fimc-core.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. /*
  2. * Samsung S5P/EXYNOS4 SoC series FIMC (CAMIF) driver
  3. *
  4. * Copyright (C) 2010-2012 Samsung Electronics Co., Ltd.
  5. * Sylwester Nawrocki <s.nawrocki@samsung.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published
  9. * by the Free Software Foundation, either version 2 of the License,
  10. * or (at your option) any later version.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/types.h>
  15. #include <linux/errno.h>
  16. #include <linux/bug.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/device.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/pm_runtime.h>
  21. #include <linux/list.h>
  22. #include <linux/mfd/syscon.h>
  23. #include <linux/io.h>
  24. #include <linux/of.h>
  25. #include <linux/of_device.h>
  26. #include <linux/slab.h>
  27. #include <linux/clk.h>
  28. #include <media/v4l2-ioctl.h>
  29. #include <media/videobuf2-core.h>
  30. #include <media/videobuf2-dma-contig.h>
  31. #include "fimc-core.h"
  32. #include "fimc-reg.h"
  33. #include "media-dev.h"
  34. static char *fimc_clocks[MAX_FIMC_CLOCKS] = {
  35. "sclk_fimc", "fimc"
  36. };
  37. static struct fimc_fmt fimc_formats[] = {
  38. {
  39. .name = "RGB565",
  40. .fourcc = V4L2_PIX_FMT_RGB565,
  41. .depth = { 16 },
  42. .color = FIMC_FMT_RGB565,
  43. .memplanes = 1,
  44. .colplanes = 1,
  45. .flags = FMT_FLAGS_M2M,
  46. }, {
  47. .name = "BGR666",
  48. .fourcc = V4L2_PIX_FMT_BGR666,
  49. .depth = { 32 },
  50. .color = FIMC_FMT_RGB666,
  51. .memplanes = 1,
  52. .colplanes = 1,
  53. .flags = FMT_FLAGS_M2M,
  54. }, {
  55. .name = "ARGB8888, 32 bpp",
  56. .fourcc = V4L2_PIX_FMT_RGB32,
  57. .depth = { 32 },
  58. .color = FIMC_FMT_RGB888,
  59. .memplanes = 1,
  60. .colplanes = 1,
  61. .flags = FMT_FLAGS_M2M | FMT_HAS_ALPHA,
  62. }, {
  63. .name = "ARGB1555",
  64. .fourcc = V4L2_PIX_FMT_RGB555,
  65. .depth = { 16 },
  66. .color = FIMC_FMT_RGB555,
  67. .memplanes = 1,
  68. .colplanes = 1,
  69. .flags = FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
  70. }, {
  71. .name = "ARGB4444",
  72. .fourcc = V4L2_PIX_FMT_RGB444,
  73. .depth = { 16 },
  74. .color = FIMC_FMT_RGB444,
  75. .memplanes = 1,
  76. .colplanes = 1,
  77. .flags = FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
  78. }, {
  79. .name = "YUV 4:4:4",
  80. .mbus_code = V4L2_MBUS_FMT_YUV10_1X30,
  81. .flags = FMT_FLAGS_WRITEBACK,
  82. }, {
  83. .name = "YUV 4:2:2 packed, YCbYCr",
  84. .fourcc = V4L2_PIX_FMT_YUYV,
  85. .depth = { 16 },
  86. .color = FIMC_FMT_YCBYCR422,
  87. .memplanes = 1,
  88. .colplanes = 1,
  89. .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
  90. .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
  91. }, {
  92. .name = "YUV 4:2:2 packed, CbYCrY",
  93. .fourcc = V4L2_PIX_FMT_UYVY,
  94. .depth = { 16 },
  95. .color = FIMC_FMT_CBYCRY422,
  96. .memplanes = 1,
  97. .colplanes = 1,
  98. .mbus_code = V4L2_MBUS_FMT_UYVY8_2X8,
  99. .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
  100. }, {
  101. .name = "YUV 4:2:2 packed, CrYCbY",
  102. .fourcc = V4L2_PIX_FMT_VYUY,
  103. .depth = { 16 },
  104. .color = FIMC_FMT_CRYCBY422,
  105. .memplanes = 1,
  106. .colplanes = 1,
  107. .mbus_code = V4L2_MBUS_FMT_VYUY8_2X8,
  108. .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
  109. }, {
  110. .name = "YUV 4:2:2 packed, YCrYCb",
  111. .fourcc = V4L2_PIX_FMT_YVYU,
  112. .depth = { 16 },
  113. .color = FIMC_FMT_YCRYCB422,
  114. .memplanes = 1,
  115. .colplanes = 1,
  116. .mbus_code = V4L2_MBUS_FMT_YVYU8_2X8,
  117. .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
  118. }, {
  119. .name = "YUV 4:2:2 planar, Y/Cb/Cr",
  120. .fourcc = V4L2_PIX_FMT_YUV422P,
  121. .depth = { 12 },
  122. .color = FIMC_FMT_YCBYCR422,
  123. .memplanes = 1,
  124. .colplanes = 3,
  125. .flags = FMT_FLAGS_M2M,
  126. }, {
  127. .name = "YUV 4:2:2 planar, Y/CbCr",
  128. .fourcc = V4L2_PIX_FMT_NV16,
  129. .depth = { 16 },
  130. .color = FIMC_FMT_YCBYCR422,
  131. .memplanes = 1,
  132. .colplanes = 2,
  133. .flags = FMT_FLAGS_M2M,
  134. }, {
  135. .name = "YUV 4:2:2 planar, Y/CrCb",
  136. .fourcc = V4L2_PIX_FMT_NV61,
  137. .depth = { 16 },
  138. .color = FIMC_FMT_YCRYCB422,
  139. .memplanes = 1,
  140. .colplanes = 2,
  141. .flags = FMT_FLAGS_M2M,
  142. }, {
  143. .name = "YUV 4:2:0 planar, YCbCr",
  144. .fourcc = V4L2_PIX_FMT_YUV420,
  145. .depth = { 12 },
  146. .color = FIMC_FMT_YCBCR420,
  147. .memplanes = 1,
  148. .colplanes = 3,
  149. .flags = FMT_FLAGS_M2M,
  150. }, {
  151. .name = "YUV 4:2:0 planar, Y/CbCr",
  152. .fourcc = V4L2_PIX_FMT_NV12,
  153. .depth = { 12 },
  154. .color = FIMC_FMT_YCBCR420,
  155. .memplanes = 1,
  156. .colplanes = 2,
  157. .flags = FMT_FLAGS_M2M,
  158. }, {
  159. .name = "YUV 4:2:0 non-contig. 2p, Y/CbCr",
  160. .fourcc = V4L2_PIX_FMT_NV12M,
  161. .color = FIMC_FMT_YCBCR420,
  162. .depth = { 8, 4 },
  163. .memplanes = 2,
  164. .colplanes = 2,
  165. .flags = FMT_FLAGS_M2M,
  166. }, {
  167. .name = "YUV 4:2:0 non-contig. 3p, Y/Cb/Cr",
  168. .fourcc = V4L2_PIX_FMT_YUV420M,
  169. .color = FIMC_FMT_YCBCR420,
  170. .depth = { 8, 2, 2 },
  171. .memplanes = 3,
  172. .colplanes = 3,
  173. .flags = FMT_FLAGS_M2M,
  174. }, {
  175. .name = "YUV 4:2:0 non-contig. 2p, tiled",
  176. .fourcc = V4L2_PIX_FMT_NV12MT,
  177. .color = FIMC_FMT_YCBCR420,
  178. .depth = { 8, 4 },
  179. .memplanes = 2,
  180. .colplanes = 2,
  181. .flags = FMT_FLAGS_M2M,
  182. }, {
  183. .name = "JPEG encoded data",
  184. .fourcc = V4L2_PIX_FMT_JPEG,
  185. .color = FIMC_FMT_JPEG,
  186. .depth = { 8 },
  187. .memplanes = 1,
  188. .colplanes = 1,
  189. .mbus_code = V4L2_MBUS_FMT_JPEG_1X8,
  190. .flags = FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
  191. }, {
  192. .name = "S5C73MX interleaved UYVY/JPEG",
  193. .fourcc = V4L2_PIX_FMT_S5C_UYVY_JPG,
  194. .color = FIMC_FMT_YUYV_JPEG,
  195. .depth = { 8 },
  196. .memplanes = 2,
  197. .colplanes = 1,
  198. .mdataplanes = 0x2, /* plane 1 holds frame meta data */
  199. .mbus_code = V4L2_MBUS_FMT_S5C_UYVY_JPEG_1X8,
  200. .flags = FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
  201. },
  202. };
  203. struct fimc_fmt *fimc_get_format(unsigned int index)
  204. {
  205. if (index >= ARRAY_SIZE(fimc_formats))
  206. return NULL;
  207. return &fimc_formats[index];
  208. }
  209. void __fimc_vidioc_querycap(struct device *dev, struct v4l2_capability *cap,
  210. unsigned int caps)
  211. {
  212. strlcpy(cap->driver, dev->driver->name, sizeof(cap->driver));
  213. strlcpy(cap->card, dev->driver->name, sizeof(cap->card));
  214. snprintf(cap->bus_info, sizeof(cap->bus_info),
  215. "platform:%s", dev_name(dev));
  216. cap->device_caps = caps;
  217. cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
  218. }
  219. int fimc_check_scaler_ratio(struct fimc_ctx *ctx, int sw, int sh,
  220. int dw, int dh, int rotation)
  221. {
  222. if (rotation == 90 || rotation == 270)
  223. swap(dw, dh);
  224. if (!ctx->scaler.enabled)
  225. return (sw == dw && sh == dh) ? 0 : -EINVAL;
  226. if ((sw >= SCALER_MAX_HRATIO * dw) || (sh >= SCALER_MAX_VRATIO * dh))
  227. return -EINVAL;
  228. return 0;
  229. }
  230. static int fimc_get_scaler_factor(u32 src, u32 tar, u32 *ratio, u32 *shift)
  231. {
  232. u32 sh = 6;
  233. if (src >= 64 * tar)
  234. return -EINVAL;
  235. while (sh--) {
  236. u32 tmp = 1 << sh;
  237. if (src >= tar * tmp) {
  238. *shift = sh, *ratio = tmp;
  239. return 0;
  240. }
  241. }
  242. *shift = 0, *ratio = 1;
  243. return 0;
  244. }
  245. int fimc_set_scaler_info(struct fimc_ctx *ctx)
  246. {
  247. const struct fimc_variant *variant = ctx->fimc_dev->variant;
  248. struct device *dev = &ctx->fimc_dev->pdev->dev;
  249. struct fimc_scaler *sc = &ctx->scaler;
  250. struct fimc_frame *s_frame = &ctx->s_frame;
  251. struct fimc_frame *d_frame = &ctx->d_frame;
  252. int tx, ty, sx, sy;
  253. int ret;
  254. if (ctx->rotation == 90 || ctx->rotation == 270) {
  255. ty = d_frame->width;
  256. tx = d_frame->height;
  257. } else {
  258. tx = d_frame->width;
  259. ty = d_frame->height;
  260. }
  261. if (tx <= 0 || ty <= 0) {
  262. dev_err(dev, "Invalid target size: %dx%d\n", tx, ty);
  263. return -EINVAL;
  264. }
  265. sx = s_frame->width;
  266. sy = s_frame->height;
  267. if (sx <= 0 || sy <= 0) {
  268. dev_err(dev, "Invalid source size: %dx%d\n", sx, sy);
  269. return -EINVAL;
  270. }
  271. sc->real_width = sx;
  272. sc->real_height = sy;
  273. ret = fimc_get_scaler_factor(sx, tx, &sc->pre_hratio, &sc->hfactor);
  274. if (ret)
  275. return ret;
  276. ret = fimc_get_scaler_factor(sy, ty, &sc->pre_vratio, &sc->vfactor);
  277. if (ret)
  278. return ret;
  279. sc->pre_dst_width = sx / sc->pre_hratio;
  280. sc->pre_dst_height = sy / sc->pre_vratio;
  281. if (variant->has_mainscaler_ext) {
  282. sc->main_hratio = (sx << 14) / (tx << sc->hfactor);
  283. sc->main_vratio = (sy << 14) / (ty << sc->vfactor);
  284. } else {
  285. sc->main_hratio = (sx << 8) / (tx << sc->hfactor);
  286. sc->main_vratio = (sy << 8) / (ty << sc->vfactor);
  287. }
  288. sc->scaleup_h = (tx >= sx) ? 1 : 0;
  289. sc->scaleup_v = (ty >= sy) ? 1 : 0;
  290. /* check to see if input and output size/format differ */
  291. if (s_frame->fmt->color == d_frame->fmt->color
  292. && s_frame->width == d_frame->width
  293. && s_frame->height == d_frame->height)
  294. sc->copy_mode = 1;
  295. else
  296. sc->copy_mode = 0;
  297. return 0;
  298. }
  299. static irqreturn_t fimc_irq_handler(int irq, void *priv)
  300. {
  301. struct fimc_dev *fimc = priv;
  302. struct fimc_ctx *ctx;
  303. fimc_hw_clear_irq(fimc);
  304. spin_lock(&fimc->slock);
  305. if (test_and_clear_bit(ST_M2M_PEND, &fimc->state)) {
  306. if (test_and_clear_bit(ST_M2M_SUSPENDING, &fimc->state)) {
  307. set_bit(ST_M2M_SUSPENDED, &fimc->state);
  308. wake_up(&fimc->irq_queue);
  309. goto out;
  310. }
  311. ctx = v4l2_m2m_get_curr_priv(fimc->m2m.m2m_dev);
  312. if (ctx != NULL) {
  313. spin_unlock(&fimc->slock);
  314. fimc_m2m_job_finish(ctx, VB2_BUF_STATE_DONE);
  315. if (ctx->state & FIMC_CTX_SHUT) {
  316. ctx->state &= ~FIMC_CTX_SHUT;
  317. wake_up(&fimc->irq_queue);
  318. }
  319. return IRQ_HANDLED;
  320. }
  321. } else if (test_bit(ST_CAPT_PEND, &fimc->state)) {
  322. int last_buf = test_bit(ST_CAPT_JPEG, &fimc->state) &&
  323. fimc->vid_cap.reqbufs_count == 1;
  324. fimc_capture_irq_handler(fimc, !last_buf);
  325. }
  326. out:
  327. spin_unlock(&fimc->slock);
  328. return IRQ_HANDLED;
  329. }
  330. /* The color format (colplanes, memplanes) must be already configured. */
  331. int fimc_prepare_addr(struct fimc_ctx *ctx, struct vb2_buffer *vb,
  332. struct fimc_frame *frame, struct fimc_addr *paddr)
  333. {
  334. int ret = 0;
  335. u32 pix_size;
  336. if (vb == NULL || frame == NULL)
  337. return -EINVAL;
  338. pix_size = frame->width * frame->height;
  339. dbg("memplanes= %d, colplanes= %d, pix_size= %d",
  340. frame->fmt->memplanes, frame->fmt->colplanes, pix_size);
  341. paddr->y = vb2_dma_contig_plane_dma_addr(vb, 0);
  342. if (frame->fmt->memplanes == 1) {
  343. switch (frame->fmt->colplanes) {
  344. case 1:
  345. paddr->cb = 0;
  346. paddr->cr = 0;
  347. break;
  348. case 2:
  349. /* decompose Y into Y/Cb */
  350. paddr->cb = (u32)(paddr->y + pix_size);
  351. paddr->cr = 0;
  352. break;
  353. case 3:
  354. paddr->cb = (u32)(paddr->y + pix_size);
  355. /* decompose Y into Y/Cb/Cr */
  356. if (FIMC_FMT_YCBCR420 == frame->fmt->color)
  357. paddr->cr = (u32)(paddr->cb
  358. + (pix_size >> 2));
  359. else /* 422 */
  360. paddr->cr = (u32)(paddr->cb
  361. + (pix_size >> 1));
  362. break;
  363. default:
  364. return -EINVAL;
  365. }
  366. } else if (!frame->fmt->mdataplanes) {
  367. if (frame->fmt->memplanes >= 2)
  368. paddr->cb = vb2_dma_contig_plane_dma_addr(vb, 1);
  369. if (frame->fmt->memplanes == 3)
  370. paddr->cr = vb2_dma_contig_plane_dma_addr(vb, 2);
  371. }
  372. dbg("PHYS_ADDR: y= 0x%X cb= 0x%X cr= 0x%X ret= %d",
  373. paddr->y, paddr->cb, paddr->cr, ret);
  374. return ret;
  375. }
  376. /* Set order for 1 and 2 plane YCBCR 4:2:2 formats. */
  377. void fimc_set_yuv_order(struct fimc_ctx *ctx)
  378. {
  379. /* The one only mode supported in SoC. */
  380. ctx->in_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
  381. ctx->out_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
  382. /* Set order for 1 plane input formats. */
  383. switch (ctx->s_frame.fmt->color) {
  384. case FIMC_FMT_YCRYCB422:
  385. ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCRYCB;
  386. break;
  387. case FIMC_FMT_CBYCRY422:
  388. ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CBYCRY;
  389. break;
  390. case FIMC_FMT_CRYCBY422:
  391. ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CRYCBY;
  392. break;
  393. case FIMC_FMT_YCBYCR422:
  394. default:
  395. ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCBYCR;
  396. break;
  397. }
  398. dbg("ctx->in_order_1p= %d", ctx->in_order_1p);
  399. switch (ctx->d_frame.fmt->color) {
  400. case FIMC_FMT_YCRYCB422:
  401. ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCRYCB;
  402. break;
  403. case FIMC_FMT_CBYCRY422:
  404. ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CBYCRY;
  405. break;
  406. case FIMC_FMT_CRYCBY422:
  407. ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CRYCBY;
  408. break;
  409. case FIMC_FMT_YCBYCR422:
  410. default:
  411. ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCBYCR;
  412. break;
  413. }
  414. dbg("ctx->out_order_1p= %d", ctx->out_order_1p);
  415. }
  416. void fimc_prepare_dma_offset(struct fimc_ctx *ctx, struct fimc_frame *f)
  417. {
  418. bool pix_hoff = ctx->fimc_dev->drv_data->dma_pix_hoff;
  419. u32 i, depth = 0;
  420. for (i = 0; i < f->fmt->colplanes; i++)
  421. depth += f->fmt->depth[i];
  422. f->dma_offset.y_h = f->offs_h;
  423. if (!pix_hoff)
  424. f->dma_offset.y_h *= (depth >> 3);
  425. f->dma_offset.y_v = f->offs_v;
  426. f->dma_offset.cb_h = f->offs_h;
  427. f->dma_offset.cb_v = f->offs_v;
  428. f->dma_offset.cr_h = f->offs_h;
  429. f->dma_offset.cr_v = f->offs_v;
  430. if (!pix_hoff) {
  431. if (f->fmt->colplanes == 3) {
  432. f->dma_offset.cb_h >>= 1;
  433. f->dma_offset.cr_h >>= 1;
  434. }
  435. if (f->fmt->color == FIMC_FMT_YCBCR420) {
  436. f->dma_offset.cb_v >>= 1;
  437. f->dma_offset.cr_v >>= 1;
  438. }
  439. }
  440. dbg("in_offset: color= %d, y_h= %d, y_v= %d",
  441. f->fmt->color, f->dma_offset.y_h, f->dma_offset.y_v);
  442. }
  443. static int fimc_set_color_effect(struct fimc_ctx *ctx, enum v4l2_colorfx colorfx)
  444. {
  445. struct fimc_effect *effect = &ctx->effect;
  446. switch (colorfx) {
  447. case V4L2_COLORFX_NONE:
  448. effect->type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
  449. break;
  450. case V4L2_COLORFX_BW:
  451. effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
  452. effect->pat_cb = 128;
  453. effect->pat_cr = 128;
  454. break;
  455. case V4L2_COLORFX_SEPIA:
  456. effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
  457. effect->pat_cb = 115;
  458. effect->pat_cr = 145;
  459. break;
  460. case V4L2_COLORFX_NEGATIVE:
  461. effect->type = FIMC_REG_CIIMGEFF_FIN_NEGATIVE;
  462. break;
  463. case V4L2_COLORFX_EMBOSS:
  464. effect->type = FIMC_REG_CIIMGEFF_FIN_EMBOSSING;
  465. break;
  466. case V4L2_COLORFX_ART_FREEZE:
  467. effect->type = FIMC_REG_CIIMGEFF_FIN_ARTFREEZE;
  468. break;
  469. case V4L2_COLORFX_SILHOUETTE:
  470. effect->type = FIMC_REG_CIIMGEFF_FIN_SILHOUETTE;
  471. break;
  472. case V4L2_COLORFX_SET_CBCR:
  473. effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
  474. effect->pat_cb = ctx->ctrls.colorfx_cbcr->val >> 8;
  475. effect->pat_cr = ctx->ctrls.colorfx_cbcr->val & 0xff;
  476. break;
  477. default:
  478. return -EINVAL;
  479. }
  480. return 0;
  481. }
  482. /*
  483. * V4L2 controls handling
  484. */
  485. #define ctrl_to_ctx(__ctrl) \
  486. container_of((__ctrl)->handler, struct fimc_ctx, ctrls.handler)
  487. static int __fimc_s_ctrl(struct fimc_ctx *ctx, struct v4l2_ctrl *ctrl)
  488. {
  489. struct fimc_dev *fimc = ctx->fimc_dev;
  490. const struct fimc_variant *variant = fimc->variant;
  491. int ret = 0;
  492. if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
  493. return 0;
  494. switch (ctrl->id) {
  495. case V4L2_CID_HFLIP:
  496. ctx->hflip = ctrl->val;
  497. break;
  498. case V4L2_CID_VFLIP:
  499. ctx->vflip = ctrl->val;
  500. break;
  501. case V4L2_CID_ROTATE:
  502. if (fimc_capture_pending(fimc)) {
  503. ret = fimc_check_scaler_ratio(ctx, ctx->s_frame.width,
  504. ctx->s_frame.height, ctx->d_frame.width,
  505. ctx->d_frame.height, ctrl->val);
  506. if (ret)
  507. return -EINVAL;
  508. }
  509. if ((ctrl->val == 90 || ctrl->val == 270) &&
  510. !variant->has_out_rot)
  511. return -EINVAL;
  512. ctx->rotation = ctrl->val;
  513. break;
  514. case V4L2_CID_ALPHA_COMPONENT:
  515. ctx->d_frame.alpha = ctrl->val;
  516. break;
  517. case V4L2_CID_COLORFX:
  518. ret = fimc_set_color_effect(ctx, ctrl->val);
  519. if (ret)
  520. return ret;
  521. break;
  522. }
  523. ctx->state |= FIMC_PARAMS;
  524. set_bit(ST_CAPT_APPLY_CFG, &fimc->state);
  525. return 0;
  526. }
  527. static int fimc_s_ctrl(struct v4l2_ctrl *ctrl)
  528. {
  529. struct fimc_ctx *ctx = ctrl_to_ctx(ctrl);
  530. unsigned long flags;
  531. int ret;
  532. spin_lock_irqsave(&ctx->fimc_dev->slock, flags);
  533. ret = __fimc_s_ctrl(ctx, ctrl);
  534. spin_unlock_irqrestore(&ctx->fimc_dev->slock, flags);
  535. return ret;
  536. }
  537. static const struct v4l2_ctrl_ops fimc_ctrl_ops = {
  538. .s_ctrl = fimc_s_ctrl,
  539. };
  540. int fimc_ctrls_create(struct fimc_ctx *ctx)
  541. {
  542. unsigned int max_alpha = fimc_get_alpha_mask(ctx->d_frame.fmt);
  543. struct fimc_ctrls *ctrls = &ctx->ctrls;
  544. struct v4l2_ctrl_handler *handler = &ctrls->handler;
  545. if (ctx->ctrls.ready)
  546. return 0;
  547. v4l2_ctrl_handler_init(handler, 6);
  548. ctrls->rotate = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
  549. V4L2_CID_ROTATE, 0, 270, 90, 0);
  550. ctrls->hflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
  551. V4L2_CID_HFLIP, 0, 1, 1, 0);
  552. ctrls->vflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
  553. V4L2_CID_VFLIP, 0, 1, 1, 0);
  554. if (ctx->fimc_dev->drv_data->alpha_color)
  555. ctrls->alpha = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
  556. V4L2_CID_ALPHA_COMPONENT,
  557. 0, max_alpha, 1, 0);
  558. else
  559. ctrls->alpha = NULL;
  560. ctrls->colorfx = v4l2_ctrl_new_std_menu(handler, &fimc_ctrl_ops,
  561. V4L2_CID_COLORFX, V4L2_COLORFX_SET_CBCR,
  562. ~0x983f, V4L2_COLORFX_NONE);
  563. ctrls->colorfx_cbcr = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
  564. V4L2_CID_COLORFX_CBCR, 0, 0xffff, 1, 0);
  565. ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
  566. if (!handler->error) {
  567. v4l2_ctrl_cluster(2, &ctrls->colorfx);
  568. ctrls->ready = true;
  569. }
  570. return handler->error;
  571. }
  572. void fimc_ctrls_delete(struct fimc_ctx *ctx)
  573. {
  574. struct fimc_ctrls *ctrls = &ctx->ctrls;
  575. if (ctrls->ready) {
  576. v4l2_ctrl_handler_free(&ctrls->handler);
  577. ctrls->ready = false;
  578. ctrls->alpha = NULL;
  579. }
  580. }
  581. void fimc_ctrls_activate(struct fimc_ctx *ctx, bool active)
  582. {
  583. unsigned int has_alpha = ctx->d_frame.fmt->flags & FMT_HAS_ALPHA;
  584. struct fimc_ctrls *ctrls = &ctx->ctrls;
  585. if (!ctrls->ready)
  586. return;
  587. mutex_lock(ctrls->handler.lock);
  588. v4l2_ctrl_activate(ctrls->rotate, active);
  589. v4l2_ctrl_activate(ctrls->hflip, active);
  590. v4l2_ctrl_activate(ctrls->vflip, active);
  591. v4l2_ctrl_activate(ctrls->colorfx, active);
  592. if (ctrls->alpha)
  593. v4l2_ctrl_activate(ctrls->alpha, active && has_alpha);
  594. if (active) {
  595. fimc_set_color_effect(ctx, ctrls->colorfx->cur.val);
  596. ctx->rotation = ctrls->rotate->val;
  597. ctx->hflip = ctrls->hflip->val;
  598. ctx->vflip = ctrls->vflip->val;
  599. } else {
  600. ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
  601. ctx->rotation = 0;
  602. ctx->hflip = 0;
  603. ctx->vflip = 0;
  604. }
  605. mutex_unlock(ctrls->handler.lock);
  606. }
  607. /* Update maximum value of the alpha color control */
  608. void fimc_alpha_ctrl_update(struct fimc_ctx *ctx)
  609. {
  610. struct fimc_dev *fimc = ctx->fimc_dev;
  611. struct v4l2_ctrl *ctrl = ctx->ctrls.alpha;
  612. if (ctrl == NULL || !fimc->drv_data->alpha_color)
  613. return;
  614. v4l2_ctrl_lock(ctrl);
  615. ctrl->maximum = fimc_get_alpha_mask(ctx->d_frame.fmt);
  616. if (ctrl->cur.val > ctrl->maximum)
  617. ctrl->cur.val = ctrl->maximum;
  618. v4l2_ctrl_unlock(ctrl);
  619. }
  620. void __fimc_get_format(struct fimc_frame *frame, struct v4l2_format *f)
  621. {
  622. struct v4l2_pix_format_mplane *pixm = &f->fmt.pix_mp;
  623. int i;
  624. pixm->width = frame->o_width;
  625. pixm->height = frame->o_height;
  626. pixm->field = V4L2_FIELD_NONE;
  627. pixm->pixelformat = frame->fmt->fourcc;
  628. pixm->colorspace = V4L2_COLORSPACE_JPEG;
  629. pixm->num_planes = frame->fmt->memplanes;
  630. for (i = 0; i < pixm->num_planes; ++i) {
  631. pixm->plane_fmt[i].bytesperline = frame->bytesperline[i];
  632. pixm->plane_fmt[i].sizeimage = frame->payload[i];
  633. }
  634. }
  635. /**
  636. * fimc_adjust_mplane_format - adjust bytesperline/sizeimage for each plane
  637. * @fmt: fimc pixel format description (input)
  638. * @width: requested pixel width
  639. * @height: requested pixel height
  640. * @pix: multi-plane format to adjust
  641. */
  642. void fimc_adjust_mplane_format(struct fimc_fmt *fmt, u32 width, u32 height,
  643. struct v4l2_pix_format_mplane *pix)
  644. {
  645. u32 bytesperline = 0;
  646. int i;
  647. pix->colorspace = V4L2_COLORSPACE_JPEG;
  648. pix->field = V4L2_FIELD_NONE;
  649. pix->num_planes = fmt->memplanes;
  650. pix->pixelformat = fmt->fourcc;
  651. pix->height = height;
  652. pix->width = width;
  653. for (i = 0; i < pix->num_planes; ++i) {
  654. struct v4l2_plane_pix_format *plane_fmt = &pix->plane_fmt[i];
  655. u32 bpl = plane_fmt->bytesperline;
  656. if (fmt->colplanes > 1 && (bpl == 0 || bpl < pix->width))
  657. bpl = pix->width; /* Planar */
  658. if (fmt->colplanes == 1 && /* Packed */
  659. (bpl == 0 || ((bpl * 8) / fmt->depth[i]) < pix->width))
  660. bpl = (pix->width * fmt->depth[0]) / 8;
  661. /*
  662. * Currently bytesperline for each plane is same, except
  663. * V4L2_PIX_FMT_YUV420M format. This calculation may need
  664. * to be changed when other multi-planar formats are added
  665. * to the fimc_formats[] array.
  666. */
  667. if (i == 0)
  668. bytesperline = bpl;
  669. else if (i == 1 && fmt->memplanes == 3)
  670. bytesperline /= 2;
  671. plane_fmt->bytesperline = bytesperline;
  672. plane_fmt->sizeimage = max((pix->width * pix->height *
  673. fmt->depth[i]) / 8, plane_fmt->sizeimage);
  674. }
  675. }
  676. /**
  677. * fimc_find_format - lookup fimc color format by fourcc or media bus format
  678. * @pixelformat: fourcc to match, ignored if null
  679. * @mbus_code: media bus code to match, ignored if null
  680. * @mask: the color flags to match
  681. * @index: offset in the fimc_formats array, ignored if negative
  682. */
  683. struct fimc_fmt *fimc_find_format(const u32 *pixelformat, const u32 *mbus_code,
  684. unsigned int mask, int index)
  685. {
  686. struct fimc_fmt *fmt, *def_fmt = NULL;
  687. unsigned int i;
  688. int id = 0;
  689. if (index >= (int)ARRAY_SIZE(fimc_formats))
  690. return NULL;
  691. for (i = 0; i < ARRAY_SIZE(fimc_formats); ++i) {
  692. fmt = &fimc_formats[i];
  693. if (!(fmt->flags & mask))
  694. continue;
  695. if (pixelformat && fmt->fourcc == *pixelformat)
  696. return fmt;
  697. if (mbus_code && fmt->mbus_code == *mbus_code)
  698. return fmt;
  699. if (index == id)
  700. def_fmt = fmt;
  701. id++;
  702. }
  703. return def_fmt;
  704. }
  705. static void fimc_clk_put(struct fimc_dev *fimc)
  706. {
  707. int i;
  708. for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
  709. if (IS_ERR(fimc->clock[i]))
  710. continue;
  711. clk_unprepare(fimc->clock[i]);
  712. clk_put(fimc->clock[i]);
  713. fimc->clock[i] = ERR_PTR(-EINVAL);
  714. }
  715. }
  716. static int fimc_clk_get(struct fimc_dev *fimc)
  717. {
  718. int i, ret;
  719. for (i = 0; i < MAX_FIMC_CLOCKS; i++)
  720. fimc->clock[i] = ERR_PTR(-EINVAL);
  721. for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
  722. fimc->clock[i] = clk_get(&fimc->pdev->dev, fimc_clocks[i]);
  723. if (IS_ERR(fimc->clock[i])) {
  724. ret = PTR_ERR(fimc->clock[i]);
  725. goto err;
  726. }
  727. ret = clk_prepare(fimc->clock[i]);
  728. if (ret < 0) {
  729. clk_put(fimc->clock[i]);
  730. fimc->clock[i] = ERR_PTR(-EINVAL);
  731. goto err;
  732. }
  733. }
  734. return 0;
  735. err:
  736. fimc_clk_put(fimc);
  737. dev_err(&fimc->pdev->dev, "failed to get clock: %s\n",
  738. fimc_clocks[i]);
  739. return -ENXIO;
  740. }
  741. static int fimc_m2m_suspend(struct fimc_dev *fimc)
  742. {
  743. unsigned long flags;
  744. int timeout;
  745. spin_lock_irqsave(&fimc->slock, flags);
  746. if (!fimc_m2m_pending(fimc)) {
  747. spin_unlock_irqrestore(&fimc->slock, flags);
  748. return 0;
  749. }
  750. clear_bit(ST_M2M_SUSPENDED, &fimc->state);
  751. set_bit(ST_M2M_SUSPENDING, &fimc->state);
  752. spin_unlock_irqrestore(&fimc->slock, flags);
  753. timeout = wait_event_timeout(fimc->irq_queue,
  754. test_bit(ST_M2M_SUSPENDED, &fimc->state),
  755. FIMC_SHUTDOWN_TIMEOUT);
  756. clear_bit(ST_M2M_SUSPENDING, &fimc->state);
  757. return timeout == 0 ? -EAGAIN : 0;
  758. }
  759. static int fimc_m2m_resume(struct fimc_dev *fimc)
  760. {
  761. struct fimc_ctx *ctx;
  762. unsigned long flags;
  763. spin_lock_irqsave(&fimc->slock, flags);
  764. /* Clear for full H/W setup in first run after resume */
  765. ctx = fimc->m2m.ctx;
  766. fimc->m2m.ctx = NULL;
  767. spin_unlock_irqrestore(&fimc->slock, flags);
  768. if (test_and_clear_bit(ST_M2M_SUSPENDED, &fimc->state))
  769. fimc_m2m_job_finish(ctx, VB2_BUF_STATE_ERROR);
  770. return 0;
  771. }
  772. static const struct of_device_id fimc_of_match[];
  773. static int fimc_parse_dt(struct fimc_dev *fimc, u32 *clk_freq)
  774. {
  775. struct device *dev = &fimc->pdev->dev;
  776. struct device_node *node = dev->of_node;
  777. const struct of_device_id *of_id;
  778. struct fimc_variant *v;
  779. struct fimc_pix_limit *lim;
  780. u32 args[FIMC_PIX_LIMITS_MAX];
  781. int ret;
  782. if (of_property_read_bool(node, "samsung,lcd-wb"))
  783. return -ENODEV;
  784. v = devm_kzalloc(dev, sizeof(*v) + sizeof(*lim), GFP_KERNEL);
  785. if (!v)
  786. return -ENOMEM;
  787. of_id = of_match_node(fimc_of_match, node);
  788. if (!of_id)
  789. return -EINVAL;
  790. fimc->drv_data = of_id->data;
  791. ret = of_property_read_u32_array(node, "samsung,pix-limits",
  792. args, FIMC_PIX_LIMITS_MAX);
  793. if (ret < 0)
  794. return ret;
  795. lim = (struct fimc_pix_limit *)&v[1];
  796. lim->scaler_en_w = args[0];
  797. lim->scaler_dis_w = args[1];
  798. lim->out_rot_en_w = args[2];
  799. lim->out_rot_dis_w = args[3];
  800. v->pix_limit = lim;
  801. ret = of_property_read_u32_array(node, "samsung,min-pix-sizes",
  802. args, 2);
  803. v->min_inp_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[0];
  804. v->min_out_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[1];
  805. ret = of_property_read_u32_array(node, "samsung,min-pix-alignment",
  806. args, 2);
  807. v->min_vsize_align = ret ? FIMC_DEF_HEIGHT_ALIGN : args[0];
  808. v->hor_offs_align = ret ? FIMC_DEF_HOR_OFFS_ALIGN : args[1];
  809. ret = of_property_read_u32(node, "samsung,rotators", &args[1]);
  810. v->has_inp_rot = ret ? 1 : args[1] & 0x01;
  811. v->has_out_rot = ret ? 1 : args[1] & 0x10;
  812. v->has_mainscaler_ext = of_property_read_bool(node,
  813. "samsung,mainscaler-ext");
  814. v->has_isp_wb = of_property_read_bool(node, "samsung,isp-wb");
  815. v->has_cam_if = of_property_read_bool(node, "samsung,cam-if");
  816. of_property_read_u32(node, "clock-frequency", clk_freq);
  817. fimc->id = of_alias_get_id(node, "fimc");
  818. fimc->variant = v;
  819. return 0;
  820. }
  821. static int fimc_probe(struct platform_device *pdev)
  822. {
  823. struct device *dev = &pdev->dev;
  824. u32 lclk_freq = 0;
  825. struct fimc_dev *fimc;
  826. struct resource *res;
  827. int ret = 0;
  828. fimc = devm_kzalloc(dev, sizeof(*fimc), GFP_KERNEL);
  829. if (!fimc)
  830. return -ENOMEM;
  831. fimc->pdev = pdev;
  832. if (dev->of_node) {
  833. ret = fimc_parse_dt(fimc, &lclk_freq);
  834. if (ret < 0)
  835. return ret;
  836. } else {
  837. fimc->drv_data = fimc_get_drvdata(pdev);
  838. fimc->id = pdev->id;
  839. }
  840. if (!fimc->drv_data || fimc->id >= fimc->drv_data->num_entities ||
  841. fimc->id < 0) {
  842. dev_err(dev, "Invalid driver data or device id (%d)\n",
  843. fimc->id);
  844. return -EINVAL;
  845. }
  846. if (!dev->of_node)
  847. fimc->variant = fimc->drv_data->variant[fimc->id];
  848. init_waitqueue_head(&fimc->irq_queue);
  849. spin_lock_init(&fimc->slock);
  850. mutex_init(&fimc->lock);
  851. fimc->sysreg = fimc_get_sysreg_regmap(dev->of_node);
  852. if (IS_ERR(fimc->sysreg))
  853. return PTR_ERR(fimc->sysreg);
  854. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  855. fimc->regs = devm_ioremap_resource(dev, res);
  856. if (IS_ERR(fimc->regs))
  857. return PTR_ERR(fimc->regs);
  858. res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  859. if (res == NULL) {
  860. dev_err(dev, "Failed to get IRQ resource\n");
  861. return -ENXIO;
  862. }
  863. ret = fimc_clk_get(fimc);
  864. if (ret)
  865. return ret;
  866. if (lclk_freq == 0)
  867. lclk_freq = fimc->drv_data->lclk_frequency;
  868. ret = clk_set_rate(fimc->clock[CLK_BUS], lclk_freq);
  869. if (ret < 0)
  870. return ret;
  871. ret = clk_enable(fimc->clock[CLK_BUS]);
  872. if (ret < 0)
  873. return ret;
  874. ret = devm_request_irq(dev, res->start, fimc_irq_handler,
  875. 0, dev_name(dev), fimc);
  876. if (ret) {
  877. dev_err(dev, "failed to install irq (%d)\n", ret);
  878. goto err_clk;
  879. }
  880. ret = fimc_initialize_capture_subdev(fimc);
  881. if (ret)
  882. goto err_clk;
  883. platform_set_drvdata(pdev, fimc);
  884. pm_runtime_enable(dev);
  885. ret = pm_runtime_get_sync(dev);
  886. if (ret < 0)
  887. goto err_sd;
  888. /* Initialize contiguous memory allocator */
  889. fimc->alloc_ctx = vb2_dma_contig_init_ctx(dev);
  890. if (IS_ERR(fimc->alloc_ctx)) {
  891. ret = PTR_ERR(fimc->alloc_ctx);
  892. goto err_pm;
  893. }
  894. dev_dbg(dev, "FIMC.%d registered successfully\n", fimc->id);
  895. pm_runtime_put(dev);
  896. return 0;
  897. err_pm:
  898. pm_runtime_put(dev);
  899. err_sd:
  900. fimc_unregister_capture_subdev(fimc);
  901. err_clk:
  902. clk_disable(fimc->clock[CLK_BUS]);
  903. fimc_clk_put(fimc);
  904. return ret;
  905. }
  906. static int fimc_runtime_resume(struct device *dev)
  907. {
  908. struct fimc_dev *fimc = dev_get_drvdata(dev);
  909. dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
  910. /* Enable clocks and perform basic initalization */
  911. clk_enable(fimc->clock[CLK_GATE]);
  912. fimc_hw_reset(fimc);
  913. /* Resume the capture or mem-to-mem device */
  914. if (fimc_capture_busy(fimc))
  915. return fimc_capture_resume(fimc);
  916. return fimc_m2m_resume(fimc);
  917. }
  918. static int fimc_runtime_suspend(struct device *dev)
  919. {
  920. struct fimc_dev *fimc = dev_get_drvdata(dev);
  921. int ret = 0;
  922. if (fimc_capture_busy(fimc))
  923. ret = fimc_capture_suspend(fimc);
  924. else
  925. ret = fimc_m2m_suspend(fimc);
  926. if (!ret)
  927. clk_disable(fimc->clock[CLK_GATE]);
  928. dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
  929. return ret;
  930. }
  931. #ifdef CONFIG_PM_SLEEP
  932. static int fimc_resume(struct device *dev)
  933. {
  934. struct fimc_dev *fimc = dev_get_drvdata(dev);
  935. unsigned long flags;
  936. dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
  937. /* Do not resume if the device was idle before system suspend */
  938. spin_lock_irqsave(&fimc->slock, flags);
  939. if (!test_and_clear_bit(ST_LPM, &fimc->state) ||
  940. (!fimc_m2m_active(fimc) && !fimc_capture_busy(fimc))) {
  941. spin_unlock_irqrestore(&fimc->slock, flags);
  942. return 0;
  943. }
  944. fimc_hw_reset(fimc);
  945. spin_unlock_irqrestore(&fimc->slock, flags);
  946. if (fimc_capture_busy(fimc))
  947. return fimc_capture_resume(fimc);
  948. return fimc_m2m_resume(fimc);
  949. }
  950. static int fimc_suspend(struct device *dev)
  951. {
  952. struct fimc_dev *fimc = dev_get_drvdata(dev);
  953. dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
  954. if (test_and_set_bit(ST_LPM, &fimc->state))
  955. return 0;
  956. if (fimc_capture_busy(fimc))
  957. return fimc_capture_suspend(fimc);
  958. return fimc_m2m_suspend(fimc);
  959. }
  960. #endif /* CONFIG_PM_SLEEP */
  961. static int fimc_remove(struct platform_device *pdev)
  962. {
  963. struct fimc_dev *fimc = platform_get_drvdata(pdev);
  964. pm_runtime_disable(&pdev->dev);
  965. pm_runtime_set_suspended(&pdev->dev);
  966. fimc_unregister_capture_subdev(fimc);
  967. vb2_dma_contig_cleanup_ctx(fimc->alloc_ctx);
  968. clk_disable(fimc->clock[CLK_BUS]);
  969. fimc_clk_put(fimc);
  970. dev_info(&pdev->dev, "driver unloaded\n");
  971. return 0;
  972. }
  973. /* Image pixel limits, similar across several FIMC HW revisions. */
  974. static const struct fimc_pix_limit s5p_pix_limit[4] = {
  975. [0] = {
  976. .scaler_en_w = 3264,
  977. .scaler_dis_w = 8192,
  978. .out_rot_en_w = 1920,
  979. .out_rot_dis_w = 4224,
  980. },
  981. [1] = {
  982. .scaler_en_w = 4224,
  983. .scaler_dis_w = 8192,
  984. .out_rot_en_w = 1920,
  985. .out_rot_dis_w = 4224,
  986. },
  987. [2] = {
  988. .scaler_en_w = 1920,
  989. .scaler_dis_w = 8192,
  990. .out_rot_en_w = 1280,
  991. .out_rot_dis_w = 1920,
  992. },
  993. };
  994. static const struct fimc_variant fimc0_variant_s5p = {
  995. .has_inp_rot = 1,
  996. .has_out_rot = 1,
  997. .has_cam_if = 1,
  998. .min_inp_pixsize = 16,
  999. .min_out_pixsize = 16,
  1000. .hor_offs_align = 8,
  1001. .min_vsize_align = 16,
  1002. .pix_limit = &s5p_pix_limit[0],
  1003. };
  1004. static const struct fimc_variant fimc2_variant_s5p = {
  1005. .has_cam_if = 1,
  1006. .min_inp_pixsize = 16,
  1007. .min_out_pixsize = 16,
  1008. .hor_offs_align = 8,
  1009. .min_vsize_align = 16,
  1010. .pix_limit = &s5p_pix_limit[1],
  1011. };
  1012. static const struct fimc_variant fimc0_variant_s5pv210 = {
  1013. .has_inp_rot = 1,
  1014. .has_out_rot = 1,
  1015. .has_cam_if = 1,
  1016. .min_inp_pixsize = 16,
  1017. .min_out_pixsize = 16,
  1018. .hor_offs_align = 8,
  1019. .min_vsize_align = 16,
  1020. .pix_limit = &s5p_pix_limit[1],
  1021. };
  1022. static const struct fimc_variant fimc1_variant_s5pv210 = {
  1023. .has_inp_rot = 1,
  1024. .has_out_rot = 1,
  1025. .has_cam_if = 1,
  1026. .has_mainscaler_ext = 1,
  1027. .min_inp_pixsize = 16,
  1028. .min_out_pixsize = 16,
  1029. .hor_offs_align = 1,
  1030. .min_vsize_align = 1,
  1031. .pix_limit = &s5p_pix_limit[2],
  1032. };
  1033. static const struct fimc_variant fimc2_variant_s5pv210 = {
  1034. .has_cam_if = 1,
  1035. .min_inp_pixsize = 16,
  1036. .min_out_pixsize = 16,
  1037. .hor_offs_align = 8,
  1038. .min_vsize_align = 16,
  1039. .pix_limit = &s5p_pix_limit[2],
  1040. };
  1041. /* S5PC100 */
  1042. static const struct fimc_drvdata fimc_drvdata_s5p = {
  1043. .variant = {
  1044. [0] = &fimc0_variant_s5p,
  1045. [1] = &fimc0_variant_s5p,
  1046. [2] = &fimc2_variant_s5p,
  1047. },
  1048. .num_entities = 3,
  1049. .lclk_frequency = 133000000UL,
  1050. .out_buf_count = 4,
  1051. };
  1052. /* S5PV210, S5PC110 */
  1053. static const struct fimc_drvdata fimc_drvdata_s5pv210 = {
  1054. .variant = {
  1055. [0] = &fimc0_variant_s5pv210,
  1056. [1] = &fimc1_variant_s5pv210,
  1057. [2] = &fimc2_variant_s5pv210,
  1058. },
  1059. .num_entities = 3,
  1060. .lclk_frequency = 166000000UL,
  1061. .out_buf_count = 4,
  1062. .dma_pix_hoff = 1,
  1063. };
  1064. /* EXYNOS4210, S5PV310, S5PC210 */
  1065. static const struct fimc_drvdata fimc_drvdata_exynos4210 = {
  1066. .num_entities = 4,
  1067. .lclk_frequency = 166000000UL,
  1068. .dma_pix_hoff = 1,
  1069. .cistatus2 = 1,
  1070. .alpha_color = 1,
  1071. .out_buf_count = 32,
  1072. };
  1073. /* EXYNOS4212, EXYNOS4412 */
  1074. static const struct fimc_drvdata fimc_drvdata_exynos4x12 = {
  1075. .num_entities = 4,
  1076. .lclk_frequency = 166000000UL,
  1077. .dma_pix_hoff = 1,
  1078. .cistatus2 = 1,
  1079. .alpha_color = 1,
  1080. .out_buf_count = 32,
  1081. };
  1082. static const struct platform_device_id fimc_driver_ids[] = {
  1083. {
  1084. .name = "s5p-fimc",
  1085. .driver_data = (unsigned long)&fimc_drvdata_s5p,
  1086. }, {
  1087. .name = "s5pv210-fimc",
  1088. .driver_data = (unsigned long)&fimc_drvdata_s5pv210,
  1089. }, {
  1090. .name = "exynos4-fimc",
  1091. .driver_data = (unsigned long)&fimc_drvdata_exynos4210,
  1092. }, {
  1093. .name = "exynos4x12-fimc",
  1094. .driver_data = (unsigned long)&fimc_drvdata_exynos4x12,
  1095. },
  1096. { },
  1097. };
  1098. static const struct of_device_id fimc_of_match[] = {
  1099. {
  1100. .compatible = "samsung,s5pv210-fimc",
  1101. .data = &fimc_drvdata_s5pv210,
  1102. }, {
  1103. .compatible = "samsung,exynos4210-fimc",
  1104. .data = &fimc_drvdata_exynos4210,
  1105. }, {
  1106. .compatible = "samsung,exynos4212-fimc",
  1107. .data = &fimc_drvdata_exynos4x12,
  1108. },
  1109. { /* sentinel */ },
  1110. };
  1111. static const struct dev_pm_ops fimc_pm_ops = {
  1112. SET_SYSTEM_SLEEP_PM_OPS(fimc_suspend, fimc_resume)
  1113. SET_RUNTIME_PM_OPS(fimc_runtime_suspend, fimc_runtime_resume, NULL)
  1114. };
  1115. static struct platform_driver fimc_driver = {
  1116. .probe = fimc_probe,
  1117. .remove = fimc_remove,
  1118. .id_table = fimc_driver_ids,
  1119. .driver = {
  1120. .of_match_table = fimc_of_match,
  1121. .name = FIMC_DRIVER_NAME,
  1122. .owner = THIS_MODULE,
  1123. .pm = &fimc_pm_ops,
  1124. }
  1125. };
  1126. int __init fimc_register_driver(void)
  1127. {
  1128. return platform_driver_register(&fimc_driver);
  1129. }
  1130. void __exit fimc_unregister_driver(void)
  1131. {
  1132. platform_driver_unregister(&fimc_driver);
  1133. }