else
  1601. int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
  1602. v = t4_read_reg(adap, int_cause_reg);
  1603. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1604. if (!v)
  1605. return;
  1606. if (v & TXFIFO_PRTY_ERR)
  1607. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1608. port);
  1609. if (v & RXFIFO_PRTY_ERR)
  1610. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1611. port);
  1612. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1613. t4_fatal_err(adap);
  1614. }
  1615. /*
  1616. * PL interrupt handler.
  1617. */
  1618. static void pl_intr_handler(struct adapter *adap)
  1619. {
  1620. static const struct intr_info pl_intr_info[] = {
  1621. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1622. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1623. { 0 }
  1624. };
  1625. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1626. t4_fatal_err(adap);
  1627. }
  1628. #define PF_INTR_MASK (PFSW)
  1629. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1630. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1631. CPL_SWITCH | SGE | ULP_TX)
  1632. /**
  1633. * t4_slow_intr_handler - control path interrupt handler
  1634. * @adapter: the adapter
  1635. *
  1636. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1637. * The designation 'slow' is because it involves register reads, while
  1638. * data interrupts typically don't involve any MMIOs.
  1639. */
  1640. int t4_slow_intr_handler(struct adapter *adapter)
  1641. {
  1642. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1643. if (!(cause & GLBL_INTR_MASK))
  1644. return 0;
  1645. if (cause & CIM)
  1646. cim_intr_handler(adapter);
  1647. if (cause & MPS)
  1648. mps_intr_handler(adapter);
  1649. if (cause & NCSI)
  1650. ncsi_intr_handler(adapter);
  1651. if (cause & PL)
  1652. pl_intr_handler(adapter);
  1653. if (cause & SMB)
  1654. smb_intr_handler(adapter);
  1655. if (cause & XGMAC0)
  1656. xgmac_intr_handler(adapter, 0);
  1657. if (cause & XGMAC1)
  1658. xgmac_intr_handler(adapter, 1);
  1659. if (cause & XGMAC_KR0)
  1660. xgmac_intr_handler(adapter, 2);
  1661. if (cause & XGMAC_KR1)
  1662. xgmac_intr_handler(adapter, 3);
  1663. if (cause & PCIE)
  1664. pcie_intr_handler(adapter);
  1665. if (cause & MC)
  1666. mem_intr_handler(adapter, MEM_MC);
  1667. if (cause & EDC0)
  1668. mem_intr_handler(adapter, MEM_EDC0);
  1669. if (cause & EDC1)
  1670. mem_intr_handler(adapter, MEM_EDC1);
  1671. if (cause & LE)
  1672. le_intr_handler(adapter);
  1673. if (cause & TP)
  1674. tp_intr_handler(adapter);
  1675. if (cause & MA)
  1676. ma_intr_handler(adapter);
  1677. if (cause & PM_TX)
  1678. pmtx_intr_handler(adapter);
  1679. if (cause & PM_RX)
  1680. pmrx_intr_handler(adapter);
  1681. if (cause & ULP_RX)
  1682. ulprx_intr_handler(adapter);
  1683. if (cause & CPL_SWITCH)
  1684. cplsw_intr_handler(adapter);
  1685. if (cause & SGE)
  1686. sge_intr_handler(adapter);
  1687. if (cause & ULP_TX)
  1688. ulptx_intr_handler(adapter);
  1689. /* Clear the interrupts just processed for which we are the master. */
  1690. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1691. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1692. return 1;
  1693. }
  1694. /**
  1695. * t4_intr_enable - enable interrupts
  1696. * @adapter: the adapter whose interrupts should be enabled
  1697. *
  1698. * Enable PF-specific interrupts for the calling function and the top-level
  1699. * interrupt concentrator for global interrupts. Interrupts are already
  1700. * enabled at each module, here we just enable the roots of the interrupt
  1701. * hierarchies.
  1702. *
  1703. * Note: this function should be called only when the driver manages
  1704. * non PF-specific interrupts from the various HW modules. Only one PCI
  1705. * function at a time should be doing this.
  1706. */
  1707. void t4_intr_enable(struct adapter *adapter)
  1708. {
  1709. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1710. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1711. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1712. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1713. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1714. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1715. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1716. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1717. DBFIFO_HP_INT | DBFIFO_LP_INT |
  1718. EGRESS_SIZE_ERR);
  1719. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1720. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1721. }
  1722. /**
  1723. * t4_intr_disable - disable interrupts
  1724. * @adapter: the adapter whose interrupts should be disabled
  1725. *
  1726. * Disable interrupts. We only disable the top-level interrupt
  1727. * concentrators. The caller must be a PCI function managing global
  1728. * interrupts.
  1729. */
  1730. void t4_intr_disable(struct adapter *adapter)
  1731. {
  1732. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1733. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1734. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1735. }
  1736. /**
  1737. * hash_mac_addr - return the hash value of a MAC address
  1738. * @addr: the 48-bit Ethernet MAC address
  1739. *
  1740. * Hashes a MAC address according to the hash function used by HW inexact
  1741. * (hash) address matching.
  1742. */
  1743. static int hash_mac_addr(const u8 *addr)
  1744. {
  1745. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1746. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1747. a ^= b;
  1748. a ^= (a >> 12);
  1749. a ^= (a >> 6);
  1750. return a & 0x3f;
  1751. }
  1752. /**
  1753. * t4_config_rss_range - configure a portion of the RSS mapping table
  1754. * @adapter: the adapter
  1755. * @mbox: mbox to use for the FW command
  1756. * @viid: virtual interface whose RSS subtable is to be written
  1757. * @start: start entry in the table to write
  1758. * @n: how many table entries to write
  1759. * @rspq: values for the response queue lookup table
  1760. * @nrspq: number of values in @rspq
  1761. *
  1762. * Programs the selected part of the VI's RSS mapping table with the
  1763. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1764. * until the full table range is populated.
  1765. *
  1766. * The caller must ensure the values in @rspq are in the range allowed for
  1767. * @viid.
  1768. */
  1769. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1770. int start, int n, const u16 *rspq, unsigned int nrspq)
  1771. {
  1772. int ret;
  1773. const u16 *rsp = rspq;
  1774. const u16 *rsp_end = rspq + nrspq;
  1775. struct fw_rss_ind_tbl_cmd cmd;
  1776. memset(&cmd, 0, sizeof(cmd));
  1777. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1778. FW_CMD_REQUEST | FW_CMD_WRITE |
  1779. FW_RSS_IND_TBL_CMD_VIID(viid));
  1780. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1781. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1782. while (n > 0) {
  1783. int nq = min(n, 32);
  1784. __be32 *qp = &cmd.iq0_to_iq2;
  1785. cmd.niqid = htons(nq);
  1786. cmd.startidx = htons(start);
  1787. start += nq;
  1788. n -= nq;
  1789. while (nq > 0) {
  1790. unsigned int v;
  1791. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1792. if (++rsp >= rsp_end)
  1793. rsp = rspq;
  1794. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1795. if (++rsp >= rsp_end)
  1796. rsp = rspq;
  1797. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1798. if (++rsp >= rsp_end)
  1799. rsp = rspq;
  1800. *qp++ = htonl(v);
  1801. nq -= 3;
  1802. }
  1803. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1804. if (ret)
  1805. return ret;
  1806. }
  1807. return 0;
  1808. }
  1809. /**
  1810. * t4_config_glbl_rss - configure the global RSS mode
  1811. * @adapter: the adapter
  1812. * @mbox: mbox to use for the FW command
  1813. * @mode: global RSS mode
  1814. * @flags: mode-specific flags
  1815. *
  1816. * Sets the global RSS mode.
  1817. */
  1818. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1819. unsigned int flags)
  1820. {
  1821. struct fw_rss_glb_config_cmd c;
  1822. memset(&c, 0, sizeof(c));
  1823. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1824. FW_CMD_REQUEST | FW_CMD_WRITE);
  1825. c.retval_len16 = htonl(FW_LEN16(c));
  1826. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1827. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1828. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1829. c.u.basicvirtual.mode_pkd =
  1830. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1831. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1832. } else
  1833. return -EINVAL;
  1834. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1835. }
  1836. /**
  1837. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1838. * @adap: the adapter
  1839. * @v4: holds the TCP/IP counter values
  1840. * @v6: holds the TCP/IPv6 counter values
  1841. *
  1842. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1843. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1844. */
  1845. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1846. struct tp_tcp_stats *v6)
  1847. {
  1848. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1849. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1850. #define STAT(x) val[STAT_IDX(x)]
  1851. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1852. if (v4) {
  1853. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1854. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1855. v4->tcpOutRsts = STAT(OUT_RST);
  1856. v4->tcpInSegs = STAT64(IN_SEG);
  1857. v4->tcpOutSegs = STAT64(OUT_SEG);
  1858. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1859. }
  1860. if (v6) {
  1861. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1862. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1863. v6->tcpOutRsts = STAT(OUT_RST);
  1864. v6->tcpInSegs = STAT64(IN_SEG);
  1865. v6->tcpOutSegs = STAT64(OUT_SEG);
  1866. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1867. }
  1868. #undef STAT64
  1869. #undef STAT
  1870. #undef STAT_IDX
  1871. }
  1872. /**
  1873. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1874. * @adap: the adapter
  1875. * @mtus: where to store the MTU values
  1876. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1877. *
  1878. * Reads the HW path MTU table.
  1879. */
  1880. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1881. {
  1882. u32 v;
  1883. int i;
  1884. for (i = 0; i < NMTUS; ++i) {
  1885. t4_write_reg(adap, TP_MTU_TABLE,
  1886. MTUINDEX(0xff) | MTUVALUE(i));
  1887. v = t4_read_reg(adap, TP_MTU_TABLE);
  1888. mtus[i] = MTUVALUE_GET(v);
  1889. if (mtu_log)
  1890. mtu_log[i] = MTUWIDTH_GET(v);
  1891. }
  1892. }
  1893. /**
  1894. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  1895. * @adap: the adapter
  1896. * @addr: the indirect TP register address
  1897. * @mask: specifies the field within the register to modify
  1898. * @val: new value for the field
  1899. *
  1900. * Sets a field of an indirect TP register to the given value.
  1901. */
  1902. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  1903. unsigned int mask, unsigned int val)
  1904. {
  1905. t4_write_reg(adap, TP_PIO_ADDR, addr);
  1906. val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
  1907. t4_write_reg(adap, TP_PIO_DATA, val);
  1908. }
  1909. /**
  1910. * init_cong_ctrl - initialize congestion control parameters
  1911. * @a: the alpha values for congestion control
  1912. * @b: the beta values for congestion control
  1913. *
  1914. * Initialize the congestion control parameters.
  1915. */
  1916. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  1917. {
  1918. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1919. a[9] = 2;
  1920. a[10] = 3;
  1921. a[11] = 4;
  1922. a[12] = 5;
  1923. a[13] = 6;
  1924. a[14] = 7;
  1925. a[15] = 8;
  1926. a[16] = 9;
  1927. a[17] = 10;
  1928. a[18] = 14;
  1929. a[19] = 17;
  1930. a[20] = 21;
  1931. a[21] = 25;
  1932. a[22] = 30;
  1933. a[23] = 35;
  1934. a[24] = 45;
  1935. a[25] = 60;
  1936. a[26] = 80;
  1937. a[27] = 100;
  1938. a[28] = 200;
  1939. a[29] = 300;
  1940. a[30] = 400;
  1941. a[31] = 500;
  1942. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1943. b[9] = b[10] = 1;
  1944. b[11] = b[12] = 2;
  1945. b[13] = b[14] = b[15] = b[16] = 3;
  1946. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1947. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1948. b[28] = b[29] = 6;
  1949. b[30] = b[31] = 7;
  1950. }
  1951. /* The minimum additive increment value for the congestion control table */
  1952. #define CC_MIN_INCR 2U
  1953. /**
  1954. * t4_load_mtus - write the MTU and congestion control HW tables
  1955. * @adap: the adapter
  1956. * @mtus: the values for the MTU table
  1957. * @alpha: the values for the congestion control alpha parameter
  1958. * @beta: the values for the congestion control beta parameter
  1959. *
  1960. * Write the HW MTU table with the supplied MTUs and the high-speed
  1961. * congestion control table with the supplied alpha, beta, and MTUs.
  1962. * We write the two tables together because the additive increments
  1963. * depend on the MTUs.
  1964. */
  1965. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1966. const unsigned short *alpha, const unsigned short *beta)
  1967. {
  1968. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1969. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1970. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1971. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1972. };
  1973. unsigned int i, w;
  1974. for (i = 0; i < NMTUS; ++i) {
  1975. unsigned int mtu = mtus[i];
  1976. unsigned int log2 = fls(mtu);
  1977. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1978. log2--;
  1979. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1980. MTUWIDTH(log2) | MTUVALUE(mtu));
  1981. for (w = 0; w < NCCTRL_WIN; ++w) {
  1982. unsigned int inc;
  1983. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1984. CC_MIN_INCR);
  1985. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1986. (w << 16) | (beta[w] << 13) | inc);
  1987. }
  1988. }
  1989. }
  1990. /**
  1991. * get_mps_bg_map - return the buffer groups associated with a port
  1992. * @adap: the adapter
  1993. * @idx: the port index
  1994. *
  1995. * Returns a bitmap indicating which MPS buffer groups are associated
  1996. * with the given port. Bit i is set if buffer group i is used by the
  1997. * port.
  1998. */
  1999. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  2000. {
  2001. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  2002. if (n == 0)
  2003. return idx == 0 ? 0xf : 0;
  2004. if (n == 1)
  2005. return idx < 2 ? (3 << (2 * idx)) : 0;
  2006. return 1 << idx;
  2007. }
  2008. /**
  2009. * t4_get_port_stats - collect port statistics
  2010. * @adap: the adapter
  2011. * @idx: the port index
  2012. * @p: the stats structure to fill
  2013. *
  2014. * Collect statistics related to the given port from HW.
  2015. */
  2016. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  2017. {
  2018. u32 bgmap = get_mps_bg_map(adap, idx);
  2019. #define GET_STAT(name) \
  2020. t4_read_reg64(adap, \
  2021. (is_t4(adap->chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
  2022. T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
  2023. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  2024. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  2025. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  2026. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  2027. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  2028. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  2029. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  2030. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  2031. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  2032. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  2033. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  2034. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  2035. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  2036. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  2037. p->tx_drop = GET_STAT(TX_PORT_DROP);
  2038. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  2039. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  2040. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  2041. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  2042. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  2043. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  2044. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  2045. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  2046. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  2047. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  2048. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  2049. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  2050. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  2051. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  2052. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  2053. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  2054. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  2055. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  2056. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  2057. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  2058. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  2059. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  2060. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  2061. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  2062. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  2063. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  2064. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  2065. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  2066. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  2067. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  2068. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  2069. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  2070. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  2071. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  2072. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  2073. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  2074. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  2075. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  2076. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  2077. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  2078. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  2079. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  2080. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  2081. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  2082. #undef GET_STAT
  2083. #undef GET_STAT_COM
  2084. }
  2085. /**
  2086. * t4_wol_magic_enable - enable/disable magic packet WoL
  2087. * @adap: the adapter
  2088. * @port: the physical port index
  2089. * @addr: MAC address expected in magic packets, %NULL to disable
  2090. *
  2091. * Enables/disables magic packet wake-on-LAN for the selected port.
  2092. */
  2093. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  2094. const u8 *addr)
  2095. {
  2096. u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
  2097. if (is_t4(adap->chip)) {
  2098. mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
  2099. mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
  2100. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2101. } else {
  2102. mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
  2103. mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
  2104. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2105. }
  2106. if (addr) {
  2107. t4_write_reg(adap, mag_id_reg_l,
  2108. (addr[2] << 24) | (addr[3] << 16) |
  2109. (addr[4] << 8) | addr[5]);
  2110. t4_write_reg(adap, mag_id_reg_h,
  2111. (addr[0] << 8) | addr[1]);
  2112. }
  2113. t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
  2114. addr ? MAGICEN : 0);
  2115. }
  2116. /**
  2117. * t4_wol_pat_enable - enable/disable pattern-based WoL
  2118. * @adap: the adapter
  2119. * @port: the physical port index
  2120. * @map: bitmap of which HW pattern filters to set
  2121. * @mask0: byte mask for bytes 0-63 of a packet
  2122. * @mask1: byte mask for bytes 64-127 of a packet
  2123. * @crc: Ethernet CRC for selected bytes
  2124. * @enable: enable/disable switch
  2125. *
  2126. * Sets the pattern filters indicated in @map to mask out the bytes
  2127. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2128. * the resulting packet against @crc. If @enable is %true pattern-based
  2129. * WoL is enabled, otherwise disabled.
  2130. */
  2131. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2132. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2133. {
  2134. int i;
  2135. u32 port_cfg_reg;
  2136. if (is_t4(adap->chip))
  2137. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2138. else
  2139. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2140. if (!enable) {
  2141. t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
  2142. return 0;
  2143. }
  2144. if (map > 0xff)
  2145. return -EINVAL;
  2146. #define EPIO_REG(name) \
  2147. (is_t4(adap->chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
  2148. T5_PORT_REG(port, MAC_PORT_EPIO_##name))
  2149. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2150. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2151. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2152. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2153. if (!(map & 1))
  2154. continue;
  2155. /* write byte masks */
  2156. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2157. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2158. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2159. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2160. return -ETIMEDOUT;
  2161. /* write CRC */
  2162. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2163. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2164. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2165. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2166. return -ETIMEDOUT;
  2167. }
  2168. #undef EPIO_REG
  2169. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2170. return 0;
  2171. }
  2172. /* t4_mk_filtdelwr - create a delete filter WR
  2173. * @ftid: the filter ID
  2174. * @wr: the filter work request to populate
  2175. * @qid: ingress queue to receive the delete notification
  2176. *
  2177. * Creates a filter work request to delete the supplied filter. If @qid is
  2178. * negative the delete notification is suppressed.
  2179. */
  2180. void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
  2181. {
  2182. memset(wr, 0, sizeof(*wr));
  2183. wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
  2184. wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16));
  2185. wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
  2186. V_FW_FILTER_WR_NOREPLY(qid < 0));
  2187. wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
  2188. if (qid >= 0)
  2189. wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
  2190. }
  2191. #define INIT_CMD(var, cmd, rd_wr) do { \
  2192. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2193. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2194. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2195. } while (0)
  2196. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2197. u32 addr, u32 val)
  2198. {
  2199. struct fw_ldst_cmd c;
  2200. memset(&c, 0, sizeof(c));
  2201. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2202. FW_CMD_WRITE |
  2203. FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
  2204. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2205. c.u.addrval.addr = htonl(addr);
  2206. c.u.addrval.val = htonl(val);
  2207. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2208. }
  2209. /**
  2210. * t4_mem_win_read_len - read memory through PCIE memory window
  2211. * @adap: the adapter
  2212. * @addr: address of first byte requested aligned on 32b.
  2213. * @data: len bytes to hold the data read
  2214. * @len: amount of data to read from window. Must be <=
  2215. * MEMWIN0_APERATURE after adjusting for 16B for T4 and
  2216. * 128B for T5 alignment requirements of the the memory window.
  2217. *
  2218. * Read len bytes of data from MC starting at @addr.
  2219. */
  2220. int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
  2221. {
  2222. int i, off;
  2223. u32 win_pf = is_t4(adap->chip) ? 0 : V_PFNUM(adap->fn);
  2224. /* Align on a 2KB boundary.
  2225. */
  2226. off = addr & MEMWIN0_APERTURE;
  2227. if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
  2228. return -EINVAL;
  2229. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  2230. (addr & ~MEMWIN0_APERTURE) | win_pf);
  2231. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  2232. for (i = 0; i < len; i += 4)
  2233. *data++ = (__force __be32) t4_read_reg(adap,
  2234. (MEMWIN0_BASE + off + i));
  2235. return 0;
  2236. }
  2237. /**
  2238. * t4_mdio_rd - read a PHY register through MDIO
  2239. * @adap: the adapter
  2240. * @mbox: mailbox to use for the FW command
  2241. * @phy_addr: the PHY address
  2242. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2243. * @reg: the register to read
  2244. * @valp: where to store the value
  2245. *
  2246. * Issues a FW command through the given mailbox to read a PHY register.
  2247. */
  2248. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2249. unsigned int mmd, unsigned int reg, u16 *valp)
  2250. {
  2251. int ret;
  2252. struct fw_ldst_cmd c;
  2253. memset(&c, 0, sizeof(c));
  2254. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2255. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2256. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2257. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2258. FW_LDST_CMD_MMD(mmd));
  2259. c.u.mdio.raddr = htons(reg);
  2260. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2261. if (ret == 0)
  2262. *valp = ntohs(c.u.mdio.rval);
  2263. return ret;
  2264. }
  2265. /**
  2266. * t4_mdio_wr - write a PHY register through MDIO
  2267. * @adap: the adapter
  2268. * @mbox: mailbox to use for the FW command
  2269. * @phy_addr: the PHY address
  2270. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2271. * @reg: the register to write
  2272. * @valp: value to write
  2273. *
  2274. * Issues a FW command through the given mailbox to write a PHY register.
  2275. */
  2276. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2277. unsigned int mmd, unsigned int reg, u16 val)
  2278. {
  2279. struct fw_ldst_cmd c;
  2280. memset(&c, 0, sizeof(c));
  2281. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2282. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2283. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2284. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2285. FW_LDST_CMD_MMD(mmd));
  2286. c.u.mdio.raddr = htons(reg);
  2287. c.u.mdio.rval = htons(val);
  2288. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2289. }
  2290. /**
  2291. * t4_fw_hello - establish communication with FW
  2292. * @adap: the adapter
  2293. * @mbox: mailbox to use for the FW command
  2294. * @evt_mbox: mailbox to receive async FW events
  2295. * @master: specifies the caller's willingness to be the device master
  2296. * @state: returns the current device state (if non-NULL)
  2297. *
  2298. * Issues a command to establish communication with FW. Returns either
  2299. * an error (negative integer) or the mailbox of the Master PF.
  2300. */
  2301. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2302. enum dev_master master, enum dev_state *state)
  2303. {
  2304. int ret;
  2305. struct fw_hello_cmd c;
  2306. u32 v;
  2307. unsigned int master_mbox;
  2308. int retries = FW_CMD_HELLO_RETRIES;
  2309. retry:
  2310. memset(&c, 0, sizeof(c));
  2311. INIT_CMD(c, HELLO, WRITE);
  2312. c.err_to_clearinit = htonl(
  2313. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2314. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2315. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
  2316. FW_HELLO_CMD_MBMASTER_MASK) |
  2317. FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
  2318. FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
  2319. FW_HELLO_CMD_CLEARINIT);
  2320. /*
  2321. * Issue the HELLO command to the firmware. If it's not successful
  2322. * but indicates that we got a "busy" or "timeout" condition, retry
  2323. * the HELLO until we exhaust our retry limit.
  2324. */
  2325. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2326. if (ret < 0) {
  2327. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2328. goto retry;
  2329. return ret;
  2330. }
  2331. v = ntohl(c.err_to_clearinit);
  2332. master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
  2333. if (state) {
  2334. if (v & FW_HELLO_CMD_ERR)
  2335. *state = DEV_STATE_ERR;
  2336. else if (v & FW_HELLO_CMD_INIT)
  2337. *state = DEV_STATE_INIT;
  2338. else
  2339. *state = DEV_STATE_UNINIT;
  2340. }
  2341. /*
  2342. * If we're not the Master PF then we need to wait around for the
  2343. * Master PF Driver to finish setting up the adapter.
  2344. *
  2345. * Note that we also do this wait if we're a non-Master-capable PF and
  2346. * there is no current Master PF; a Master PF may show up momentarily
  2347. * and we wouldn't want to fail pointlessly. (This can happen when an
  2348. * OS loads lots of different drivers rapidly at the same time). In
  2349. * this case, the Master PF returned by the firmware will be
  2350. * FW_PCIE_FW_MASTER_MASK so the test below will work ...
  2351. */
  2352. if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
  2353. master_mbox != mbox) {
  2354. int waiting = FW_CMD_HELLO_TIMEOUT;
  2355. /*
  2356. * Wait for the firmware to either indicate an error or
  2357. * initialized state. If we see either of these we bail out
  2358. * and report the issue to the caller. If we exhaust the
  2359. * "hello timeout" and we haven't exhausted our retries, try
  2360. * again. Otherwise bail with a timeout error.
  2361. */
  2362. for (;;) {
  2363. u32 pcie_fw;
  2364. msleep(50);
  2365. waiting -= 50;
  2366. /*
  2367. * If neither Error nor Initialialized are indicated
  2368. * by the firmware keep waiting till we exaust our
  2369. * timeout ... and then retry if we haven't exhausted
  2370. * our retries ...
  2371. */
  2372. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  2373. if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
  2374. if (waiting <= 0) {
  2375. if (retries-- > 0)
  2376. goto retry;
  2377. return -ETIMEDOUT;
  2378. }
  2379. continue;
  2380. }
  2381. /*
  2382. * We either have an Error or Initialized condition
  2383. * report errors preferentially.
  2384. */
  2385. if (state) {
  2386. if (pcie_fw & FW_PCIE_FW_ERR)
  2387. *state = DEV_STATE_ERR;
  2388. else if (pcie_fw & FW_PCIE_FW_INIT)
  2389. *state = DEV_STATE_INIT;
  2390. }
  2391. /*
  2392. * If we arrived before a Master PF was selected and
  2393. * there's not a valid Master PF, grab its identity
  2394. * for our caller.
  2395. */
  2396. if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
  2397. (pcie_fw & FW_PCIE_FW_MASTER_VLD))
  2398. master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
  2399. break;
  2400. }
  2401. }
  2402. return master_mbox;
  2403. }
  2404. /**
  2405. * t4_fw_bye - end communication with FW
  2406. * @adap: the adapter
  2407. * @mbox: mailbox to use for the FW command
  2408. *
  2409. * Issues a command to terminate communication with FW.
  2410. */
  2411. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2412. {
  2413. struct fw_bye_cmd c;
  2414. memset(&c, 0, sizeof(c));
  2415. INIT_CMD(c, BYE, WRITE);
  2416. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2417. }
  2418. /**
  2419. * t4_init_cmd - ask FW to initialize the device
  2420. * @adap: the adapter
  2421. * @mbox: mailbox to use for the FW command
  2422. *
  2423. * Issues a command to FW to partially initialize the device. This
  2424. * performs initialization that generally doesn't depend on user input.
  2425. */
  2426. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2427. {
  2428. struct fw_initialize_cmd c;
  2429. memset(&c, 0, sizeof(c));
  2430. INIT_CMD(c, INITIALIZE, WRITE);
  2431. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2432. }
  2433. /**
  2434. * t4_fw_reset - issue a reset to FW
  2435. * @adap: the adapter
  2436. * @mbox: mailbox to use for the FW command
  2437. * @reset: specifies the type of reset to perform
  2438. *
  2439. * Issues a reset command of the specified type to FW.
  2440. */
  2441. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2442. {
  2443. struct fw_reset_cmd c;
  2444. memset(&c, 0, sizeof(c));
  2445. INIT_CMD(c, RESET, WRITE);
  2446. c.val = htonl(reset);
  2447. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2448. }
  2449. /**
  2450. * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
  2451. * @adap: the adapter
  2452. * @mbox: mailbox to use for the FW RESET command (if desired)
  2453. * @force: force uP into RESET even if FW RESET command fails
  2454. *
  2455. * Issues a RESET command to firmware (if desired) with a HALT indication
  2456. * and then puts the microprocessor into RESET state. The RESET command
  2457. * will only be issued if a legitimate mailbox is provided (mbox <=
  2458. * FW_PCIE_FW_MASTER_MASK).
  2459. *
  2460. * This is generally used in order for the host to safely manipulate the
  2461. * adapter without fear of conflicting with whatever the firmware might
  2462. * be doing. The only way out of this state is to RESTART the firmware
  2463. * ...
  2464. */
  2465. int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
  2466. {
  2467. int ret = 0;
  2468. /*
  2469. * If a legitimate mailbox is provided, issue a RESET command
  2470. * with a HALT indication.
  2471. */
  2472. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2473. struct fw_reset_cmd c;
  2474. memset(&c, 0, sizeof(c));
  2475. INIT_CMD(c, RESET, WRITE);
  2476. c.val = htonl(PIORST | PIORSTMODE);
  2477. c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
  2478. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2479. }
  2480. /*
  2481. * Normally we won't complete the operation if the firmware RESET
  2482. * command fails but if our caller insists we'll go ahead and put the
  2483. * uP into RESET. This can be useful if the firmware is hung or even
  2484. * missing ... We'll have to take the risk of putting the uP into
  2485. * RESET without the cooperation of firmware in that case.
  2486. *
  2487. * We also force the firmware's HALT flag to be on in case we bypassed
  2488. * the firmware RESET command above or we're dealing with old firmware
  2489. * which doesn't have the HALT capability. This will serve as a flag
  2490. * for the incoming firmware to know that it's coming out of a HALT
  2491. * rather than a RESET ... if it's new enough to understand that ...
  2492. */
  2493. if (ret == 0 || force) {
  2494. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
  2495. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
  2496. FW_PCIE_FW_HALT);
  2497. }
  2498. /*
  2499. * And we always return the result of the firmware RESET command
  2500. * even when we force the uP into RESET ...
  2501. */
  2502. return ret;
  2503. }
  2504. /**
  2505. * t4_fw_restart - restart the firmware by taking the uP out of RESET
  2506. * @adap: the adapter
  2507. * @reset: if we want to do a RESET to restart things
  2508. *
  2509. * Restart firmware previously halted by t4_fw_halt(). On successful
  2510. * return the previous PF Master remains as the new PF Master and there
  2511. * is no need to issue a new HELLO command, etc.
  2512. *
  2513. * We do this in two ways:
  2514. *
  2515. * 1. If we're dealing with newer firmware we'll simply want to take
  2516. * the chip's microprocessor out of RESET. This will cause the
  2517. * firmware to start up from its start vector. And then we'll loop
  2518. * until the firmware indicates it's started again (PCIE_FW.HALT
  2519. * reset to 0) or we timeout.
  2520. *
  2521. * 2. If we're dealing with older firmware then we'll need to RESET
  2522. * the chip since older firmware won't recognize the PCIE_FW.HALT
  2523. * flag and automatically RESET itself on startup.
  2524. */
  2525. int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
  2526. {
  2527. if (reset) {
  2528. /*
  2529. * Since we're directing the RESET instead of the firmware
  2530. * doing it automatically, we need to clear the PCIE_FW.HALT
  2531. * bit.
  2532. */
  2533. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
  2534. /*
  2535. * If we've been given a valid mailbox, first try to get the
  2536. * firmware to do the RESET. If that works, great and we can
  2537. * return success. Otherwise, if we haven't been given a
  2538. * valid mailbox or the RESET command failed, fall back to
  2539. * hitting the chip with a hammer.
  2540. */
  2541. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2542. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2543. msleep(100);
  2544. if (t4_fw_reset(adap, mbox,
  2545. PIORST | PIORSTMODE) == 0)
  2546. return 0;
  2547. }
  2548. t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
  2549. msleep(2000);
  2550. } else {
  2551. int ms;
  2552. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2553. for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
  2554. if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
  2555. return 0;
  2556. msleep(100);
  2557. ms += 100;
  2558. }
  2559. return -ETIMEDOUT;
  2560. }
  2561. return 0;
  2562. }
  2563. /**
  2564. * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
  2565. * @adap: the adapter
  2566. * @mbox: mailbox to use for the FW RESET command (if desired)
  2567. * @fw_data: the firmware image to write
  2568. * @size: image size
  2569. * @force: force upgrade even if firmware doesn't cooperate
  2570. *
  2571. * Perform all of the steps necessary for upgrading an adapter's
  2572. * firmware image. Normally this requires the cooperation of the
  2573. * existing firmware in order to halt all existing activities
  2574. * but if an invalid mailbox token is passed in we skip that step
  2575. * (though we'll still put the adapter microprocessor into RESET in
  2576. * that case).
  2577. *
  2578. * On successful return the new firmware will have been loaded and
  2579. * the adapter will have been fully RESET losing all previous setup
  2580. * state. On unsuccessful return the adapter may be completely hosed ...
  2581. * positive errno indicates that the adapter is ~probably~ intact, a
  2582. * negative errno indicates that things are looking bad ...
  2583. */
  2584. int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  2585. const u8 *fw_data, unsigned int size, int force)
  2586. {
  2587. const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
  2588. int reset, ret;
  2589. ret = t4_fw_halt(adap, mbox, force);
  2590. if (ret < 0 && !force)
  2591. return ret;
  2592. ret = t4_load_fw(adap, fw_data, size);
  2593. if (ret < 0)
  2594. return ret;
  2595. /*
  2596. * Older versions of the firmware don't understand the new
  2597. * PCIE_FW.HALT flag and so won't know to perform a RESET when they
  2598. * restart. So for newly loaded older firmware we'll have to do the
  2599. * RESET for it so it starts up on a clean slate. We can tell if
  2600. * the newly loaded firmware will handle this right by checking
  2601. * its header flags to see if it advertises the capability.
  2602. */
  2603. reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
  2604. return t4_fw_restart(adap, mbox, reset);
  2605. }
  2606. /**
  2607. * t4_fw_config_file - setup an adapter via a Configuration File
  2608. * @adap: the adapter
  2609. * @mbox: mailbox to use for the FW command
  2610. * @mtype: the memory type where the Configuration File is located
  2611. * @maddr: the memory address where the Configuration File is located
  2612. * @finiver: return value for CF [fini] version
  2613. * @finicsum: return value for CF [fini] checksum
  2614. * @cfcsum: return value for CF computed checksum
  2615. *
  2616. * Issue a command to get the firmware to process the Configuration
  2617. * File located at the specified mtype/maddress. If the Configuration
  2618. * File is processed successfully and return value pointers are
  2619. * provided, the Configuration File "[fini] section version and
  2620. * checksum values will be returned along with the computed checksum.
  2621. * It's up to the caller to decide how it wants to respond to the
  2622. * checksums not matching but it recommended that a prominant warning
  2623. * be emitted in order to help people rapidly identify changed or
  2624. * corrupted Configuration Files.
  2625. *
  2626. * Also note that it's possible to modify things like "niccaps",
  2627. * "toecaps",etc. between processing the Configuration File and telling
  2628. * the firmware to use the new configuration. Callers which want to
  2629. * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
  2630. * Configuration Files if they want to do this.
  2631. */
  2632. int t4_fw_config_file(struct adapter *adap, unsigned int mbox,
  2633. unsigned int mtype, unsigned int maddr,
  2634. u32 *finiver, u32 *finicsum, u32 *cfcsum)
  2635. {
  2636. struct fw_caps_config_cmd caps_cmd;
  2637. int ret;
  2638. /*
  2639. * Tell the firmware to process the indicated Configuration File.
  2640. * If there are no errors and the caller has provided return value
  2641. * pointers for the [fini] section version, checksum and computed
  2642. * checksum, pass those back to the caller.
  2643. */
  2644. memset(&caps_cmd, 0, sizeof(caps_cmd));
  2645. caps_cmd.op_to_write =
  2646. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2647. FW_CMD_REQUEST |
  2648. FW_CMD_READ);
  2649. caps_cmd.cfvalid_to_len16 =
  2650. htonl(FW_CAPS_CONFIG_CMD_CFVALID |
  2651. FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
  2652. FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
  2653. FW_LEN16(caps_cmd));
  2654. ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd);
  2655. if (ret < 0)
  2656. return ret;
  2657. if (finiver)
  2658. *finiver = ntohl(caps_cmd.finiver);
  2659. if (finicsum)
  2660. *finicsum = ntohl(caps_cmd.finicsum);
  2661. if (cfcsum)
  2662. *cfcsum = ntohl(caps_cmd.cfcsum);
  2663. /*
  2664. * And now tell the firmware to use the configuration we just loaded.
  2665. */
  2666. caps_cmd.op_to_write =
  2667. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2668. FW_CMD_REQUEST |
  2669. FW_CMD_WRITE);
  2670. caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
  2671. return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL);
  2672. }
  2673. /**
  2674. * t4_fixup_host_params - fix up host-dependent parameters
  2675. * @adap: the adapter
  2676. * @page_size: the host's Base Page Size
  2677. * @cache_line_size: the host's Cache Line Size
  2678. *
  2679. * Various registers in T4 contain values which are dependent on the
  2680. * host's Base Page and Cache Line Sizes. This function will fix all of
  2681. * those registers with the appropriate values as passed in ...
  2682. */
  2683. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  2684. unsigned int cache_line_size)
  2685. {
  2686. unsigned int page_shift = fls(page_size) - 1;
  2687. unsigned int sge_hps = page_shift - 10;
  2688. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  2689. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  2690. unsigned int fl_align_log = fls(fl_align) - 1;
  2691. t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
  2692. HOSTPAGESIZEPF0(sge_hps) |
  2693. HOSTPAGESIZEPF1(sge_hps) |
  2694. HOSTPAGESIZEPF2(sge_hps) |
  2695. HOSTPAGESIZEPF3(sge_hps) |
  2696. HOSTPAGESIZEPF4(sge_hps) |
  2697. HOSTPAGESIZEPF5(sge_hps) |
  2698. HOSTPAGESIZEPF6(sge_hps) |
  2699. HOSTPAGESIZEPF7(sge_hps));
  2700. t4_set_reg_field(adap, SGE_CONTROL,
  2701. INGPADBOUNDARY_MASK |
  2702. EGRSTATUSPAGESIZE_MASK,
  2703. INGPADBOUNDARY(fl_align_log - 5) |
  2704. EGRSTATUSPAGESIZE(stat_len != 64));
  2705. /*
  2706. * Adjust various SGE Free List Host Buffer Sizes.
  2707. *
  2708. * This is something of a crock since we're using fixed indices into
  2709. * the array which are also known by the sge.c code and the T4
  2710. * Firmware Configuration File. We need to come up with a much better
  2711. * approach to managing this array. For now, the first four entries
  2712. * are:
  2713. *
  2714. * 0: Host Page Size
  2715. * 1: 64KB
  2716. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  2717. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  2718. *
  2719. * For the single-MTU buffers in unpacked mode we need to include
  2720. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  2721. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  2722. * Padding boundry. All of these are accommodated in the Factory
  2723. * Default Firmware Configuration File but we need to adjust it for
  2724. * this host's cache line size.
  2725. */
  2726. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
  2727. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
  2728. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
  2729. & ~(fl_align-1));
  2730. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
  2731. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
  2732. & ~(fl_align-1));
  2733. t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
  2734. return 0;
  2735. }
  2736. /**
  2737. * t4_fw_initialize - ask FW to initialize the device
  2738. * @adap: the adapter
  2739. * @mbox: mailbox to use for the FW command
  2740. *
  2741. * Issues a command to FW to partially initialize the device. This
  2742. * performs initialization that generally doesn't depend on user input.
  2743. */
  2744. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  2745. {
  2746. struct fw_initialize_cmd c;
  2747. memset(&c, 0, sizeof(c));
  2748. INIT_CMD(c, INITIALIZE, WRITE);
  2749. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2750. }
  2751. /**
  2752. * t4_query_params - query FW or device parameters
  2753. * @adap: the adapter
  2754. * @mbox: mailbox to use for the FW command
  2755. * @pf: the PF
  2756. * @vf: the VF
  2757. * @nparams: the number of parameters
  2758. * @params: the parameter names
  2759. * @val: the parameter values
  2760. *
  2761. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2762. * queried at once.
  2763. */
  2764. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2765. unsigned int vf, unsigned int nparams, const u32 *params,
  2766. u32 *val)
  2767. {
  2768. int i, ret;
  2769. struct fw_params_cmd c;
  2770. __be32 *p = &c.param[0].mnem;
  2771. if (nparams > 7)
  2772. return -EINVAL;
  2773. memset(&c, 0, sizeof(c));
  2774. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2775. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2776. FW_PARAMS_CMD_VFN(vf));
  2777. c.retval_len16 = htonl(FW_LEN16(c));
  2778. for (i = 0; i < nparams; i++, p += 2)
  2779. *p = htonl(*params++);
  2780. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2781. if (ret == 0)
  2782. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2783. *val++ = ntohl(*p);
  2784. return ret;
  2785. }
  2786. /**
  2787. * t4_set_params - sets FW or device parameters
  2788. * @adap: the adapter
  2789. * @mbox: mailbox to use for the FW command
  2790. * @pf: the PF
  2791. * @vf: the VF
  2792. * @nparams: the number of parameters
  2793. * @params: the parameter names
  2794. * @val: the parameter values
  2795. *
  2796. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2797. * specified at once.
  2798. */
  2799. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2800. unsigned int vf, unsigned int nparams, const u32 *params,
  2801. const u32 *val)
  2802. {
  2803. struct fw_params_cmd c;
  2804. __be32 *p = &c.param[0].mnem;
  2805. if (nparams > 7)
  2806. return -EINVAL;
  2807. memset(&c, 0, sizeof(c));
  2808. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2809. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2810. FW_PARAMS_CMD_VFN(vf));
  2811. c.retval_len16 = htonl(FW_LEN16(c));
  2812. while (nparams--) {
  2813. *p++ = htonl(*params++);
  2814. *p++ = htonl(*val++);
  2815. }
  2816. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2817. }
  2818. /**
  2819. * t4_cfg_pfvf - configure PF/VF resource limits
  2820. * @adap: the adapter
  2821. * @mbox: mailbox to use for the FW command
  2822. * @pf: the PF being configured
  2823. * @vf: the VF being configured
  2824. * @txq: the max number of egress queues
  2825. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2826. * @rxqi: the max number of interrupt-capable ingress queues
  2827. * @rxq: the max number of interruptless ingress queues
  2828. * @tc: the PCI traffic class
  2829. * @vi: the max number of virtual interfaces
  2830. * @cmask: the channel access rights mask for the PF/VF
  2831. * @pmask: the port access rights mask for the PF/VF
  2832. * @nexact: the maximum number of exact MPS filters
  2833. * @rcaps: read capabilities
  2834. * @wxcaps: write/execute capabilities
  2835. *
  2836. * Configures resource limits and capabilities for a physical or virtual
  2837. * function.
  2838. */
  2839. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2840. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2841. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2842. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2843. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2844. {
  2845. struct fw_pfvf_cmd c;
  2846. memset(&c, 0, sizeof(c));
  2847. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2848. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2849. FW_PFVF_CMD_VFN(vf));
  2850. c.retval_len16 = htonl(FW_LEN16(c));
  2851. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2852. FW_PFVF_CMD_NIQ(rxq));
  2853. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2854. FW_PFVF_CMD_PMASK(pmask) |
  2855. FW_PFVF_CMD_NEQ(txq));
  2856. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2857. FW_PFVF_CMD_NEXACTF(nexact));
  2858. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2859. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2860. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2861. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2862. }
  2863. /**
  2864. * t4_alloc_vi - allocate a virtual interface
  2865. * @adap: the adapter
  2866. * @mbox: mailbox to use for the FW command
  2867. * @port: physical port associated with the VI
  2868. * @pf: the PF owning the VI
  2869. * @vf: the VF owning the VI
  2870. * @nmac: number of MAC addresses needed (1 to 5)
  2871. * @mac: the MAC addresses of the VI
  2872. * @rss_size: size of RSS table slice associated with this VI
  2873. *
  2874. * Allocates a virtual interface for the given physical port. If @mac is
  2875. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2876. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2877. * stored consecutively so the space needed is @nmac * 6 bytes.
  2878. * Returns a negative error number or the non-negative VI id.
  2879. */
  2880. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2881. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2882. unsigned int *rss_size)
  2883. {
  2884. int ret;
  2885. struct fw_vi_cmd c;
  2886. memset(&c, 0, sizeof(c));
  2887. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2888. FW_CMD_WRITE | FW_CMD_EXEC |
  2889. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2890. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2891. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2892. c.nmac = nmac - 1;
  2893. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2894. if (ret)
  2895. return ret;
  2896. if (mac) {
  2897. memcpy(mac, c.mac, sizeof(c.mac));
  2898. switch (nmac) {
  2899. case 5:
  2900. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2901. case 4:
  2902. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2903. case 3:
  2904. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2905. case 2:
  2906. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2907. }
  2908. }
  2909. if (rss_size)
  2910. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2911. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2912. }
  2913. /**
  2914. * t4_set_rxmode - set Rx properties of a virtual interface
  2915. * @adap: the adapter
  2916. * @mbox: mailbox to use for the FW command
  2917. * @viid: the VI id
  2918. * @mtu: the new MTU or -1
  2919. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2920. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2921. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2922. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2923. * @sleep_ok: if true we may sleep while awaiting command completion
  2924. *
  2925. * Sets Rx properties of a virtual interface.
  2926. */
  2927. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2928. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2929. bool sleep_ok)
  2930. {
  2931. struct fw_vi_rxmode_cmd c;
  2932. /* convert to FW values */
  2933. if (mtu < 0)
  2934. mtu = FW_RXMODE_MTU_NO_CHG;
  2935. if (promisc < 0)
  2936. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2937. if (all_multi < 0)
  2938. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2939. if (bcast < 0)
  2940. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2941. if (vlanex < 0)
  2942. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2943. memset(&c, 0, sizeof(c));
  2944. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2945. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2946. c.retval_len16 = htonl(FW_LEN16(c));
  2947. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2948. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2949. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2950. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2951. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2952. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2953. }
  2954. /**
  2955. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2956. * @adap: the adapter
  2957. * @mbox: mailbox to use for the FW command
  2958. * @viid: the VI id
  2959. * @free: if true any existing filters for this VI id are first removed
  2960. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2961. * @addr: the MAC address(es)
  2962. * @idx: where to store the index of each allocated filter
  2963. * @hash: pointer to hash address filter bitmap
  2964. * @sleep_ok: call is allowed to sleep
  2965. *
  2966. * Allocates an exact-match filter for each of the supplied addresses and
  2967. * sets it to the corresponding address. If @idx is not %NULL it should
  2968. * have at least @naddr entries, each of which will be set to the index of
  2969. * the filter allocated for the corresponding MAC address. If a filter
  2970. * could not be allocated for an address its index is set to 0xffff.
  2971. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2972. * are hashed and update the hash filter bitmap pointed at by @hash.
  2973. *
  2974. * Returns a negative error number or the number of filters allocated.
  2975. */
  2976. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2977. unsigned int viid, bool free, unsigned int naddr,
  2978. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2979. {
  2980. int i, ret;
  2981. struct fw_vi_mac_cmd c;
  2982. struct fw_vi_mac_exact *p;
  2983. unsigned int max_naddr = is_t4(adap->chip) ?
  2984. NUM_MPS_CLS_SRAM_L_INSTANCES :
  2985. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  2986. if (naddr > 7)
  2987. return -EINVAL;
  2988. memset(&c, 0, sizeof(c));
  2989. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2990. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2991. FW_VI_MAC_CMD_VIID(viid));
  2992. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2993. FW_CMD_LEN16((naddr + 2) / 2));
  2994. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2995. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2996. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2997. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2998. }
  2999. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  3000. if (ret)
  3001. return ret;
  3002. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3003. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3004. if (idx)
  3005. idx[i] = index >= max_naddr ? 0xffff : index;
  3006. if (index < max_naddr)
  3007. ret++;
  3008. else if (hash)
  3009. *hash |= (1ULL << hash_mac_addr(addr[i]));
  3010. }
  3011. return ret;
  3012. }
  3013. /**
  3014. * t4_change_mac - modifies the exact-match filter for a MAC address
  3015. * @adap: the adapter
  3016. * @mbox: mailbox to use for the FW command
  3017. * @viid: the VI id
  3018. * @idx: index of existing filter for old value of MAC address, or -1
  3019. * @addr: the new MAC address value
  3020. * @persist: whether a new MAC allocation should be persistent
  3021. * @add_smt: if true also add the address to the HW SMT
  3022. *
  3023. * Modifies an exact-match filter and sets it to the new MAC address.
  3024. * Note that in general it is not possible to modify the value of a given
  3025. * filter so the generic way to modify an address filter is to free the one
  3026. * being used by the old address value and allocate a new filter for the
  3027. * new address value. @idx can be -1 if the address is a new addition.
  3028. *
  3029. * Returns a negative error number or the index of the filter with the new
  3030. * MAC value.
  3031. */
  3032. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3033. int idx, const u8 *addr, bool persist, bool add_smt)
  3034. {
  3035. int ret, mode;
  3036. struct fw_vi_mac_cmd c;
  3037. struct fw_vi_mac_exact *p = c.u.exact;
  3038. unsigned int max_mac_addr = is_t4(adap->chip) ?
  3039. NUM_MPS_CLS_SRAM_L_INSTANCES :
  3040. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  3041. if (idx < 0) /* new allocation */
  3042. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  3043. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  3044. memset(&c, 0, sizeof(c));
  3045. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3046. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  3047. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  3048. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  3049. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  3050. FW_VI_MAC_CMD_IDX(idx));
  3051. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  3052. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3053. if (ret == 0) {
  3054. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3055. if (ret >= max_mac_addr)
  3056. ret = -ENOMEM;
  3057. }
  3058. return ret;
  3059. }
  3060. /**
  3061. * t4_set_addr_hash - program the MAC inexact-match hash filter
  3062. * @adap: the adapter
  3063. * @mbox: mailbox to use for the FW command
  3064. * @viid: the VI id
  3065. * @ucast: whether the hash filter should also match unicast addresses
  3066. * @vec: the value to be written to the hash filter
  3067. * @sleep_ok: call is allowed to sleep
  3068. *
  3069. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  3070. */
  3071. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3072. bool ucast, u64 vec, bool sleep_ok)
  3073. {
  3074. struct fw_vi_mac_cmd c;
  3075. memset(&c, 0, sizeof(c));
  3076. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3077. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  3078. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  3079. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  3080. FW_CMD_LEN16(1));
  3081. c.u.hash.hashvec = cpu_to_be64(vec);
  3082. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3083. }
  3084. /**
  3085. * t4_enable_vi - enable/disable a virtual interface
  3086. * @adap: the adapter
  3087. * @mbox: mailbox to use for the FW command
  3088. * @viid: the VI id
  3089. * @rx_en: 1=enable Rx, 0=disable Rx
  3090. * @tx_en: 1=enable Tx, 0=disable Tx
  3091. *
  3092. * Enables/disables a virtual interface.
  3093. */
  3094. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3095. bool rx_en, bool tx_en)
  3096. {
  3097. struct fw_vi_enable_cmd c;
  3098. memset(&c, 0, sizeof(c));
  3099. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3100. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3101. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  3102. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  3103. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3104. }
  3105. /**
  3106. * t4_identify_port - identify a VI's port by blinking its LED
  3107. * @adap: the adapter
  3108. * @mbox: mailbox to use for the FW command
  3109. * @viid: the VI id
  3110. * @nblinks: how many times to blink LED at 2.5 Hz
  3111. *
  3112. * Identifies a VI's port by blinking its LED.
  3113. */
  3114. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3115. unsigned int nblinks)
  3116. {
  3117. struct fw_vi_enable_cmd c;
  3118. memset(&c, 0, sizeof(c));
  3119. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3120. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3121. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  3122. c.blinkdur = htons(nblinks);
  3123. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3124. }
  3125. /**
  3126. * t4_iq_free - free an ingress queue and its FLs
  3127. * @adap: the adapter
  3128. * @mbox: mailbox to use for the FW command
  3129. * @pf: the PF owning the queues
  3130. * @vf: the VF owning the queues
  3131. * @iqtype: the ingress queue type
  3132. * @iqid: ingress queue id
  3133. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  3134. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  3135. *
  3136. * Frees an ingress queue and its associated FLs, if any.
  3137. */
  3138. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3139. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  3140. unsigned int fl0id, unsigned int fl1id)
  3141. {
  3142. struct fw_iq_cmd c;
  3143. memset(&c, 0, sizeof(c));
  3144. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  3145. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  3146. FW_IQ_CMD_VFN(vf));
  3147. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  3148. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  3149. c.iqid = htons(iqid);
  3150. c.fl0id = htons(fl0id);
  3151. c.fl1id = htons(fl1id);
  3152. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3153. }
  3154. /**
  3155. * t4_eth_eq_free - free an Ethernet egress queue
  3156. * @adap: the adapter
  3157. * @mbox: mailbox to use for the FW command
  3158. * @pf: the PF owning the queue
  3159. * @vf: the VF owning the queue
  3160. * @eqid: egress queue id
  3161. *
  3162. * Frees an Ethernet egress queue.
  3163. */
  3164. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3165. unsigned int vf, unsigned int eqid)
  3166. {
  3167. struct fw_eq_eth_cmd c;
  3168. memset(&c, 0, sizeof(c));
  3169. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  3170. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  3171. FW_EQ_ETH_CMD_VFN(vf));
  3172. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  3173. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  3174. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3175. }
  3176. /**
  3177. * t4_ctrl_eq_free - free a control egress queue
  3178. * @adap: the adapter
  3179. * @mbox: mailbox to use for the FW command
  3180. * @pf: the PF owning the queue
  3181. * @vf: the VF owning the queue
  3182. * @eqid: egress queue id
  3183. *
  3184. * Frees a control egress queue.
  3185. */
  3186. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3187. unsigned int vf, unsigned int eqid)
  3188. {
  3189. struct fw_eq_ctrl_cmd c;
  3190. memset(&c, 0, sizeof(c));
  3191. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  3192. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  3193. FW_EQ_CTRL_CMD_VFN(vf));
  3194. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  3195. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  3196. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3197. }
  3198. /**
  3199. * t4_ofld_eq_free - free an offload egress queue
  3200. * @adap: the adapter
  3201. * @mbox: mailbox to use for the FW command
  3202. * @pf: the PF owning the queue
  3203. * @vf: the VF owning the queue
  3204. * @eqid: egress queue id
  3205. *
  3206. * Frees a control egress queue.
  3207. */
  3208. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3209. unsigned int vf, unsigned int eqid)
  3210. {
  3211. struct fw_eq_ofld_cmd c;
  3212. memset(&c, 0, sizeof(c));
  3213. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  3214. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  3215. FW_EQ_OFLD_CMD_VFN(vf));
  3216. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  3217. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  3218. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3219. }
  3220. /**
  3221. * t4_handle_fw_rpl - process a FW reply message
  3222. * @adap: the adapter
  3223. * @rpl: start of the FW message
  3224. *
  3225. * Processes a FW message, such as link state change messages.
  3226. */
  3227. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  3228. {
  3229. u8 opcode = *(const u8 *)rpl;
  3230. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  3231. int speed = 0, fc = 0;
  3232. const struct fw_port_cmd *p = (void *)rpl;
  3233. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  3234. int port = adap->chan_map[chan];
  3235. struct port_info *pi = adap2pinfo(adap, port);
  3236. struct link_config *lc = &pi->link_cfg;
  3237. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  3238. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  3239. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  3240. if (stat & FW_PORT_CMD_RXPAUSE)
  3241. fc |= PAUSE_RX;
  3242. if (stat & FW_PORT_CMD_TXPAUSE)
  3243. fc |= PAUSE_TX;
  3244. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  3245. speed = SPEED_100;
  3246. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  3247. speed = SPEED_1000;
  3248. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  3249. speed = SPEED_10000;
  3250. if (link_ok != lc->link_ok || speed != lc->speed ||
  3251. fc != lc->fc) { /* something changed */
  3252. lc->link_ok = link_ok;
  3253. lc->speed = speed;
  3254. lc->fc = fc;
  3255. t4_os_link_changed(adap, port, link_ok);
  3256. }
  3257. if (mod != pi->mod_type) {
  3258. pi->mod_type = mod;
  3259. t4_os_portmod_changed(adap, port);
  3260. }
  3261. }
  3262. return 0;
  3263. }
  3264. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3265. {
  3266. u16 val;
  3267. if (pci_is_pcie(adapter->pdev)) {
  3268. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3269. p->speed = val & PCI_EXP_LNKSTA_CLS;
  3270. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  3271. }
  3272. }
  3273. /**
  3274. * init_link_config - initialize a link's SW state
  3275. * @lc: structure holding the link state
  3276. * @caps: link capabilities
  3277. *
  3278. * Initializes the SW state maintained for each link, including the link's
  3279. * capabilities and default speed/flow-control/autonegotiation settings.
  3280. */
  3281. static void init_link_config(struct link_config *lc, unsigned int caps)
  3282. {
  3283. lc->supported = caps;
  3284. lc->requested_speed = 0;
  3285. lc->speed = 0;
  3286. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3287. if (lc->supported & FW_PORT_CAP_ANEG) {
  3288. lc->advertising = lc->supported & ADVERT_MASK;
  3289. lc->autoneg = AUTONEG_ENABLE;
  3290. lc->requested_fc |= PAUSE_AUTONEG;
  3291. } else {
  3292. lc->advertising = 0;
  3293. lc->autoneg = AUTONEG_DISABLE;
  3294. }
  3295. }
  3296. int t4_wait_dev_ready(struct adapter *adap)
  3297. {
  3298. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  3299. return 0;
  3300. msleep(500);
  3301. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  3302. }
  3303. static int get_flash_params(struct adapter *adap)
  3304. {
  3305. int ret;
  3306. u32 info;
  3307. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  3308. if (!ret)
  3309. ret = sf1_read(adap, 3, 0, 1, &info);
  3310. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  3311. if (ret)
  3312. return ret;
  3313. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  3314. return -EINVAL;
  3315. info >>= 16; /* log2 of size */
  3316. if (info >= 0x14 && info < 0x18)
  3317. adap->params.sf_nsec = 1 << (info - 16);
  3318. else if (info == 0x18)
  3319. adap->params.sf_nsec = 64;
  3320. else
  3321. return -EINVAL;
  3322. adap->params.sf_size = 1 << info;
  3323. adap->params.sf_fw_start =
  3324. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  3325. return 0;
  3326. }
  3327. /**
  3328. * t4_prep_adapter - prepare SW and HW for operation
  3329. * @adapter: the adapter
  3330. * @reset: if true perform a HW reset
  3331. *
  3332. * Initialize adapter SW state for the various HW modules, set initial
  3333. * values for some adapter tunables, take PHYs out of reset, and
  3334. * initialize the MDIO interface.
  3335. */
  3336. int t4_prep_adapter(struct adapter *adapter)
  3337. {
  3338. int ret, ver;
  3339. uint16_t device_id;
  3340. ret = t4_wait_dev_ready(adapter);
  3341. if (ret < 0)
  3342. return ret;
  3343. get_pci_mode(adapter, &adapter->params.pci);
  3344. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  3345. ret = get_flash_params(adapter);
  3346. if (ret < 0) {
  3347. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  3348. return ret;
  3349. }
  3350. /* Retrieve adapter's device ID
  3351. */
  3352. pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
  3353. ver = device_id >> 12;
  3354. switch (ver) {
  3355. case CHELSIO_T4:
  3356. adapter->chip = CHELSIO_CHIP_CODE(CHELSIO_T4,
  3357. adapter->params.rev);
  3358. break;
  3359. case CHELSIO_T5:
  3360. adapter->chip = CHELSIO_CHIP_CODE(CHELSIO_T5,
  3361. adapter->params.rev);
  3362. break;
  3363. default:
  3364. dev_err(adapter->pdev_dev, "Device %d is not supported\n",
  3365. device_id);
  3366. return -EINVAL;
  3367. }
  3368. /* Reassign the updated revision field */
  3369. adapter->params.rev = adapter->chip;
  3370. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3371. /*
  3372. * Default port for debugging in case we can't reach FW.
  3373. */
  3374. adapter->params.nports = 1;
  3375. adapter->params.portvec = 1;
  3376. adapter->params.vpd.cclk = 50000;
  3377. return 0;
  3378. }
  3379. int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  3380. {
  3381. u8 addr[6];
  3382. int ret, i, j = 0;
  3383. struct fw_port_cmd c;
  3384. struct fw_rss_vi_config_cmd rvc;
  3385. memset(&c, 0, sizeof(c));
  3386. memset(&rvc, 0, sizeof(rvc));
  3387. for_each_port(adap, i) {
  3388. unsigned int rss_size;
  3389. struct port_info *p = adap2pinfo(adap, i);
  3390. while ((adap->params.portvec & (1 << j)) == 0)
  3391. j++;
  3392. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  3393. FW_CMD_REQUEST | FW_CMD_READ |
  3394. FW_PORT_CMD_PORTID(j));
  3395. c.action_to_len16 = htonl(
  3396. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  3397. FW_LEN16(c));
  3398. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3399. if (ret)
  3400. return ret;
  3401. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  3402. if (ret < 0)
  3403. return ret;
  3404. p->viid = ret;
  3405. p->tx_chan = j;
  3406. p->lport = j;
  3407. p->rss_size = rss_size;
  3408. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  3409. adap->port[i]->dev_id = j;
  3410. ret = ntohl(c.u.info.lstatus_to_modtype);
  3411. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  3412. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  3413. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  3414. p->mod_type = FW_PORT_MOD_TYPE_NA;
  3415. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  3416. FW_CMD_REQUEST | FW_CMD_READ |
  3417. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  3418. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  3419. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  3420. if (ret)
  3421. return ret;
  3422. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  3423. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  3424. j++;
  3425. }
  3426. return 0;
  3427. }