hw-me.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. /*
  2. *
  3. * Intel Management Engine Interface (Intel MEI) Linux driver
  4. * Copyright (c) 2003-2012, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. */
  16. #include <linux/pci.h>
  17. #include <linux/kthread.h>
  18. #include <linux/interrupt.h>
  19. #include "mei_dev.h"
  20. #include "hw-me.h"
  21. #include "hbm.h"
  22. /**
  23. * mei_me_reg_read - Reads 32bit data from the mei device
  24. *
  25. * @dev: the device structure
  26. * @offset: offset from which to read the data
  27. *
  28. * returns register value (u32)
  29. */
  30. static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  31. unsigned long offset)
  32. {
  33. return ioread32(hw->mem_addr + offset);
  34. }
  35. /**
  36. * mei_me_reg_write - Writes 32bit data to the mei device
  37. *
  38. * @dev: the device structure
  39. * @offset: offset from which to write the data
  40. * @value: register value to write (u32)
  41. */
  42. static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  43. unsigned long offset, u32 value)
  44. {
  45. iowrite32(value, hw->mem_addr + offset);
  46. }
  47. /**
  48. * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  49. * read window register
  50. *
  51. * @dev: the device structure
  52. *
  53. * returns ME_CB_RW register value (u32)
  54. */
  55. static u32 mei_me_mecbrw_read(const struct mei_device *dev)
  56. {
  57. return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  58. }
  59. /**
  60. * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  61. *
  62. * @dev: the device structure
  63. *
  64. * returns ME_CSR_HA register value (u32)
  65. */
  66. static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
  67. {
  68. return mei_me_reg_read(hw, ME_CSR_HA);
  69. }
  70. /**
  71. * mei_hcsr_read - Reads 32bit data from the host CSR
  72. *
  73. * @dev: the device structure
  74. *
  75. * returns H_CSR register value (u32)
  76. */
  77. static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
  78. {
  79. return mei_me_reg_read(hw, H_CSR);
  80. }
  81. /**
  82. * mei_hcsr_set - writes H_CSR register to the mei device,
  83. * and ignores the H_IS bit for it is write-one-to-zero.
  84. *
  85. * @dev: the device structure
  86. */
  87. static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
  88. {
  89. hcsr &= ~H_IS;
  90. mei_me_reg_write(hw, H_CSR, hcsr);
  91. }
  92. /**
  93. * mei_me_hw_config - configure hw dependent settings
  94. *
  95. * @dev: mei device
  96. */
  97. static void mei_me_hw_config(struct mei_device *dev)
  98. {
  99. u32 hcsr = mei_hcsr_read(to_me_hw(dev));
  100. /* Doesn't change in runtime */
  101. dev->hbuf_depth = (hcsr & H_CBD) >> 24;
  102. }
  103. /**
  104. * mei_clear_interrupts - clear and stop interrupts
  105. *
  106. * @dev: the device structure
  107. */
  108. static void mei_me_intr_clear(struct mei_device *dev)
  109. {
  110. struct mei_me_hw *hw = to_me_hw(dev);
  111. u32 hcsr = mei_hcsr_read(hw);
  112. if ((hcsr & H_IS) == H_IS)
  113. mei_me_reg_write(hw, H_CSR, hcsr);
  114. }
  115. /**
  116. * mei_me_intr_enable - enables mei device interrupts
  117. *
  118. * @dev: the device structure
  119. */
  120. static void mei_me_intr_enable(struct mei_device *dev)
  121. {
  122. struct mei_me_hw *hw = to_me_hw(dev);
  123. u32 hcsr = mei_hcsr_read(hw);
  124. hcsr |= H_IE;
  125. mei_hcsr_set(hw, hcsr);
  126. }
  127. /**
  128. * mei_disable_interrupts - disables mei device interrupts
  129. *
  130. * @dev: the device structure
  131. */
  132. static void mei_me_intr_disable(struct mei_device *dev)
  133. {
  134. struct mei_me_hw *hw = to_me_hw(dev);
  135. u32 hcsr = mei_hcsr_read(hw);
  136. hcsr &= ~H_IE;
  137. mei_hcsr_set(hw, hcsr);
  138. }
  139. /**
  140. * mei_me_hw_reset_release - release device from the reset
  141. *
  142. * @dev: the device structure
  143. */
  144. static void mei_me_hw_reset_release(struct mei_device *dev)
  145. {
  146. struct mei_me_hw *hw = to_me_hw(dev);
  147. u32 hcsr = mei_hcsr_read(hw);
  148. hcsr |= H_IG;
  149. hcsr &= ~H_RST;
  150. mei_hcsr_set(hw, hcsr);
  151. }
  152. /**
  153. * mei_me_hw_reset - resets fw via mei csr register.
  154. *
  155. * @dev: the device structure
  156. * @intr_enable: if interrupt should be enabled after reset.
  157. */
  158. static void mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
  159. {
  160. struct mei_me_hw *hw = to_me_hw(dev);
  161. u32 hcsr = mei_hcsr_read(hw);
  162. dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
  163. hcsr |= (H_RST | H_IG);
  164. if (intr_enable)
  165. hcsr |= H_IE;
  166. else
  167. hcsr |= ~H_IE;
  168. mei_hcsr_set(hw, hcsr);
  169. if (dev->dev_state == MEI_DEV_POWER_DOWN)
  170. mei_me_hw_reset_release(dev);
  171. dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", mei_hcsr_read(hw));
  172. }
  173. /**
  174. * mei_me_host_set_ready - enable device
  175. *
  176. * @dev - mei device
  177. * returns bool
  178. */
  179. static void mei_me_host_set_ready(struct mei_device *dev)
  180. {
  181. struct mei_me_hw *hw = to_me_hw(dev);
  182. hw->host_hw_state |= H_IE | H_IG | H_RDY;
  183. mei_hcsr_set(hw, hw->host_hw_state);
  184. }
  185. /**
  186. * mei_me_host_is_ready - check whether the host has turned ready
  187. *
  188. * @dev - mei device
  189. * returns bool
  190. */
  191. static bool mei_me_host_is_ready(struct mei_device *dev)
  192. {
  193. struct mei_me_hw *hw = to_me_hw(dev);
  194. hw->host_hw_state = mei_hcsr_read(hw);
  195. return (hw->host_hw_state & H_RDY) == H_RDY;
  196. }
  197. /**
  198. * mei_me_hw_is_ready - check whether the me(hw) has turned ready
  199. *
  200. * @dev - mei device
  201. * returns bool
  202. */
  203. static bool mei_me_hw_is_ready(struct mei_device *dev)
  204. {
  205. struct mei_me_hw *hw = to_me_hw(dev);
  206. hw->me_hw_state = mei_me_mecsr_read(hw);
  207. return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
  208. }
  209. static int mei_me_hw_ready_wait(struct mei_device *dev)
  210. {
  211. int err;
  212. if (mei_me_hw_is_ready(dev))
  213. return 0;
  214. mutex_unlock(&dev->device_lock);
  215. err = wait_event_interruptible_timeout(dev->wait_hw_ready,
  216. dev->recvd_hw_ready, MEI_INTEROP_TIMEOUT);
  217. mutex_lock(&dev->device_lock);
  218. if (!err && !dev->recvd_hw_ready) {
  219. dev_err(&dev->pdev->dev,
  220. "wait hw ready failed. status = 0x%x\n", err);
  221. return -ETIMEDOUT;
  222. }
  223. dev->recvd_hw_ready = false;
  224. return 0;
  225. }
  226. static int mei_me_hw_start(struct mei_device *dev)
  227. {
  228. int ret = mei_me_hw_ready_wait(dev);
  229. if (ret)
  230. return ret;
  231. dev_dbg(&dev->pdev->dev, "hw is ready\n");
  232. mei_me_host_set_ready(dev);
  233. return ret;
  234. }
  235. /**
  236. * mei_hbuf_filled_slots - gets number of device filled buffer slots
  237. *
  238. * @dev: the device structure
  239. *
  240. * returns number of filled slots
  241. */
  242. static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
  243. {
  244. struct mei_me_hw *hw = to_me_hw(dev);
  245. char read_ptr, write_ptr;
  246. hw->host_hw_state = mei_hcsr_read(hw);
  247. read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
  248. write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
  249. return (unsigned char) (write_ptr - read_ptr);
  250. }
  251. /**
  252. * mei_me_hbuf_is_empty - checks if host buffer is empty.
  253. *
  254. * @dev: the device structure
  255. *
  256. * returns true if empty, false - otherwise.
  257. */
  258. static bool mei_me_hbuf_is_empty(struct mei_device *dev)
  259. {
  260. return mei_hbuf_filled_slots(dev) == 0;
  261. }
  262. /**
  263. * mei_me_hbuf_empty_slots - counts write empty slots.
  264. *
  265. * @dev: the device structure
  266. *
  267. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
  268. */
  269. static int mei_me_hbuf_empty_slots(struct mei_device *dev)
  270. {
  271. unsigned char filled_slots, empty_slots;
  272. filled_slots = mei_hbuf_filled_slots(dev);
  273. empty_slots = dev->hbuf_depth - filled_slots;
  274. /* check for overflow */
  275. if (filled_slots > dev->hbuf_depth)
  276. return -EOVERFLOW;
  277. return empty_slots;
  278. }
  279. static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
  280. {
  281. return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
  282. }
  283. /**
  284. * mei_write_message - writes a message to mei device.
  285. *
  286. * @dev: the device structure
  287. * @header: mei HECI header of message
  288. * @buf: message payload will be written
  289. *
  290. * This function returns -EIO if write has failed
  291. */
  292. static int mei_me_write_message(struct mei_device *dev,
  293. struct mei_msg_hdr *header,
  294. unsigned char *buf)
  295. {
  296. struct mei_me_hw *hw = to_me_hw(dev);
  297. unsigned long rem;
  298. unsigned long length = header->length;
  299. u32 *reg_buf = (u32 *)buf;
  300. u32 hcsr;
  301. u32 dw_cnt;
  302. int i;
  303. int empty_slots;
  304. dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
  305. empty_slots = mei_hbuf_empty_slots(dev);
  306. dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
  307. dw_cnt = mei_data2slots(length);
  308. if (empty_slots < 0 || dw_cnt > empty_slots)
  309. return -EIO;
  310. mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
  311. for (i = 0; i < length / 4; i++)
  312. mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
  313. rem = length & 0x3;
  314. if (rem > 0) {
  315. u32 reg = 0;
  316. memcpy(&reg, &buf[length - rem], rem);
  317. mei_me_reg_write(hw, H_CB_WW, reg);
  318. }
  319. hcsr = mei_hcsr_read(hw) | H_IG;
  320. mei_hcsr_set(hw, hcsr);
  321. if (!mei_me_hw_is_ready(dev))
  322. return -EIO;
  323. return 0;
  324. }
  325. /**
  326. * mei_me_count_full_read_slots - counts read full slots.
  327. *
  328. * @dev: the device structure
  329. *
  330. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
  331. */
  332. static int mei_me_count_full_read_slots(struct mei_device *dev)
  333. {
  334. struct mei_me_hw *hw = to_me_hw(dev);
  335. char read_ptr, write_ptr;
  336. unsigned char buffer_depth, filled_slots;
  337. hw->me_hw_state = mei_me_mecsr_read(hw);
  338. buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
  339. read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
  340. write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
  341. filled_slots = (unsigned char) (write_ptr - read_ptr);
  342. /* check for overflow */
  343. if (filled_slots > buffer_depth)
  344. return -EOVERFLOW;
  345. dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
  346. return (int)filled_slots;
  347. }
  348. /**
  349. * mei_me_read_slots - reads a message from mei device.
  350. *
  351. * @dev: the device structure
  352. * @buffer: message buffer will be written
  353. * @buffer_length: message size will be read
  354. */
  355. static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
  356. unsigned long buffer_length)
  357. {
  358. struct mei_me_hw *hw = to_me_hw(dev);
  359. u32 *reg_buf = (u32 *)buffer;
  360. u32 hcsr;
  361. for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
  362. *reg_buf++ = mei_me_mecbrw_read(dev);
  363. if (buffer_length > 0) {
  364. u32 reg = mei_me_mecbrw_read(dev);
  365. memcpy(reg_buf, &reg, buffer_length);
  366. }
  367. hcsr = mei_hcsr_read(hw) | H_IG;
  368. mei_hcsr_set(hw, hcsr);
  369. return 0;
  370. }
  371. /**
  372. * mei_me_irq_quick_handler - The ISR of the MEI device
  373. *
  374. * @irq: The irq number
  375. * @dev_id: pointer to the device structure
  376. *
  377. * returns irqreturn_t
  378. */
  379. irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
  380. {
  381. struct mei_device *dev = (struct mei_device *) dev_id;
  382. struct mei_me_hw *hw = to_me_hw(dev);
  383. u32 csr_reg = mei_hcsr_read(hw);
  384. if ((csr_reg & H_IS) != H_IS)
  385. return IRQ_NONE;
  386. /* clear H_IS bit in H_CSR */
  387. mei_me_reg_write(hw, H_CSR, csr_reg);
  388. return IRQ_WAKE_THREAD;
  389. }
  390. /**
  391. * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
  392. * processing.
  393. *
  394. * @irq: The irq number
  395. * @dev_id: pointer to the device structure
  396. *
  397. * returns irqreturn_t
  398. *
  399. */
  400. irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
  401. {
  402. struct mei_device *dev = (struct mei_device *) dev_id;
  403. struct mei_cl_cb complete_list;
  404. s32 slots;
  405. int rets;
  406. dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
  407. /* initialize our complete list */
  408. mutex_lock(&dev->device_lock);
  409. mei_io_list_init(&complete_list);
  410. /* Ack the interrupt here
  411. * In case of MSI we don't go through the quick handler */
  412. if (pci_dev_msi_enabled(dev->pdev))
  413. mei_clear_interrupts(dev);
  414. /* check if ME wants a reset */
  415. if (!mei_hw_is_ready(dev) &&
  416. dev->dev_state != MEI_DEV_RESETTING &&
  417. dev->dev_state != MEI_DEV_INITIALIZING) {
  418. dev_dbg(&dev->pdev->dev, "FW not ready.\n");
  419. mei_reset(dev, 1);
  420. mutex_unlock(&dev->device_lock);
  421. return IRQ_HANDLED;
  422. }
  423. /* check if we need to start the dev */
  424. if (!mei_host_is_ready(dev)) {
  425. if (mei_hw_is_ready(dev)) {
  426. dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
  427. dev->recvd_hw_ready = true;
  428. wake_up_interruptible(&dev->wait_hw_ready);
  429. mutex_unlock(&dev->device_lock);
  430. return IRQ_HANDLED;
  431. } else {
  432. dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
  433. mei_me_hw_reset_release(dev);
  434. mutex_unlock(&dev->device_lock);
  435. return IRQ_HANDLED;
  436. }
  437. }
  438. /* check slots available for reading */
  439. slots = mei_count_full_read_slots(dev);
  440. while (slots > 0) {
  441. /* we have urgent data to send so break the read */
  442. if (dev->wr_ext_msg.hdr.length)
  443. break;
  444. dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
  445. dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
  446. rets = mei_irq_read_handler(dev, &complete_list, &slots);
  447. if (rets)
  448. goto end;
  449. }
  450. rets = mei_irq_write_handler(dev, &complete_list);
  451. end:
  452. dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
  453. dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
  454. mutex_unlock(&dev->device_lock);
  455. mei_irq_compl_handler(dev, &complete_list);
  456. return IRQ_HANDLED;
  457. }
  458. static const struct mei_hw_ops mei_me_hw_ops = {
  459. .host_is_ready = mei_me_host_is_ready,
  460. .hw_is_ready = mei_me_hw_is_ready,
  461. .hw_reset = mei_me_hw_reset,
  462. .hw_config = mei_me_hw_config,
  463. .hw_start = mei_me_hw_start,
  464. .intr_clear = mei_me_intr_clear,
  465. .intr_enable = mei_me_intr_enable,
  466. .intr_disable = mei_me_intr_disable,
  467. .hbuf_free_slots = mei_me_hbuf_empty_slots,
  468. .hbuf_is_ready = mei_me_hbuf_is_empty,
  469. .hbuf_max_len = mei_me_hbuf_max_len,
  470. .write = mei_me_write_message,
  471. .rdbuf_full_slots = mei_me_count_full_read_slots,
  472. .read_hdr = mei_me_mecbrw_read,
  473. .read = mei_me_read_slots
  474. };
  475. /**
  476. * mei_me_dev_init - allocates and initializes the mei device structure
  477. *
  478. * @pdev: The pci device structure
  479. *
  480. * returns The mei_device_device pointer on success, NULL on failure.
  481. */
  482. struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
  483. {
  484. struct mei_device *dev;
  485. dev = kzalloc(sizeof(struct mei_device) +
  486. sizeof(struct mei_me_hw), GFP_KERNEL);
  487. if (!dev)
  488. return NULL;
  489. mei_device_init(dev);
  490. dev->ops = &mei_me_hw_ops;
  491. dev->pdev = pdev;
  492. return dev;
  493. }