dmi_scan.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812
  1. #include <linux/types.h>
  2. #include <linux/string.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/ctype.h>
  6. #include <linux/dmi.h>
  7. #include <linux/efi.h>
  8. #include <linux/bootmem.h>
  9. #include <linux/random.h>
  10. #include <asm/dmi.h>
  11. /*
  12. * DMI stands for "Desktop Management Interface". It is part
  13. * of and an antecedent to, SMBIOS, which stands for System
  14. * Management BIOS. See further: http://www.dmtf.org/standards
  15. */
  16. static char dmi_empty_string[] = " ";
  17. static u16 __initdata dmi_ver;
  18. /*
  19. * Catch too early calls to dmi_check_system():
  20. */
  21. static int dmi_initialized;
  22. /* DMI system identification string used during boot */
  23. static char dmi_ids_string[128] __initdata;
  24. static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
  25. {
  26. const u8 *bp = ((u8 *) dm) + dm->length;
  27. if (s) {
  28. s--;
  29. while (s > 0 && *bp) {
  30. bp += strlen(bp) + 1;
  31. s--;
  32. }
  33. if (*bp != 0) {
  34. size_t len = strlen(bp)+1;
  35. size_t cmp_len = len > 8 ? 8 : len;
  36. if (!memcmp(bp, dmi_empty_string, cmp_len))
  37. return dmi_empty_string;
  38. return bp;
  39. }
  40. }
  41. return "";
  42. }
  43. static char * __init dmi_string(const struct dmi_header *dm, u8 s)
  44. {
  45. const char *bp = dmi_string_nosave(dm, s);
  46. char *str;
  47. size_t len;
  48. if (bp == dmi_empty_string)
  49. return dmi_empty_string;
  50. len = strlen(bp) + 1;
  51. str = dmi_alloc(len);
  52. if (str != NULL)
  53. strcpy(str, bp);
  54. else
  55. printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
  56. return str;
  57. }
  58. /*
  59. * We have to be cautious here. We have seen BIOSes with DMI pointers
  60. * pointing to completely the wrong place for example
  61. */
  62. static void dmi_table(u8 *buf, int len, int num,
  63. void (*decode)(const struct dmi_header *, void *),
  64. void *private_data)
  65. {
  66. u8 *data = buf;
  67. int i = 0;
  68. /*
  69. * Stop when we see all the items the table claimed to have
  70. * OR we run off the end of the table (also happens)
  71. */
  72. while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
  73. const struct dmi_header *dm = (const struct dmi_header *)data;
  74. /*
  75. * We want to know the total length (formatted area and
  76. * strings) before decoding to make sure we won't run off the
  77. * table in dmi_decode or dmi_string
  78. */
  79. data += dm->length;
  80. while ((data - buf < len - 1) && (data[0] || data[1]))
  81. data++;
  82. if (data - buf < len - 1)
  83. decode(dm, private_data);
  84. data += 2;
  85. i++;
  86. }
  87. }
  88. static u32 dmi_base;
  89. static u16 dmi_len;
  90. static u16 dmi_num;
  91. static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
  92. void *))
  93. {
  94. u8 *buf;
  95. buf = dmi_ioremap(dmi_base, dmi_len);
  96. if (buf == NULL)
  97. return -1;
  98. dmi_table(buf, dmi_len, dmi_num, decode, NULL);
  99. add_device_randomness(buf, dmi_len);
  100. dmi_iounmap(buf, dmi_len);
  101. return 0;
  102. }
  103. static int __init dmi_checksum(const u8 *buf, u8 len)
  104. {
  105. u8 sum = 0;
  106. int a;
  107. for (a = 0; a < len; a++)
  108. sum += buf[a];
  109. return sum == 0;
  110. }
  111. static char *dmi_ident[DMI_STRING_MAX];
  112. static LIST_HEAD(dmi_devices);
  113. int dmi_available;
  114. /*
  115. * Save a DMI string
  116. */
  117. static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
  118. {
  119. const char *d = (const char*) dm;
  120. char *p;
  121. if (dmi_ident[slot])
  122. return;
  123. p = dmi_string(dm, d[string]);
  124. if (p == NULL)
  125. return;
  126. dmi_ident[slot] = p;
  127. }
  128. static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
  129. {
  130. const u8 *d = (u8*) dm + index;
  131. char *s;
  132. int is_ff = 1, is_00 = 1, i;
  133. if (dmi_ident[slot])
  134. return;
  135. for (i = 0; i < 16 && (is_ff || is_00); i++) {
  136. if (d[i] != 0x00)
  137. is_00 = 0;
  138. if (d[i] != 0xFF)
  139. is_ff = 0;
  140. }
  141. if (is_ff || is_00)
  142. return;
  143. s = dmi_alloc(16*2+4+1);
  144. if (!s)
  145. return;
  146. /*
  147. * As of version 2.6 of the SMBIOS specification, the first 3 fields of
  148. * the UUID are supposed to be little-endian encoded. The specification
  149. * says that this is the defacto standard.
  150. */
  151. if (dmi_ver >= 0x0206)
  152. sprintf(s, "%pUL", d);
  153. else
  154. sprintf(s, "%pUB", d);
  155. dmi_ident[slot] = s;
  156. }
  157. static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
  158. {
  159. const u8 *d = (u8*) dm + index;
  160. char *s;
  161. if (dmi_ident[slot])
  162. return;
  163. s = dmi_alloc(4);
  164. if (!s)
  165. return;
  166. sprintf(s, "%u", *d & 0x7F);
  167. dmi_ident[slot] = s;
  168. }
  169. static void __init dmi_save_one_device(int type, const char *name)
  170. {
  171. struct dmi_device *dev;
  172. /* No duplicate device */
  173. if (dmi_find_device(type, name, NULL))
  174. return;
  175. dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
  176. if (!dev) {
  177. printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
  178. return;
  179. }
  180. dev->type = type;
  181. strcpy((char *)(dev + 1), name);
  182. dev->name = (char *)(dev + 1);
  183. dev->device_data = NULL;
  184. list_add(&dev->list, &dmi_devices);
  185. }
  186. static void __init dmi_save_devices(const struct dmi_header *dm)
  187. {
  188. int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
  189. for (i = 0; i < count; i++) {
  190. const char *d = (char *)(dm + 1) + (i * 2);
  191. /* Skip disabled device */
  192. if ((*d & 0x80) == 0)
  193. continue;
  194. dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
  195. }
  196. }
  197. static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
  198. {
  199. int i, count = *(u8 *)(dm + 1);
  200. struct dmi_device *dev;
  201. for (i = 1; i <= count; i++) {
  202. char *devname = dmi_string(dm, i);
  203. if (devname == dmi_empty_string)
  204. continue;
  205. dev = dmi_alloc(sizeof(*dev));
  206. if (!dev) {
  207. printk(KERN_ERR
  208. "dmi_save_oem_strings_devices: out of memory.\n");
  209. break;
  210. }
  211. dev->type = DMI_DEV_TYPE_OEM_STRING;
  212. dev->name = devname;
  213. dev->device_data = NULL;
  214. list_add(&dev->list, &dmi_devices);
  215. }
  216. }
  217. static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
  218. {
  219. struct dmi_device *dev;
  220. void * data;
  221. data = dmi_alloc(dm->length);
  222. if (data == NULL) {
  223. printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
  224. return;
  225. }
  226. memcpy(data, dm, dm->length);
  227. dev = dmi_alloc(sizeof(*dev));
  228. if (!dev) {
  229. printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
  230. return;
  231. }
  232. dev->type = DMI_DEV_TYPE_IPMI;
  233. dev->name = "IPMI controller";
  234. dev->device_data = data;
  235. list_add_tail(&dev->list, &dmi_devices);
  236. }
  237. static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
  238. int devfn, const char *name)
  239. {
  240. struct dmi_dev_onboard *onboard_dev;
  241. onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
  242. if (!onboard_dev) {
  243. printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
  244. return;
  245. }
  246. onboard_dev->instance = instance;
  247. onboard_dev->segment = segment;
  248. onboard_dev->bus = bus;
  249. onboard_dev->devfn = devfn;
  250. strcpy((char *)&onboard_dev[1], name);
  251. onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
  252. onboard_dev->dev.name = (char *)&onboard_dev[1];
  253. onboard_dev->dev.device_data = onboard_dev;
  254. list_add(&onboard_dev->dev.list, &dmi_devices);
  255. }
  256. static void __init dmi_save_extended_devices(const struct dmi_header *dm)
  257. {
  258. const u8 *d = (u8*) dm + 5;
  259. /* Skip disabled device */
  260. if ((*d & 0x80) == 0)
  261. return;
  262. dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
  263. dmi_string_nosave(dm, *(d-1)));
  264. dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
  265. }
  266. /*
  267. * Process a DMI table entry. Right now all we care about are the BIOS
  268. * and machine entries. For 2.5 we should pull the smbus controller info
  269. * out of here.
  270. */
  271. static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
  272. {
  273. switch(dm->type) {
  274. case 0: /* BIOS Information */
  275. dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
  276. dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
  277. dmi_save_ident(dm, DMI_BIOS_DATE, 8);
  278. break;
  279. case 1: /* System Information */
  280. dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
  281. dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
  282. dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
  283. dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
  284. dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
  285. break;
  286. case 2: /* Base Board Information */
  287. dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
  288. dmi_save_ident(dm, DMI_BOARD_NAME, 5);
  289. dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
  290. dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
  291. dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
  292. break;
  293. case 3: /* Chassis Information */
  294. dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
  295. dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
  296. dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
  297. dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
  298. dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
  299. break;
  300. case 10: /* Onboard Devices Information */
  301. dmi_save_devices(dm);
  302. break;
  303. case 11: /* OEM Strings */
  304. dmi_save_oem_strings_devices(dm);
  305. break;
  306. case 38: /* IPMI Device Information */
  307. dmi_save_ipmi_device(dm);
  308. break;
  309. case 41: /* Onboard Devices Extended Information */
  310. dmi_save_extended_devices(dm);
  311. }
  312. }
  313. static int __init print_filtered(char *buf, size_t len, const char *info)
  314. {
  315. int c = 0;
  316. const char *p;
  317. if (!info)
  318. return c;
  319. for (p = info; *p; p++)
  320. if (isprint(*p))
  321. c += scnprintf(buf + c, len - c, "%c", *p);
  322. else
  323. c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
  324. return c;
  325. }
  326. static void __init dmi_format_ids(char *buf, size_t len)
  327. {
  328. int c = 0;
  329. const char *board; /* Board Name is optional */
  330. c += print_filtered(buf + c, len - c,
  331. dmi_get_system_info(DMI_SYS_VENDOR));
  332. c += scnprintf(buf + c, len - c, " ");
  333. c += print_filtered(buf + c, len - c,
  334. dmi_get_system_info(DMI_PRODUCT_NAME));
  335. board = dmi_get_system_info(DMI_BOARD_NAME);
  336. if (board) {
  337. c += scnprintf(buf + c, len - c, "/");
  338. c += print_filtered(buf + c, len - c, board);
  339. }
  340. c += scnprintf(buf + c, len - c, ", BIOS ");
  341. c += print_filtered(buf + c, len - c,
  342. dmi_get_system_info(DMI_BIOS_VERSION));
  343. c += scnprintf(buf + c, len - c, " ");
  344. c += print_filtered(buf + c, len - c,
  345. dmi_get_system_info(DMI_BIOS_DATE));
  346. }
  347. static int __init dmi_present(const u8 *buf)
  348. {
  349. int smbios_ver;
  350. if (memcmp(buf, "_SM_", 4) == 0 &&
  351. buf[5] < 32 && dmi_checksum(buf, buf[5])) {
  352. smbios_ver = (buf[6] << 8) + buf[7];
  353. /* Some BIOS report weird SMBIOS version, fix that up */
  354. switch (smbios_ver) {
  355. case 0x021F:
  356. case 0x0221:
  357. pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
  358. smbios_ver & 0xFF, 3);
  359. smbios_ver = 0x0203;
  360. break;
  361. case 0x0233:
  362. pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
  363. smbios_ver = 0x0206;
  364. break;
  365. }
  366. } else {
  367. smbios_ver = 0;
  368. }
  369. buf += 16;
  370. if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
  371. dmi_num = (buf[13] << 8) | buf[12];
  372. dmi_len = (buf[7] << 8) | buf[6];
  373. dmi_base = (buf[11] << 24) | (buf[10] << 16) |
  374. (buf[9] << 8) | buf[8];
  375. if (dmi_walk_early(dmi_decode) == 0) {
  376. if (smbios_ver) {
  377. dmi_ver = smbios_ver;
  378. pr_info("SMBIOS %d.%d present.\n",
  379. dmi_ver >> 8, dmi_ver & 0xFF);
  380. } else {
  381. dmi_ver = (buf[14] & 0xF0) << 4 |
  382. (buf[14] & 0x0F);
  383. pr_info("Legacy DMI %d.%d present.\n",
  384. dmi_ver >> 8, dmi_ver & 0xFF);
  385. }
  386. dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
  387. printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
  388. return 0;
  389. }
  390. }
  391. return 1;
  392. }
  393. void __init dmi_scan_machine(void)
  394. {
  395. char __iomem *p, *q;
  396. char buf[32];
  397. if (efi_enabled(EFI_CONFIG_TABLES)) {
  398. if (efi.smbios == EFI_INVALID_TABLE_ADDR)
  399. goto error;
  400. /* This is called as a core_initcall() because it isn't
  401. * needed during early boot. This also means we can
  402. * iounmap the space when we're done with it.
  403. */
  404. p = dmi_ioremap(efi.smbios, 32);
  405. if (p == NULL)
  406. goto error;
  407. memcpy_fromio(buf, p, 32);
  408. dmi_iounmap(p, 32);
  409. if (!dmi_present(buf)) {
  410. dmi_available = 1;
  411. goto out;
  412. }
  413. }
  414. else {
  415. /*
  416. * no iounmap() for that ioremap(); it would be a no-op, but
  417. * it's so early in setup that sucker gets confused into doing
  418. * what it shouldn't if we actually call it.
  419. */
  420. p = dmi_ioremap(0xF0000, 0x10000);
  421. if (p == NULL)
  422. goto error;
  423. memset(buf, 0, 16);
  424. for (q = p; q < p + 0x10000; q += 16) {
  425. memcpy_fromio(buf + 16, q, 16);
  426. if (!dmi_present(buf)) {
  427. dmi_available = 1;
  428. dmi_iounmap(p, 0x10000);
  429. goto out;
  430. }
  431. memcpy(buf, buf + 16, 16);
  432. }
  433. dmi_iounmap(p, 0x10000);
  434. }
  435. error:
  436. printk(KERN_INFO "DMI not present or invalid.\n");
  437. out:
  438. dmi_initialized = 1;
  439. }
  440. /**
  441. * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
  442. *
  443. * Invoke dump_stack_set_arch_desc() with DMI system information so that
  444. * DMI identifiers are printed out on task dumps. Arch boot code should
  445. * call this function after dmi_scan_machine() if it wants to print out DMI
  446. * identifiers on task dumps.
  447. */
  448. void __init dmi_set_dump_stack_arch_desc(void)
  449. {
  450. dump_stack_set_arch_desc("%s", dmi_ids_string);
  451. }
  452. /**
  453. * dmi_matches - check if dmi_system_id structure matches system DMI data
  454. * @dmi: pointer to the dmi_system_id structure to check
  455. */
  456. static bool dmi_matches(const struct dmi_system_id *dmi)
  457. {
  458. int i;
  459. WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
  460. for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
  461. int s = dmi->matches[i].slot;
  462. if (s == DMI_NONE)
  463. break;
  464. if (dmi_ident[s]
  465. && strstr(dmi_ident[s], dmi->matches[i].substr))
  466. continue;
  467. /* No match */
  468. return false;
  469. }
  470. return true;
  471. }
  472. /**
  473. * dmi_is_end_of_table - check for end-of-table marker
  474. * @dmi: pointer to the dmi_system_id structure to check
  475. */
  476. static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
  477. {
  478. return dmi->matches[0].slot == DMI_NONE;
  479. }
  480. /**
  481. * dmi_check_system - check system DMI data
  482. * @list: array of dmi_system_id structures to match against
  483. * All non-null elements of the list must match
  484. * their slot's (field index's) data (i.e., each
  485. * list string must be a substring of the specified
  486. * DMI slot's string data) to be considered a
  487. * successful match.
  488. *
  489. * Walk the blacklist table running matching functions until someone
  490. * returns non zero or we hit the end. Callback function is called for
  491. * each successful match. Returns the number of matches.
  492. */
  493. int dmi_check_system(const struct dmi_system_id *list)
  494. {
  495. int count = 0;
  496. const struct dmi_system_id *d;
  497. for (d = list; !dmi_is_end_of_table(d); d++)
  498. if (dmi_matches(d)) {
  499. count++;
  500. if (d->callback && d->callback(d))
  501. break;
  502. }
  503. return count;
  504. }
  505. EXPORT_SYMBOL(dmi_check_system);
  506. /**
  507. * dmi_first_match - find dmi_system_id structure matching system DMI data
  508. * @list: array of dmi_system_id structures to match against
  509. * All non-null elements of the list must match
  510. * their slot's (field index's) data (i.e., each
  511. * list string must be a substring of the specified
  512. * DMI slot's string data) to be considered a
  513. * successful match.
  514. *
  515. * Walk the blacklist table until the first match is found. Return the
  516. * pointer to the matching entry or NULL if there's no match.
  517. */
  518. const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
  519. {
  520. const struct dmi_system_id *d;
  521. for (d = list; !dmi_is_end_of_table(d); d++)
  522. if (dmi_matches(d))
  523. return d;
  524. return NULL;
  525. }
  526. EXPORT_SYMBOL(dmi_first_match);
  527. /**
  528. * dmi_get_system_info - return DMI data value
  529. * @field: data index (see enum dmi_field)
  530. *
  531. * Returns one DMI data value, can be used to perform
  532. * complex DMI data checks.
  533. */
  534. const char *dmi_get_system_info(int field)
  535. {
  536. return dmi_ident[field];
  537. }
  538. EXPORT_SYMBOL(dmi_get_system_info);
  539. /**
  540. * dmi_name_in_serial - Check if string is in the DMI product serial information
  541. * @str: string to check for
  542. */
  543. int dmi_name_in_serial(const char *str)
  544. {
  545. int f = DMI_PRODUCT_SERIAL;
  546. if (dmi_ident[f] && strstr(dmi_ident[f], str))
  547. return 1;
  548. return 0;
  549. }
  550. /**
  551. * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
  552. * @str: Case sensitive Name
  553. */
  554. int dmi_name_in_vendors(const char *str)
  555. {
  556. static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
  557. int i;
  558. for (i = 0; fields[i] != DMI_NONE; i++) {
  559. int f = fields[i];
  560. if (dmi_ident[f] && strstr(dmi_ident[f], str))
  561. return 1;
  562. }
  563. return 0;
  564. }
  565. EXPORT_SYMBOL(dmi_name_in_vendors);
  566. /**
  567. * dmi_find_device - find onboard device by type/name
  568. * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
  569. * @name: device name string or %NULL to match all
  570. * @from: previous device found in search, or %NULL for new search.
  571. *
  572. * Iterates through the list of known onboard devices. If a device is
  573. * found with a matching @vendor and @device, a pointer to its device
  574. * structure is returned. Otherwise, %NULL is returned.
  575. * A new search is initiated by passing %NULL as the @from argument.
  576. * If @from is not %NULL, searches continue from next device.
  577. */
  578. const struct dmi_device * dmi_find_device(int type, const char *name,
  579. const struct dmi_device *from)
  580. {
  581. const struct list_head *head = from ? &from->list : &dmi_devices;
  582. struct list_head *d;
  583. for(d = head->next; d != &dmi_devices; d = d->next) {
  584. const struct dmi_device *dev =
  585. list_entry(d, struct dmi_device, list);
  586. if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
  587. ((name == NULL) || (strcmp(dev->name, name) == 0)))
  588. return dev;
  589. }
  590. return NULL;
  591. }
  592. EXPORT_SYMBOL(dmi_find_device);
  593. /**
  594. * dmi_get_date - parse a DMI date
  595. * @field: data index (see enum dmi_field)
  596. * @yearp: optional out parameter for the year
  597. * @monthp: optional out parameter for the month
  598. * @dayp: optional out parameter for the day
  599. *
  600. * The date field is assumed to be in the form resembling
  601. * [mm[/dd]]/yy[yy] and the result is stored in the out
  602. * parameters any or all of which can be omitted.
  603. *
  604. * If the field doesn't exist, all out parameters are set to zero
  605. * and false is returned. Otherwise, true is returned with any
  606. * invalid part of date set to zero.
  607. *
  608. * On return, year, month and day are guaranteed to be in the
  609. * range of [0,9999], [0,12] and [0,31] respectively.
  610. */
  611. bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
  612. {
  613. int year = 0, month = 0, day = 0;
  614. bool exists;
  615. const char *s, *y;
  616. char *e;
  617. s = dmi_get_system_info(field);
  618. exists = s;
  619. if (!exists)
  620. goto out;
  621. /*
  622. * Determine year first. We assume the date string resembles
  623. * mm/dd/yy[yy] but the original code extracted only the year
  624. * from the end. Keep the behavior in the spirit of no
  625. * surprises.
  626. */
  627. y = strrchr(s, '/');
  628. if (!y)
  629. goto out;
  630. y++;
  631. year = simple_strtoul(y, &e, 10);
  632. if (y != e && year < 100) { /* 2-digit year */
  633. year += 1900;
  634. if (year < 1996) /* no dates < spec 1.0 */
  635. year += 100;
  636. }
  637. if (year > 9999) /* year should fit in %04d */
  638. year = 0;
  639. /* parse the mm and dd */
  640. month = simple_strtoul(s, &e, 10);
  641. if (s == e || *e != '/' || !month || month > 12) {
  642. month = 0;
  643. goto out;
  644. }
  645. s = e + 1;
  646. day = simple_strtoul(s, &e, 10);
  647. if (s == y || s == e || *e != '/' || day > 31)
  648. day = 0;
  649. out:
  650. if (yearp)
  651. *yearp = year;
  652. if (monthp)
  653. *monthp = month;
  654. if (dayp)
  655. *dayp = day;
  656. return exists;
  657. }
  658. EXPORT_SYMBOL(dmi_get_date);
  659. /**
  660. * dmi_walk - Walk the DMI table and get called back for every record
  661. * @decode: Callback function
  662. * @private_data: Private data to be passed to the callback function
  663. *
  664. * Returns -1 when the DMI table can't be reached, 0 on success.
  665. */
  666. int dmi_walk(void (*decode)(const struct dmi_header *, void *),
  667. void *private_data)
  668. {
  669. u8 *buf;
  670. if (!dmi_available)
  671. return -1;
  672. buf = ioremap(dmi_base, dmi_len);
  673. if (buf == NULL)
  674. return -1;
  675. dmi_table(buf, dmi_len, dmi_num, decode, private_data);
  676. iounmap(buf);
  677. return 0;
  678. }
  679. EXPORT_SYMBOL_GPL(dmi_walk);
  680. /**
  681. * dmi_match - compare a string to the dmi field (if exists)
  682. * @f: DMI field identifier
  683. * @str: string to compare the DMI field to
  684. *
  685. * Returns true if the requested field equals to the str (including NULL).
  686. */
  687. bool dmi_match(enum dmi_field f, const char *str)
  688. {
  689. const char *info = dmi_get_system_info(f);
  690. if (info == NULL || str == NULL)
  691. return info == str;
  692. return !strcmp(info, str);
  693. }
  694. EXPORT_SYMBOL_GPL(dmi_match);