amd_iommu.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/pci-ats.h>
  22. #include <linux/bitmap.h>
  23. #include <linux/slab.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/iommu.h>
  29. #include <linux/delay.h>
  30. #include <linux/amd-iommu.h>
  31. #include <linux/notifier.h>
  32. #include <linux/export.h>
  33. #include <linux/irq.h>
  34. #include <linux/msi.h>
  35. #include <asm/irq_remapping.h>
  36. #include <asm/io_apic.h>
  37. #include <asm/apic.h>
  38. #include <asm/hw_irq.h>
  39. #include <asm/msidef.h>
  40. #include <asm/proto.h>
  41. #include <asm/iommu.h>
  42. #include <asm/gart.h>
  43. #include <asm/dma.h>
  44. #include "amd_iommu_proto.h"
  45. #include "amd_iommu_types.h"
  46. #include "irq_remapping.h"
  47. #include "pci.h"
  48. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  49. #define LOOP_TIMEOUT 100000
  50. /*
  51. * This bitmap is used to advertise the page sizes our hardware support
  52. * to the IOMMU core, which will then use this information to split
  53. * physically contiguous memory regions it is mapping into page sizes
  54. * that we support.
  55. *
  56. * 512GB Pages are not supported due to a hardware bug
  57. */
  58. #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
  59. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  60. /* A list of preallocated protection domains */
  61. static LIST_HEAD(iommu_pd_list);
  62. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  63. /* List of all available dev_data structures */
  64. static LIST_HEAD(dev_data_list);
  65. static DEFINE_SPINLOCK(dev_data_list_lock);
  66. LIST_HEAD(ioapic_map);
  67. LIST_HEAD(hpet_map);
  68. /*
  69. * Domain for untranslated devices - only allocated
  70. * if iommu=pt passed on kernel cmd line.
  71. */
  72. static struct protection_domain *pt_domain;
  73. static struct iommu_ops amd_iommu_ops;
  74. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  75. int amd_iommu_max_glx_val = -1;
  76. static struct dma_map_ops amd_iommu_dma_ops;
  77. /*
  78. * general struct to manage commands send to an IOMMU
  79. */
  80. struct iommu_cmd {
  81. u32 data[4];
  82. };
  83. struct kmem_cache *amd_iommu_irq_cache;
  84. static void update_domain(struct protection_domain *domain);
  85. static int __init alloc_passthrough_domain(void);
  86. /****************************************************************************
  87. *
  88. * Helper functions
  89. *
  90. ****************************************************************************/
  91. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  92. {
  93. struct iommu_dev_data *dev_data;
  94. unsigned long flags;
  95. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  96. if (!dev_data)
  97. return NULL;
  98. dev_data->devid = devid;
  99. atomic_set(&dev_data->bind, 0);
  100. spin_lock_irqsave(&dev_data_list_lock, flags);
  101. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  102. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  103. return dev_data;
  104. }
  105. static void free_dev_data(struct iommu_dev_data *dev_data)
  106. {
  107. unsigned long flags;
  108. spin_lock_irqsave(&dev_data_list_lock, flags);
  109. list_del(&dev_data->dev_data_list);
  110. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  111. if (dev_data->group)
  112. iommu_group_put(dev_data->group);
  113. kfree(dev_data);
  114. }
  115. static struct iommu_dev_data *search_dev_data(u16 devid)
  116. {
  117. struct iommu_dev_data *dev_data;
  118. unsigned long flags;
  119. spin_lock_irqsave(&dev_data_list_lock, flags);
  120. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  121. if (dev_data->devid == devid)
  122. goto out_unlock;
  123. }
  124. dev_data = NULL;
  125. out_unlock:
  126. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  127. return dev_data;
  128. }
  129. static struct iommu_dev_data *find_dev_data(u16 devid)
  130. {
  131. struct iommu_dev_data *dev_data;
  132. dev_data = search_dev_data(devid);
  133. if (dev_data == NULL)
  134. dev_data = alloc_dev_data(devid);
  135. return dev_data;
  136. }
  137. static inline u16 get_device_id(struct device *dev)
  138. {
  139. struct pci_dev *pdev = to_pci_dev(dev);
  140. return PCI_DEVID(pdev->bus->number, pdev->devfn);
  141. }
  142. static struct iommu_dev_data *get_dev_data(struct device *dev)
  143. {
  144. return dev->archdata.iommu;
  145. }
  146. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  147. {
  148. static const int caps[] = {
  149. PCI_EXT_CAP_ID_ATS,
  150. PCI_EXT_CAP_ID_PRI,
  151. PCI_EXT_CAP_ID_PASID,
  152. };
  153. int i, pos;
  154. for (i = 0; i < 3; ++i) {
  155. pos = pci_find_ext_capability(pdev, caps[i]);
  156. if (pos == 0)
  157. return false;
  158. }
  159. return true;
  160. }
  161. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  162. {
  163. struct iommu_dev_data *dev_data;
  164. dev_data = get_dev_data(&pdev->dev);
  165. return dev_data->errata & (1 << erratum) ? true : false;
  166. }
  167. /*
  168. * In this function the list of preallocated protection domains is traversed to
  169. * find the domain for a specific device
  170. */
  171. static struct dma_ops_domain *find_protection_domain(u16 devid)
  172. {
  173. struct dma_ops_domain *entry, *ret = NULL;
  174. unsigned long flags;
  175. u16 alias = amd_iommu_alias_table[devid];
  176. if (list_empty(&iommu_pd_list))
  177. return NULL;
  178. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  179. list_for_each_entry(entry, &iommu_pd_list, list) {
  180. if (entry->target_dev == devid ||
  181. entry->target_dev == alias) {
  182. ret = entry;
  183. break;
  184. }
  185. }
  186. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  187. return ret;
  188. }
  189. /*
  190. * This function checks if the driver got a valid device from the caller to
  191. * avoid dereferencing invalid pointers.
  192. */
  193. static bool check_device(struct device *dev)
  194. {
  195. u16 devid;
  196. if (!dev || !dev->dma_mask)
  197. return false;
  198. /* No device or no PCI device */
  199. if (dev->bus != &pci_bus_type)
  200. return false;
  201. devid = get_device_id(dev);
  202. /* Out of our scope? */
  203. if (devid > amd_iommu_last_bdf)
  204. return false;
  205. if (amd_iommu_rlookup_table[devid] == NULL)
  206. return false;
  207. return true;
  208. }
  209. static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
  210. {
  211. while (!bus->self) {
  212. if (!pci_is_root_bus(bus))
  213. bus = bus->parent;
  214. else
  215. return ERR_PTR(-ENODEV);
  216. }
  217. return bus;
  218. }
  219. #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
  220. static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
  221. {
  222. struct pci_dev *dma_pdev = pdev;
  223. /* Account for quirked devices */
  224. swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
  225. /*
  226. * If it's a multifunction device that does not support our
  227. * required ACS flags, add to the same group as function 0.
  228. */
  229. if (dma_pdev->multifunction &&
  230. !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
  231. swap_pci_ref(&dma_pdev,
  232. pci_get_slot(dma_pdev->bus,
  233. PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
  234. 0)));
  235. /*
  236. * Devices on the root bus go through the iommu. If that's not us,
  237. * find the next upstream device and test ACS up to the root bus.
  238. * Finding the next device may require skipping virtual buses.
  239. */
  240. while (!pci_is_root_bus(dma_pdev->bus)) {
  241. struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
  242. if (IS_ERR(bus))
  243. break;
  244. if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
  245. break;
  246. swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
  247. }
  248. return dma_pdev;
  249. }
  250. static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
  251. {
  252. struct iommu_group *group = iommu_group_get(&pdev->dev);
  253. int ret;
  254. if (!group) {
  255. group = iommu_group_alloc();
  256. if (IS_ERR(group))
  257. return PTR_ERR(group);
  258. WARN_ON(&pdev->dev != dev);
  259. }
  260. ret = iommu_group_add_device(group, dev);
  261. iommu_group_put(group);
  262. return ret;
  263. }
  264. static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
  265. struct device *dev)
  266. {
  267. if (!dev_data->group) {
  268. struct iommu_group *group = iommu_group_alloc();
  269. if (IS_ERR(group))
  270. return PTR_ERR(group);
  271. dev_data->group = group;
  272. }
  273. return iommu_group_add_device(dev_data->group, dev);
  274. }
  275. static int init_iommu_group(struct device *dev)
  276. {
  277. struct iommu_dev_data *dev_data;
  278. struct iommu_group *group;
  279. struct pci_dev *dma_pdev;
  280. int ret;
  281. group = iommu_group_get(dev);
  282. if (group) {
  283. iommu_group_put(group);
  284. return 0;
  285. }
  286. dev_data = find_dev_data(get_device_id(dev));
  287. if (!dev_data)
  288. return -ENOMEM;
  289. if (dev_data->alias_data) {
  290. u16 alias;
  291. struct pci_bus *bus;
  292. if (dev_data->alias_data->group)
  293. goto use_group;
  294. /*
  295. * If the alias device exists, it's effectively just a first
  296. * level quirk for finding the DMA source.
  297. */
  298. alias = amd_iommu_alias_table[dev_data->devid];
  299. dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
  300. if (dma_pdev) {
  301. dma_pdev = get_isolation_root(dma_pdev);
  302. goto use_pdev;
  303. }
  304. /*
  305. * If the alias is virtual, try to find a parent device
  306. * and test whether the IOMMU group is actualy rooted above
  307. * the alias. Be careful to also test the parent device if
  308. * we think the alias is the root of the group.
  309. */
  310. bus = pci_find_bus(0, alias >> 8);
  311. if (!bus)
  312. goto use_group;
  313. bus = find_hosted_bus(bus);
  314. if (IS_ERR(bus) || !bus->self)
  315. goto use_group;
  316. dma_pdev = get_isolation_root(pci_dev_get(bus->self));
  317. if (dma_pdev != bus->self || (dma_pdev->multifunction &&
  318. !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
  319. goto use_pdev;
  320. pci_dev_put(dma_pdev);
  321. goto use_group;
  322. }
  323. dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
  324. use_pdev:
  325. ret = use_pdev_iommu_group(dma_pdev, dev);
  326. pci_dev_put(dma_pdev);
  327. return ret;
  328. use_group:
  329. return use_dev_data_iommu_group(dev_data->alias_data, dev);
  330. }
  331. static int iommu_init_device(struct device *dev)
  332. {
  333. struct pci_dev *pdev = to_pci_dev(dev);
  334. struct iommu_dev_data *dev_data;
  335. u16 alias;
  336. int ret;
  337. if (dev->archdata.iommu)
  338. return 0;
  339. dev_data = find_dev_data(get_device_id(dev));
  340. if (!dev_data)
  341. return -ENOMEM;
  342. alias = amd_iommu_alias_table[dev_data->devid];
  343. if (alias != dev_data->devid) {
  344. struct iommu_dev_data *alias_data;
  345. alias_data = find_dev_data(alias);
  346. if (alias_data == NULL) {
  347. pr_err("AMD-Vi: Warning: Unhandled device %s\n",
  348. dev_name(dev));
  349. free_dev_data(dev_data);
  350. return -ENOTSUPP;
  351. }
  352. dev_data->alias_data = alias_data;
  353. }
  354. ret = init_iommu_group(dev);
  355. if (ret)
  356. return ret;
  357. if (pci_iommuv2_capable(pdev)) {
  358. struct amd_iommu *iommu;
  359. iommu = amd_iommu_rlookup_table[dev_data->devid];
  360. dev_data->iommu_v2 = iommu->is_iommu_v2;
  361. }
  362. dev->archdata.iommu = dev_data;
  363. return 0;
  364. }
  365. static void iommu_ignore_device(struct device *dev)
  366. {
  367. u16 devid, alias;
  368. devid = get_device_id(dev);
  369. alias = amd_iommu_alias_table[devid];
  370. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  371. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  372. amd_iommu_rlookup_table[devid] = NULL;
  373. amd_iommu_rlookup_table[alias] = NULL;
  374. }
  375. static void iommu_uninit_device(struct device *dev)
  376. {
  377. iommu_group_remove_device(dev);
  378. /*
  379. * Nothing to do here - we keep dev_data around for unplugged devices
  380. * and reuse it when the device is re-plugged - not doing so would
  381. * introduce a ton of races.
  382. */
  383. }
  384. void __init amd_iommu_uninit_devices(void)
  385. {
  386. struct iommu_dev_data *dev_data, *n;
  387. struct pci_dev *pdev = NULL;
  388. for_each_pci_dev(pdev) {
  389. if (!check_device(&pdev->dev))
  390. continue;
  391. iommu_uninit_device(&pdev->dev);
  392. }
  393. /* Free all of our dev_data structures */
  394. list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
  395. free_dev_data(dev_data);
  396. }
  397. int __init amd_iommu_init_devices(void)
  398. {
  399. struct pci_dev *pdev = NULL;
  400. int ret = 0;
  401. for_each_pci_dev(pdev) {
  402. if (!check_device(&pdev->dev))
  403. continue;
  404. ret = iommu_init_device(&pdev->dev);
  405. if (ret == -ENOTSUPP)
  406. iommu_ignore_device(&pdev->dev);
  407. else if (ret)
  408. goto out_free;
  409. }
  410. return 0;
  411. out_free:
  412. amd_iommu_uninit_devices();
  413. return ret;
  414. }
  415. #ifdef CONFIG_AMD_IOMMU_STATS
  416. /*
  417. * Initialization code for statistics collection
  418. */
  419. DECLARE_STATS_COUNTER(compl_wait);
  420. DECLARE_STATS_COUNTER(cnt_map_single);
  421. DECLARE_STATS_COUNTER(cnt_unmap_single);
  422. DECLARE_STATS_COUNTER(cnt_map_sg);
  423. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  424. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  425. DECLARE_STATS_COUNTER(cnt_free_coherent);
  426. DECLARE_STATS_COUNTER(cross_page);
  427. DECLARE_STATS_COUNTER(domain_flush_single);
  428. DECLARE_STATS_COUNTER(domain_flush_all);
  429. DECLARE_STATS_COUNTER(alloced_io_mem);
  430. DECLARE_STATS_COUNTER(total_map_requests);
  431. DECLARE_STATS_COUNTER(complete_ppr);
  432. DECLARE_STATS_COUNTER(invalidate_iotlb);
  433. DECLARE_STATS_COUNTER(invalidate_iotlb_all);
  434. DECLARE_STATS_COUNTER(pri_requests);
  435. static struct dentry *stats_dir;
  436. static struct dentry *de_fflush;
  437. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  438. {
  439. if (stats_dir == NULL)
  440. return;
  441. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  442. &cnt->value);
  443. }
  444. static void amd_iommu_stats_init(void)
  445. {
  446. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  447. if (stats_dir == NULL)
  448. return;
  449. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  450. &amd_iommu_unmap_flush);
  451. amd_iommu_stats_add(&compl_wait);
  452. amd_iommu_stats_add(&cnt_map_single);
  453. amd_iommu_stats_add(&cnt_unmap_single);
  454. amd_iommu_stats_add(&cnt_map_sg);
  455. amd_iommu_stats_add(&cnt_unmap_sg);
  456. amd_iommu_stats_add(&cnt_alloc_coherent);
  457. amd_iommu_stats_add(&cnt_free_coherent);
  458. amd_iommu_stats_add(&cross_page);
  459. amd_iommu_stats_add(&domain_flush_single);
  460. amd_iommu_stats_add(&domain_flush_all);
  461. amd_iommu_stats_add(&alloced_io_mem);
  462. amd_iommu_stats_add(&total_map_requests);
  463. amd_iommu_stats_add(&complete_ppr);
  464. amd_iommu_stats_add(&invalidate_iotlb);
  465. amd_iommu_stats_add(&invalidate_iotlb_all);
  466. amd_iommu_stats_add(&pri_requests);
  467. }
  468. #endif
  469. /****************************************************************************
  470. *
  471. * Interrupt handling functions
  472. *
  473. ****************************************************************************/
  474. static void dump_dte_entry(u16 devid)
  475. {
  476. int i;
  477. for (i = 0; i < 4; ++i)
  478. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  479. amd_iommu_dev_table[devid].data[i]);
  480. }
  481. static void dump_command(unsigned long phys_addr)
  482. {
  483. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  484. int i;
  485. for (i = 0; i < 4; ++i)
  486. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  487. }
  488. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  489. {
  490. int type, devid, domid, flags;
  491. volatile u32 *event = __evt;
  492. int count = 0;
  493. u64 address;
  494. retry:
  495. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  496. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  497. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  498. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  499. address = (u64)(((u64)event[3]) << 32) | event[2];
  500. if (type == 0) {
  501. /* Did we hit the erratum? */
  502. if (++count == LOOP_TIMEOUT) {
  503. pr_err("AMD-Vi: No event written to event log\n");
  504. return;
  505. }
  506. udelay(1);
  507. goto retry;
  508. }
  509. printk(KERN_ERR "AMD-Vi: Event logged [");
  510. switch (type) {
  511. case EVENT_TYPE_ILL_DEV:
  512. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  513. "address=0x%016llx flags=0x%04x]\n",
  514. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  515. address, flags);
  516. dump_dte_entry(devid);
  517. break;
  518. case EVENT_TYPE_IO_FAULT:
  519. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  520. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  521. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  522. domid, address, flags);
  523. break;
  524. case EVENT_TYPE_DEV_TAB_ERR:
  525. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  526. "address=0x%016llx flags=0x%04x]\n",
  527. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  528. address, flags);
  529. break;
  530. case EVENT_TYPE_PAGE_TAB_ERR:
  531. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  532. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  533. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  534. domid, address, flags);
  535. break;
  536. case EVENT_TYPE_ILL_CMD:
  537. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  538. dump_command(address);
  539. break;
  540. case EVENT_TYPE_CMD_HARD_ERR:
  541. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  542. "flags=0x%04x]\n", address, flags);
  543. break;
  544. case EVENT_TYPE_IOTLB_INV_TO:
  545. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  546. "address=0x%016llx]\n",
  547. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  548. address);
  549. break;
  550. case EVENT_TYPE_INV_DEV_REQ:
  551. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  552. "address=0x%016llx flags=0x%04x]\n",
  553. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  554. address, flags);
  555. break;
  556. default:
  557. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  558. }
  559. memset(__evt, 0, 4 * sizeof(u32));
  560. }
  561. static void iommu_poll_events(struct amd_iommu *iommu)
  562. {
  563. u32 head, tail;
  564. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  565. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  566. while (head != tail) {
  567. iommu_print_event(iommu, iommu->evt_buf + head);
  568. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  569. }
  570. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  571. }
  572. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  573. {
  574. struct amd_iommu_fault fault;
  575. INC_STATS_COUNTER(pri_requests);
  576. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  577. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  578. return;
  579. }
  580. fault.address = raw[1];
  581. fault.pasid = PPR_PASID(raw[0]);
  582. fault.device_id = PPR_DEVID(raw[0]);
  583. fault.tag = PPR_TAG(raw[0]);
  584. fault.flags = PPR_FLAGS(raw[0]);
  585. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  586. }
  587. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  588. {
  589. u32 head, tail;
  590. if (iommu->ppr_log == NULL)
  591. return;
  592. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  593. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  594. while (head != tail) {
  595. volatile u64 *raw;
  596. u64 entry[2];
  597. int i;
  598. raw = (u64 *)(iommu->ppr_log + head);
  599. /*
  600. * Hardware bug: Interrupt may arrive before the entry is
  601. * written to memory. If this happens we need to wait for the
  602. * entry to arrive.
  603. */
  604. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  605. if (PPR_REQ_TYPE(raw[0]) != 0)
  606. break;
  607. udelay(1);
  608. }
  609. /* Avoid memcpy function-call overhead */
  610. entry[0] = raw[0];
  611. entry[1] = raw[1];
  612. /*
  613. * To detect the hardware bug we need to clear the entry
  614. * back to zero.
  615. */
  616. raw[0] = raw[1] = 0UL;
  617. /* Update head pointer of hardware ring-buffer */
  618. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  619. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  620. /* Handle PPR entry */
  621. iommu_handle_ppr_entry(iommu, entry);
  622. /* Refresh ring-buffer information */
  623. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  624. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  625. }
  626. }
  627. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  628. {
  629. struct amd_iommu *iommu = (struct amd_iommu *) data;
  630. u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  631. while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
  632. /* Enable EVT and PPR interrupts again */
  633. writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
  634. iommu->mmio_base + MMIO_STATUS_OFFSET);
  635. if (status & MMIO_STATUS_EVT_INT_MASK) {
  636. pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
  637. iommu_poll_events(iommu);
  638. }
  639. if (status & MMIO_STATUS_PPR_INT_MASK) {
  640. pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
  641. iommu_poll_ppr_log(iommu);
  642. }
  643. /*
  644. * Hardware bug: ERBT1312
  645. * When re-enabling interrupt (by writing 1
  646. * to clear the bit), the hardware might also try to set
  647. * the interrupt bit in the event status register.
  648. * In this scenario, the bit will be set, and disable
  649. * subsequent interrupts.
  650. *
  651. * Workaround: The IOMMU driver should read back the
  652. * status register and check if the interrupt bits are cleared.
  653. * If not, driver will need to go through the interrupt handler
  654. * again and re-clear the bits
  655. */
  656. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  657. }
  658. return IRQ_HANDLED;
  659. }
  660. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  661. {
  662. return IRQ_WAKE_THREAD;
  663. }
  664. /****************************************************************************
  665. *
  666. * IOMMU command queuing functions
  667. *
  668. ****************************************************************************/
  669. static int wait_on_sem(volatile u64 *sem)
  670. {
  671. int i = 0;
  672. while (*sem == 0 && i < LOOP_TIMEOUT) {
  673. udelay(1);
  674. i += 1;
  675. }
  676. if (i == LOOP_TIMEOUT) {
  677. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  678. return -EIO;
  679. }
  680. return 0;
  681. }
  682. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  683. struct iommu_cmd *cmd,
  684. u32 tail)
  685. {
  686. u8 *target;
  687. target = iommu->cmd_buf + tail;
  688. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  689. /* Copy command to buffer */
  690. memcpy(target, cmd, sizeof(*cmd));
  691. /* Tell the IOMMU about it */
  692. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  693. }
  694. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  695. {
  696. WARN_ON(address & 0x7ULL);
  697. memset(cmd, 0, sizeof(*cmd));
  698. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  699. cmd->data[1] = upper_32_bits(__pa(address));
  700. cmd->data[2] = 1;
  701. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  702. }
  703. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  704. {
  705. memset(cmd, 0, sizeof(*cmd));
  706. cmd->data[0] = devid;
  707. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  708. }
  709. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  710. size_t size, u16 domid, int pde)
  711. {
  712. u64 pages;
  713. int s;
  714. pages = iommu_num_pages(address, size, PAGE_SIZE);
  715. s = 0;
  716. if (pages > 1) {
  717. /*
  718. * If we have to flush more than one page, flush all
  719. * TLB entries for this domain
  720. */
  721. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  722. s = 1;
  723. }
  724. address &= PAGE_MASK;
  725. memset(cmd, 0, sizeof(*cmd));
  726. cmd->data[1] |= domid;
  727. cmd->data[2] = lower_32_bits(address);
  728. cmd->data[3] = upper_32_bits(address);
  729. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  730. if (s) /* size bit - we flush more than one 4kb page */
  731. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  732. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  733. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  734. }
  735. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  736. u64 address, size_t size)
  737. {
  738. u64 pages;
  739. int s;
  740. pages = iommu_num_pages(address, size, PAGE_SIZE);
  741. s = 0;
  742. if (pages > 1) {
  743. /*
  744. * If we have to flush more than one page, flush all
  745. * TLB entries for this domain
  746. */
  747. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  748. s = 1;
  749. }
  750. address &= PAGE_MASK;
  751. memset(cmd, 0, sizeof(*cmd));
  752. cmd->data[0] = devid;
  753. cmd->data[0] |= (qdep & 0xff) << 24;
  754. cmd->data[1] = devid;
  755. cmd->data[2] = lower_32_bits(address);
  756. cmd->data[3] = upper_32_bits(address);
  757. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  758. if (s)
  759. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  760. }
  761. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  762. u64 address, bool size)
  763. {
  764. memset(cmd, 0, sizeof(*cmd));
  765. address &= ~(0xfffULL);
  766. cmd->data[0] = pasid & PASID_MASK;
  767. cmd->data[1] = domid;
  768. cmd->data[2] = lower_32_bits(address);
  769. cmd->data[3] = upper_32_bits(address);
  770. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  771. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  772. if (size)
  773. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  774. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  775. }
  776. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  777. int qdep, u64 address, bool size)
  778. {
  779. memset(cmd, 0, sizeof(*cmd));
  780. address &= ~(0xfffULL);
  781. cmd->data[0] = devid;
  782. cmd->data[0] |= (pasid & 0xff) << 16;
  783. cmd->data[0] |= (qdep & 0xff) << 24;
  784. cmd->data[1] = devid;
  785. cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
  786. cmd->data[2] = lower_32_bits(address);
  787. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  788. cmd->data[3] = upper_32_bits(address);
  789. if (size)
  790. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  791. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  792. }
  793. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  794. int status, int tag, bool gn)
  795. {
  796. memset(cmd, 0, sizeof(*cmd));
  797. cmd->data[0] = devid;
  798. if (gn) {
  799. cmd->data[1] = pasid & PASID_MASK;
  800. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  801. }
  802. cmd->data[3] = tag & 0x1ff;
  803. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  804. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  805. }
  806. static void build_inv_all(struct iommu_cmd *cmd)
  807. {
  808. memset(cmd, 0, sizeof(*cmd));
  809. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  810. }
  811. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  812. {
  813. memset(cmd, 0, sizeof(*cmd));
  814. cmd->data[0] = devid;
  815. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  816. }
  817. /*
  818. * Writes the command to the IOMMUs command buffer and informs the
  819. * hardware about the new command.
  820. */
  821. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  822. struct iommu_cmd *cmd,
  823. bool sync)
  824. {
  825. u32 left, tail, head, next_tail;
  826. unsigned long flags;
  827. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  828. again:
  829. spin_lock_irqsave(&iommu->lock, flags);
  830. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  831. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  832. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  833. left = (head - next_tail) % iommu->cmd_buf_size;
  834. if (left <= 2) {
  835. struct iommu_cmd sync_cmd;
  836. volatile u64 sem = 0;
  837. int ret;
  838. build_completion_wait(&sync_cmd, (u64)&sem);
  839. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  840. spin_unlock_irqrestore(&iommu->lock, flags);
  841. if ((ret = wait_on_sem(&sem)) != 0)
  842. return ret;
  843. goto again;
  844. }
  845. copy_cmd_to_buffer(iommu, cmd, tail);
  846. /* We need to sync now to make sure all commands are processed */
  847. iommu->need_sync = sync;
  848. spin_unlock_irqrestore(&iommu->lock, flags);
  849. return 0;
  850. }
  851. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  852. {
  853. return iommu_queue_command_sync(iommu, cmd, true);
  854. }
  855. /*
  856. * This function queues a completion wait command into the command
  857. * buffer of an IOMMU
  858. */
  859. static int iommu_completion_wait(struct amd_iommu *iommu)
  860. {
  861. struct iommu_cmd cmd;
  862. volatile u64 sem = 0;
  863. int ret;
  864. if (!iommu->need_sync)
  865. return 0;
  866. build_completion_wait(&cmd, (u64)&sem);
  867. ret = iommu_queue_command_sync(iommu, &cmd, false);
  868. if (ret)
  869. return ret;
  870. return wait_on_sem(&sem);
  871. }
  872. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  873. {
  874. struct iommu_cmd cmd;
  875. build_inv_dte(&cmd, devid);
  876. return iommu_queue_command(iommu, &cmd);
  877. }
  878. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  879. {
  880. u32 devid;
  881. for (devid = 0; devid <= 0xffff; ++devid)
  882. iommu_flush_dte(iommu, devid);
  883. iommu_completion_wait(iommu);
  884. }
  885. /*
  886. * This function uses heavy locking and may disable irqs for some time. But
  887. * this is no issue because it is only called during resume.
  888. */
  889. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  890. {
  891. u32 dom_id;
  892. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  893. struct iommu_cmd cmd;
  894. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  895. dom_id, 1);
  896. iommu_queue_command(iommu, &cmd);
  897. }
  898. iommu_completion_wait(iommu);
  899. }
  900. static void iommu_flush_all(struct amd_iommu *iommu)
  901. {
  902. struct iommu_cmd cmd;
  903. build_inv_all(&cmd);
  904. iommu_queue_command(iommu, &cmd);
  905. iommu_completion_wait(iommu);
  906. }
  907. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  908. {
  909. struct iommu_cmd cmd;
  910. build_inv_irt(&cmd, devid);
  911. iommu_queue_command(iommu, &cmd);
  912. }
  913. static void iommu_flush_irt_all(struct amd_iommu *iommu)
  914. {
  915. u32 devid;
  916. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  917. iommu_flush_irt(iommu, devid);
  918. iommu_completion_wait(iommu);
  919. }
  920. void iommu_flush_all_caches(struct amd_iommu *iommu)
  921. {
  922. if (iommu_feature(iommu, FEATURE_IA)) {
  923. iommu_flush_all(iommu);
  924. } else {
  925. iommu_flush_dte_all(iommu);
  926. iommu_flush_irt_all(iommu);
  927. iommu_flush_tlb_all(iommu);
  928. }
  929. }
  930. /*
  931. * Command send function for flushing on-device TLB
  932. */
  933. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  934. u64 address, size_t size)
  935. {
  936. struct amd_iommu *iommu;
  937. struct iommu_cmd cmd;
  938. int qdep;
  939. qdep = dev_data->ats.qdep;
  940. iommu = amd_iommu_rlookup_table[dev_data->devid];
  941. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  942. return iommu_queue_command(iommu, &cmd);
  943. }
  944. /*
  945. * Command send function for invalidating a device table entry
  946. */
  947. static int device_flush_dte(struct iommu_dev_data *dev_data)
  948. {
  949. struct amd_iommu *iommu;
  950. int ret;
  951. iommu = amd_iommu_rlookup_table[dev_data->devid];
  952. ret = iommu_flush_dte(iommu, dev_data->devid);
  953. if (ret)
  954. return ret;
  955. if (dev_data->ats.enabled)
  956. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  957. return ret;
  958. }
  959. /*
  960. * TLB invalidation function which is called from the mapping functions.
  961. * It invalidates a single PTE if the range to flush is within a single
  962. * page. Otherwise it flushes the whole TLB of the IOMMU.
  963. */
  964. static void __domain_flush_pages(struct protection_domain *domain,
  965. u64 address, size_t size, int pde)
  966. {
  967. struct iommu_dev_data *dev_data;
  968. struct iommu_cmd cmd;
  969. int ret = 0, i;
  970. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  971. for (i = 0; i < amd_iommus_present; ++i) {
  972. if (!domain->dev_iommu[i])
  973. continue;
  974. /*
  975. * Devices of this domain are behind this IOMMU
  976. * We need a TLB flush
  977. */
  978. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  979. }
  980. list_for_each_entry(dev_data, &domain->dev_list, list) {
  981. if (!dev_data->ats.enabled)
  982. continue;
  983. ret |= device_flush_iotlb(dev_data, address, size);
  984. }
  985. WARN_ON(ret);
  986. }
  987. static void domain_flush_pages(struct protection_domain *domain,
  988. u64 address, size_t size)
  989. {
  990. __domain_flush_pages(domain, address, size, 0);
  991. }
  992. /* Flush the whole IO/TLB for a given protection domain */
  993. static void domain_flush_tlb(struct protection_domain *domain)
  994. {
  995. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  996. }
  997. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  998. static void domain_flush_tlb_pde(struct protection_domain *domain)
  999. {
  1000. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  1001. }
  1002. static void domain_flush_complete(struct protection_domain *domain)
  1003. {
  1004. int i;
  1005. for (i = 0; i < amd_iommus_present; ++i) {
  1006. if (!domain->dev_iommu[i])
  1007. continue;
  1008. /*
  1009. * Devices of this domain are behind this IOMMU
  1010. * We need to wait for completion of all commands.
  1011. */
  1012. iommu_completion_wait(amd_iommus[i]);
  1013. }
  1014. }
  1015. /*
  1016. * This function flushes the DTEs for all devices in domain
  1017. */
  1018. static void domain_flush_devices(struct protection_domain *domain)
  1019. {
  1020. struct iommu_dev_data *dev_data;
  1021. list_for_each_entry(dev_data, &domain->dev_list, list)
  1022. device_flush_dte(dev_data);
  1023. }
  1024. /****************************************************************************
  1025. *
  1026. * The functions below are used the create the page table mappings for
  1027. * unity mapped regions.
  1028. *
  1029. ****************************************************************************/
  1030. /*
  1031. * This function is used to add another level to an IO page table. Adding
  1032. * another level increases the size of the address space by 9 bits to a size up
  1033. * to 64 bits.
  1034. */
  1035. static bool increase_address_space(struct protection_domain *domain,
  1036. gfp_t gfp)
  1037. {
  1038. u64 *pte;
  1039. if (domain->mode == PAGE_MODE_6_LEVEL)
  1040. /* address space already 64 bit large */
  1041. return false;
  1042. pte = (void *)get_zeroed_page(gfp);
  1043. if (!pte)
  1044. return false;
  1045. *pte = PM_LEVEL_PDE(domain->mode,
  1046. virt_to_phys(domain->pt_root));
  1047. domain->pt_root = pte;
  1048. domain->mode += 1;
  1049. domain->updated = true;
  1050. return true;
  1051. }
  1052. static u64 *alloc_pte(struct protection_domain *domain,
  1053. unsigned long address,
  1054. unsigned long page_size,
  1055. u64 **pte_page,
  1056. gfp_t gfp)
  1057. {
  1058. int level, end_lvl;
  1059. u64 *pte, *page;
  1060. BUG_ON(!is_power_of_2(page_size));
  1061. while (address > PM_LEVEL_SIZE(domain->mode))
  1062. increase_address_space(domain, gfp);
  1063. level = domain->mode - 1;
  1064. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1065. address = PAGE_SIZE_ALIGN(address, page_size);
  1066. end_lvl = PAGE_SIZE_LEVEL(page_size);
  1067. while (level > end_lvl) {
  1068. if (!IOMMU_PTE_PRESENT(*pte)) {
  1069. page = (u64 *)get_zeroed_page(gfp);
  1070. if (!page)
  1071. return NULL;
  1072. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  1073. }
  1074. /* No level skipping support yet */
  1075. if (PM_PTE_LEVEL(*pte) != level)
  1076. return NULL;
  1077. level -= 1;
  1078. pte = IOMMU_PTE_PAGE(*pte);
  1079. if (pte_page && level == end_lvl)
  1080. *pte_page = pte;
  1081. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1082. }
  1083. return pte;
  1084. }
  1085. /*
  1086. * This function checks if there is a PTE for a given dma address. If
  1087. * there is one, it returns the pointer to it.
  1088. */
  1089. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  1090. {
  1091. int level;
  1092. u64 *pte;
  1093. if (address > PM_LEVEL_SIZE(domain->mode))
  1094. return NULL;
  1095. level = domain->mode - 1;
  1096. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1097. while (level > 0) {
  1098. /* Not Present */
  1099. if (!IOMMU_PTE_PRESENT(*pte))
  1100. return NULL;
  1101. /* Large PTE */
  1102. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1103. unsigned long pte_mask, __pte;
  1104. /*
  1105. * If we have a series of large PTEs, make
  1106. * sure to return a pointer to the first one.
  1107. */
  1108. pte_mask = PTE_PAGE_SIZE(*pte);
  1109. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1110. __pte = ((unsigned long)pte) & pte_mask;
  1111. return (u64 *)__pte;
  1112. }
  1113. /* No level skipping support yet */
  1114. if (PM_PTE_LEVEL(*pte) != level)
  1115. return NULL;
  1116. level -= 1;
  1117. /* Walk to the next level */
  1118. pte = IOMMU_PTE_PAGE(*pte);
  1119. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1120. }
  1121. return pte;
  1122. }
  1123. /*
  1124. * Generic mapping functions. It maps a physical address into a DMA
  1125. * address space. It allocates the page table pages if necessary.
  1126. * In the future it can be extended to a generic mapping function
  1127. * supporting all features of AMD IOMMU page tables like level skipping
  1128. * and full 64 bit address spaces.
  1129. */
  1130. static int iommu_map_page(struct protection_domain *dom,
  1131. unsigned long bus_addr,
  1132. unsigned long phys_addr,
  1133. int prot,
  1134. unsigned long page_size)
  1135. {
  1136. u64 __pte, *pte;
  1137. int i, count;
  1138. if (!(prot & IOMMU_PROT_MASK))
  1139. return -EINVAL;
  1140. bus_addr = PAGE_ALIGN(bus_addr);
  1141. phys_addr = PAGE_ALIGN(phys_addr);
  1142. count = PAGE_SIZE_PTE_COUNT(page_size);
  1143. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  1144. for (i = 0; i < count; ++i)
  1145. if (IOMMU_PTE_PRESENT(pte[i]))
  1146. return -EBUSY;
  1147. if (page_size > PAGE_SIZE) {
  1148. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  1149. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  1150. } else
  1151. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1152. if (prot & IOMMU_PROT_IR)
  1153. __pte |= IOMMU_PTE_IR;
  1154. if (prot & IOMMU_PROT_IW)
  1155. __pte |= IOMMU_PTE_IW;
  1156. for (i = 0; i < count; ++i)
  1157. pte[i] = __pte;
  1158. update_domain(dom);
  1159. return 0;
  1160. }
  1161. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1162. unsigned long bus_addr,
  1163. unsigned long page_size)
  1164. {
  1165. unsigned long long unmap_size, unmapped;
  1166. u64 *pte;
  1167. BUG_ON(!is_power_of_2(page_size));
  1168. unmapped = 0;
  1169. while (unmapped < page_size) {
  1170. pte = fetch_pte(dom, bus_addr);
  1171. if (!pte) {
  1172. /*
  1173. * No PTE for this address
  1174. * move forward in 4kb steps
  1175. */
  1176. unmap_size = PAGE_SIZE;
  1177. } else if (PM_PTE_LEVEL(*pte) == 0) {
  1178. /* 4kb PTE found for this address */
  1179. unmap_size = PAGE_SIZE;
  1180. *pte = 0ULL;
  1181. } else {
  1182. int count, i;
  1183. /* Large PTE found which maps this address */
  1184. unmap_size = PTE_PAGE_SIZE(*pte);
  1185. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1186. for (i = 0; i < count; i++)
  1187. pte[i] = 0ULL;
  1188. }
  1189. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1190. unmapped += unmap_size;
  1191. }
  1192. BUG_ON(!is_power_of_2(unmapped));
  1193. return unmapped;
  1194. }
  1195. /*
  1196. * This function checks if a specific unity mapping entry is needed for
  1197. * this specific IOMMU.
  1198. */
  1199. static int iommu_for_unity_map(struct amd_iommu *iommu,
  1200. struct unity_map_entry *entry)
  1201. {
  1202. u16 bdf, i;
  1203. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  1204. bdf = amd_iommu_alias_table[i];
  1205. if (amd_iommu_rlookup_table[bdf] == iommu)
  1206. return 1;
  1207. }
  1208. return 0;
  1209. }
  1210. /*
  1211. * This function actually applies the mapping to the page table of the
  1212. * dma_ops domain.
  1213. */
  1214. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  1215. struct unity_map_entry *e)
  1216. {
  1217. u64 addr;
  1218. int ret;
  1219. for (addr = e->address_start; addr < e->address_end;
  1220. addr += PAGE_SIZE) {
  1221. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  1222. PAGE_SIZE);
  1223. if (ret)
  1224. return ret;
  1225. /*
  1226. * if unity mapping is in aperture range mark the page
  1227. * as allocated in the aperture
  1228. */
  1229. if (addr < dma_dom->aperture_size)
  1230. __set_bit(addr >> PAGE_SHIFT,
  1231. dma_dom->aperture[0]->bitmap);
  1232. }
  1233. return 0;
  1234. }
  1235. /*
  1236. * Init the unity mappings for a specific IOMMU in the system
  1237. *
  1238. * Basically iterates over all unity mapping entries and applies them to
  1239. * the default domain DMA of that IOMMU if necessary.
  1240. */
  1241. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  1242. {
  1243. struct unity_map_entry *entry;
  1244. int ret;
  1245. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  1246. if (!iommu_for_unity_map(iommu, entry))
  1247. continue;
  1248. ret = dma_ops_unity_map(iommu->default_dom, entry);
  1249. if (ret)
  1250. return ret;
  1251. }
  1252. return 0;
  1253. }
  1254. /*
  1255. * Inits the unity mappings required for a specific device
  1256. */
  1257. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  1258. u16 devid)
  1259. {
  1260. struct unity_map_entry *e;
  1261. int ret;
  1262. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  1263. if (!(devid >= e->devid_start && devid <= e->devid_end))
  1264. continue;
  1265. ret = dma_ops_unity_map(dma_dom, e);
  1266. if (ret)
  1267. return ret;
  1268. }
  1269. return 0;
  1270. }
  1271. /****************************************************************************
  1272. *
  1273. * The next functions belong to the address allocator for the dma_ops
  1274. * interface functions. They work like the allocators in the other IOMMU
  1275. * drivers. Its basically a bitmap which marks the allocated pages in
  1276. * the aperture. Maybe it could be enhanced in the future to a more
  1277. * efficient allocator.
  1278. *
  1279. ****************************************************************************/
  1280. /*
  1281. * The address allocator core functions.
  1282. *
  1283. * called with domain->lock held
  1284. */
  1285. /*
  1286. * Used to reserve address ranges in the aperture (e.g. for exclusion
  1287. * ranges.
  1288. */
  1289. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  1290. unsigned long start_page,
  1291. unsigned int pages)
  1292. {
  1293. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  1294. if (start_page + pages > last_page)
  1295. pages = last_page - start_page;
  1296. for (i = start_page; i < start_page + pages; ++i) {
  1297. int index = i / APERTURE_RANGE_PAGES;
  1298. int page = i % APERTURE_RANGE_PAGES;
  1299. __set_bit(page, dom->aperture[index]->bitmap);
  1300. }
  1301. }
  1302. /*
  1303. * This function is used to add a new aperture range to an existing
  1304. * aperture in case of dma_ops domain allocation or address allocation
  1305. * failure.
  1306. */
  1307. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  1308. bool populate, gfp_t gfp)
  1309. {
  1310. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1311. struct amd_iommu *iommu;
  1312. unsigned long i, old_size;
  1313. #ifdef CONFIG_IOMMU_STRESS
  1314. populate = false;
  1315. #endif
  1316. if (index >= APERTURE_MAX_RANGES)
  1317. return -ENOMEM;
  1318. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  1319. if (!dma_dom->aperture[index])
  1320. return -ENOMEM;
  1321. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  1322. if (!dma_dom->aperture[index]->bitmap)
  1323. goto out_free;
  1324. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  1325. if (populate) {
  1326. unsigned long address = dma_dom->aperture_size;
  1327. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  1328. u64 *pte, *pte_page;
  1329. for (i = 0; i < num_ptes; ++i) {
  1330. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  1331. &pte_page, gfp);
  1332. if (!pte)
  1333. goto out_free;
  1334. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  1335. address += APERTURE_RANGE_SIZE / 64;
  1336. }
  1337. }
  1338. old_size = dma_dom->aperture_size;
  1339. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  1340. /* Reserve address range used for MSI messages */
  1341. if (old_size < MSI_ADDR_BASE_LO &&
  1342. dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
  1343. unsigned long spage;
  1344. int pages;
  1345. pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
  1346. spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
  1347. dma_ops_reserve_addresses(dma_dom, spage, pages);
  1348. }
  1349. /* Initialize the exclusion range if necessary */
  1350. for_each_iommu(iommu) {
  1351. if (iommu->exclusion_start &&
  1352. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  1353. && iommu->exclusion_start < dma_dom->aperture_size) {
  1354. unsigned long startpage;
  1355. int pages = iommu_num_pages(iommu->exclusion_start,
  1356. iommu->exclusion_length,
  1357. PAGE_SIZE);
  1358. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  1359. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  1360. }
  1361. }
  1362. /*
  1363. * Check for areas already mapped as present in the new aperture
  1364. * range and mark those pages as reserved in the allocator. Such
  1365. * mappings may already exist as a result of requested unity
  1366. * mappings for devices.
  1367. */
  1368. for (i = dma_dom->aperture[index]->offset;
  1369. i < dma_dom->aperture_size;
  1370. i += PAGE_SIZE) {
  1371. u64 *pte = fetch_pte(&dma_dom->domain, i);
  1372. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  1373. continue;
  1374. dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
  1375. }
  1376. update_domain(&dma_dom->domain);
  1377. return 0;
  1378. out_free:
  1379. update_domain(&dma_dom->domain);
  1380. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  1381. kfree(dma_dom->aperture[index]);
  1382. dma_dom->aperture[index] = NULL;
  1383. return -ENOMEM;
  1384. }
  1385. static unsigned long dma_ops_area_alloc(struct device *dev,
  1386. struct dma_ops_domain *dom,
  1387. unsigned int pages,
  1388. unsigned long align_mask,
  1389. u64 dma_mask,
  1390. unsigned long start)
  1391. {
  1392. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  1393. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1394. int i = start >> APERTURE_RANGE_SHIFT;
  1395. unsigned long boundary_size;
  1396. unsigned long address = -1;
  1397. unsigned long limit;
  1398. next_bit >>= PAGE_SHIFT;
  1399. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  1400. PAGE_SIZE) >> PAGE_SHIFT;
  1401. for (;i < max_index; ++i) {
  1402. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  1403. if (dom->aperture[i]->offset >= dma_mask)
  1404. break;
  1405. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  1406. dma_mask >> PAGE_SHIFT);
  1407. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  1408. limit, next_bit, pages, 0,
  1409. boundary_size, align_mask);
  1410. if (address != -1) {
  1411. address = dom->aperture[i]->offset +
  1412. (address << PAGE_SHIFT);
  1413. dom->next_address = address + (pages << PAGE_SHIFT);
  1414. break;
  1415. }
  1416. next_bit = 0;
  1417. }
  1418. return address;
  1419. }
  1420. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1421. struct dma_ops_domain *dom,
  1422. unsigned int pages,
  1423. unsigned long align_mask,
  1424. u64 dma_mask)
  1425. {
  1426. unsigned long address;
  1427. #ifdef CONFIG_IOMMU_STRESS
  1428. dom->next_address = 0;
  1429. dom->need_flush = true;
  1430. #endif
  1431. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1432. dma_mask, dom->next_address);
  1433. if (address == -1) {
  1434. dom->next_address = 0;
  1435. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1436. dma_mask, 0);
  1437. dom->need_flush = true;
  1438. }
  1439. if (unlikely(address == -1))
  1440. address = DMA_ERROR_CODE;
  1441. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1442. return address;
  1443. }
  1444. /*
  1445. * The address free function.
  1446. *
  1447. * called with domain->lock held
  1448. */
  1449. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1450. unsigned long address,
  1451. unsigned int pages)
  1452. {
  1453. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1454. struct aperture_range *range = dom->aperture[i];
  1455. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1456. #ifdef CONFIG_IOMMU_STRESS
  1457. if (i < 4)
  1458. return;
  1459. #endif
  1460. if (address >= dom->next_address)
  1461. dom->need_flush = true;
  1462. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1463. bitmap_clear(range->bitmap, address, pages);
  1464. }
  1465. /****************************************************************************
  1466. *
  1467. * The next functions belong to the domain allocation. A domain is
  1468. * allocated for every IOMMU as the default domain. If device isolation
  1469. * is enabled, every device get its own domain. The most important thing
  1470. * about domains is the page table mapping the DMA address space they
  1471. * contain.
  1472. *
  1473. ****************************************************************************/
  1474. /*
  1475. * This function adds a protection domain to the global protection domain list
  1476. */
  1477. static void add_domain_to_list(struct protection_domain *domain)
  1478. {
  1479. unsigned long flags;
  1480. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1481. list_add(&domain->list, &amd_iommu_pd_list);
  1482. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1483. }
  1484. /*
  1485. * This function removes a protection domain to the global
  1486. * protection domain list
  1487. */
  1488. static void del_domain_from_list(struct protection_domain *domain)
  1489. {
  1490. unsigned long flags;
  1491. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1492. list_del(&domain->list);
  1493. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1494. }
  1495. static u16 domain_id_alloc(void)
  1496. {
  1497. unsigned long flags;
  1498. int id;
  1499. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1500. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1501. BUG_ON(id == 0);
  1502. if (id > 0 && id < MAX_DOMAIN_ID)
  1503. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1504. else
  1505. id = 0;
  1506. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1507. return id;
  1508. }
  1509. static void domain_id_free(int id)
  1510. {
  1511. unsigned long flags;
  1512. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1513. if (id > 0 && id < MAX_DOMAIN_ID)
  1514. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1515. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1516. }
  1517. static void free_pagetable(struct protection_domain *domain)
  1518. {
  1519. int i, j;
  1520. u64 *p1, *p2, *p3;
  1521. p1 = domain->pt_root;
  1522. if (!p1)
  1523. return;
  1524. for (i = 0; i < 512; ++i) {
  1525. if (!IOMMU_PTE_PRESENT(p1[i]))
  1526. continue;
  1527. p2 = IOMMU_PTE_PAGE(p1[i]);
  1528. for (j = 0; j < 512; ++j) {
  1529. if (!IOMMU_PTE_PRESENT(p2[j]))
  1530. continue;
  1531. p3 = IOMMU_PTE_PAGE(p2[j]);
  1532. free_page((unsigned long)p3);
  1533. }
  1534. free_page((unsigned long)p2);
  1535. }
  1536. free_page((unsigned long)p1);
  1537. domain->pt_root = NULL;
  1538. }
  1539. static void free_gcr3_tbl_level1(u64 *tbl)
  1540. {
  1541. u64 *ptr;
  1542. int i;
  1543. for (i = 0; i < 512; ++i) {
  1544. if (!(tbl[i] & GCR3_VALID))
  1545. continue;
  1546. ptr = __va(tbl[i] & PAGE_MASK);
  1547. free_page((unsigned long)ptr);
  1548. }
  1549. }
  1550. static void free_gcr3_tbl_level2(u64 *tbl)
  1551. {
  1552. u64 *ptr;
  1553. int i;
  1554. for (i = 0; i < 512; ++i) {
  1555. if (!(tbl[i] & GCR3_VALID))
  1556. continue;
  1557. ptr = __va(tbl[i] & PAGE_MASK);
  1558. free_gcr3_tbl_level1(ptr);
  1559. }
  1560. }
  1561. static void free_gcr3_table(struct protection_domain *domain)
  1562. {
  1563. if (domain->glx == 2)
  1564. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1565. else if (domain->glx == 1)
  1566. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1567. else if (domain->glx != 0)
  1568. BUG();
  1569. free_page((unsigned long)domain->gcr3_tbl);
  1570. }
  1571. /*
  1572. * Free a domain, only used if something went wrong in the
  1573. * allocation path and we need to free an already allocated page table
  1574. */
  1575. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1576. {
  1577. int i;
  1578. if (!dom)
  1579. return;
  1580. del_domain_from_list(&dom->domain);
  1581. free_pagetable(&dom->domain);
  1582. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1583. if (!dom->aperture[i])
  1584. continue;
  1585. free_page((unsigned long)dom->aperture[i]->bitmap);
  1586. kfree(dom->aperture[i]);
  1587. }
  1588. kfree(dom);
  1589. }
  1590. /*
  1591. * Allocates a new protection domain usable for the dma_ops functions.
  1592. * It also initializes the page table and the address allocator data
  1593. * structures required for the dma_ops interface
  1594. */
  1595. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1596. {
  1597. struct dma_ops_domain *dma_dom;
  1598. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1599. if (!dma_dom)
  1600. return NULL;
  1601. spin_lock_init(&dma_dom->domain.lock);
  1602. dma_dom->domain.id = domain_id_alloc();
  1603. if (dma_dom->domain.id == 0)
  1604. goto free_dma_dom;
  1605. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1606. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1607. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1608. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1609. dma_dom->domain.priv = dma_dom;
  1610. if (!dma_dom->domain.pt_root)
  1611. goto free_dma_dom;
  1612. dma_dom->need_flush = false;
  1613. dma_dom->target_dev = 0xffff;
  1614. add_domain_to_list(&dma_dom->domain);
  1615. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1616. goto free_dma_dom;
  1617. /*
  1618. * mark the first page as allocated so we never return 0 as
  1619. * a valid dma-address. So we can use 0 as error value
  1620. */
  1621. dma_dom->aperture[0]->bitmap[0] = 1;
  1622. dma_dom->next_address = 0;
  1623. return dma_dom;
  1624. free_dma_dom:
  1625. dma_ops_domain_free(dma_dom);
  1626. return NULL;
  1627. }
  1628. /*
  1629. * little helper function to check whether a given protection domain is a
  1630. * dma_ops domain
  1631. */
  1632. static bool dma_ops_domain(struct protection_domain *domain)
  1633. {
  1634. return domain->flags & PD_DMA_OPS_MASK;
  1635. }
  1636. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1637. {
  1638. u64 pte_root = 0;
  1639. u64 flags = 0;
  1640. if (domain->mode != PAGE_MODE_NONE)
  1641. pte_root = virt_to_phys(domain->pt_root);
  1642. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1643. << DEV_ENTRY_MODE_SHIFT;
  1644. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1645. flags = amd_iommu_dev_table[devid].data[1];
  1646. if (ats)
  1647. flags |= DTE_FLAG_IOTLB;
  1648. if (domain->flags & PD_IOMMUV2_MASK) {
  1649. u64 gcr3 = __pa(domain->gcr3_tbl);
  1650. u64 glx = domain->glx;
  1651. u64 tmp;
  1652. pte_root |= DTE_FLAG_GV;
  1653. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1654. /* First mask out possible old values for GCR3 table */
  1655. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1656. flags &= ~tmp;
  1657. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1658. flags &= ~tmp;
  1659. /* Encode GCR3 table into DTE */
  1660. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1661. pte_root |= tmp;
  1662. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1663. flags |= tmp;
  1664. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1665. flags |= tmp;
  1666. }
  1667. flags &= ~(0xffffUL);
  1668. flags |= domain->id;
  1669. amd_iommu_dev_table[devid].data[1] = flags;
  1670. amd_iommu_dev_table[devid].data[0] = pte_root;
  1671. }
  1672. static void clear_dte_entry(u16 devid)
  1673. {
  1674. /* remove entry from the device table seen by the hardware */
  1675. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1676. amd_iommu_dev_table[devid].data[1] = 0;
  1677. amd_iommu_apply_erratum_63(devid);
  1678. }
  1679. static void do_attach(struct iommu_dev_data *dev_data,
  1680. struct protection_domain *domain)
  1681. {
  1682. struct amd_iommu *iommu;
  1683. bool ats;
  1684. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1685. ats = dev_data->ats.enabled;
  1686. /* Update data structures */
  1687. dev_data->domain = domain;
  1688. list_add(&dev_data->list, &domain->dev_list);
  1689. set_dte_entry(dev_data->devid, domain, ats);
  1690. /* Do reference counting */
  1691. domain->dev_iommu[iommu->index] += 1;
  1692. domain->dev_cnt += 1;
  1693. /* Flush the DTE entry */
  1694. device_flush_dte(dev_data);
  1695. }
  1696. static void do_detach(struct iommu_dev_data *dev_data)
  1697. {
  1698. struct amd_iommu *iommu;
  1699. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1700. /* decrease reference counters */
  1701. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1702. dev_data->domain->dev_cnt -= 1;
  1703. /* Update data structures */
  1704. dev_data->domain = NULL;
  1705. list_del(&dev_data->list);
  1706. clear_dte_entry(dev_data->devid);
  1707. /* Flush the DTE entry */
  1708. device_flush_dte(dev_data);
  1709. }
  1710. /*
  1711. * If a device is not yet associated with a domain, this function does
  1712. * assigns it visible for the hardware
  1713. */
  1714. static int __attach_device(struct iommu_dev_data *dev_data,
  1715. struct protection_domain *domain)
  1716. {
  1717. int ret;
  1718. /* lock domain */
  1719. spin_lock(&domain->lock);
  1720. if (dev_data->alias_data != NULL) {
  1721. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1722. /* Some sanity checks */
  1723. ret = -EBUSY;
  1724. if (alias_data->domain != NULL &&
  1725. alias_data->domain != domain)
  1726. goto out_unlock;
  1727. if (dev_data->domain != NULL &&
  1728. dev_data->domain != domain)
  1729. goto out_unlock;
  1730. /* Do real assignment */
  1731. if (alias_data->domain == NULL)
  1732. do_attach(alias_data, domain);
  1733. atomic_inc(&alias_data->bind);
  1734. }
  1735. if (dev_data->domain == NULL)
  1736. do_attach(dev_data, domain);
  1737. atomic_inc(&dev_data->bind);
  1738. ret = 0;
  1739. out_unlock:
  1740. /* ready */
  1741. spin_unlock(&domain->lock);
  1742. return ret;
  1743. }
  1744. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1745. {
  1746. pci_disable_ats(pdev);
  1747. pci_disable_pri(pdev);
  1748. pci_disable_pasid(pdev);
  1749. }
  1750. /* FIXME: Change generic reset-function to do the same */
  1751. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1752. {
  1753. u16 control;
  1754. int pos;
  1755. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1756. if (!pos)
  1757. return -EINVAL;
  1758. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1759. control |= PCI_PRI_CTRL_RESET;
  1760. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1761. return 0;
  1762. }
  1763. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1764. {
  1765. bool reset_enable;
  1766. int reqs, ret;
  1767. /* FIXME: Hardcode number of outstanding requests for now */
  1768. reqs = 32;
  1769. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1770. reqs = 1;
  1771. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1772. /* Only allow access to user-accessible pages */
  1773. ret = pci_enable_pasid(pdev, 0);
  1774. if (ret)
  1775. goto out_err;
  1776. /* First reset the PRI state of the device */
  1777. ret = pci_reset_pri(pdev);
  1778. if (ret)
  1779. goto out_err;
  1780. /* Enable PRI */
  1781. ret = pci_enable_pri(pdev, reqs);
  1782. if (ret)
  1783. goto out_err;
  1784. if (reset_enable) {
  1785. ret = pri_reset_while_enabled(pdev);
  1786. if (ret)
  1787. goto out_err;
  1788. }
  1789. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1790. if (ret)
  1791. goto out_err;
  1792. return 0;
  1793. out_err:
  1794. pci_disable_pri(pdev);
  1795. pci_disable_pasid(pdev);
  1796. return ret;
  1797. }
  1798. /* FIXME: Move this to PCI code */
  1799. #define PCI_PRI_TLP_OFF (1 << 15)
  1800. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1801. {
  1802. u16 status;
  1803. int pos;
  1804. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1805. if (!pos)
  1806. return false;
  1807. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1808. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1809. }
  1810. /*
  1811. * If a device is not yet associated with a domain, this function
  1812. * assigns it visible for the hardware
  1813. */
  1814. static int attach_device(struct device *dev,
  1815. struct protection_domain *domain)
  1816. {
  1817. struct pci_dev *pdev = to_pci_dev(dev);
  1818. struct iommu_dev_data *dev_data;
  1819. unsigned long flags;
  1820. int ret;
  1821. dev_data = get_dev_data(dev);
  1822. if (domain->flags & PD_IOMMUV2_MASK) {
  1823. if (!dev_data->iommu_v2 || !dev_data->passthrough)
  1824. return -EINVAL;
  1825. if (pdev_iommuv2_enable(pdev) != 0)
  1826. return -EINVAL;
  1827. dev_data->ats.enabled = true;
  1828. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1829. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1830. } else if (amd_iommu_iotlb_sup &&
  1831. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1832. dev_data->ats.enabled = true;
  1833. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1834. }
  1835. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1836. ret = __attach_device(dev_data, domain);
  1837. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1838. /*
  1839. * We might boot into a crash-kernel here. The crashed kernel
  1840. * left the caches in the IOMMU dirty. So we have to flush
  1841. * here to evict all dirty stuff.
  1842. */
  1843. domain_flush_tlb_pde(domain);
  1844. return ret;
  1845. }
  1846. /*
  1847. * Removes a device from a protection domain (unlocked)
  1848. */
  1849. static void __detach_device(struct iommu_dev_data *dev_data)
  1850. {
  1851. struct protection_domain *domain;
  1852. unsigned long flags;
  1853. BUG_ON(!dev_data->domain);
  1854. domain = dev_data->domain;
  1855. spin_lock_irqsave(&domain->lock, flags);
  1856. if (dev_data->alias_data != NULL) {
  1857. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1858. if (atomic_dec_and_test(&alias_data->bind))
  1859. do_detach(alias_data);
  1860. }
  1861. if (atomic_dec_and_test(&dev_data->bind))
  1862. do_detach(dev_data);
  1863. spin_unlock_irqrestore(&domain->lock, flags);
  1864. /*
  1865. * If we run in passthrough mode the device must be assigned to the
  1866. * passthrough domain if it is detached from any other domain.
  1867. * Make sure we can deassign from the pt_domain itself.
  1868. */
  1869. if (dev_data->passthrough &&
  1870. (dev_data->domain == NULL && domain != pt_domain))
  1871. __attach_device(dev_data, pt_domain);
  1872. }
  1873. /*
  1874. * Removes a device from a protection domain (with devtable_lock held)
  1875. */
  1876. static void detach_device(struct device *dev)
  1877. {
  1878. struct protection_domain *domain;
  1879. struct iommu_dev_data *dev_data;
  1880. unsigned long flags;
  1881. dev_data = get_dev_data(dev);
  1882. domain = dev_data->domain;
  1883. /* lock device table */
  1884. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1885. __detach_device(dev_data);
  1886. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1887. if (domain->flags & PD_IOMMUV2_MASK)
  1888. pdev_iommuv2_disable(to_pci_dev(dev));
  1889. else if (dev_data->ats.enabled)
  1890. pci_disable_ats(to_pci_dev(dev));
  1891. dev_data->ats.enabled = false;
  1892. }
  1893. /*
  1894. * Find out the protection domain structure for a given PCI device. This
  1895. * will give us the pointer to the page table root for example.
  1896. */
  1897. static struct protection_domain *domain_for_device(struct device *dev)
  1898. {
  1899. struct iommu_dev_data *dev_data;
  1900. struct protection_domain *dom = NULL;
  1901. unsigned long flags;
  1902. dev_data = get_dev_data(dev);
  1903. if (dev_data->domain)
  1904. return dev_data->domain;
  1905. if (dev_data->alias_data != NULL) {
  1906. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1907. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1908. if (alias_data->domain != NULL) {
  1909. __attach_device(dev_data, alias_data->domain);
  1910. dom = alias_data->domain;
  1911. }
  1912. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1913. }
  1914. return dom;
  1915. }
  1916. static int device_change_notifier(struct notifier_block *nb,
  1917. unsigned long action, void *data)
  1918. {
  1919. struct dma_ops_domain *dma_domain;
  1920. struct protection_domain *domain;
  1921. struct iommu_dev_data *dev_data;
  1922. struct device *dev = data;
  1923. struct amd_iommu *iommu;
  1924. unsigned long flags;
  1925. u16 devid;
  1926. if (!check_device(dev))
  1927. return 0;
  1928. devid = get_device_id(dev);
  1929. iommu = amd_iommu_rlookup_table[devid];
  1930. dev_data = get_dev_data(dev);
  1931. switch (action) {
  1932. case BUS_NOTIFY_UNBOUND_DRIVER:
  1933. domain = domain_for_device(dev);
  1934. if (!domain)
  1935. goto out;
  1936. if (dev_data->passthrough)
  1937. break;
  1938. detach_device(dev);
  1939. break;
  1940. case BUS_NOTIFY_ADD_DEVICE:
  1941. iommu_init_device(dev);
  1942. /*
  1943. * dev_data is still NULL and
  1944. * got initialized in iommu_init_device
  1945. */
  1946. dev_data = get_dev_data(dev);
  1947. if (iommu_pass_through || dev_data->iommu_v2) {
  1948. dev_data->passthrough = true;
  1949. attach_device(dev, pt_domain);
  1950. break;
  1951. }
  1952. domain = domain_for_device(dev);
  1953. /* allocate a protection domain if a device is added */
  1954. dma_domain = find_protection_domain(devid);
  1955. if (!dma_domain) {
  1956. dma_domain = dma_ops_domain_alloc();
  1957. if (!dma_domain)
  1958. goto out;
  1959. dma_domain->target_dev = devid;
  1960. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1961. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1962. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1963. }
  1964. dev->archdata.dma_ops = &amd_iommu_dma_ops;
  1965. break;
  1966. case BUS_NOTIFY_DEL_DEVICE:
  1967. iommu_uninit_device(dev);
  1968. default:
  1969. goto out;
  1970. }
  1971. iommu_completion_wait(iommu);
  1972. out:
  1973. return 0;
  1974. }
  1975. static struct notifier_block device_nb = {
  1976. .notifier_call = device_change_notifier,
  1977. };
  1978. void amd_iommu_init_notifier(void)
  1979. {
  1980. bus_register_notifier(&pci_bus_type, &device_nb);
  1981. }
  1982. /*****************************************************************************
  1983. *
  1984. * The next functions belong to the dma_ops mapping/unmapping code.
  1985. *
  1986. *****************************************************************************/
  1987. /*
  1988. * In the dma_ops path we only have the struct device. This function
  1989. * finds the corresponding IOMMU, the protection domain and the
  1990. * requestor id for a given device.
  1991. * If the device is not yet associated with a domain this is also done
  1992. * in this function.
  1993. */
  1994. static struct protection_domain *get_domain(struct device *dev)
  1995. {
  1996. struct protection_domain *domain;
  1997. struct dma_ops_domain *dma_dom;
  1998. u16 devid = get_device_id(dev);
  1999. if (!check_device(dev))
  2000. return ERR_PTR(-EINVAL);
  2001. domain = domain_for_device(dev);
  2002. if (domain != NULL && !dma_ops_domain(domain))
  2003. return ERR_PTR(-EBUSY);
  2004. if (domain != NULL)
  2005. return domain;
  2006. /* Device not bound yet - bind it */
  2007. dma_dom = find_protection_domain(devid);
  2008. if (!dma_dom)
  2009. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  2010. attach_device(dev, &dma_dom->domain);
  2011. DUMP_printk("Using protection domain %d for device %s\n",
  2012. dma_dom->domain.id, dev_name(dev));
  2013. return &dma_dom->domain;
  2014. }
  2015. static void update_device_table(struct protection_domain *domain)
  2016. {
  2017. struct iommu_dev_data *dev_data;
  2018. list_for_each_entry(dev_data, &domain->dev_list, list)
  2019. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  2020. }
  2021. static void update_domain(struct protection_domain *domain)
  2022. {
  2023. if (!domain->updated)
  2024. return;
  2025. update_device_table(domain);
  2026. domain_flush_devices(domain);
  2027. domain_flush_tlb_pde(domain);
  2028. domain->updated = false;
  2029. }
  2030. /*
  2031. * This function fetches the PTE for a given address in the aperture
  2032. */
  2033. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  2034. unsigned long address)
  2035. {
  2036. struct aperture_range *aperture;
  2037. u64 *pte, *pte_page;
  2038. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  2039. if (!aperture)
  2040. return NULL;
  2041. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  2042. if (!pte) {
  2043. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  2044. GFP_ATOMIC);
  2045. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  2046. } else
  2047. pte += PM_LEVEL_INDEX(0, address);
  2048. update_domain(&dom->domain);
  2049. return pte;
  2050. }
  2051. /*
  2052. * This is the generic map function. It maps one 4kb page at paddr to
  2053. * the given address in the DMA address space for the domain.
  2054. */
  2055. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  2056. unsigned long address,
  2057. phys_addr_t paddr,
  2058. int direction)
  2059. {
  2060. u64 *pte, __pte;
  2061. WARN_ON(address > dom->aperture_size);
  2062. paddr &= PAGE_MASK;
  2063. pte = dma_ops_get_pte(dom, address);
  2064. if (!pte)
  2065. return DMA_ERROR_CODE;
  2066. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  2067. if (direction == DMA_TO_DEVICE)
  2068. __pte |= IOMMU_PTE_IR;
  2069. else if (direction == DMA_FROM_DEVICE)
  2070. __pte |= IOMMU_PTE_IW;
  2071. else if (direction == DMA_BIDIRECTIONAL)
  2072. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  2073. WARN_ON(*pte);
  2074. *pte = __pte;
  2075. return (dma_addr_t)address;
  2076. }
  2077. /*
  2078. * The generic unmapping function for on page in the DMA address space.
  2079. */
  2080. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  2081. unsigned long address)
  2082. {
  2083. struct aperture_range *aperture;
  2084. u64 *pte;
  2085. if (address >= dom->aperture_size)
  2086. return;
  2087. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  2088. if (!aperture)
  2089. return;
  2090. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  2091. if (!pte)
  2092. return;
  2093. pte += PM_LEVEL_INDEX(0, address);
  2094. WARN_ON(!*pte);
  2095. *pte = 0ULL;
  2096. }
  2097. /*
  2098. * This function contains common code for mapping of a physically
  2099. * contiguous memory region into DMA address space. It is used by all
  2100. * mapping functions provided with this IOMMU driver.
  2101. * Must be called with the domain lock held.
  2102. */
  2103. static dma_addr_t __map_single(struct device *dev,
  2104. struct dma_ops_domain *dma_dom,
  2105. phys_addr_t paddr,
  2106. size_t size,
  2107. int dir,
  2108. bool align,
  2109. u64 dma_mask)
  2110. {
  2111. dma_addr_t offset = paddr & ~PAGE_MASK;
  2112. dma_addr_t address, start, ret;
  2113. unsigned int pages;
  2114. unsigned long align_mask = 0;
  2115. int i;
  2116. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  2117. paddr &= PAGE_MASK;
  2118. INC_STATS_COUNTER(total_map_requests);
  2119. if (pages > 1)
  2120. INC_STATS_COUNTER(cross_page);
  2121. if (align)
  2122. align_mask = (1UL << get_order(size)) - 1;
  2123. retry:
  2124. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  2125. dma_mask);
  2126. if (unlikely(address == DMA_ERROR_CODE)) {
  2127. /*
  2128. * setting next_address here will let the address
  2129. * allocator only scan the new allocated range in the
  2130. * first run. This is a small optimization.
  2131. */
  2132. dma_dom->next_address = dma_dom->aperture_size;
  2133. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  2134. goto out;
  2135. /*
  2136. * aperture was successfully enlarged by 128 MB, try
  2137. * allocation again
  2138. */
  2139. goto retry;
  2140. }
  2141. start = address;
  2142. for (i = 0; i < pages; ++i) {
  2143. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  2144. if (ret == DMA_ERROR_CODE)
  2145. goto out_unmap;
  2146. paddr += PAGE_SIZE;
  2147. start += PAGE_SIZE;
  2148. }
  2149. address += offset;
  2150. ADD_STATS_COUNTER(alloced_io_mem, size);
  2151. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  2152. domain_flush_tlb(&dma_dom->domain);
  2153. dma_dom->need_flush = false;
  2154. } else if (unlikely(amd_iommu_np_cache))
  2155. domain_flush_pages(&dma_dom->domain, address, size);
  2156. out:
  2157. return address;
  2158. out_unmap:
  2159. for (--i; i >= 0; --i) {
  2160. start -= PAGE_SIZE;
  2161. dma_ops_domain_unmap(dma_dom, start);
  2162. }
  2163. dma_ops_free_addresses(dma_dom, address, pages);
  2164. return DMA_ERROR_CODE;
  2165. }
  2166. /*
  2167. * Does the reverse of the __map_single function. Must be called with
  2168. * the domain lock held too
  2169. */
  2170. static void __unmap_single(struct dma_ops_domain *dma_dom,
  2171. dma_addr_t dma_addr,
  2172. size_t size,
  2173. int dir)
  2174. {
  2175. dma_addr_t flush_addr;
  2176. dma_addr_t i, start;
  2177. unsigned int pages;
  2178. if ((dma_addr == DMA_ERROR_CODE) ||
  2179. (dma_addr + size > dma_dom->aperture_size))
  2180. return;
  2181. flush_addr = dma_addr;
  2182. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  2183. dma_addr &= PAGE_MASK;
  2184. start = dma_addr;
  2185. for (i = 0; i < pages; ++i) {
  2186. dma_ops_domain_unmap(dma_dom, start);
  2187. start += PAGE_SIZE;
  2188. }
  2189. SUB_STATS_COUNTER(alloced_io_mem, size);
  2190. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  2191. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  2192. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  2193. dma_dom->need_flush = false;
  2194. }
  2195. }
  2196. /*
  2197. * The exported map_single function for dma_ops.
  2198. */
  2199. static dma_addr_t map_page(struct device *dev, struct page *page,
  2200. unsigned long offset, size_t size,
  2201. enum dma_data_direction dir,
  2202. struct dma_attrs *attrs)
  2203. {
  2204. unsigned long flags;
  2205. struct protection_domain *domain;
  2206. dma_addr_t addr;
  2207. u64 dma_mask;
  2208. phys_addr_t paddr = page_to_phys(page) + offset;
  2209. INC_STATS_COUNTER(cnt_map_single);
  2210. domain = get_domain(dev);
  2211. if (PTR_ERR(domain) == -EINVAL)
  2212. return (dma_addr_t)paddr;
  2213. else if (IS_ERR(domain))
  2214. return DMA_ERROR_CODE;
  2215. dma_mask = *dev->dma_mask;
  2216. spin_lock_irqsave(&domain->lock, flags);
  2217. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  2218. dma_mask);
  2219. if (addr == DMA_ERROR_CODE)
  2220. goto out;
  2221. domain_flush_complete(domain);
  2222. out:
  2223. spin_unlock_irqrestore(&domain->lock, flags);
  2224. return addr;
  2225. }
  2226. /*
  2227. * The exported unmap_single function for dma_ops.
  2228. */
  2229. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  2230. enum dma_data_direction dir, struct dma_attrs *attrs)
  2231. {
  2232. unsigned long flags;
  2233. struct protection_domain *domain;
  2234. INC_STATS_COUNTER(cnt_unmap_single);
  2235. domain = get_domain(dev);
  2236. if (IS_ERR(domain))
  2237. return;
  2238. spin_lock_irqsave(&domain->lock, flags);
  2239. __unmap_single(domain->priv, dma_addr, size, dir);
  2240. domain_flush_complete(domain);
  2241. spin_unlock_irqrestore(&domain->lock, flags);
  2242. }
  2243. /*
  2244. * The exported map_sg function for dma_ops (handles scatter-gather
  2245. * lists).
  2246. */
  2247. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2248. int nelems, enum dma_data_direction dir,
  2249. struct dma_attrs *attrs)
  2250. {
  2251. unsigned long flags;
  2252. struct protection_domain *domain;
  2253. int i;
  2254. struct scatterlist *s;
  2255. phys_addr_t paddr;
  2256. int mapped_elems = 0;
  2257. u64 dma_mask;
  2258. INC_STATS_COUNTER(cnt_map_sg);
  2259. domain = get_domain(dev);
  2260. if (IS_ERR(domain))
  2261. return 0;
  2262. dma_mask = *dev->dma_mask;
  2263. spin_lock_irqsave(&domain->lock, flags);
  2264. for_each_sg(sglist, s, nelems, i) {
  2265. paddr = sg_phys(s);
  2266. s->dma_address = __map_single(dev, domain->priv,
  2267. paddr, s->length, dir, false,
  2268. dma_mask);
  2269. if (s->dma_address) {
  2270. s->dma_length = s->length;
  2271. mapped_elems++;
  2272. } else
  2273. goto unmap;
  2274. }
  2275. domain_flush_complete(domain);
  2276. out:
  2277. spin_unlock_irqrestore(&domain->lock, flags);
  2278. return mapped_elems;
  2279. unmap:
  2280. for_each_sg(sglist, s, mapped_elems, i) {
  2281. if (s->dma_address)
  2282. __unmap_single(domain->priv, s->dma_address,
  2283. s->dma_length, dir);
  2284. s->dma_address = s->dma_length = 0;
  2285. }
  2286. mapped_elems = 0;
  2287. goto out;
  2288. }
  2289. /*
  2290. * The exported map_sg function for dma_ops (handles scatter-gather
  2291. * lists).
  2292. */
  2293. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2294. int nelems, enum dma_data_direction dir,
  2295. struct dma_attrs *attrs)
  2296. {
  2297. unsigned long flags;
  2298. struct protection_domain *domain;
  2299. struct scatterlist *s;
  2300. int i;
  2301. INC_STATS_COUNTER(cnt_unmap_sg);
  2302. domain = get_domain(dev);
  2303. if (IS_ERR(domain))
  2304. return;
  2305. spin_lock_irqsave(&domain->lock, flags);
  2306. for_each_sg(sglist, s, nelems, i) {
  2307. __unmap_single(domain->priv, s->dma_address,
  2308. s->dma_length, dir);
  2309. s->dma_address = s->dma_length = 0;
  2310. }
  2311. domain_flush_complete(domain);
  2312. spin_unlock_irqrestore(&domain->lock, flags);
  2313. }
  2314. /*
  2315. * The exported alloc_coherent function for dma_ops.
  2316. */
  2317. static void *alloc_coherent(struct device *dev, size_t size,
  2318. dma_addr_t *dma_addr, gfp_t flag,
  2319. struct dma_attrs *attrs)
  2320. {
  2321. unsigned long flags;
  2322. void *virt_addr;
  2323. struct protection_domain *domain;
  2324. phys_addr_t paddr;
  2325. u64 dma_mask = dev->coherent_dma_mask;
  2326. INC_STATS_COUNTER(cnt_alloc_coherent);
  2327. domain = get_domain(dev);
  2328. if (PTR_ERR(domain) == -EINVAL) {
  2329. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2330. *dma_addr = __pa(virt_addr);
  2331. return virt_addr;
  2332. } else if (IS_ERR(domain))
  2333. return NULL;
  2334. dma_mask = dev->coherent_dma_mask;
  2335. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2336. flag |= __GFP_ZERO;
  2337. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2338. if (!virt_addr)
  2339. return NULL;
  2340. paddr = virt_to_phys(virt_addr);
  2341. if (!dma_mask)
  2342. dma_mask = *dev->dma_mask;
  2343. spin_lock_irqsave(&domain->lock, flags);
  2344. *dma_addr = __map_single(dev, domain->priv, paddr,
  2345. size, DMA_BIDIRECTIONAL, true, dma_mask);
  2346. if (*dma_addr == DMA_ERROR_CODE) {
  2347. spin_unlock_irqrestore(&domain->lock, flags);
  2348. goto out_free;
  2349. }
  2350. domain_flush_complete(domain);
  2351. spin_unlock_irqrestore(&domain->lock, flags);
  2352. return virt_addr;
  2353. out_free:
  2354. free_pages((unsigned long)virt_addr, get_order(size));
  2355. return NULL;
  2356. }
  2357. /*
  2358. * The exported free_coherent function for dma_ops.
  2359. */
  2360. static void free_coherent(struct device *dev, size_t size,
  2361. void *virt_addr, dma_addr_t dma_addr,
  2362. struct dma_attrs *attrs)
  2363. {
  2364. unsigned long flags;
  2365. struct protection_domain *domain;
  2366. INC_STATS_COUNTER(cnt_free_coherent);
  2367. domain = get_domain(dev);
  2368. if (IS_ERR(domain))
  2369. goto free_mem;
  2370. spin_lock_irqsave(&domain->lock, flags);
  2371. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  2372. domain_flush_complete(domain);
  2373. spin_unlock_irqrestore(&domain->lock, flags);
  2374. free_mem:
  2375. free_pages((unsigned long)virt_addr, get_order(size));
  2376. }
  2377. /*
  2378. * This function is called by the DMA layer to find out if we can handle a
  2379. * particular device. It is part of the dma_ops.
  2380. */
  2381. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2382. {
  2383. return check_device(dev);
  2384. }
  2385. /*
  2386. * The function for pre-allocating protection domains.
  2387. *
  2388. * If the driver core informs the DMA layer if a driver grabs a device
  2389. * we don't need to preallocate the protection domains anymore.
  2390. * For now we have to.
  2391. */
  2392. static void __init prealloc_protection_domains(void)
  2393. {
  2394. struct iommu_dev_data *dev_data;
  2395. struct dma_ops_domain *dma_dom;
  2396. struct pci_dev *dev = NULL;
  2397. u16 devid;
  2398. for_each_pci_dev(dev) {
  2399. /* Do we handle this device? */
  2400. if (!check_device(&dev->dev))
  2401. continue;
  2402. dev_data = get_dev_data(&dev->dev);
  2403. if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
  2404. /* Make sure passthrough domain is allocated */
  2405. alloc_passthrough_domain();
  2406. dev_data->passthrough = true;
  2407. attach_device(&dev->dev, pt_domain);
  2408. pr_info("AMD-Vi: Using passthrough domain for device %s\n",
  2409. dev_name(&dev->dev));
  2410. }
  2411. /* Is there already any domain for it? */
  2412. if (domain_for_device(&dev->dev))
  2413. continue;
  2414. devid = get_device_id(&dev->dev);
  2415. dma_dom = dma_ops_domain_alloc();
  2416. if (!dma_dom)
  2417. continue;
  2418. init_unity_mappings_for_device(dma_dom, devid);
  2419. dma_dom->target_dev = devid;
  2420. attach_device(&dev->dev, &dma_dom->domain);
  2421. list_add_tail(&dma_dom->list, &iommu_pd_list);
  2422. }
  2423. }
  2424. static struct dma_map_ops amd_iommu_dma_ops = {
  2425. .alloc = alloc_coherent,
  2426. .free = free_coherent,
  2427. .map_page = map_page,
  2428. .unmap_page = unmap_page,
  2429. .map_sg = map_sg,
  2430. .unmap_sg = unmap_sg,
  2431. .dma_supported = amd_iommu_dma_supported,
  2432. };
  2433. static unsigned device_dma_ops_init(void)
  2434. {
  2435. struct iommu_dev_data *dev_data;
  2436. struct pci_dev *pdev = NULL;
  2437. unsigned unhandled = 0;
  2438. for_each_pci_dev(pdev) {
  2439. if (!check_device(&pdev->dev)) {
  2440. iommu_ignore_device(&pdev->dev);
  2441. unhandled += 1;
  2442. continue;
  2443. }
  2444. dev_data = get_dev_data(&pdev->dev);
  2445. if (!dev_data->passthrough)
  2446. pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
  2447. else
  2448. pdev->dev.archdata.dma_ops = &nommu_dma_ops;
  2449. }
  2450. return unhandled;
  2451. }
  2452. /*
  2453. * The function which clues the AMD IOMMU driver into dma_ops.
  2454. */
  2455. void __init amd_iommu_init_api(void)
  2456. {
  2457. bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2458. }
  2459. int __init amd_iommu_init_dma_ops(void)
  2460. {
  2461. struct amd_iommu *iommu;
  2462. int ret, unhandled;
  2463. /*
  2464. * first allocate a default protection domain for every IOMMU we
  2465. * found in the system. Devices not assigned to any other
  2466. * protection domain will be assigned to the default one.
  2467. */
  2468. for_each_iommu(iommu) {
  2469. iommu->default_dom = dma_ops_domain_alloc();
  2470. if (iommu->default_dom == NULL)
  2471. return -ENOMEM;
  2472. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  2473. ret = iommu_init_unity_mappings(iommu);
  2474. if (ret)
  2475. goto free_domains;
  2476. }
  2477. /*
  2478. * Pre-allocate the protection domains for each device.
  2479. */
  2480. prealloc_protection_domains();
  2481. iommu_detected = 1;
  2482. swiotlb = 0;
  2483. /* Make the driver finally visible to the drivers */
  2484. unhandled = device_dma_ops_init();
  2485. if (unhandled && max_pfn > MAX_DMA32_PFN) {
  2486. /* There are unhandled devices - initialize swiotlb for them */
  2487. swiotlb = 1;
  2488. }
  2489. amd_iommu_stats_init();
  2490. if (amd_iommu_unmap_flush)
  2491. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2492. else
  2493. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2494. return 0;
  2495. free_domains:
  2496. for_each_iommu(iommu) {
  2497. dma_ops_domain_free(iommu->default_dom);
  2498. }
  2499. return ret;
  2500. }
  2501. /*****************************************************************************
  2502. *
  2503. * The following functions belong to the exported interface of AMD IOMMU
  2504. *
  2505. * This interface allows access to lower level functions of the IOMMU
  2506. * like protection domain handling and assignement of devices to domains
  2507. * which is not possible with the dma_ops interface.
  2508. *
  2509. *****************************************************************************/
  2510. static void cleanup_domain(struct protection_domain *domain)
  2511. {
  2512. struct iommu_dev_data *dev_data, *next;
  2513. unsigned long flags;
  2514. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2515. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  2516. __detach_device(dev_data);
  2517. atomic_set(&dev_data->bind, 0);
  2518. }
  2519. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2520. }
  2521. static void protection_domain_free(struct protection_domain *domain)
  2522. {
  2523. if (!domain)
  2524. return;
  2525. del_domain_from_list(domain);
  2526. if (domain->id)
  2527. domain_id_free(domain->id);
  2528. kfree(domain);
  2529. }
  2530. static struct protection_domain *protection_domain_alloc(void)
  2531. {
  2532. struct protection_domain *domain;
  2533. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2534. if (!domain)
  2535. return NULL;
  2536. spin_lock_init(&domain->lock);
  2537. mutex_init(&domain->api_lock);
  2538. domain->id = domain_id_alloc();
  2539. if (!domain->id)
  2540. goto out_err;
  2541. INIT_LIST_HEAD(&domain->dev_list);
  2542. add_domain_to_list(domain);
  2543. return domain;
  2544. out_err:
  2545. kfree(domain);
  2546. return NULL;
  2547. }
  2548. static int __init alloc_passthrough_domain(void)
  2549. {
  2550. if (pt_domain != NULL)
  2551. return 0;
  2552. /* allocate passthrough domain */
  2553. pt_domain = protection_domain_alloc();
  2554. if (!pt_domain)
  2555. return -ENOMEM;
  2556. pt_domain->mode = PAGE_MODE_NONE;
  2557. return 0;
  2558. }
  2559. static int amd_iommu_domain_init(struct iommu_domain *dom)
  2560. {
  2561. struct protection_domain *domain;
  2562. domain = protection_domain_alloc();
  2563. if (!domain)
  2564. goto out_free;
  2565. domain->mode = PAGE_MODE_3_LEVEL;
  2566. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2567. if (!domain->pt_root)
  2568. goto out_free;
  2569. domain->iommu_domain = dom;
  2570. dom->priv = domain;
  2571. dom->geometry.aperture_start = 0;
  2572. dom->geometry.aperture_end = ~0ULL;
  2573. dom->geometry.force_aperture = true;
  2574. return 0;
  2575. out_free:
  2576. protection_domain_free(domain);
  2577. return -ENOMEM;
  2578. }
  2579. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  2580. {
  2581. struct protection_domain *domain = dom->priv;
  2582. if (!domain)
  2583. return;
  2584. if (domain->dev_cnt > 0)
  2585. cleanup_domain(domain);
  2586. BUG_ON(domain->dev_cnt != 0);
  2587. if (domain->mode != PAGE_MODE_NONE)
  2588. free_pagetable(domain);
  2589. if (domain->flags & PD_IOMMUV2_MASK)
  2590. free_gcr3_table(domain);
  2591. protection_domain_free(domain);
  2592. dom->priv = NULL;
  2593. }
  2594. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2595. struct device *dev)
  2596. {
  2597. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2598. struct amd_iommu *iommu;
  2599. u16 devid;
  2600. if (!check_device(dev))
  2601. return;
  2602. devid = get_device_id(dev);
  2603. if (dev_data->domain != NULL)
  2604. detach_device(dev);
  2605. iommu = amd_iommu_rlookup_table[devid];
  2606. if (!iommu)
  2607. return;
  2608. iommu_completion_wait(iommu);
  2609. }
  2610. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2611. struct device *dev)
  2612. {
  2613. struct protection_domain *domain = dom->priv;
  2614. struct iommu_dev_data *dev_data;
  2615. struct amd_iommu *iommu;
  2616. int ret;
  2617. if (!check_device(dev))
  2618. return -EINVAL;
  2619. dev_data = dev->archdata.iommu;
  2620. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2621. if (!iommu)
  2622. return -EINVAL;
  2623. if (dev_data->domain)
  2624. detach_device(dev);
  2625. ret = attach_device(dev, domain);
  2626. iommu_completion_wait(iommu);
  2627. return ret;
  2628. }
  2629. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2630. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2631. {
  2632. struct protection_domain *domain = dom->priv;
  2633. int prot = 0;
  2634. int ret;
  2635. if (domain->mode == PAGE_MODE_NONE)
  2636. return -EINVAL;
  2637. if (iommu_prot & IOMMU_READ)
  2638. prot |= IOMMU_PROT_IR;
  2639. if (iommu_prot & IOMMU_WRITE)
  2640. prot |= IOMMU_PROT_IW;
  2641. mutex_lock(&domain->api_lock);
  2642. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2643. mutex_unlock(&domain->api_lock);
  2644. return ret;
  2645. }
  2646. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2647. size_t page_size)
  2648. {
  2649. struct protection_domain *domain = dom->priv;
  2650. size_t unmap_size;
  2651. if (domain->mode == PAGE_MODE_NONE)
  2652. return -EINVAL;
  2653. mutex_lock(&domain->api_lock);
  2654. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2655. mutex_unlock(&domain->api_lock);
  2656. domain_flush_tlb_pde(domain);
  2657. return unmap_size;
  2658. }
  2659. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2660. dma_addr_t iova)
  2661. {
  2662. struct protection_domain *domain = dom->priv;
  2663. unsigned long offset_mask;
  2664. phys_addr_t paddr;
  2665. u64 *pte, __pte;
  2666. if (domain->mode == PAGE_MODE_NONE)
  2667. return iova;
  2668. pte = fetch_pte(domain, iova);
  2669. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2670. return 0;
  2671. if (PM_PTE_LEVEL(*pte) == 0)
  2672. offset_mask = PAGE_SIZE - 1;
  2673. else
  2674. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2675. __pte = *pte & PM_ADDR_MASK;
  2676. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2677. return paddr;
  2678. }
  2679. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2680. unsigned long cap)
  2681. {
  2682. switch (cap) {
  2683. case IOMMU_CAP_CACHE_COHERENCY:
  2684. return 1;
  2685. case IOMMU_CAP_INTR_REMAP:
  2686. return irq_remapping_enabled;
  2687. }
  2688. return 0;
  2689. }
  2690. static struct iommu_ops amd_iommu_ops = {
  2691. .domain_init = amd_iommu_domain_init,
  2692. .domain_destroy = amd_iommu_domain_destroy,
  2693. .attach_dev = amd_iommu_attach_device,
  2694. .detach_dev = amd_iommu_detach_device,
  2695. .map = amd_iommu_map,
  2696. .unmap = amd_iommu_unmap,
  2697. .iova_to_phys = amd_iommu_iova_to_phys,
  2698. .domain_has_cap = amd_iommu_domain_has_cap,
  2699. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2700. };
  2701. /*****************************************************************************
  2702. *
  2703. * The next functions do a basic initialization of IOMMU for pass through
  2704. * mode
  2705. *
  2706. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2707. * DMA-API translation.
  2708. *
  2709. *****************************************************************************/
  2710. int __init amd_iommu_init_passthrough(void)
  2711. {
  2712. struct iommu_dev_data *dev_data;
  2713. struct pci_dev *dev = NULL;
  2714. struct amd_iommu *iommu;
  2715. u16 devid;
  2716. int ret;
  2717. ret = alloc_passthrough_domain();
  2718. if (ret)
  2719. return ret;
  2720. for_each_pci_dev(dev) {
  2721. if (!check_device(&dev->dev))
  2722. continue;
  2723. dev_data = get_dev_data(&dev->dev);
  2724. dev_data->passthrough = true;
  2725. devid = get_device_id(&dev->dev);
  2726. iommu = amd_iommu_rlookup_table[devid];
  2727. if (!iommu)
  2728. continue;
  2729. attach_device(&dev->dev, pt_domain);
  2730. }
  2731. amd_iommu_stats_init();
  2732. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2733. return 0;
  2734. }
  2735. /* IOMMUv2 specific functions */
  2736. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2737. {
  2738. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2739. }
  2740. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2741. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2742. {
  2743. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2744. }
  2745. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2746. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2747. {
  2748. struct protection_domain *domain = dom->priv;
  2749. unsigned long flags;
  2750. spin_lock_irqsave(&domain->lock, flags);
  2751. /* Update data structure */
  2752. domain->mode = PAGE_MODE_NONE;
  2753. domain->updated = true;
  2754. /* Make changes visible to IOMMUs */
  2755. update_domain(domain);
  2756. /* Page-table is not visible to IOMMU anymore, so free it */
  2757. free_pagetable(domain);
  2758. spin_unlock_irqrestore(&domain->lock, flags);
  2759. }
  2760. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2761. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2762. {
  2763. struct protection_domain *domain = dom->priv;
  2764. unsigned long flags;
  2765. int levels, ret;
  2766. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2767. return -EINVAL;
  2768. /* Number of GCR3 table levels required */
  2769. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2770. levels += 1;
  2771. if (levels > amd_iommu_max_glx_val)
  2772. return -EINVAL;
  2773. spin_lock_irqsave(&domain->lock, flags);
  2774. /*
  2775. * Save us all sanity checks whether devices already in the
  2776. * domain support IOMMUv2. Just force that the domain has no
  2777. * devices attached when it is switched into IOMMUv2 mode.
  2778. */
  2779. ret = -EBUSY;
  2780. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2781. goto out;
  2782. ret = -ENOMEM;
  2783. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2784. if (domain->gcr3_tbl == NULL)
  2785. goto out;
  2786. domain->glx = levels;
  2787. domain->flags |= PD_IOMMUV2_MASK;
  2788. domain->updated = true;
  2789. update_domain(domain);
  2790. ret = 0;
  2791. out:
  2792. spin_unlock_irqrestore(&domain->lock, flags);
  2793. return ret;
  2794. }
  2795. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2796. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2797. u64 address, bool size)
  2798. {
  2799. struct iommu_dev_data *dev_data;
  2800. struct iommu_cmd cmd;
  2801. int i, ret;
  2802. if (!(domain->flags & PD_IOMMUV2_MASK))
  2803. return -EINVAL;
  2804. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2805. /*
  2806. * IOMMU TLB needs to be flushed before Device TLB to
  2807. * prevent device TLB refill from IOMMU TLB
  2808. */
  2809. for (i = 0; i < amd_iommus_present; ++i) {
  2810. if (domain->dev_iommu[i] == 0)
  2811. continue;
  2812. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2813. if (ret != 0)
  2814. goto out;
  2815. }
  2816. /* Wait until IOMMU TLB flushes are complete */
  2817. domain_flush_complete(domain);
  2818. /* Now flush device TLBs */
  2819. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2820. struct amd_iommu *iommu;
  2821. int qdep;
  2822. BUG_ON(!dev_data->ats.enabled);
  2823. qdep = dev_data->ats.qdep;
  2824. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2825. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2826. qdep, address, size);
  2827. ret = iommu_queue_command(iommu, &cmd);
  2828. if (ret != 0)
  2829. goto out;
  2830. }
  2831. /* Wait until all device TLBs are flushed */
  2832. domain_flush_complete(domain);
  2833. ret = 0;
  2834. out:
  2835. return ret;
  2836. }
  2837. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2838. u64 address)
  2839. {
  2840. INC_STATS_COUNTER(invalidate_iotlb);
  2841. return __flush_pasid(domain, pasid, address, false);
  2842. }
  2843. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2844. u64 address)
  2845. {
  2846. struct protection_domain *domain = dom->priv;
  2847. unsigned long flags;
  2848. int ret;
  2849. spin_lock_irqsave(&domain->lock, flags);
  2850. ret = __amd_iommu_flush_page(domain, pasid, address);
  2851. spin_unlock_irqrestore(&domain->lock, flags);
  2852. return ret;
  2853. }
  2854. EXPORT_SYMBOL(amd_iommu_flush_page);
  2855. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2856. {
  2857. INC_STATS_COUNTER(invalidate_iotlb_all);
  2858. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2859. true);
  2860. }
  2861. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2862. {
  2863. struct protection_domain *domain = dom->priv;
  2864. unsigned long flags;
  2865. int ret;
  2866. spin_lock_irqsave(&domain->lock, flags);
  2867. ret = __amd_iommu_flush_tlb(domain, pasid);
  2868. spin_unlock_irqrestore(&domain->lock, flags);
  2869. return ret;
  2870. }
  2871. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2872. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2873. {
  2874. int index;
  2875. u64 *pte;
  2876. while (true) {
  2877. index = (pasid >> (9 * level)) & 0x1ff;
  2878. pte = &root[index];
  2879. if (level == 0)
  2880. break;
  2881. if (!(*pte & GCR3_VALID)) {
  2882. if (!alloc)
  2883. return NULL;
  2884. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2885. if (root == NULL)
  2886. return NULL;
  2887. *pte = __pa(root) | GCR3_VALID;
  2888. }
  2889. root = __va(*pte & PAGE_MASK);
  2890. level -= 1;
  2891. }
  2892. return pte;
  2893. }
  2894. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2895. unsigned long cr3)
  2896. {
  2897. u64 *pte;
  2898. if (domain->mode != PAGE_MODE_NONE)
  2899. return -EINVAL;
  2900. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2901. if (pte == NULL)
  2902. return -ENOMEM;
  2903. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2904. return __amd_iommu_flush_tlb(domain, pasid);
  2905. }
  2906. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2907. {
  2908. u64 *pte;
  2909. if (domain->mode != PAGE_MODE_NONE)
  2910. return -EINVAL;
  2911. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2912. if (pte == NULL)
  2913. return 0;
  2914. *pte = 0;
  2915. return __amd_iommu_flush_tlb(domain, pasid);
  2916. }
  2917. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2918. unsigned long cr3)
  2919. {
  2920. struct protection_domain *domain = dom->priv;
  2921. unsigned long flags;
  2922. int ret;
  2923. spin_lock_irqsave(&domain->lock, flags);
  2924. ret = __set_gcr3(domain, pasid, cr3);
  2925. spin_unlock_irqrestore(&domain->lock, flags);
  2926. return ret;
  2927. }
  2928. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2929. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2930. {
  2931. struct protection_domain *domain = dom->priv;
  2932. unsigned long flags;
  2933. int ret;
  2934. spin_lock_irqsave(&domain->lock, flags);
  2935. ret = __clear_gcr3(domain, pasid);
  2936. spin_unlock_irqrestore(&domain->lock, flags);
  2937. return ret;
  2938. }
  2939. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2940. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2941. int status, int tag)
  2942. {
  2943. struct iommu_dev_data *dev_data;
  2944. struct amd_iommu *iommu;
  2945. struct iommu_cmd cmd;
  2946. INC_STATS_COUNTER(complete_ppr);
  2947. dev_data = get_dev_data(&pdev->dev);
  2948. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2949. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2950. tag, dev_data->pri_tlp);
  2951. return iommu_queue_command(iommu, &cmd);
  2952. }
  2953. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2954. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2955. {
  2956. struct protection_domain *domain;
  2957. domain = get_domain(&pdev->dev);
  2958. if (IS_ERR(domain))
  2959. return NULL;
  2960. /* Only return IOMMUv2 domains */
  2961. if (!(domain->flags & PD_IOMMUV2_MASK))
  2962. return NULL;
  2963. return domain->iommu_domain;
  2964. }
  2965. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2966. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2967. {
  2968. struct iommu_dev_data *dev_data;
  2969. if (!amd_iommu_v2_supported())
  2970. return;
  2971. dev_data = get_dev_data(&pdev->dev);
  2972. dev_data->errata |= (1 << erratum);
  2973. }
  2974. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2975. int amd_iommu_device_info(struct pci_dev *pdev,
  2976. struct amd_iommu_device_info *info)
  2977. {
  2978. int max_pasids;
  2979. int pos;
  2980. if (pdev == NULL || info == NULL)
  2981. return -EINVAL;
  2982. if (!amd_iommu_v2_supported())
  2983. return -EINVAL;
  2984. memset(info, 0, sizeof(*info));
  2985. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2986. if (pos)
  2987. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2988. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2989. if (pos)
  2990. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2991. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2992. if (pos) {
  2993. int features;
  2994. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2995. max_pasids = min(max_pasids, (1 << 20));
  2996. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2997. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2998. features = pci_pasid_features(pdev);
  2999. if (features & PCI_PASID_CAP_EXEC)
  3000. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  3001. if (features & PCI_PASID_CAP_PRIV)
  3002. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  3003. }
  3004. return 0;
  3005. }
  3006. EXPORT_SYMBOL(amd_iommu_device_info);
  3007. #ifdef CONFIG_IRQ_REMAP
  3008. /*****************************************************************************
  3009. *
  3010. * Interrupt Remapping Implementation
  3011. *
  3012. *****************************************************************************/
  3013. union irte {
  3014. u32 val;
  3015. struct {
  3016. u32 valid : 1,
  3017. no_fault : 1,
  3018. int_type : 3,
  3019. rq_eoi : 1,
  3020. dm : 1,
  3021. rsvd_1 : 1,
  3022. destination : 8,
  3023. vector : 8,
  3024. rsvd_2 : 8;
  3025. } fields;
  3026. };
  3027. #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
  3028. #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
  3029. #define DTE_IRQ_TABLE_LEN (8ULL << 1)
  3030. #define DTE_IRQ_REMAP_ENABLE 1ULL
  3031. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  3032. {
  3033. u64 dte;
  3034. dte = amd_iommu_dev_table[devid].data[2];
  3035. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  3036. dte |= virt_to_phys(table->table);
  3037. dte |= DTE_IRQ_REMAP_INTCTL;
  3038. dte |= DTE_IRQ_TABLE_LEN;
  3039. dte |= DTE_IRQ_REMAP_ENABLE;
  3040. amd_iommu_dev_table[devid].data[2] = dte;
  3041. }
  3042. #define IRTE_ALLOCATED (~1U)
  3043. static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
  3044. {
  3045. struct irq_remap_table *table = NULL;
  3046. struct amd_iommu *iommu;
  3047. unsigned long flags;
  3048. u16 alias;
  3049. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  3050. iommu = amd_iommu_rlookup_table[devid];
  3051. if (!iommu)
  3052. goto out_unlock;
  3053. table = irq_lookup_table[devid];
  3054. if (table)
  3055. goto out;
  3056. alias = amd_iommu_alias_table[devid];
  3057. table = irq_lookup_table[alias];
  3058. if (table) {
  3059. irq_lookup_table[devid] = table;
  3060. set_dte_irq_entry(devid, table);
  3061. iommu_flush_dte(iommu, devid);
  3062. goto out;
  3063. }
  3064. /* Nothing there yet, allocate new irq remapping table */
  3065. table = kzalloc(sizeof(*table), GFP_ATOMIC);
  3066. if (!table)
  3067. goto out;
  3068. /* Initialize table spin-lock */
  3069. spin_lock_init(&table->lock);
  3070. if (ioapic)
  3071. /* Keep the first 32 indexes free for IOAPIC interrupts */
  3072. table->min_index = 32;
  3073. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
  3074. if (!table->table) {
  3075. kfree(table);
  3076. table = NULL;
  3077. goto out;
  3078. }
  3079. memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
  3080. if (ioapic) {
  3081. int i;
  3082. for (i = 0; i < 32; ++i)
  3083. table->table[i] = IRTE_ALLOCATED;
  3084. }
  3085. irq_lookup_table[devid] = table;
  3086. set_dte_irq_entry(devid, table);
  3087. iommu_flush_dte(iommu, devid);
  3088. if (devid != alias) {
  3089. irq_lookup_table[alias] = table;
  3090. set_dte_irq_entry(devid, table);
  3091. iommu_flush_dte(iommu, alias);
  3092. }
  3093. out:
  3094. iommu_completion_wait(iommu);
  3095. out_unlock:
  3096. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  3097. return table;
  3098. }
  3099. static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
  3100. {
  3101. struct irq_remap_table *table;
  3102. unsigned long flags;
  3103. int index, c;
  3104. table = get_irq_table(devid, false);
  3105. if (!table)
  3106. return -ENODEV;
  3107. spin_lock_irqsave(&table->lock, flags);
  3108. /* Scan table for free entries */
  3109. for (c = 0, index = table->min_index;
  3110. index < MAX_IRQS_PER_TABLE;
  3111. ++index) {
  3112. if (table->table[index] == 0)
  3113. c += 1;
  3114. else
  3115. c = 0;
  3116. if (c == count) {
  3117. struct irq_2_irte *irte_info;
  3118. for (; c != 0; --c)
  3119. table->table[index - c + 1] = IRTE_ALLOCATED;
  3120. index -= count - 1;
  3121. cfg->remapped = 1;
  3122. irte_info = &cfg->irq_2_irte;
  3123. irte_info->devid = devid;
  3124. irte_info->index = index;
  3125. goto out;
  3126. }
  3127. }
  3128. index = -ENOSPC;
  3129. out:
  3130. spin_unlock_irqrestore(&table->lock, flags);
  3131. return index;
  3132. }
  3133. static int get_irte(u16 devid, int index, union irte *irte)
  3134. {
  3135. struct irq_remap_table *table;
  3136. unsigned long flags;
  3137. table = get_irq_table(devid, false);
  3138. if (!table)
  3139. return -ENOMEM;
  3140. spin_lock_irqsave(&table->lock, flags);
  3141. irte->val = table->table[index];
  3142. spin_unlock_irqrestore(&table->lock, flags);
  3143. return 0;
  3144. }
  3145. static int modify_irte(u16 devid, int index, union irte irte)
  3146. {
  3147. struct irq_remap_table *table;
  3148. struct amd_iommu *iommu;
  3149. unsigned long flags;
  3150. iommu = amd_iommu_rlookup_table[devid];
  3151. if (iommu == NULL)
  3152. return -EINVAL;
  3153. table = get_irq_table(devid, false);
  3154. if (!table)
  3155. return -ENOMEM;
  3156. spin_lock_irqsave(&table->lock, flags);
  3157. table->table[index] = irte.val;
  3158. spin_unlock_irqrestore(&table->lock, flags);
  3159. iommu_flush_irt(iommu, devid);
  3160. iommu_completion_wait(iommu);
  3161. return 0;
  3162. }
  3163. static void free_irte(u16 devid, int index)
  3164. {
  3165. struct irq_remap_table *table;
  3166. struct amd_iommu *iommu;
  3167. unsigned long flags;
  3168. iommu = amd_iommu_rlookup_table[devid];
  3169. if (iommu == NULL)
  3170. return;
  3171. table = get_irq_table(devid, false);
  3172. if (!table)
  3173. return;
  3174. spin_lock_irqsave(&table->lock, flags);
  3175. table->table[index] = 0;
  3176. spin_unlock_irqrestore(&table->lock, flags);
  3177. iommu_flush_irt(iommu, devid);
  3178. iommu_completion_wait(iommu);
  3179. }
  3180. static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
  3181. unsigned int destination, int vector,
  3182. struct io_apic_irq_attr *attr)
  3183. {
  3184. struct irq_remap_table *table;
  3185. struct irq_2_irte *irte_info;
  3186. struct irq_cfg *cfg;
  3187. union irte irte;
  3188. int ioapic_id;
  3189. int index;
  3190. int devid;
  3191. int ret;
  3192. cfg = irq_get_chip_data(irq);
  3193. if (!cfg)
  3194. return -EINVAL;
  3195. irte_info = &cfg->irq_2_irte;
  3196. ioapic_id = mpc_ioapic_id(attr->ioapic);
  3197. devid = get_ioapic_devid(ioapic_id);
  3198. if (devid < 0)
  3199. return devid;
  3200. table = get_irq_table(devid, true);
  3201. if (table == NULL)
  3202. return -ENOMEM;
  3203. index = attr->ioapic_pin;
  3204. /* Setup IRQ remapping info */
  3205. cfg->remapped = 1;
  3206. irte_info->devid = devid;
  3207. irte_info->index = index;
  3208. /* Setup IRTE for IOMMU */
  3209. irte.val = 0;
  3210. irte.fields.vector = vector;
  3211. irte.fields.int_type = apic->irq_delivery_mode;
  3212. irte.fields.destination = destination;
  3213. irte.fields.dm = apic->irq_dest_mode;
  3214. irte.fields.valid = 1;
  3215. ret = modify_irte(devid, index, irte);
  3216. if (ret)
  3217. return ret;
  3218. /* Setup IOAPIC entry */
  3219. memset(entry, 0, sizeof(*entry));
  3220. entry->vector = index;
  3221. entry->mask = 0;
  3222. entry->trigger = attr->trigger;
  3223. entry->polarity = attr->polarity;
  3224. /*
  3225. * Mask level triggered irqs.
  3226. */
  3227. if (attr->trigger)
  3228. entry->mask = 1;
  3229. return 0;
  3230. }
  3231. static int set_affinity(struct irq_data *data, const struct cpumask *mask,
  3232. bool force)
  3233. {
  3234. struct irq_2_irte *irte_info;
  3235. unsigned int dest, irq;
  3236. struct irq_cfg *cfg;
  3237. union irte irte;
  3238. int err;
  3239. if (!config_enabled(CONFIG_SMP))
  3240. return -1;
  3241. cfg = data->chip_data;
  3242. irq = data->irq;
  3243. irte_info = &cfg->irq_2_irte;
  3244. if (!cpumask_intersects(mask, cpu_online_mask))
  3245. return -EINVAL;
  3246. if (get_irte(irte_info->devid, irte_info->index, &irte))
  3247. return -EBUSY;
  3248. if (assign_irq_vector(irq, cfg, mask))
  3249. return -EBUSY;
  3250. err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
  3251. if (err) {
  3252. if (assign_irq_vector(irq, cfg, data->affinity))
  3253. pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
  3254. return err;
  3255. }
  3256. irte.fields.vector = cfg->vector;
  3257. irte.fields.destination = dest;
  3258. modify_irte(irte_info->devid, irte_info->index, irte);
  3259. if (cfg->move_in_progress)
  3260. send_cleanup_vector(cfg);
  3261. cpumask_copy(data->affinity, mask);
  3262. return 0;
  3263. }
  3264. static int free_irq(int irq)
  3265. {
  3266. struct irq_2_irte *irte_info;
  3267. struct irq_cfg *cfg;
  3268. cfg = irq_get_chip_data(irq);
  3269. if (!cfg)
  3270. return -EINVAL;
  3271. irte_info = &cfg->irq_2_irte;
  3272. free_irte(irte_info->devid, irte_info->index);
  3273. return 0;
  3274. }
  3275. static void compose_msi_msg(struct pci_dev *pdev,
  3276. unsigned int irq, unsigned int dest,
  3277. struct msi_msg *msg, u8 hpet_id)
  3278. {
  3279. struct irq_2_irte *irte_info;
  3280. struct irq_cfg *cfg;
  3281. union irte irte;
  3282. cfg = irq_get_chip_data(irq);
  3283. if (!cfg)
  3284. return;
  3285. irte_info = &cfg->irq_2_irte;
  3286. irte.val = 0;
  3287. irte.fields.vector = cfg->vector;
  3288. irte.fields.int_type = apic->irq_delivery_mode;
  3289. irte.fields.destination = dest;
  3290. irte.fields.dm = apic->irq_dest_mode;
  3291. irte.fields.valid = 1;
  3292. modify_irte(irte_info->devid, irte_info->index, irte);
  3293. msg->address_hi = MSI_ADDR_BASE_HI;
  3294. msg->address_lo = MSI_ADDR_BASE_LO;
  3295. msg->data = irte_info->index;
  3296. }
  3297. static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
  3298. {
  3299. struct irq_cfg *cfg;
  3300. int index;
  3301. u16 devid;
  3302. if (!pdev)
  3303. return -EINVAL;
  3304. cfg = irq_get_chip_data(irq);
  3305. if (!cfg)
  3306. return -EINVAL;
  3307. devid = get_device_id(&pdev->dev);
  3308. index = alloc_irq_index(cfg, devid, nvec);
  3309. return index < 0 ? MAX_IRQS_PER_TABLE : index;
  3310. }
  3311. static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
  3312. int index, int offset)
  3313. {
  3314. struct irq_2_irte *irte_info;
  3315. struct irq_cfg *cfg;
  3316. u16 devid;
  3317. if (!pdev)
  3318. return -EINVAL;
  3319. cfg = irq_get_chip_data(irq);
  3320. if (!cfg)
  3321. return -EINVAL;
  3322. if (index >= MAX_IRQS_PER_TABLE)
  3323. return 0;
  3324. devid = get_device_id(&pdev->dev);
  3325. irte_info = &cfg->irq_2_irte;
  3326. cfg->remapped = 1;
  3327. irte_info->devid = devid;
  3328. irte_info->index = index + offset;
  3329. return 0;
  3330. }
  3331. static int setup_hpet_msi(unsigned int irq, unsigned int id)
  3332. {
  3333. struct irq_2_irte *irte_info;
  3334. struct irq_cfg *cfg;
  3335. int index, devid;
  3336. cfg = irq_get_chip_data(irq);
  3337. if (!cfg)
  3338. return -EINVAL;
  3339. irte_info = &cfg->irq_2_irte;
  3340. devid = get_hpet_devid(id);
  3341. if (devid < 0)
  3342. return devid;
  3343. index = alloc_irq_index(cfg, devid, 1);
  3344. if (index < 0)
  3345. return index;
  3346. cfg->remapped = 1;
  3347. irte_info->devid = devid;
  3348. irte_info->index = index;
  3349. return 0;
  3350. }
  3351. struct irq_remap_ops amd_iommu_irq_ops = {
  3352. .supported = amd_iommu_supported,
  3353. .prepare = amd_iommu_prepare,
  3354. .enable = amd_iommu_enable,
  3355. .disable = amd_iommu_disable,
  3356. .reenable = amd_iommu_reenable,
  3357. .enable_faulting = amd_iommu_enable_faulting,
  3358. .setup_ioapic_entry = setup_ioapic_entry,
  3359. .set_affinity = set_affinity,
  3360. .free_irq = free_irq,
  3361. .compose_msi_msg = compose_msi_msg,
  3362. .msi_alloc_irq = msi_alloc_irq,
  3363. .msi_setup_irq = msi_setup_irq,
  3364. .setup_hpet_msi = setup_hpet_msi,
  3365. };
  3366. #endif