super.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987
  1. /*
  2. * bcache setup/teardown code, and some metadata io - read a superblock and
  3. * figure out what to do with it.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include <linux/buffer_head.h>
  13. #include <linux/debugfs.h>
  14. #include <linux/genhd.h>
  15. #include <linux/module.h>
  16. #include <linux/random.h>
  17. #include <linux/reboot.h>
  18. #include <linux/sysfs.h>
  19. MODULE_LICENSE("GPL");
  20. MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  21. static const char bcache_magic[] = {
  22. 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  23. 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  24. };
  25. static const char invalid_uuid[] = {
  26. 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  27. 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  28. };
  29. /* Default is -1; we skip past it for struct cached_dev's cache mode */
  30. const char * const bch_cache_modes[] = {
  31. "default",
  32. "writethrough",
  33. "writeback",
  34. "writearound",
  35. "none",
  36. NULL
  37. };
  38. struct uuid_entry_v0 {
  39. uint8_t uuid[16];
  40. uint8_t label[32];
  41. uint32_t first_reg;
  42. uint32_t last_reg;
  43. uint32_t invalidated;
  44. uint32_t pad;
  45. };
  46. static struct kobject *bcache_kobj;
  47. struct mutex bch_register_lock;
  48. LIST_HEAD(bch_cache_sets);
  49. static LIST_HEAD(uncached_devices);
  50. static int bcache_major, bcache_minor;
  51. static wait_queue_head_t unregister_wait;
  52. struct workqueue_struct *bcache_wq;
  53. #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
  54. static void bio_split_pool_free(struct bio_split_pool *p)
  55. {
  56. if (p->bio_split_hook)
  57. mempool_destroy(p->bio_split_hook);
  58. if (p->bio_split)
  59. bioset_free(p->bio_split);
  60. }
  61. static int bio_split_pool_init(struct bio_split_pool *p)
  62. {
  63. p->bio_split = bioset_create(4, 0);
  64. if (!p->bio_split)
  65. return -ENOMEM;
  66. p->bio_split_hook = mempool_create_kmalloc_pool(4,
  67. sizeof(struct bio_split_hook));
  68. if (!p->bio_split_hook)
  69. return -ENOMEM;
  70. return 0;
  71. }
  72. /* Superblock */
  73. static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  74. struct page **res)
  75. {
  76. const char *err;
  77. struct cache_sb *s;
  78. struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  79. unsigned i;
  80. if (!bh)
  81. return "IO error";
  82. s = (struct cache_sb *) bh->b_data;
  83. sb->offset = le64_to_cpu(s->offset);
  84. sb->version = le64_to_cpu(s->version);
  85. memcpy(sb->magic, s->magic, 16);
  86. memcpy(sb->uuid, s->uuid, 16);
  87. memcpy(sb->set_uuid, s->set_uuid, 16);
  88. memcpy(sb->label, s->label, SB_LABEL_SIZE);
  89. sb->flags = le64_to_cpu(s->flags);
  90. sb->seq = le64_to_cpu(s->seq);
  91. sb->last_mount = le32_to_cpu(s->last_mount);
  92. sb->first_bucket = le16_to_cpu(s->first_bucket);
  93. sb->keys = le16_to_cpu(s->keys);
  94. for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  95. sb->d[i] = le64_to_cpu(s->d[i]);
  96. pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  97. sb->version, sb->flags, sb->seq, sb->keys);
  98. err = "Not a bcache superblock";
  99. if (sb->offset != SB_SECTOR)
  100. goto err;
  101. if (memcmp(sb->magic, bcache_magic, 16))
  102. goto err;
  103. err = "Too many journal buckets";
  104. if (sb->keys > SB_JOURNAL_BUCKETS)
  105. goto err;
  106. err = "Bad checksum";
  107. if (s->csum != csum_set(s))
  108. goto err;
  109. err = "Bad UUID";
  110. if (bch_is_zero(sb->uuid, 16))
  111. goto err;
  112. sb->block_size = le16_to_cpu(s->block_size);
  113. err = "Superblock block size smaller than device block size";
  114. if (sb->block_size << 9 < bdev_logical_block_size(bdev))
  115. goto err;
  116. switch (sb->version) {
  117. case BCACHE_SB_VERSION_BDEV:
  118. sb->data_offset = BDEV_DATA_START_DEFAULT;
  119. break;
  120. case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
  121. sb->data_offset = le64_to_cpu(s->data_offset);
  122. err = "Bad data offset";
  123. if (sb->data_offset < BDEV_DATA_START_DEFAULT)
  124. goto err;
  125. break;
  126. case BCACHE_SB_VERSION_CDEV:
  127. case BCACHE_SB_VERSION_CDEV_WITH_UUID:
  128. sb->nbuckets = le64_to_cpu(s->nbuckets);
  129. sb->block_size = le16_to_cpu(s->block_size);
  130. sb->bucket_size = le16_to_cpu(s->bucket_size);
  131. sb->nr_in_set = le16_to_cpu(s->nr_in_set);
  132. sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
  133. err = "Too many buckets";
  134. if (sb->nbuckets > LONG_MAX)
  135. goto err;
  136. err = "Not enough buckets";
  137. if (sb->nbuckets < 1 << 7)
  138. goto err;
  139. err = "Bad block/bucket size";
  140. if (!is_power_of_2(sb->block_size) ||
  141. sb->block_size > PAGE_SECTORS ||
  142. !is_power_of_2(sb->bucket_size) ||
  143. sb->bucket_size < PAGE_SECTORS)
  144. goto err;
  145. err = "Invalid superblock: device too small";
  146. if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
  147. goto err;
  148. err = "Bad UUID";
  149. if (bch_is_zero(sb->set_uuid, 16))
  150. goto err;
  151. err = "Bad cache device number in set";
  152. if (!sb->nr_in_set ||
  153. sb->nr_in_set <= sb->nr_this_dev ||
  154. sb->nr_in_set > MAX_CACHES_PER_SET)
  155. goto err;
  156. err = "Journal buckets not sequential";
  157. for (i = 0; i < sb->keys; i++)
  158. if (sb->d[i] != sb->first_bucket + i)
  159. goto err;
  160. err = "Too many journal buckets";
  161. if (sb->first_bucket + sb->keys > sb->nbuckets)
  162. goto err;
  163. err = "Invalid superblock: first bucket comes before end of super";
  164. if (sb->first_bucket * sb->bucket_size < 16)
  165. goto err;
  166. break;
  167. default:
  168. err = "Unsupported superblock version";
  169. goto err;
  170. }
  171. sb->last_mount = get_seconds();
  172. err = NULL;
  173. get_page(bh->b_page);
  174. *res = bh->b_page;
  175. err:
  176. put_bh(bh);
  177. return err;
  178. }
  179. static void write_bdev_super_endio(struct bio *bio, int error)
  180. {
  181. struct cached_dev *dc = bio->bi_private;
  182. /* XXX: error checking */
  183. closure_put(&dc->sb_write.cl);
  184. }
  185. static void __write_super(struct cache_sb *sb, struct bio *bio)
  186. {
  187. struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
  188. unsigned i;
  189. bio->bi_sector = SB_SECTOR;
  190. bio->bi_rw = REQ_SYNC|REQ_META;
  191. bio->bi_size = SB_SIZE;
  192. bch_bio_map(bio, NULL);
  193. out->offset = cpu_to_le64(sb->offset);
  194. out->version = cpu_to_le64(sb->version);
  195. memcpy(out->uuid, sb->uuid, 16);
  196. memcpy(out->set_uuid, sb->set_uuid, 16);
  197. memcpy(out->label, sb->label, SB_LABEL_SIZE);
  198. out->flags = cpu_to_le64(sb->flags);
  199. out->seq = cpu_to_le64(sb->seq);
  200. out->last_mount = cpu_to_le32(sb->last_mount);
  201. out->first_bucket = cpu_to_le16(sb->first_bucket);
  202. out->keys = cpu_to_le16(sb->keys);
  203. for (i = 0; i < sb->keys; i++)
  204. out->d[i] = cpu_to_le64(sb->d[i]);
  205. out->csum = csum_set(out);
  206. pr_debug("ver %llu, flags %llu, seq %llu",
  207. sb->version, sb->flags, sb->seq);
  208. submit_bio(REQ_WRITE, bio);
  209. }
  210. void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
  211. {
  212. struct closure *cl = &dc->sb_write.cl;
  213. struct bio *bio = &dc->sb_bio;
  214. closure_lock(&dc->sb_write, parent);
  215. bio_reset(bio);
  216. bio->bi_bdev = dc->bdev;
  217. bio->bi_end_io = write_bdev_super_endio;
  218. bio->bi_private = dc;
  219. closure_get(cl);
  220. __write_super(&dc->sb, bio);
  221. closure_return(cl);
  222. }
  223. static void write_super_endio(struct bio *bio, int error)
  224. {
  225. struct cache *ca = bio->bi_private;
  226. bch_count_io_errors(ca, error, "writing superblock");
  227. closure_put(&ca->set->sb_write.cl);
  228. }
  229. void bcache_write_super(struct cache_set *c)
  230. {
  231. struct closure *cl = &c->sb_write.cl;
  232. struct cache *ca;
  233. unsigned i;
  234. closure_lock(&c->sb_write, &c->cl);
  235. c->sb.seq++;
  236. for_each_cache(ca, c, i) {
  237. struct bio *bio = &ca->sb_bio;
  238. ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
  239. ca->sb.seq = c->sb.seq;
  240. ca->sb.last_mount = c->sb.last_mount;
  241. SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
  242. bio_reset(bio);
  243. bio->bi_bdev = ca->bdev;
  244. bio->bi_end_io = write_super_endio;
  245. bio->bi_private = ca;
  246. closure_get(cl);
  247. __write_super(&ca->sb, bio);
  248. }
  249. closure_return(cl);
  250. }
  251. /* UUID io */
  252. static void uuid_endio(struct bio *bio, int error)
  253. {
  254. struct closure *cl = bio->bi_private;
  255. struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
  256. cache_set_err_on(error, c, "accessing uuids");
  257. bch_bbio_free(bio, c);
  258. closure_put(cl);
  259. }
  260. static void uuid_io(struct cache_set *c, unsigned long rw,
  261. struct bkey *k, struct closure *parent)
  262. {
  263. struct closure *cl = &c->uuid_write.cl;
  264. struct uuid_entry *u;
  265. unsigned i;
  266. BUG_ON(!parent);
  267. closure_lock(&c->uuid_write, parent);
  268. for (i = 0; i < KEY_PTRS(k); i++) {
  269. struct bio *bio = bch_bbio_alloc(c);
  270. bio->bi_rw = REQ_SYNC|REQ_META|rw;
  271. bio->bi_size = KEY_SIZE(k) << 9;
  272. bio->bi_end_io = uuid_endio;
  273. bio->bi_private = cl;
  274. bch_bio_map(bio, c->uuids);
  275. bch_submit_bbio(bio, c, k, i);
  276. if (!(rw & WRITE))
  277. break;
  278. }
  279. pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read",
  280. pkey(&c->uuid_bucket));
  281. for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
  282. if (!bch_is_zero(u->uuid, 16))
  283. pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
  284. u - c->uuids, u->uuid, u->label,
  285. u->first_reg, u->last_reg, u->invalidated);
  286. closure_return(cl);
  287. }
  288. static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
  289. {
  290. struct bkey *k = &j->uuid_bucket;
  291. if (__bch_ptr_invalid(c, 1, k))
  292. return "bad uuid pointer";
  293. bkey_copy(&c->uuid_bucket, k);
  294. uuid_io(c, READ_SYNC, k, cl);
  295. if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
  296. struct uuid_entry_v0 *u0 = (void *) c->uuids;
  297. struct uuid_entry *u1 = (void *) c->uuids;
  298. int i;
  299. closure_sync(cl);
  300. /*
  301. * Since the new uuid entry is bigger than the old, we have to
  302. * convert starting at the highest memory address and work down
  303. * in order to do it in place
  304. */
  305. for (i = c->nr_uuids - 1;
  306. i >= 0;
  307. --i) {
  308. memcpy(u1[i].uuid, u0[i].uuid, 16);
  309. memcpy(u1[i].label, u0[i].label, 32);
  310. u1[i].first_reg = u0[i].first_reg;
  311. u1[i].last_reg = u0[i].last_reg;
  312. u1[i].invalidated = u0[i].invalidated;
  313. u1[i].flags = 0;
  314. u1[i].sectors = 0;
  315. }
  316. }
  317. return NULL;
  318. }
  319. static int __uuid_write(struct cache_set *c)
  320. {
  321. BKEY_PADDED(key) k;
  322. struct closure cl;
  323. closure_init_stack(&cl);
  324. lockdep_assert_held(&bch_register_lock);
  325. if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
  326. return 1;
  327. SET_KEY_SIZE(&k.key, c->sb.bucket_size);
  328. uuid_io(c, REQ_WRITE, &k.key, &cl);
  329. closure_sync(&cl);
  330. bkey_copy(&c->uuid_bucket, &k.key);
  331. __bkey_put(c, &k.key);
  332. return 0;
  333. }
  334. int bch_uuid_write(struct cache_set *c)
  335. {
  336. int ret = __uuid_write(c);
  337. if (!ret)
  338. bch_journal_meta(c, NULL);
  339. return ret;
  340. }
  341. static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
  342. {
  343. struct uuid_entry *u;
  344. for (u = c->uuids;
  345. u < c->uuids + c->nr_uuids; u++)
  346. if (!memcmp(u->uuid, uuid, 16))
  347. return u;
  348. return NULL;
  349. }
  350. static struct uuid_entry *uuid_find_empty(struct cache_set *c)
  351. {
  352. static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
  353. return uuid_find(c, zero_uuid);
  354. }
  355. /*
  356. * Bucket priorities/gens:
  357. *
  358. * For each bucket, we store on disk its
  359. * 8 bit gen
  360. * 16 bit priority
  361. *
  362. * See alloc.c for an explanation of the gen. The priority is used to implement
  363. * lru (and in the future other) cache replacement policies; for most purposes
  364. * it's just an opaque integer.
  365. *
  366. * The gens and the priorities don't have a whole lot to do with each other, and
  367. * it's actually the gens that must be written out at specific times - it's no
  368. * big deal if the priorities don't get written, if we lose them we just reuse
  369. * buckets in suboptimal order.
  370. *
  371. * On disk they're stored in a packed array, and in as many buckets are required
  372. * to fit them all. The buckets we use to store them form a list; the journal
  373. * header points to the first bucket, the first bucket points to the second
  374. * bucket, et cetera.
  375. *
  376. * This code is used by the allocation code; periodically (whenever it runs out
  377. * of buckets to allocate from) the allocation code will invalidate some
  378. * buckets, but it can't use those buckets until their new gens are safely on
  379. * disk.
  380. */
  381. static void prio_endio(struct bio *bio, int error)
  382. {
  383. struct cache *ca = bio->bi_private;
  384. cache_set_err_on(error, ca->set, "accessing priorities");
  385. bch_bbio_free(bio, ca->set);
  386. closure_put(&ca->prio);
  387. }
  388. static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
  389. {
  390. struct closure *cl = &ca->prio;
  391. struct bio *bio = bch_bbio_alloc(ca->set);
  392. closure_init_stack(cl);
  393. bio->bi_sector = bucket * ca->sb.bucket_size;
  394. bio->bi_bdev = ca->bdev;
  395. bio->bi_rw = REQ_SYNC|REQ_META|rw;
  396. bio->bi_size = bucket_bytes(ca);
  397. bio->bi_end_io = prio_endio;
  398. bio->bi_private = ca;
  399. bch_bio_map(bio, ca->disk_buckets);
  400. closure_bio_submit(bio, &ca->prio, ca);
  401. closure_sync(cl);
  402. }
  403. #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \
  404. fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
  405. void bch_prio_write(struct cache *ca)
  406. {
  407. int i;
  408. struct bucket *b;
  409. struct closure cl;
  410. closure_init_stack(&cl);
  411. lockdep_assert_held(&ca->set->bucket_lock);
  412. for (b = ca->buckets;
  413. b < ca->buckets + ca->sb.nbuckets; b++)
  414. b->disk_gen = b->gen;
  415. ca->disk_buckets->seq++;
  416. atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
  417. &ca->meta_sectors_written);
  418. pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
  419. fifo_used(&ca->free_inc), fifo_used(&ca->unused));
  420. blktrace_msg(ca, "Starting priorities: " buckets_free(ca));
  421. for (i = prio_buckets(ca) - 1; i >= 0; --i) {
  422. long bucket;
  423. struct prio_set *p = ca->disk_buckets;
  424. struct bucket_disk *d = p->data;
  425. struct bucket_disk *end = d + prios_per_bucket(ca);
  426. for (b = ca->buckets + i * prios_per_bucket(ca);
  427. b < ca->buckets + ca->sb.nbuckets && d < end;
  428. b++, d++) {
  429. d->prio = cpu_to_le16(b->prio);
  430. d->gen = b->gen;
  431. }
  432. p->next_bucket = ca->prio_buckets[i + 1];
  433. p->magic = pset_magic(ca);
  434. p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
  435. bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
  436. BUG_ON(bucket == -1);
  437. mutex_unlock(&ca->set->bucket_lock);
  438. prio_io(ca, bucket, REQ_WRITE);
  439. mutex_lock(&ca->set->bucket_lock);
  440. ca->prio_buckets[i] = bucket;
  441. atomic_dec_bug(&ca->buckets[bucket].pin);
  442. }
  443. mutex_unlock(&ca->set->bucket_lock);
  444. bch_journal_meta(ca->set, &cl);
  445. closure_sync(&cl);
  446. mutex_lock(&ca->set->bucket_lock);
  447. ca->need_save_prio = 0;
  448. /*
  449. * Don't want the old priorities to get garbage collected until after we
  450. * finish writing the new ones, and they're journalled
  451. */
  452. for (i = 0; i < prio_buckets(ca); i++)
  453. ca->prio_last_buckets[i] = ca->prio_buckets[i];
  454. }
  455. static void prio_read(struct cache *ca, uint64_t bucket)
  456. {
  457. struct prio_set *p = ca->disk_buckets;
  458. struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
  459. struct bucket *b;
  460. unsigned bucket_nr = 0;
  461. for (b = ca->buckets;
  462. b < ca->buckets + ca->sb.nbuckets;
  463. b++, d++) {
  464. if (d == end) {
  465. ca->prio_buckets[bucket_nr] = bucket;
  466. ca->prio_last_buckets[bucket_nr] = bucket;
  467. bucket_nr++;
  468. prio_io(ca, bucket, READ_SYNC);
  469. if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
  470. pr_warn("bad csum reading priorities");
  471. if (p->magic != pset_magic(ca))
  472. pr_warn("bad magic reading priorities");
  473. bucket = p->next_bucket;
  474. d = p->data;
  475. }
  476. b->prio = le16_to_cpu(d->prio);
  477. b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
  478. }
  479. }
  480. /* Bcache device */
  481. static int open_dev(struct block_device *b, fmode_t mode)
  482. {
  483. struct bcache_device *d = b->bd_disk->private_data;
  484. if (atomic_read(&d->closing))
  485. return -ENXIO;
  486. closure_get(&d->cl);
  487. return 0;
  488. }
  489. static int release_dev(struct gendisk *b, fmode_t mode)
  490. {
  491. struct bcache_device *d = b->private_data;
  492. closure_put(&d->cl);
  493. return 0;
  494. }
  495. static int ioctl_dev(struct block_device *b, fmode_t mode,
  496. unsigned int cmd, unsigned long arg)
  497. {
  498. struct bcache_device *d = b->bd_disk->private_data;
  499. return d->ioctl(d, mode, cmd, arg);
  500. }
  501. static const struct block_device_operations bcache_ops = {
  502. .open = open_dev,
  503. .release = release_dev,
  504. .ioctl = ioctl_dev,
  505. .owner = THIS_MODULE,
  506. };
  507. void bcache_device_stop(struct bcache_device *d)
  508. {
  509. if (!atomic_xchg(&d->closing, 1))
  510. closure_queue(&d->cl);
  511. }
  512. static void bcache_device_unlink(struct bcache_device *d)
  513. {
  514. unsigned i;
  515. struct cache *ca;
  516. sysfs_remove_link(&d->c->kobj, d->name);
  517. sysfs_remove_link(&d->kobj, "cache");
  518. for_each_cache(ca, d->c, i)
  519. bd_unlink_disk_holder(ca->bdev, d->disk);
  520. }
  521. static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
  522. const char *name)
  523. {
  524. unsigned i;
  525. struct cache *ca;
  526. for_each_cache(ca, d->c, i)
  527. bd_link_disk_holder(ca->bdev, d->disk);
  528. snprintf(d->name, BCACHEDEVNAME_SIZE,
  529. "%s%u", name, d->id);
  530. WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
  531. sysfs_create_link(&c->kobj, &d->kobj, d->name),
  532. "Couldn't create device <-> cache set symlinks");
  533. }
  534. static void bcache_device_detach(struct bcache_device *d)
  535. {
  536. lockdep_assert_held(&bch_register_lock);
  537. if (atomic_read(&d->detaching)) {
  538. struct uuid_entry *u = d->c->uuids + d->id;
  539. SET_UUID_FLASH_ONLY(u, 0);
  540. memcpy(u->uuid, invalid_uuid, 16);
  541. u->invalidated = cpu_to_le32(get_seconds());
  542. bch_uuid_write(d->c);
  543. atomic_set(&d->detaching, 0);
  544. }
  545. bcache_device_unlink(d);
  546. d->c->devices[d->id] = NULL;
  547. closure_put(&d->c->caching);
  548. d->c = NULL;
  549. }
  550. static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
  551. unsigned id)
  552. {
  553. BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
  554. d->id = id;
  555. d->c = c;
  556. c->devices[id] = d;
  557. closure_get(&c->caching);
  558. }
  559. static void bcache_device_free(struct bcache_device *d)
  560. {
  561. lockdep_assert_held(&bch_register_lock);
  562. pr_info("%s stopped", d->disk->disk_name);
  563. if (d->c)
  564. bcache_device_detach(d);
  565. if (d->disk)
  566. del_gendisk(d->disk);
  567. if (d->disk && d->disk->queue)
  568. blk_cleanup_queue(d->disk->queue);
  569. if (d->disk)
  570. put_disk(d->disk);
  571. bio_split_pool_free(&d->bio_split_hook);
  572. if (d->unaligned_bvec)
  573. mempool_destroy(d->unaligned_bvec);
  574. if (d->bio_split)
  575. bioset_free(d->bio_split);
  576. closure_debug_destroy(&d->cl);
  577. }
  578. static int bcache_device_init(struct bcache_device *d, unsigned block_size)
  579. {
  580. struct request_queue *q;
  581. if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
  582. !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
  583. sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
  584. bio_split_pool_init(&d->bio_split_hook))
  585. return -ENOMEM;
  586. d->disk = alloc_disk(1);
  587. if (!d->disk)
  588. return -ENOMEM;
  589. snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
  590. d->disk->major = bcache_major;
  591. d->disk->first_minor = bcache_minor++;
  592. d->disk->fops = &bcache_ops;
  593. d->disk->private_data = d;
  594. q = blk_alloc_queue(GFP_KERNEL);
  595. if (!q)
  596. return -ENOMEM;
  597. blk_queue_make_request(q, NULL);
  598. d->disk->queue = q;
  599. q->queuedata = d;
  600. q->backing_dev_info.congested_data = d;
  601. q->limits.max_hw_sectors = UINT_MAX;
  602. q->limits.max_sectors = UINT_MAX;
  603. q->limits.max_segment_size = UINT_MAX;
  604. q->limits.max_segments = BIO_MAX_PAGES;
  605. q->limits.max_discard_sectors = UINT_MAX;
  606. q->limits.io_min = block_size;
  607. q->limits.logical_block_size = block_size;
  608. q->limits.physical_block_size = block_size;
  609. set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
  610. set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
  611. return 0;
  612. }
  613. /* Cached device */
  614. static void calc_cached_dev_sectors(struct cache_set *c)
  615. {
  616. uint64_t sectors = 0;
  617. struct cached_dev *dc;
  618. list_for_each_entry(dc, &c->cached_devs, list)
  619. sectors += bdev_sectors(dc->bdev);
  620. c->cached_dev_sectors = sectors;
  621. }
  622. void bch_cached_dev_run(struct cached_dev *dc)
  623. {
  624. struct bcache_device *d = &dc->disk;
  625. if (atomic_xchg(&dc->running, 1))
  626. return;
  627. if (!d->c &&
  628. BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
  629. struct closure cl;
  630. closure_init_stack(&cl);
  631. SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
  632. bch_write_bdev_super(dc, &cl);
  633. closure_sync(&cl);
  634. }
  635. add_disk(d->disk);
  636. bd_link_disk_holder(dc->bdev, dc->disk.disk);
  637. #if 0
  638. char *env[] = { "SYMLINK=label" , NULL };
  639. kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
  640. #endif
  641. if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
  642. sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
  643. pr_debug("error creating sysfs link");
  644. }
  645. static void cached_dev_detach_finish(struct work_struct *w)
  646. {
  647. struct cached_dev *dc = container_of(w, struct cached_dev, detach);
  648. char buf[BDEVNAME_SIZE];
  649. struct closure cl;
  650. closure_init_stack(&cl);
  651. BUG_ON(!atomic_read(&dc->disk.detaching));
  652. BUG_ON(atomic_read(&dc->count));
  653. mutex_lock(&bch_register_lock);
  654. memset(&dc->sb.set_uuid, 0, 16);
  655. SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
  656. bch_write_bdev_super(dc, &cl);
  657. closure_sync(&cl);
  658. bcache_device_detach(&dc->disk);
  659. list_move(&dc->list, &uncached_devices);
  660. mutex_unlock(&bch_register_lock);
  661. pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
  662. /* Drop ref we took in cached_dev_detach() */
  663. closure_put(&dc->disk.cl);
  664. }
  665. void bch_cached_dev_detach(struct cached_dev *dc)
  666. {
  667. lockdep_assert_held(&bch_register_lock);
  668. if (atomic_read(&dc->disk.closing))
  669. return;
  670. if (atomic_xchg(&dc->disk.detaching, 1))
  671. return;
  672. /*
  673. * Block the device from being closed and freed until we're finished
  674. * detaching
  675. */
  676. closure_get(&dc->disk.cl);
  677. bch_writeback_queue(dc);
  678. cached_dev_put(dc);
  679. }
  680. int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
  681. {
  682. uint32_t rtime = cpu_to_le32(get_seconds());
  683. struct uuid_entry *u;
  684. char buf[BDEVNAME_SIZE];
  685. bdevname(dc->bdev, buf);
  686. if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
  687. return -ENOENT;
  688. if (dc->disk.c) {
  689. pr_err("Can't attach %s: already attached", buf);
  690. return -EINVAL;
  691. }
  692. if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
  693. pr_err("Can't attach %s: shutting down", buf);
  694. return -EINVAL;
  695. }
  696. if (dc->sb.block_size < c->sb.block_size) {
  697. /* Will die */
  698. pr_err("Couldn't attach %s: block size less than set's block size",
  699. buf);
  700. return -EINVAL;
  701. }
  702. u = uuid_find(c, dc->sb.uuid);
  703. if (u &&
  704. (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
  705. BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
  706. memcpy(u->uuid, invalid_uuid, 16);
  707. u->invalidated = cpu_to_le32(get_seconds());
  708. u = NULL;
  709. }
  710. if (!u) {
  711. if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
  712. pr_err("Couldn't find uuid for %s in set", buf);
  713. return -ENOENT;
  714. }
  715. u = uuid_find_empty(c);
  716. if (!u) {
  717. pr_err("Not caching %s, no room for UUID", buf);
  718. return -EINVAL;
  719. }
  720. }
  721. /* Deadlocks since we're called via sysfs...
  722. sysfs_remove_file(&dc->kobj, &sysfs_attach);
  723. */
  724. if (bch_is_zero(u->uuid, 16)) {
  725. struct closure cl;
  726. closure_init_stack(&cl);
  727. memcpy(u->uuid, dc->sb.uuid, 16);
  728. memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
  729. u->first_reg = u->last_reg = rtime;
  730. bch_uuid_write(c);
  731. memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
  732. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  733. bch_write_bdev_super(dc, &cl);
  734. closure_sync(&cl);
  735. } else {
  736. u->last_reg = rtime;
  737. bch_uuid_write(c);
  738. }
  739. bcache_device_attach(&dc->disk, c, u - c->uuids);
  740. list_move(&dc->list, &c->cached_devs);
  741. calc_cached_dev_sectors(c);
  742. smp_wmb();
  743. /*
  744. * dc->c must be set before dc->count != 0 - paired with the mb in
  745. * cached_dev_get()
  746. */
  747. atomic_set(&dc->count, 1);
  748. if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
  749. atomic_set(&dc->has_dirty, 1);
  750. atomic_inc(&dc->count);
  751. bch_writeback_queue(dc);
  752. }
  753. bch_cached_dev_run(dc);
  754. bcache_device_link(&dc->disk, c, "bdev");
  755. pr_info("Caching %s as %s on set %pU",
  756. bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
  757. dc->disk.c->sb.set_uuid);
  758. return 0;
  759. }
  760. void bch_cached_dev_release(struct kobject *kobj)
  761. {
  762. struct cached_dev *dc = container_of(kobj, struct cached_dev,
  763. disk.kobj);
  764. kfree(dc);
  765. module_put(THIS_MODULE);
  766. }
  767. static void cached_dev_free(struct closure *cl)
  768. {
  769. struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
  770. cancel_delayed_work_sync(&dc->writeback_rate_update);
  771. mutex_lock(&bch_register_lock);
  772. bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
  773. bcache_device_free(&dc->disk);
  774. list_del(&dc->list);
  775. mutex_unlock(&bch_register_lock);
  776. if (!IS_ERR_OR_NULL(dc->bdev)) {
  777. blk_sync_queue(bdev_get_queue(dc->bdev));
  778. blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  779. }
  780. wake_up(&unregister_wait);
  781. kobject_put(&dc->disk.kobj);
  782. }
  783. static void cached_dev_flush(struct closure *cl)
  784. {
  785. struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
  786. struct bcache_device *d = &dc->disk;
  787. bch_cache_accounting_destroy(&dc->accounting);
  788. kobject_del(&d->kobj);
  789. continue_at(cl, cached_dev_free, system_wq);
  790. }
  791. static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
  792. {
  793. int err;
  794. struct io *io;
  795. closure_init(&dc->disk.cl, NULL);
  796. set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
  797. __module_get(THIS_MODULE);
  798. INIT_LIST_HEAD(&dc->list);
  799. kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
  800. bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
  801. err = bcache_device_init(&dc->disk, block_size);
  802. if (err)
  803. goto err;
  804. spin_lock_init(&dc->io_lock);
  805. closure_init_unlocked(&dc->sb_write);
  806. INIT_WORK(&dc->detach, cached_dev_detach_finish);
  807. dc->sequential_merge = true;
  808. dc->sequential_cutoff = 4 << 20;
  809. INIT_LIST_HEAD(&dc->io_lru);
  810. dc->sb_bio.bi_max_vecs = 1;
  811. dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
  812. for (io = dc->io; io < dc->io + RECENT_IO; io++) {
  813. list_add(&io->lru, &dc->io_lru);
  814. hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
  815. }
  816. bch_writeback_init_cached_dev(dc);
  817. return 0;
  818. err:
  819. bcache_device_stop(&dc->disk);
  820. return err;
  821. }
  822. /* Cached device - bcache superblock */
  823. static const char *register_bdev(struct cache_sb *sb, struct page *sb_page,
  824. struct block_device *bdev,
  825. struct cached_dev *dc)
  826. {
  827. char name[BDEVNAME_SIZE];
  828. const char *err = "cannot allocate memory";
  829. struct gendisk *g;
  830. struct cache_set *c;
  831. if (!dc || cached_dev_init(dc, sb->block_size << 9) != 0)
  832. return err;
  833. memcpy(&dc->sb, sb, sizeof(struct cache_sb));
  834. dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
  835. dc->bdev = bdev;
  836. dc->bdev->bd_holder = dc;
  837. g = dc->disk.disk;
  838. set_capacity(g, dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
  839. g->queue->backing_dev_info.ra_pages =
  840. max(g->queue->backing_dev_info.ra_pages,
  841. bdev->bd_queue->backing_dev_info.ra_pages);
  842. bch_cached_dev_request_init(dc);
  843. err = "error creating kobject";
  844. if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
  845. "bcache"))
  846. goto err;
  847. if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
  848. goto err;
  849. list_add(&dc->list, &uncached_devices);
  850. list_for_each_entry(c, &bch_cache_sets, list)
  851. bch_cached_dev_attach(dc, c);
  852. if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
  853. BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
  854. bch_cached_dev_run(dc);
  855. return NULL;
  856. err:
  857. kobject_put(&dc->disk.kobj);
  858. pr_notice("error opening %s: %s", bdevname(bdev, name), err);
  859. /*
  860. * Return NULL instead of an error because kobject_put() cleans
  861. * everything up
  862. */
  863. return NULL;
  864. }
  865. /* Flash only volumes */
  866. void bch_flash_dev_release(struct kobject *kobj)
  867. {
  868. struct bcache_device *d = container_of(kobj, struct bcache_device,
  869. kobj);
  870. kfree(d);
  871. }
  872. static void flash_dev_free(struct closure *cl)
  873. {
  874. struct bcache_device *d = container_of(cl, struct bcache_device, cl);
  875. bcache_device_free(d);
  876. kobject_put(&d->kobj);
  877. }
  878. static void flash_dev_flush(struct closure *cl)
  879. {
  880. struct bcache_device *d = container_of(cl, struct bcache_device, cl);
  881. bcache_device_unlink(d);
  882. kobject_del(&d->kobj);
  883. continue_at(cl, flash_dev_free, system_wq);
  884. }
  885. static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
  886. {
  887. struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
  888. GFP_KERNEL);
  889. if (!d)
  890. return -ENOMEM;
  891. closure_init(&d->cl, NULL);
  892. set_closure_fn(&d->cl, flash_dev_flush, system_wq);
  893. kobject_init(&d->kobj, &bch_flash_dev_ktype);
  894. if (bcache_device_init(d, block_bytes(c)))
  895. goto err;
  896. bcache_device_attach(d, c, u - c->uuids);
  897. set_capacity(d->disk, u->sectors);
  898. bch_flash_dev_request_init(d);
  899. add_disk(d->disk);
  900. if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
  901. goto err;
  902. bcache_device_link(d, c, "volume");
  903. return 0;
  904. err:
  905. kobject_put(&d->kobj);
  906. return -ENOMEM;
  907. }
  908. static int flash_devs_run(struct cache_set *c)
  909. {
  910. int ret = 0;
  911. struct uuid_entry *u;
  912. for (u = c->uuids;
  913. u < c->uuids + c->nr_uuids && !ret;
  914. u++)
  915. if (UUID_FLASH_ONLY(u))
  916. ret = flash_dev_run(c, u);
  917. return ret;
  918. }
  919. int bch_flash_dev_create(struct cache_set *c, uint64_t size)
  920. {
  921. struct uuid_entry *u;
  922. if (test_bit(CACHE_SET_STOPPING, &c->flags))
  923. return -EINTR;
  924. u = uuid_find_empty(c);
  925. if (!u) {
  926. pr_err("Can't create volume, no room for UUID");
  927. return -EINVAL;
  928. }
  929. get_random_bytes(u->uuid, 16);
  930. memset(u->label, 0, 32);
  931. u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
  932. SET_UUID_FLASH_ONLY(u, 1);
  933. u->sectors = size >> 9;
  934. bch_uuid_write(c);
  935. return flash_dev_run(c, u);
  936. }
  937. /* Cache set */
  938. __printf(2, 3)
  939. bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
  940. {
  941. va_list args;
  942. if (test_bit(CACHE_SET_STOPPING, &c->flags))
  943. return false;
  944. /* XXX: we can be called from atomic context
  945. acquire_console_sem();
  946. */
  947. printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
  948. va_start(args, fmt);
  949. vprintk(fmt, args);
  950. va_end(args);
  951. printk(", disabling caching\n");
  952. bch_cache_set_unregister(c);
  953. return true;
  954. }
  955. void bch_cache_set_release(struct kobject *kobj)
  956. {
  957. struct cache_set *c = container_of(kobj, struct cache_set, kobj);
  958. kfree(c);
  959. module_put(THIS_MODULE);
  960. }
  961. static void cache_set_free(struct closure *cl)
  962. {
  963. struct cache_set *c = container_of(cl, struct cache_set, cl);
  964. struct cache *ca;
  965. unsigned i;
  966. if (!IS_ERR_OR_NULL(c->debug))
  967. debugfs_remove(c->debug);
  968. bch_open_buckets_free(c);
  969. bch_btree_cache_free(c);
  970. bch_journal_free(c);
  971. for_each_cache(ca, c, i)
  972. if (ca)
  973. kobject_put(&ca->kobj);
  974. free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
  975. free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
  976. kfree(c->fill_iter);
  977. if (c->bio_split)
  978. bioset_free(c->bio_split);
  979. if (c->bio_meta)
  980. mempool_destroy(c->bio_meta);
  981. if (c->search)
  982. mempool_destroy(c->search);
  983. kfree(c->devices);
  984. mutex_lock(&bch_register_lock);
  985. list_del(&c->list);
  986. mutex_unlock(&bch_register_lock);
  987. pr_info("Cache set %pU unregistered", c->sb.set_uuid);
  988. wake_up(&unregister_wait);
  989. closure_debug_destroy(&c->cl);
  990. kobject_put(&c->kobj);
  991. }
  992. static void cache_set_flush(struct closure *cl)
  993. {
  994. struct cache_set *c = container_of(cl, struct cache_set, caching);
  995. struct btree *b;
  996. /* Shut down allocator threads */
  997. set_bit(CACHE_SET_STOPPING_2, &c->flags);
  998. wake_up(&c->alloc_wait);
  999. bch_cache_accounting_destroy(&c->accounting);
  1000. kobject_put(&c->internal);
  1001. kobject_del(&c->kobj);
  1002. if (!IS_ERR_OR_NULL(c->root))
  1003. list_add(&c->root->list, &c->btree_cache);
  1004. /* Should skip this if we're unregistering because of an error */
  1005. list_for_each_entry(b, &c->btree_cache, list)
  1006. if (btree_node_dirty(b))
  1007. bch_btree_write(b, true, NULL);
  1008. closure_return(cl);
  1009. }
  1010. static void __cache_set_unregister(struct closure *cl)
  1011. {
  1012. struct cache_set *c = container_of(cl, struct cache_set, caching);
  1013. struct cached_dev *dc, *t;
  1014. size_t i;
  1015. mutex_lock(&bch_register_lock);
  1016. if (test_bit(CACHE_SET_UNREGISTERING, &c->flags))
  1017. list_for_each_entry_safe(dc, t, &c->cached_devs, list)
  1018. bch_cached_dev_detach(dc);
  1019. for (i = 0; i < c->nr_uuids; i++)
  1020. if (c->devices[i] && UUID_FLASH_ONLY(&c->uuids[i]))
  1021. bcache_device_stop(c->devices[i]);
  1022. mutex_unlock(&bch_register_lock);
  1023. continue_at(cl, cache_set_flush, system_wq);
  1024. }
  1025. void bch_cache_set_stop(struct cache_set *c)
  1026. {
  1027. if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
  1028. closure_queue(&c->caching);
  1029. }
  1030. void bch_cache_set_unregister(struct cache_set *c)
  1031. {
  1032. set_bit(CACHE_SET_UNREGISTERING, &c->flags);
  1033. bch_cache_set_stop(c);
  1034. }
  1035. #define alloc_bucket_pages(gfp, c) \
  1036. ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
  1037. struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
  1038. {
  1039. int iter_size;
  1040. struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
  1041. if (!c)
  1042. return NULL;
  1043. __module_get(THIS_MODULE);
  1044. closure_init(&c->cl, NULL);
  1045. set_closure_fn(&c->cl, cache_set_free, system_wq);
  1046. closure_init(&c->caching, &c->cl);
  1047. set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
  1048. /* Maybe create continue_at_noreturn() and use it here? */
  1049. closure_set_stopped(&c->cl);
  1050. closure_put(&c->cl);
  1051. kobject_init(&c->kobj, &bch_cache_set_ktype);
  1052. kobject_init(&c->internal, &bch_cache_set_internal_ktype);
  1053. bch_cache_accounting_init(&c->accounting, &c->cl);
  1054. memcpy(c->sb.set_uuid, sb->set_uuid, 16);
  1055. c->sb.block_size = sb->block_size;
  1056. c->sb.bucket_size = sb->bucket_size;
  1057. c->sb.nr_in_set = sb->nr_in_set;
  1058. c->sb.last_mount = sb->last_mount;
  1059. c->bucket_bits = ilog2(sb->bucket_size);
  1060. c->block_bits = ilog2(sb->block_size);
  1061. c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
  1062. c->btree_pages = c->sb.bucket_size / PAGE_SECTORS;
  1063. if (c->btree_pages > BTREE_MAX_PAGES)
  1064. c->btree_pages = max_t(int, c->btree_pages / 4,
  1065. BTREE_MAX_PAGES);
  1066. init_waitqueue_head(&c->alloc_wait);
  1067. mutex_init(&c->bucket_lock);
  1068. mutex_init(&c->fill_lock);
  1069. mutex_init(&c->sort_lock);
  1070. spin_lock_init(&c->sort_time_lock);
  1071. closure_init_unlocked(&c->sb_write);
  1072. closure_init_unlocked(&c->uuid_write);
  1073. spin_lock_init(&c->btree_read_time_lock);
  1074. bch_moving_init_cache_set(c);
  1075. INIT_LIST_HEAD(&c->list);
  1076. INIT_LIST_HEAD(&c->cached_devs);
  1077. INIT_LIST_HEAD(&c->btree_cache);
  1078. INIT_LIST_HEAD(&c->btree_cache_freeable);
  1079. INIT_LIST_HEAD(&c->btree_cache_freed);
  1080. INIT_LIST_HEAD(&c->data_buckets);
  1081. c->search = mempool_create_slab_pool(32, bch_search_cache);
  1082. if (!c->search)
  1083. goto err;
  1084. iter_size = (sb->bucket_size / sb->block_size + 1) *
  1085. sizeof(struct btree_iter_set);
  1086. if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
  1087. !(c->bio_meta = mempool_create_kmalloc_pool(2,
  1088. sizeof(struct bbio) + sizeof(struct bio_vec) *
  1089. bucket_pages(c))) ||
  1090. !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
  1091. !(c->fill_iter = kmalloc(iter_size, GFP_KERNEL)) ||
  1092. !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
  1093. !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
  1094. bch_journal_alloc(c) ||
  1095. bch_btree_cache_alloc(c) ||
  1096. bch_open_buckets_alloc(c))
  1097. goto err;
  1098. c->fill_iter->size = sb->bucket_size / sb->block_size;
  1099. c->congested_read_threshold_us = 2000;
  1100. c->congested_write_threshold_us = 20000;
  1101. c->error_limit = 8 << IO_ERROR_SHIFT;
  1102. return c;
  1103. err:
  1104. bch_cache_set_unregister(c);
  1105. return NULL;
  1106. }
  1107. static void run_cache_set(struct cache_set *c)
  1108. {
  1109. const char *err = "cannot allocate memory";
  1110. struct cached_dev *dc, *t;
  1111. struct cache *ca;
  1112. unsigned i;
  1113. struct btree_op op;
  1114. bch_btree_op_init_stack(&op);
  1115. op.lock = SHRT_MAX;
  1116. for_each_cache(ca, c, i)
  1117. c->nbuckets += ca->sb.nbuckets;
  1118. if (CACHE_SYNC(&c->sb)) {
  1119. LIST_HEAD(journal);
  1120. struct bkey *k;
  1121. struct jset *j;
  1122. err = "cannot allocate memory for journal";
  1123. if (bch_journal_read(c, &journal, &op))
  1124. goto err;
  1125. pr_debug("btree_journal_read() done");
  1126. err = "no journal entries found";
  1127. if (list_empty(&journal))
  1128. goto err;
  1129. j = &list_entry(journal.prev, struct journal_replay, list)->j;
  1130. err = "IO error reading priorities";
  1131. for_each_cache(ca, c, i)
  1132. prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
  1133. /*
  1134. * If prio_read() fails it'll call cache_set_error and we'll
  1135. * tear everything down right away, but if we perhaps checked
  1136. * sooner we could avoid journal replay.
  1137. */
  1138. k = &j->btree_root;
  1139. err = "bad btree root";
  1140. if (__bch_ptr_invalid(c, j->btree_level + 1, k))
  1141. goto err;
  1142. err = "error reading btree root";
  1143. c->root = bch_btree_node_get(c, k, j->btree_level, &op);
  1144. if (IS_ERR_OR_NULL(c->root))
  1145. goto err;
  1146. list_del_init(&c->root->list);
  1147. rw_unlock(true, c->root);
  1148. err = uuid_read(c, j, &op.cl);
  1149. if (err)
  1150. goto err;
  1151. err = "error in recovery";
  1152. if (bch_btree_check(c, &op))
  1153. goto err;
  1154. bch_journal_mark(c, &journal);
  1155. bch_btree_gc_finish(c);
  1156. pr_debug("btree_check() done");
  1157. /*
  1158. * bcache_journal_next() can't happen sooner, or
  1159. * btree_gc_finish() will give spurious errors about last_gc >
  1160. * gc_gen - this is a hack but oh well.
  1161. */
  1162. bch_journal_next(&c->journal);
  1163. for_each_cache(ca, c, i)
  1164. closure_call(&ca->alloc, bch_allocator_thread,
  1165. system_wq, &c->cl);
  1166. /*
  1167. * First place it's safe to allocate: btree_check() and
  1168. * btree_gc_finish() have to run before we have buckets to
  1169. * allocate, and bch_bucket_alloc_set() might cause a journal
  1170. * entry to be written so bcache_journal_next() has to be called
  1171. * first.
  1172. *
  1173. * If the uuids were in the old format we have to rewrite them
  1174. * before the next journal entry is written:
  1175. */
  1176. if (j->version < BCACHE_JSET_VERSION_UUID)
  1177. __uuid_write(c);
  1178. bch_journal_replay(c, &journal, &op);
  1179. } else {
  1180. pr_notice("invalidating existing data");
  1181. /* Don't want invalidate_buckets() to queue a gc yet */
  1182. closure_lock(&c->gc, NULL);
  1183. for_each_cache(ca, c, i) {
  1184. unsigned j;
  1185. ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
  1186. 2, SB_JOURNAL_BUCKETS);
  1187. for (j = 0; j < ca->sb.keys; j++)
  1188. ca->sb.d[j] = ca->sb.first_bucket + j;
  1189. }
  1190. bch_btree_gc_finish(c);
  1191. for_each_cache(ca, c, i)
  1192. closure_call(&ca->alloc, bch_allocator_thread,
  1193. ca->alloc_workqueue, &c->cl);
  1194. mutex_lock(&c->bucket_lock);
  1195. for_each_cache(ca, c, i)
  1196. bch_prio_write(ca);
  1197. mutex_unlock(&c->bucket_lock);
  1198. wake_up(&c->alloc_wait);
  1199. err = "cannot allocate new UUID bucket";
  1200. if (__uuid_write(c))
  1201. goto err_unlock_gc;
  1202. err = "cannot allocate new btree root";
  1203. c->root = bch_btree_node_alloc(c, 0, &op.cl);
  1204. if (IS_ERR_OR_NULL(c->root))
  1205. goto err_unlock_gc;
  1206. bkey_copy_key(&c->root->key, &MAX_KEY);
  1207. bch_btree_write(c->root, true, &op);
  1208. bch_btree_set_root(c->root);
  1209. rw_unlock(true, c->root);
  1210. /*
  1211. * We don't want to write the first journal entry until
  1212. * everything is set up - fortunately journal entries won't be
  1213. * written until the SET_CACHE_SYNC() here:
  1214. */
  1215. SET_CACHE_SYNC(&c->sb, true);
  1216. bch_journal_next(&c->journal);
  1217. bch_journal_meta(c, &op.cl);
  1218. /* Unlock */
  1219. closure_set_stopped(&c->gc.cl);
  1220. closure_put(&c->gc.cl);
  1221. }
  1222. closure_sync(&op.cl);
  1223. c->sb.last_mount = get_seconds();
  1224. bcache_write_super(c);
  1225. list_for_each_entry_safe(dc, t, &uncached_devices, list)
  1226. bch_cached_dev_attach(dc, c);
  1227. flash_devs_run(c);
  1228. return;
  1229. err_unlock_gc:
  1230. closure_set_stopped(&c->gc.cl);
  1231. closure_put(&c->gc.cl);
  1232. err:
  1233. closure_sync(&op.cl);
  1234. /* XXX: test this, it's broken */
  1235. bch_cache_set_error(c, err);
  1236. }
  1237. static bool can_attach_cache(struct cache *ca, struct cache_set *c)
  1238. {
  1239. return ca->sb.block_size == c->sb.block_size &&
  1240. ca->sb.bucket_size == c->sb.block_size &&
  1241. ca->sb.nr_in_set == c->sb.nr_in_set;
  1242. }
  1243. static const char *register_cache_set(struct cache *ca)
  1244. {
  1245. char buf[12];
  1246. const char *err = "cannot allocate memory";
  1247. struct cache_set *c;
  1248. list_for_each_entry(c, &bch_cache_sets, list)
  1249. if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
  1250. if (c->cache[ca->sb.nr_this_dev])
  1251. return "duplicate cache set member";
  1252. if (!can_attach_cache(ca, c))
  1253. return "cache sb does not match set";
  1254. if (!CACHE_SYNC(&ca->sb))
  1255. SET_CACHE_SYNC(&c->sb, false);
  1256. goto found;
  1257. }
  1258. c = bch_cache_set_alloc(&ca->sb);
  1259. if (!c)
  1260. return err;
  1261. err = "error creating kobject";
  1262. if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
  1263. kobject_add(&c->internal, &c->kobj, "internal"))
  1264. goto err;
  1265. if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
  1266. goto err;
  1267. bch_debug_init_cache_set(c);
  1268. list_add(&c->list, &bch_cache_sets);
  1269. found:
  1270. sprintf(buf, "cache%i", ca->sb.nr_this_dev);
  1271. if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
  1272. sysfs_create_link(&c->kobj, &ca->kobj, buf))
  1273. goto err;
  1274. if (ca->sb.seq > c->sb.seq) {
  1275. c->sb.version = ca->sb.version;
  1276. memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
  1277. c->sb.flags = ca->sb.flags;
  1278. c->sb.seq = ca->sb.seq;
  1279. pr_debug("set version = %llu", c->sb.version);
  1280. }
  1281. ca->set = c;
  1282. ca->set->cache[ca->sb.nr_this_dev] = ca;
  1283. c->cache_by_alloc[c->caches_loaded++] = ca;
  1284. if (c->caches_loaded == c->sb.nr_in_set)
  1285. run_cache_set(c);
  1286. return NULL;
  1287. err:
  1288. bch_cache_set_unregister(c);
  1289. return err;
  1290. }
  1291. /* Cache device */
  1292. void bch_cache_release(struct kobject *kobj)
  1293. {
  1294. struct cache *ca = container_of(kobj, struct cache, kobj);
  1295. if (ca->set)
  1296. ca->set->cache[ca->sb.nr_this_dev] = NULL;
  1297. bch_cache_allocator_exit(ca);
  1298. bio_split_pool_free(&ca->bio_split_hook);
  1299. if (ca->alloc_workqueue)
  1300. destroy_workqueue(ca->alloc_workqueue);
  1301. free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
  1302. kfree(ca->prio_buckets);
  1303. vfree(ca->buckets);
  1304. free_heap(&ca->heap);
  1305. free_fifo(&ca->unused);
  1306. free_fifo(&ca->free_inc);
  1307. free_fifo(&ca->free);
  1308. if (ca->sb_bio.bi_inline_vecs[0].bv_page)
  1309. put_page(ca->sb_bio.bi_io_vec[0].bv_page);
  1310. if (!IS_ERR_OR_NULL(ca->bdev)) {
  1311. blk_sync_queue(bdev_get_queue(ca->bdev));
  1312. blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1313. }
  1314. kfree(ca);
  1315. module_put(THIS_MODULE);
  1316. }
  1317. static int cache_alloc(struct cache_sb *sb, struct cache *ca)
  1318. {
  1319. size_t free;
  1320. struct bucket *b;
  1321. if (!ca)
  1322. return -ENOMEM;
  1323. __module_get(THIS_MODULE);
  1324. kobject_init(&ca->kobj, &bch_cache_ktype);
  1325. memcpy(&ca->sb, sb, sizeof(struct cache_sb));
  1326. INIT_LIST_HEAD(&ca->discards);
  1327. bio_init(&ca->sb_bio);
  1328. ca->sb_bio.bi_max_vecs = 1;
  1329. ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
  1330. bio_init(&ca->journal.bio);
  1331. ca->journal.bio.bi_max_vecs = 8;
  1332. ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
  1333. free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
  1334. free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
  1335. if (!init_fifo(&ca->free, free, GFP_KERNEL) ||
  1336. !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
  1337. !init_fifo(&ca->unused, free << 2, GFP_KERNEL) ||
  1338. !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
  1339. !(ca->buckets = vmalloc(sizeof(struct bucket) *
  1340. ca->sb.nbuckets)) ||
  1341. !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
  1342. 2, GFP_KERNEL)) ||
  1343. !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
  1344. !(ca->alloc_workqueue = alloc_workqueue("bch_allocator", 0, 1)) ||
  1345. bio_split_pool_init(&ca->bio_split_hook))
  1346. goto err;
  1347. ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
  1348. memset(ca->buckets, 0, ca->sb.nbuckets * sizeof(struct bucket));
  1349. for_each_bucket(b, ca)
  1350. atomic_set(&b->pin, 0);
  1351. if (bch_cache_allocator_init(ca))
  1352. goto err;
  1353. return 0;
  1354. err:
  1355. kobject_put(&ca->kobj);
  1356. return -ENOMEM;
  1357. }
  1358. static const char *register_cache(struct cache_sb *sb, struct page *sb_page,
  1359. struct block_device *bdev, struct cache *ca)
  1360. {
  1361. char name[BDEVNAME_SIZE];
  1362. const char *err = "cannot allocate memory";
  1363. if (cache_alloc(sb, ca) != 0)
  1364. return err;
  1365. ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
  1366. ca->bdev = bdev;
  1367. ca->bdev->bd_holder = ca;
  1368. if (blk_queue_discard(bdev_get_queue(ca->bdev)))
  1369. ca->discard = CACHE_DISCARD(&ca->sb);
  1370. err = "error creating kobject";
  1371. if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
  1372. goto err;
  1373. err = register_cache_set(ca);
  1374. if (err)
  1375. goto err;
  1376. pr_info("registered cache device %s", bdevname(bdev, name));
  1377. return NULL;
  1378. err:
  1379. kobject_put(&ca->kobj);
  1380. pr_info("error opening %s: %s", bdevname(bdev, name), err);
  1381. /* Return NULL instead of an error because kobject_put() cleans
  1382. * everything up
  1383. */
  1384. return NULL;
  1385. }
  1386. /* Global interfaces/init */
  1387. static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
  1388. const char *, size_t);
  1389. kobj_attribute_write(register, register_bcache);
  1390. kobj_attribute_write(register_quiet, register_bcache);
  1391. static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
  1392. const char *buffer, size_t size)
  1393. {
  1394. ssize_t ret = size;
  1395. const char *err = "cannot allocate memory";
  1396. char *path = NULL;
  1397. struct cache_sb *sb = NULL;
  1398. struct block_device *bdev = NULL;
  1399. struct page *sb_page = NULL;
  1400. if (!try_module_get(THIS_MODULE))
  1401. return -EBUSY;
  1402. mutex_lock(&bch_register_lock);
  1403. if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
  1404. !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
  1405. goto err;
  1406. err = "failed to open device";
  1407. bdev = blkdev_get_by_path(strim(path),
  1408. FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1409. sb);
  1410. if (bdev == ERR_PTR(-EBUSY))
  1411. err = "device busy";
  1412. if (IS_ERR(bdev) ||
  1413. set_blocksize(bdev, 4096))
  1414. goto err;
  1415. err = read_super(sb, bdev, &sb_page);
  1416. if (err)
  1417. goto err_close;
  1418. if (SB_IS_BDEV(sb)) {
  1419. struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
  1420. err = register_bdev(sb, sb_page, bdev, dc);
  1421. } else {
  1422. struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  1423. err = register_cache(sb, sb_page, bdev, ca);
  1424. }
  1425. if (err) {
  1426. /* register_(bdev|cache) will only return an error if they
  1427. * didn't get far enough to create the kobject - if they did,
  1428. * the kobject destructor will do this cleanup.
  1429. */
  1430. put_page(sb_page);
  1431. err_close:
  1432. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1433. err:
  1434. if (attr != &ksysfs_register_quiet)
  1435. pr_info("error opening %s: %s", path, err);
  1436. ret = -EINVAL;
  1437. }
  1438. kfree(sb);
  1439. kfree(path);
  1440. mutex_unlock(&bch_register_lock);
  1441. module_put(THIS_MODULE);
  1442. return ret;
  1443. }
  1444. static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
  1445. {
  1446. if (code == SYS_DOWN ||
  1447. code == SYS_HALT ||
  1448. code == SYS_POWER_OFF) {
  1449. DEFINE_WAIT(wait);
  1450. unsigned long start = jiffies;
  1451. bool stopped = false;
  1452. struct cache_set *c, *tc;
  1453. struct cached_dev *dc, *tdc;
  1454. mutex_lock(&bch_register_lock);
  1455. if (list_empty(&bch_cache_sets) &&
  1456. list_empty(&uncached_devices))
  1457. goto out;
  1458. pr_info("Stopping all devices:");
  1459. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1460. bch_cache_set_stop(c);
  1461. list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
  1462. bcache_device_stop(&dc->disk);
  1463. /* What's a condition variable? */
  1464. while (1) {
  1465. long timeout = start + 2 * HZ - jiffies;
  1466. stopped = list_empty(&bch_cache_sets) &&
  1467. list_empty(&uncached_devices);
  1468. if (timeout < 0 || stopped)
  1469. break;
  1470. prepare_to_wait(&unregister_wait, &wait,
  1471. TASK_UNINTERRUPTIBLE);
  1472. mutex_unlock(&bch_register_lock);
  1473. schedule_timeout(timeout);
  1474. mutex_lock(&bch_register_lock);
  1475. }
  1476. finish_wait(&unregister_wait, &wait);
  1477. if (stopped)
  1478. pr_info("All devices stopped");
  1479. else
  1480. pr_notice("Timeout waiting for devices to be closed");
  1481. out:
  1482. mutex_unlock(&bch_register_lock);
  1483. }
  1484. return NOTIFY_DONE;
  1485. }
  1486. static struct notifier_block reboot = {
  1487. .notifier_call = bcache_reboot,
  1488. .priority = INT_MAX, /* before any real devices */
  1489. };
  1490. static void bcache_exit(void)
  1491. {
  1492. bch_debug_exit();
  1493. bch_writeback_exit();
  1494. bch_request_exit();
  1495. bch_btree_exit();
  1496. if (bcache_kobj)
  1497. kobject_put(bcache_kobj);
  1498. if (bcache_wq)
  1499. destroy_workqueue(bcache_wq);
  1500. unregister_blkdev(bcache_major, "bcache");
  1501. unregister_reboot_notifier(&reboot);
  1502. }
  1503. static int __init bcache_init(void)
  1504. {
  1505. static const struct attribute *files[] = {
  1506. &ksysfs_register.attr,
  1507. &ksysfs_register_quiet.attr,
  1508. NULL
  1509. };
  1510. mutex_init(&bch_register_lock);
  1511. init_waitqueue_head(&unregister_wait);
  1512. register_reboot_notifier(&reboot);
  1513. closure_debug_init();
  1514. bcache_major = register_blkdev(0, "bcache");
  1515. if (bcache_major < 0)
  1516. return bcache_major;
  1517. if (!(bcache_wq = create_workqueue("bcache")) ||
  1518. !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
  1519. sysfs_create_files(bcache_kobj, files) ||
  1520. bch_btree_init() ||
  1521. bch_request_init() ||
  1522. bch_writeback_init() ||
  1523. bch_debug_init(bcache_kobj))
  1524. goto err;
  1525. return 0;
  1526. err:
  1527. bcache_exit();
  1528. return -ENOMEM;
  1529. }
  1530. module_exit(bcache_exit);
  1531. module_init(bcache_init);