mmu.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  161. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  162. sp->mmio_cached = true;
  163. trace_mark_mmio_spte(sptep, gfn, access);
  164. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  165. }
  166. static bool is_mmio_spte(u64 spte)
  167. {
  168. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  169. }
  170. static gfn_t get_mmio_spte_gfn(u64 spte)
  171. {
  172. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  173. }
  174. static unsigned get_mmio_spte_access(u64 spte)
  175. {
  176. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  177. }
  178. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  179. {
  180. if (unlikely(is_noslot_pfn(pfn))) {
  181. mark_mmio_spte(sptep, gfn, access);
  182. return true;
  183. }
  184. return false;
  185. }
  186. static inline u64 rsvd_bits(int s, int e)
  187. {
  188. return ((1ULL << (e - s + 1)) - 1) << s;
  189. }
  190. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  191. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  192. {
  193. shadow_user_mask = user_mask;
  194. shadow_accessed_mask = accessed_mask;
  195. shadow_dirty_mask = dirty_mask;
  196. shadow_nx_mask = nx_mask;
  197. shadow_x_mask = x_mask;
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  200. static int is_cpuid_PSE36(void)
  201. {
  202. return 1;
  203. }
  204. static int is_nx(struct kvm_vcpu *vcpu)
  205. {
  206. return vcpu->arch.efer & EFER_NX;
  207. }
  208. static int is_shadow_present_pte(u64 pte)
  209. {
  210. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  211. }
  212. static int is_large_pte(u64 pte)
  213. {
  214. return pte & PT_PAGE_SIZE_MASK;
  215. }
  216. static int is_dirty_gpte(unsigned long pte)
  217. {
  218. return pte & PT_DIRTY_MASK;
  219. }
  220. static int is_rmap_spte(u64 pte)
  221. {
  222. return is_shadow_present_pte(pte);
  223. }
  224. static int is_last_spte(u64 pte, int level)
  225. {
  226. if (level == PT_PAGE_TABLE_LEVEL)
  227. return 1;
  228. if (is_large_pte(pte))
  229. return 1;
  230. return 0;
  231. }
  232. static pfn_t spte_to_pfn(u64 pte)
  233. {
  234. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  235. }
  236. static gfn_t pse36_gfn_delta(u32 gpte)
  237. {
  238. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  239. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  240. }
  241. #ifdef CONFIG_X86_64
  242. static void __set_spte(u64 *sptep, u64 spte)
  243. {
  244. *sptep = spte;
  245. }
  246. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  247. {
  248. *sptep = spte;
  249. }
  250. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  251. {
  252. return xchg(sptep, spte);
  253. }
  254. static u64 __get_spte_lockless(u64 *sptep)
  255. {
  256. return ACCESS_ONCE(*sptep);
  257. }
  258. static bool __check_direct_spte_mmio_pf(u64 spte)
  259. {
  260. /* It is valid if the spte is zapped. */
  261. return spte == 0ull;
  262. }
  263. #else
  264. union split_spte {
  265. struct {
  266. u32 spte_low;
  267. u32 spte_high;
  268. };
  269. u64 spte;
  270. };
  271. static void count_spte_clear(u64 *sptep, u64 spte)
  272. {
  273. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  274. if (is_shadow_present_pte(spte))
  275. return;
  276. /* Ensure the spte is completely set before we increase the count */
  277. smp_wmb();
  278. sp->clear_spte_count++;
  279. }
  280. static void __set_spte(u64 *sptep, u64 spte)
  281. {
  282. union split_spte *ssptep, sspte;
  283. ssptep = (union split_spte *)sptep;
  284. sspte = (union split_spte)spte;
  285. ssptep->spte_high = sspte.spte_high;
  286. /*
  287. * If we map the spte from nonpresent to present, We should store
  288. * the high bits firstly, then set present bit, so cpu can not
  289. * fetch this spte while we are setting the spte.
  290. */
  291. smp_wmb();
  292. ssptep->spte_low = sspte.spte_low;
  293. }
  294. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  295. {
  296. union split_spte *ssptep, sspte;
  297. ssptep = (union split_spte *)sptep;
  298. sspte = (union split_spte)spte;
  299. ssptep->spte_low = sspte.spte_low;
  300. /*
  301. * If we map the spte from present to nonpresent, we should clear
  302. * present bit firstly to avoid vcpu fetch the old high bits.
  303. */
  304. smp_wmb();
  305. ssptep->spte_high = sspte.spte_high;
  306. count_spte_clear(sptep, spte);
  307. }
  308. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  309. {
  310. union split_spte *ssptep, sspte, orig;
  311. ssptep = (union split_spte *)sptep;
  312. sspte = (union split_spte)spte;
  313. /* xchg acts as a barrier before the setting of the high bits */
  314. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  315. orig.spte_high = ssptep->spte_high;
  316. ssptep->spte_high = sspte.spte_high;
  317. count_spte_clear(sptep, spte);
  318. return orig.spte;
  319. }
  320. /*
  321. * The idea using the light way get the spte on x86_32 guest is from
  322. * gup_get_pte(arch/x86/mm/gup.c).
  323. * The difference is we can not catch the spte tlb flush if we leave
  324. * guest mode, so we emulate it by increase clear_spte_count when spte
  325. * is cleared.
  326. */
  327. static u64 __get_spte_lockless(u64 *sptep)
  328. {
  329. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  330. union split_spte spte, *orig = (union split_spte *)sptep;
  331. int count;
  332. retry:
  333. count = sp->clear_spte_count;
  334. smp_rmb();
  335. spte.spte_low = orig->spte_low;
  336. smp_rmb();
  337. spte.spte_high = orig->spte_high;
  338. smp_rmb();
  339. if (unlikely(spte.spte_low != orig->spte_low ||
  340. count != sp->clear_spte_count))
  341. goto retry;
  342. return spte.spte;
  343. }
  344. static bool __check_direct_spte_mmio_pf(u64 spte)
  345. {
  346. union split_spte sspte = (union split_spte)spte;
  347. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  348. /* It is valid if the spte is zapped. */
  349. if (spte == 0ull)
  350. return true;
  351. /* It is valid if the spte is being zapped. */
  352. if (sspte.spte_low == 0ull &&
  353. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  354. return true;
  355. return false;
  356. }
  357. #endif
  358. static bool spte_is_locklessly_modifiable(u64 spte)
  359. {
  360. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  361. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  362. }
  363. static bool spte_has_volatile_bits(u64 spte)
  364. {
  365. /*
  366. * Always atomicly update spte if it can be updated
  367. * out of mmu-lock, it can ensure dirty bit is not lost,
  368. * also, it can help us to get a stable is_writable_pte()
  369. * to ensure tlb flush is not missed.
  370. */
  371. if (spte_is_locklessly_modifiable(spte))
  372. return true;
  373. if (!shadow_accessed_mask)
  374. return false;
  375. if (!is_shadow_present_pte(spte))
  376. return false;
  377. if ((spte & shadow_accessed_mask) &&
  378. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  379. return false;
  380. return true;
  381. }
  382. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  383. {
  384. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  385. }
  386. /* Rules for using mmu_spte_set:
  387. * Set the sptep from nonpresent to present.
  388. * Note: the sptep being assigned *must* be either not present
  389. * or in a state where the hardware will not attempt to update
  390. * the spte.
  391. */
  392. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  393. {
  394. WARN_ON(is_shadow_present_pte(*sptep));
  395. __set_spte(sptep, new_spte);
  396. }
  397. /* Rules for using mmu_spte_update:
  398. * Update the state bits, it means the mapped pfn is not changged.
  399. *
  400. * Whenever we overwrite a writable spte with a read-only one we
  401. * should flush remote TLBs. Otherwise rmap_write_protect
  402. * will find a read-only spte, even though the writable spte
  403. * might be cached on a CPU's TLB, the return value indicates this
  404. * case.
  405. */
  406. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  407. {
  408. u64 old_spte = *sptep;
  409. bool ret = false;
  410. WARN_ON(!is_rmap_spte(new_spte));
  411. if (!is_shadow_present_pte(old_spte)) {
  412. mmu_spte_set(sptep, new_spte);
  413. return ret;
  414. }
  415. if (!spte_has_volatile_bits(old_spte))
  416. __update_clear_spte_fast(sptep, new_spte);
  417. else
  418. old_spte = __update_clear_spte_slow(sptep, new_spte);
  419. /*
  420. * For the spte updated out of mmu-lock is safe, since
  421. * we always atomicly update it, see the comments in
  422. * spte_has_volatile_bits().
  423. */
  424. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  425. ret = true;
  426. if (!shadow_accessed_mask)
  427. return ret;
  428. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  429. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  430. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  431. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  432. return ret;
  433. }
  434. /*
  435. * Rules for using mmu_spte_clear_track_bits:
  436. * It sets the sptep from present to nonpresent, and track the
  437. * state bits, it is used to clear the last level sptep.
  438. */
  439. static int mmu_spte_clear_track_bits(u64 *sptep)
  440. {
  441. pfn_t pfn;
  442. u64 old_spte = *sptep;
  443. if (!spte_has_volatile_bits(old_spte))
  444. __update_clear_spte_fast(sptep, 0ull);
  445. else
  446. old_spte = __update_clear_spte_slow(sptep, 0ull);
  447. if (!is_rmap_spte(old_spte))
  448. return 0;
  449. pfn = spte_to_pfn(old_spte);
  450. /*
  451. * KVM does not hold the refcount of the page used by
  452. * kvm mmu, before reclaiming the page, we should
  453. * unmap it from mmu first.
  454. */
  455. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  456. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  457. kvm_set_pfn_accessed(pfn);
  458. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  459. kvm_set_pfn_dirty(pfn);
  460. return 1;
  461. }
  462. /*
  463. * Rules for using mmu_spte_clear_no_track:
  464. * Directly clear spte without caring the state bits of sptep,
  465. * it is used to set the upper level spte.
  466. */
  467. static void mmu_spte_clear_no_track(u64 *sptep)
  468. {
  469. __update_clear_spte_fast(sptep, 0ull);
  470. }
  471. static u64 mmu_spte_get_lockless(u64 *sptep)
  472. {
  473. return __get_spte_lockless(sptep);
  474. }
  475. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  476. {
  477. /*
  478. * Prevent page table teardown by making any free-er wait during
  479. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  480. */
  481. local_irq_disable();
  482. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  483. /*
  484. * Make sure a following spte read is not reordered ahead of the write
  485. * to vcpu->mode.
  486. */
  487. smp_mb();
  488. }
  489. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  490. {
  491. /*
  492. * Make sure the write to vcpu->mode is not reordered in front of
  493. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  494. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  495. */
  496. smp_mb();
  497. vcpu->mode = OUTSIDE_GUEST_MODE;
  498. local_irq_enable();
  499. }
  500. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  501. struct kmem_cache *base_cache, int min)
  502. {
  503. void *obj;
  504. if (cache->nobjs >= min)
  505. return 0;
  506. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  507. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  508. if (!obj)
  509. return -ENOMEM;
  510. cache->objects[cache->nobjs++] = obj;
  511. }
  512. return 0;
  513. }
  514. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  515. {
  516. return cache->nobjs;
  517. }
  518. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  519. struct kmem_cache *cache)
  520. {
  521. while (mc->nobjs)
  522. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  523. }
  524. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  525. int min)
  526. {
  527. void *page;
  528. if (cache->nobjs >= min)
  529. return 0;
  530. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  531. page = (void *)__get_free_page(GFP_KERNEL);
  532. if (!page)
  533. return -ENOMEM;
  534. cache->objects[cache->nobjs++] = page;
  535. }
  536. return 0;
  537. }
  538. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  539. {
  540. while (mc->nobjs)
  541. free_page((unsigned long)mc->objects[--mc->nobjs]);
  542. }
  543. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  544. {
  545. int r;
  546. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  547. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  548. if (r)
  549. goto out;
  550. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  551. if (r)
  552. goto out;
  553. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  554. mmu_page_header_cache, 4);
  555. out:
  556. return r;
  557. }
  558. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  559. {
  560. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  561. pte_list_desc_cache);
  562. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  563. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  564. mmu_page_header_cache);
  565. }
  566. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  567. {
  568. void *p;
  569. BUG_ON(!mc->nobjs);
  570. p = mc->objects[--mc->nobjs];
  571. return p;
  572. }
  573. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  574. {
  575. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  576. }
  577. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  578. {
  579. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  580. }
  581. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  582. {
  583. if (!sp->role.direct)
  584. return sp->gfns[index];
  585. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  586. }
  587. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  588. {
  589. if (sp->role.direct)
  590. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  591. else
  592. sp->gfns[index] = gfn;
  593. }
  594. /*
  595. * Return the pointer to the large page information for a given gfn,
  596. * handling slots that are not large page aligned.
  597. */
  598. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  599. struct kvm_memory_slot *slot,
  600. int level)
  601. {
  602. unsigned long idx;
  603. idx = gfn_to_index(gfn, slot->base_gfn, level);
  604. return &slot->arch.lpage_info[level - 2][idx];
  605. }
  606. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  607. {
  608. struct kvm_memory_slot *slot;
  609. struct kvm_lpage_info *linfo;
  610. int i;
  611. slot = gfn_to_memslot(kvm, gfn);
  612. for (i = PT_DIRECTORY_LEVEL;
  613. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  614. linfo = lpage_info_slot(gfn, slot, i);
  615. linfo->write_count += 1;
  616. }
  617. kvm->arch.indirect_shadow_pages++;
  618. }
  619. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  620. {
  621. struct kvm_memory_slot *slot;
  622. struct kvm_lpage_info *linfo;
  623. int i;
  624. slot = gfn_to_memslot(kvm, gfn);
  625. for (i = PT_DIRECTORY_LEVEL;
  626. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  627. linfo = lpage_info_slot(gfn, slot, i);
  628. linfo->write_count -= 1;
  629. WARN_ON(linfo->write_count < 0);
  630. }
  631. kvm->arch.indirect_shadow_pages--;
  632. }
  633. static int has_wrprotected_page(struct kvm *kvm,
  634. gfn_t gfn,
  635. int level)
  636. {
  637. struct kvm_memory_slot *slot;
  638. struct kvm_lpage_info *linfo;
  639. slot = gfn_to_memslot(kvm, gfn);
  640. if (slot) {
  641. linfo = lpage_info_slot(gfn, slot, level);
  642. return linfo->write_count;
  643. }
  644. return 1;
  645. }
  646. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  647. {
  648. unsigned long page_size;
  649. int i, ret = 0;
  650. page_size = kvm_host_page_size(kvm, gfn);
  651. for (i = PT_PAGE_TABLE_LEVEL;
  652. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  653. if (page_size >= KVM_HPAGE_SIZE(i))
  654. ret = i;
  655. else
  656. break;
  657. }
  658. return ret;
  659. }
  660. static struct kvm_memory_slot *
  661. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  662. bool no_dirty_log)
  663. {
  664. struct kvm_memory_slot *slot;
  665. slot = gfn_to_memslot(vcpu->kvm, gfn);
  666. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  667. (no_dirty_log && slot->dirty_bitmap))
  668. slot = NULL;
  669. return slot;
  670. }
  671. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  672. {
  673. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  674. }
  675. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  676. {
  677. int host_level, level, max_level;
  678. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  679. if (host_level == PT_PAGE_TABLE_LEVEL)
  680. return host_level;
  681. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  682. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  683. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  684. break;
  685. return level - 1;
  686. }
  687. /*
  688. * Pte mapping structures:
  689. *
  690. * If pte_list bit zero is zero, then pte_list point to the spte.
  691. *
  692. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  693. * pte_list_desc containing more mappings.
  694. *
  695. * Returns the number of pte entries before the spte was added or zero if
  696. * the spte was not added.
  697. *
  698. */
  699. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  700. unsigned long *pte_list)
  701. {
  702. struct pte_list_desc *desc;
  703. int i, count = 0;
  704. if (!*pte_list) {
  705. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  706. *pte_list = (unsigned long)spte;
  707. } else if (!(*pte_list & 1)) {
  708. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  709. desc = mmu_alloc_pte_list_desc(vcpu);
  710. desc->sptes[0] = (u64 *)*pte_list;
  711. desc->sptes[1] = spte;
  712. *pte_list = (unsigned long)desc | 1;
  713. ++count;
  714. } else {
  715. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  716. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  717. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  718. desc = desc->more;
  719. count += PTE_LIST_EXT;
  720. }
  721. if (desc->sptes[PTE_LIST_EXT-1]) {
  722. desc->more = mmu_alloc_pte_list_desc(vcpu);
  723. desc = desc->more;
  724. }
  725. for (i = 0; desc->sptes[i]; ++i)
  726. ++count;
  727. desc->sptes[i] = spte;
  728. }
  729. return count;
  730. }
  731. static void
  732. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  733. int i, struct pte_list_desc *prev_desc)
  734. {
  735. int j;
  736. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  737. ;
  738. desc->sptes[i] = desc->sptes[j];
  739. desc->sptes[j] = NULL;
  740. if (j != 0)
  741. return;
  742. if (!prev_desc && !desc->more)
  743. *pte_list = (unsigned long)desc->sptes[0];
  744. else
  745. if (prev_desc)
  746. prev_desc->more = desc->more;
  747. else
  748. *pte_list = (unsigned long)desc->more | 1;
  749. mmu_free_pte_list_desc(desc);
  750. }
  751. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  752. {
  753. struct pte_list_desc *desc;
  754. struct pte_list_desc *prev_desc;
  755. int i;
  756. if (!*pte_list) {
  757. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  758. BUG();
  759. } else if (!(*pte_list & 1)) {
  760. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  761. if ((u64 *)*pte_list != spte) {
  762. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  763. BUG();
  764. }
  765. *pte_list = 0;
  766. } else {
  767. rmap_printk("pte_list_remove: %p many->many\n", spte);
  768. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  769. prev_desc = NULL;
  770. while (desc) {
  771. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  772. if (desc->sptes[i] == spte) {
  773. pte_list_desc_remove_entry(pte_list,
  774. desc, i,
  775. prev_desc);
  776. return;
  777. }
  778. prev_desc = desc;
  779. desc = desc->more;
  780. }
  781. pr_err("pte_list_remove: %p many->many\n", spte);
  782. BUG();
  783. }
  784. }
  785. typedef void (*pte_list_walk_fn) (u64 *spte);
  786. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  787. {
  788. struct pte_list_desc *desc;
  789. int i;
  790. if (!*pte_list)
  791. return;
  792. if (!(*pte_list & 1))
  793. return fn((u64 *)*pte_list);
  794. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  795. while (desc) {
  796. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  797. fn(desc->sptes[i]);
  798. desc = desc->more;
  799. }
  800. }
  801. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  802. struct kvm_memory_slot *slot)
  803. {
  804. unsigned long idx;
  805. idx = gfn_to_index(gfn, slot->base_gfn, level);
  806. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  807. }
  808. /*
  809. * Take gfn and return the reverse mapping to it.
  810. */
  811. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  812. {
  813. struct kvm_memory_slot *slot;
  814. slot = gfn_to_memslot(kvm, gfn);
  815. return __gfn_to_rmap(gfn, level, slot);
  816. }
  817. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  818. {
  819. struct kvm_mmu_memory_cache *cache;
  820. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  821. return mmu_memory_cache_free_objects(cache);
  822. }
  823. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  824. {
  825. struct kvm_mmu_page *sp;
  826. unsigned long *rmapp;
  827. sp = page_header(__pa(spte));
  828. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  829. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  830. return pte_list_add(vcpu, spte, rmapp);
  831. }
  832. static void rmap_remove(struct kvm *kvm, u64 *spte)
  833. {
  834. struct kvm_mmu_page *sp;
  835. gfn_t gfn;
  836. unsigned long *rmapp;
  837. sp = page_header(__pa(spte));
  838. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  839. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  840. pte_list_remove(spte, rmapp);
  841. }
  842. /*
  843. * Used by the following functions to iterate through the sptes linked by a
  844. * rmap. All fields are private and not assumed to be used outside.
  845. */
  846. struct rmap_iterator {
  847. /* private fields */
  848. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  849. int pos; /* index of the sptep */
  850. };
  851. /*
  852. * Iteration must be started by this function. This should also be used after
  853. * removing/dropping sptes from the rmap link because in such cases the
  854. * information in the itererator may not be valid.
  855. *
  856. * Returns sptep if found, NULL otherwise.
  857. */
  858. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  859. {
  860. if (!rmap)
  861. return NULL;
  862. if (!(rmap & 1)) {
  863. iter->desc = NULL;
  864. return (u64 *)rmap;
  865. }
  866. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  867. iter->pos = 0;
  868. return iter->desc->sptes[iter->pos];
  869. }
  870. /*
  871. * Must be used with a valid iterator: e.g. after rmap_get_first().
  872. *
  873. * Returns sptep if found, NULL otherwise.
  874. */
  875. static u64 *rmap_get_next(struct rmap_iterator *iter)
  876. {
  877. if (iter->desc) {
  878. if (iter->pos < PTE_LIST_EXT - 1) {
  879. u64 *sptep;
  880. ++iter->pos;
  881. sptep = iter->desc->sptes[iter->pos];
  882. if (sptep)
  883. return sptep;
  884. }
  885. iter->desc = iter->desc->more;
  886. if (iter->desc) {
  887. iter->pos = 0;
  888. /* desc->sptes[0] cannot be NULL */
  889. return iter->desc->sptes[iter->pos];
  890. }
  891. }
  892. return NULL;
  893. }
  894. static void drop_spte(struct kvm *kvm, u64 *sptep)
  895. {
  896. if (mmu_spte_clear_track_bits(sptep))
  897. rmap_remove(kvm, sptep);
  898. }
  899. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  900. {
  901. if (is_large_pte(*sptep)) {
  902. WARN_ON(page_header(__pa(sptep))->role.level ==
  903. PT_PAGE_TABLE_LEVEL);
  904. drop_spte(kvm, sptep);
  905. --kvm->stat.lpages;
  906. return true;
  907. }
  908. return false;
  909. }
  910. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  911. {
  912. if (__drop_large_spte(vcpu->kvm, sptep))
  913. kvm_flush_remote_tlbs(vcpu->kvm);
  914. }
  915. /*
  916. * Write-protect on the specified @sptep, @pt_protect indicates whether
  917. * spte writ-protection is caused by protecting shadow page table.
  918. * @flush indicates whether tlb need be flushed.
  919. *
  920. * Note: write protection is difference between drity logging and spte
  921. * protection:
  922. * - for dirty logging, the spte can be set to writable at anytime if
  923. * its dirty bitmap is properly set.
  924. * - for spte protection, the spte can be writable only after unsync-ing
  925. * shadow page.
  926. *
  927. * Return true if the spte is dropped.
  928. */
  929. static bool
  930. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  931. {
  932. u64 spte = *sptep;
  933. if (!is_writable_pte(spte) &&
  934. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  935. return false;
  936. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  937. if (__drop_large_spte(kvm, sptep)) {
  938. *flush |= true;
  939. return true;
  940. }
  941. if (pt_protect)
  942. spte &= ~SPTE_MMU_WRITEABLE;
  943. spte = spte & ~PT_WRITABLE_MASK;
  944. *flush |= mmu_spte_update(sptep, spte);
  945. return false;
  946. }
  947. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  948. bool pt_protect)
  949. {
  950. u64 *sptep;
  951. struct rmap_iterator iter;
  952. bool flush = false;
  953. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  954. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  955. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  956. sptep = rmap_get_first(*rmapp, &iter);
  957. continue;
  958. }
  959. sptep = rmap_get_next(&iter);
  960. }
  961. return flush;
  962. }
  963. /**
  964. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  965. * @kvm: kvm instance
  966. * @slot: slot to protect
  967. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  968. * @mask: indicates which pages we should protect
  969. *
  970. * Used when we do not need to care about huge page mappings: e.g. during dirty
  971. * logging we do not have any such mappings.
  972. */
  973. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  974. struct kvm_memory_slot *slot,
  975. gfn_t gfn_offset, unsigned long mask)
  976. {
  977. unsigned long *rmapp;
  978. while (mask) {
  979. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  980. PT_PAGE_TABLE_LEVEL, slot);
  981. __rmap_write_protect(kvm, rmapp, false);
  982. /* clear the first set bit */
  983. mask &= mask - 1;
  984. }
  985. }
  986. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  987. {
  988. struct kvm_memory_slot *slot;
  989. unsigned long *rmapp;
  990. int i;
  991. bool write_protected = false;
  992. slot = gfn_to_memslot(kvm, gfn);
  993. for (i = PT_PAGE_TABLE_LEVEL;
  994. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  995. rmapp = __gfn_to_rmap(gfn, i, slot);
  996. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  997. }
  998. return write_protected;
  999. }
  1000. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1001. struct kvm_memory_slot *slot, unsigned long data)
  1002. {
  1003. u64 *sptep;
  1004. struct rmap_iterator iter;
  1005. int need_tlb_flush = 0;
  1006. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1007. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1008. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1009. drop_spte(kvm, sptep);
  1010. need_tlb_flush = 1;
  1011. }
  1012. return need_tlb_flush;
  1013. }
  1014. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1015. struct kvm_memory_slot *slot, unsigned long data)
  1016. {
  1017. u64 *sptep;
  1018. struct rmap_iterator iter;
  1019. int need_flush = 0;
  1020. u64 new_spte;
  1021. pte_t *ptep = (pte_t *)data;
  1022. pfn_t new_pfn;
  1023. WARN_ON(pte_huge(*ptep));
  1024. new_pfn = pte_pfn(*ptep);
  1025. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1026. BUG_ON(!is_shadow_present_pte(*sptep));
  1027. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1028. need_flush = 1;
  1029. if (pte_write(*ptep)) {
  1030. drop_spte(kvm, sptep);
  1031. sptep = rmap_get_first(*rmapp, &iter);
  1032. } else {
  1033. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1034. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1035. new_spte &= ~PT_WRITABLE_MASK;
  1036. new_spte &= ~SPTE_HOST_WRITEABLE;
  1037. new_spte &= ~shadow_accessed_mask;
  1038. mmu_spte_clear_track_bits(sptep);
  1039. mmu_spte_set(sptep, new_spte);
  1040. sptep = rmap_get_next(&iter);
  1041. }
  1042. }
  1043. if (need_flush)
  1044. kvm_flush_remote_tlbs(kvm);
  1045. return 0;
  1046. }
  1047. static int kvm_handle_hva_range(struct kvm *kvm,
  1048. unsigned long start,
  1049. unsigned long end,
  1050. unsigned long data,
  1051. int (*handler)(struct kvm *kvm,
  1052. unsigned long *rmapp,
  1053. struct kvm_memory_slot *slot,
  1054. unsigned long data))
  1055. {
  1056. int j;
  1057. int ret = 0;
  1058. struct kvm_memslots *slots;
  1059. struct kvm_memory_slot *memslot;
  1060. slots = kvm_memslots(kvm);
  1061. kvm_for_each_memslot(memslot, slots) {
  1062. unsigned long hva_start, hva_end;
  1063. gfn_t gfn_start, gfn_end;
  1064. hva_start = max(start, memslot->userspace_addr);
  1065. hva_end = min(end, memslot->userspace_addr +
  1066. (memslot->npages << PAGE_SHIFT));
  1067. if (hva_start >= hva_end)
  1068. continue;
  1069. /*
  1070. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1071. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1072. */
  1073. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1074. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1075. for (j = PT_PAGE_TABLE_LEVEL;
  1076. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1077. unsigned long idx, idx_end;
  1078. unsigned long *rmapp;
  1079. /*
  1080. * {idx(page_j) | page_j intersects with
  1081. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1082. */
  1083. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1084. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1085. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1086. for (; idx <= idx_end; ++idx)
  1087. ret |= handler(kvm, rmapp++, memslot, data);
  1088. }
  1089. }
  1090. return ret;
  1091. }
  1092. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1093. unsigned long data,
  1094. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1095. struct kvm_memory_slot *slot,
  1096. unsigned long data))
  1097. {
  1098. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1099. }
  1100. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1101. {
  1102. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1103. }
  1104. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1105. {
  1106. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1107. }
  1108. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1109. {
  1110. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1111. }
  1112. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1113. struct kvm_memory_slot *slot, unsigned long data)
  1114. {
  1115. u64 *sptep;
  1116. struct rmap_iterator uninitialized_var(iter);
  1117. int young = 0;
  1118. /*
  1119. * In case of absence of EPT Access and Dirty Bits supports,
  1120. * emulate the accessed bit for EPT, by checking if this page has
  1121. * an EPT mapping, and clearing it if it does. On the next access,
  1122. * a new EPT mapping will be established.
  1123. * This has some overhead, but not as much as the cost of swapping
  1124. * out actively used pages or breaking up actively used hugepages.
  1125. */
  1126. if (!shadow_accessed_mask) {
  1127. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1128. goto out;
  1129. }
  1130. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1131. sptep = rmap_get_next(&iter)) {
  1132. BUG_ON(!is_shadow_present_pte(*sptep));
  1133. if (*sptep & shadow_accessed_mask) {
  1134. young = 1;
  1135. clear_bit((ffs(shadow_accessed_mask) - 1),
  1136. (unsigned long *)sptep);
  1137. }
  1138. }
  1139. out:
  1140. /* @data has hva passed to kvm_age_hva(). */
  1141. trace_kvm_age_page(data, slot, young);
  1142. return young;
  1143. }
  1144. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1145. struct kvm_memory_slot *slot, unsigned long data)
  1146. {
  1147. u64 *sptep;
  1148. struct rmap_iterator iter;
  1149. int young = 0;
  1150. /*
  1151. * If there's no access bit in the secondary pte set by the
  1152. * hardware it's up to gup-fast/gup to set the access bit in
  1153. * the primary pte or in the page structure.
  1154. */
  1155. if (!shadow_accessed_mask)
  1156. goto out;
  1157. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1158. sptep = rmap_get_next(&iter)) {
  1159. BUG_ON(!is_shadow_present_pte(*sptep));
  1160. if (*sptep & shadow_accessed_mask) {
  1161. young = 1;
  1162. break;
  1163. }
  1164. }
  1165. out:
  1166. return young;
  1167. }
  1168. #define RMAP_RECYCLE_THRESHOLD 1000
  1169. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1170. {
  1171. unsigned long *rmapp;
  1172. struct kvm_mmu_page *sp;
  1173. sp = page_header(__pa(spte));
  1174. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1175. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1176. kvm_flush_remote_tlbs(vcpu->kvm);
  1177. }
  1178. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1179. {
  1180. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1181. }
  1182. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1183. {
  1184. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1185. }
  1186. #ifdef MMU_DEBUG
  1187. static int is_empty_shadow_page(u64 *spt)
  1188. {
  1189. u64 *pos;
  1190. u64 *end;
  1191. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1192. if (is_shadow_present_pte(*pos)) {
  1193. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1194. pos, *pos);
  1195. return 0;
  1196. }
  1197. return 1;
  1198. }
  1199. #endif
  1200. /*
  1201. * This value is the sum of all of the kvm instances's
  1202. * kvm->arch.n_used_mmu_pages values. We need a global,
  1203. * aggregate version in order to make the slab shrinker
  1204. * faster
  1205. */
  1206. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1207. {
  1208. kvm->arch.n_used_mmu_pages += nr;
  1209. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1210. }
  1211. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1212. {
  1213. ASSERT(is_empty_shadow_page(sp->spt));
  1214. hlist_del(&sp->hash_link);
  1215. list_del(&sp->link);
  1216. free_page((unsigned long)sp->spt);
  1217. if (!sp->role.direct)
  1218. free_page((unsigned long)sp->gfns);
  1219. kmem_cache_free(mmu_page_header_cache, sp);
  1220. }
  1221. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1222. {
  1223. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1224. }
  1225. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1226. struct kvm_mmu_page *sp, u64 *parent_pte)
  1227. {
  1228. if (!parent_pte)
  1229. return;
  1230. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1231. }
  1232. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1233. u64 *parent_pte)
  1234. {
  1235. pte_list_remove(parent_pte, &sp->parent_ptes);
  1236. }
  1237. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1238. u64 *parent_pte)
  1239. {
  1240. mmu_page_remove_parent_pte(sp, parent_pte);
  1241. mmu_spte_clear_no_track(parent_pte);
  1242. }
  1243. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1244. u64 *parent_pte, int direct)
  1245. {
  1246. struct kvm_mmu_page *sp;
  1247. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1248. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1249. if (!direct)
  1250. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1251. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1252. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1253. sp->parent_ptes = 0;
  1254. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1255. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1256. return sp;
  1257. }
  1258. static void mark_unsync(u64 *spte);
  1259. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1260. {
  1261. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1262. }
  1263. static void mark_unsync(u64 *spte)
  1264. {
  1265. struct kvm_mmu_page *sp;
  1266. unsigned int index;
  1267. sp = page_header(__pa(spte));
  1268. index = spte - sp->spt;
  1269. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1270. return;
  1271. if (sp->unsync_children++)
  1272. return;
  1273. kvm_mmu_mark_parents_unsync(sp);
  1274. }
  1275. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1276. struct kvm_mmu_page *sp)
  1277. {
  1278. return 1;
  1279. }
  1280. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1281. {
  1282. }
  1283. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1284. struct kvm_mmu_page *sp, u64 *spte,
  1285. const void *pte)
  1286. {
  1287. WARN_ON(1);
  1288. }
  1289. #define KVM_PAGE_ARRAY_NR 16
  1290. struct kvm_mmu_pages {
  1291. struct mmu_page_and_offset {
  1292. struct kvm_mmu_page *sp;
  1293. unsigned int idx;
  1294. } page[KVM_PAGE_ARRAY_NR];
  1295. unsigned int nr;
  1296. };
  1297. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1298. int idx)
  1299. {
  1300. int i;
  1301. if (sp->unsync)
  1302. for (i=0; i < pvec->nr; i++)
  1303. if (pvec->page[i].sp == sp)
  1304. return 0;
  1305. pvec->page[pvec->nr].sp = sp;
  1306. pvec->page[pvec->nr].idx = idx;
  1307. pvec->nr++;
  1308. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1309. }
  1310. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1311. struct kvm_mmu_pages *pvec)
  1312. {
  1313. int i, ret, nr_unsync_leaf = 0;
  1314. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1315. struct kvm_mmu_page *child;
  1316. u64 ent = sp->spt[i];
  1317. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1318. goto clear_child_bitmap;
  1319. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1320. if (child->unsync_children) {
  1321. if (mmu_pages_add(pvec, child, i))
  1322. return -ENOSPC;
  1323. ret = __mmu_unsync_walk(child, pvec);
  1324. if (!ret)
  1325. goto clear_child_bitmap;
  1326. else if (ret > 0)
  1327. nr_unsync_leaf += ret;
  1328. else
  1329. return ret;
  1330. } else if (child->unsync) {
  1331. nr_unsync_leaf++;
  1332. if (mmu_pages_add(pvec, child, i))
  1333. return -ENOSPC;
  1334. } else
  1335. goto clear_child_bitmap;
  1336. continue;
  1337. clear_child_bitmap:
  1338. __clear_bit(i, sp->unsync_child_bitmap);
  1339. sp->unsync_children--;
  1340. WARN_ON((int)sp->unsync_children < 0);
  1341. }
  1342. return nr_unsync_leaf;
  1343. }
  1344. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1345. struct kvm_mmu_pages *pvec)
  1346. {
  1347. if (!sp->unsync_children)
  1348. return 0;
  1349. mmu_pages_add(pvec, sp, 0);
  1350. return __mmu_unsync_walk(sp, pvec);
  1351. }
  1352. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1353. {
  1354. WARN_ON(!sp->unsync);
  1355. trace_kvm_mmu_sync_page(sp);
  1356. sp->unsync = 0;
  1357. --kvm->stat.mmu_unsync;
  1358. }
  1359. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1360. struct list_head *invalid_list);
  1361. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1362. struct list_head *invalid_list);
  1363. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1364. hlist_for_each_entry(_sp, \
  1365. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1366. if ((_sp)->gfn != (_gfn)) {} else
  1367. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1368. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1369. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1370. /* @sp->gfn should be write-protected at the call site */
  1371. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1372. struct list_head *invalid_list, bool clear_unsync)
  1373. {
  1374. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1375. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1376. return 1;
  1377. }
  1378. if (clear_unsync)
  1379. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1380. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1381. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1382. return 1;
  1383. }
  1384. kvm_mmu_flush_tlb(vcpu);
  1385. return 0;
  1386. }
  1387. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1388. struct kvm_mmu_page *sp)
  1389. {
  1390. LIST_HEAD(invalid_list);
  1391. int ret;
  1392. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1393. if (ret)
  1394. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1395. return ret;
  1396. }
  1397. #ifdef CONFIG_KVM_MMU_AUDIT
  1398. #include "mmu_audit.c"
  1399. #else
  1400. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1401. static void mmu_audit_disable(void) { }
  1402. #endif
  1403. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1404. struct list_head *invalid_list)
  1405. {
  1406. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1407. }
  1408. /* @gfn should be write-protected at the call site */
  1409. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1410. {
  1411. struct kvm_mmu_page *s;
  1412. LIST_HEAD(invalid_list);
  1413. bool flush = false;
  1414. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1415. if (!s->unsync)
  1416. continue;
  1417. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1418. kvm_unlink_unsync_page(vcpu->kvm, s);
  1419. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1420. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1421. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1422. continue;
  1423. }
  1424. flush = true;
  1425. }
  1426. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1427. if (flush)
  1428. kvm_mmu_flush_tlb(vcpu);
  1429. }
  1430. struct mmu_page_path {
  1431. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1432. unsigned int idx[PT64_ROOT_LEVEL-1];
  1433. };
  1434. #define for_each_sp(pvec, sp, parents, i) \
  1435. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1436. sp = pvec.page[i].sp; \
  1437. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1438. i = mmu_pages_next(&pvec, &parents, i))
  1439. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1440. struct mmu_page_path *parents,
  1441. int i)
  1442. {
  1443. int n;
  1444. for (n = i+1; n < pvec->nr; n++) {
  1445. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1446. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1447. parents->idx[0] = pvec->page[n].idx;
  1448. return n;
  1449. }
  1450. parents->parent[sp->role.level-2] = sp;
  1451. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1452. }
  1453. return n;
  1454. }
  1455. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1456. {
  1457. struct kvm_mmu_page *sp;
  1458. unsigned int level = 0;
  1459. do {
  1460. unsigned int idx = parents->idx[level];
  1461. sp = parents->parent[level];
  1462. if (!sp)
  1463. return;
  1464. --sp->unsync_children;
  1465. WARN_ON((int)sp->unsync_children < 0);
  1466. __clear_bit(idx, sp->unsync_child_bitmap);
  1467. level++;
  1468. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1469. }
  1470. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1471. struct mmu_page_path *parents,
  1472. struct kvm_mmu_pages *pvec)
  1473. {
  1474. parents->parent[parent->role.level-1] = NULL;
  1475. pvec->nr = 0;
  1476. }
  1477. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1478. struct kvm_mmu_page *parent)
  1479. {
  1480. int i;
  1481. struct kvm_mmu_page *sp;
  1482. struct mmu_page_path parents;
  1483. struct kvm_mmu_pages pages;
  1484. LIST_HEAD(invalid_list);
  1485. kvm_mmu_pages_init(parent, &parents, &pages);
  1486. while (mmu_unsync_walk(parent, &pages)) {
  1487. bool protected = false;
  1488. for_each_sp(pages, sp, parents, i)
  1489. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1490. if (protected)
  1491. kvm_flush_remote_tlbs(vcpu->kvm);
  1492. for_each_sp(pages, sp, parents, i) {
  1493. kvm_sync_page(vcpu, sp, &invalid_list);
  1494. mmu_pages_clear_parents(&parents);
  1495. }
  1496. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1497. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1498. kvm_mmu_pages_init(parent, &parents, &pages);
  1499. }
  1500. }
  1501. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1502. {
  1503. int i;
  1504. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1505. sp->spt[i] = 0ull;
  1506. }
  1507. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1508. {
  1509. sp->write_flooding_count = 0;
  1510. }
  1511. static void clear_sp_write_flooding_count(u64 *spte)
  1512. {
  1513. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1514. __clear_sp_write_flooding_count(sp);
  1515. }
  1516. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1517. gfn_t gfn,
  1518. gva_t gaddr,
  1519. unsigned level,
  1520. int direct,
  1521. unsigned access,
  1522. u64 *parent_pte)
  1523. {
  1524. union kvm_mmu_page_role role;
  1525. unsigned quadrant;
  1526. struct kvm_mmu_page *sp;
  1527. bool need_sync = false;
  1528. role = vcpu->arch.mmu.base_role;
  1529. role.level = level;
  1530. role.direct = direct;
  1531. if (role.direct)
  1532. role.cr4_pae = 0;
  1533. role.access = access;
  1534. if (!vcpu->arch.mmu.direct_map
  1535. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1536. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1537. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1538. role.quadrant = quadrant;
  1539. }
  1540. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1541. if (!need_sync && sp->unsync)
  1542. need_sync = true;
  1543. if (sp->role.word != role.word)
  1544. continue;
  1545. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1546. break;
  1547. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1548. if (sp->unsync_children) {
  1549. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1550. kvm_mmu_mark_parents_unsync(sp);
  1551. } else if (sp->unsync)
  1552. kvm_mmu_mark_parents_unsync(sp);
  1553. __clear_sp_write_flooding_count(sp);
  1554. trace_kvm_mmu_get_page(sp, false);
  1555. return sp;
  1556. }
  1557. ++vcpu->kvm->stat.mmu_cache_miss;
  1558. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1559. if (!sp)
  1560. return sp;
  1561. sp->gfn = gfn;
  1562. sp->role = role;
  1563. hlist_add_head(&sp->hash_link,
  1564. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1565. if (!direct) {
  1566. if (rmap_write_protect(vcpu->kvm, gfn))
  1567. kvm_flush_remote_tlbs(vcpu->kvm);
  1568. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1569. kvm_sync_pages(vcpu, gfn);
  1570. account_shadowed(vcpu->kvm, gfn);
  1571. }
  1572. init_shadow_page_table(sp);
  1573. trace_kvm_mmu_get_page(sp, true);
  1574. return sp;
  1575. }
  1576. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1577. struct kvm_vcpu *vcpu, u64 addr)
  1578. {
  1579. iterator->addr = addr;
  1580. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1581. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1582. if (iterator->level == PT64_ROOT_LEVEL &&
  1583. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1584. !vcpu->arch.mmu.direct_map)
  1585. --iterator->level;
  1586. if (iterator->level == PT32E_ROOT_LEVEL) {
  1587. iterator->shadow_addr
  1588. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1589. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1590. --iterator->level;
  1591. if (!iterator->shadow_addr)
  1592. iterator->level = 0;
  1593. }
  1594. }
  1595. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1596. {
  1597. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1598. return false;
  1599. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1600. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1601. return true;
  1602. }
  1603. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1604. u64 spte)
  1605. {
  1606. if (is_last_spte(spte, iterator->level)) {
  1607. iterator->level = 0;
  1608. return;
  1609. }
  1610. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1611. --iterator->level;
  1612. }
  1613. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1614. {
  1615. return __shadow_walk_next(iterator, *iterator->sptep);
  1616. }
  1617. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1618. {
  1619. u64 spte;
  1620. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1621. shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
  1622. mmu_spte_set(sptep, spte);
  1623. }
  1624. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1625. unsigned direct_access)
  1626. {
  1627. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1628. struct kvm_mmu_page *child;
  1629. /*
  1630. * For the direct sp, if the guest pte's dirty bit
  1631. * changed form clean to dirty, it will corrupt the
  1632. * sp's access: allow writable in the read-only sp,
  1633. * so we should update the spte at this point to get
  1634. * a new sp with the correct access.
  1635. */
  1636. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1637. if (child->role.access == direct_access)
  1638. return;
  1639. drop_parent_pte(child, sptep);
  1640. kvm_flush_remote_tlbs(vcpu->kvm);
  1641. }
  1642. }
  1643. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1644. u64 *spte)
  1645. {
  1646. u64 pte;
  1647. struct kvm_mmu_page *child;
  1648. pte = *spte;
  1649. if (is_shadow_present_pte(pte)) {
  1650. if (is_last_spte(pte, sp->role.level)) {
  1651. drop_spte(kvm, spte);
  1652. if (is_large_pte(pte))
  1653. --kvm->stat.lpages;
  1654. } else {
  1655. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1656. drop_parent_pte(child, spte);
  1657. }
  1658. return true;
  1659. }
  1660. if (is_mmio_spte(pte))
  1661. mmu_spte_clear_no_track(spte);
  1662. return false;
  1663. }
  1664. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1665. struct kvm_mmu_page *sp)
  1666. {
  1667. unsigned i;
  1668. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1669. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1670. }
  1671. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1672. {
  1673. mmu_page_remove_parent_pte(sp, parent_pte);
  1674. }
  1675. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1676. {
  1677. u64 *sptep;
  1678. struct rmap_iterator iter;
  1679. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1680. drop_parent_pte(sp, sptep);
  1681. }
  1682. static int mmu_zap_unsync_children(struct kvm *kvm,
  1683. struct kvm_mmu_page *parent,
  1684. struct list_head *invalid_list)
  1685. {
  1686. int i, zapped = 0;
  1687. struct mmu_page_path parents;
  1688. struct kvm_mmu_pages pages;
  1689. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1690. return 0;
  1691. kvm_mmu_pages_init(parent, &parents, &pages);
  1692. while (mmu_unsync_walk(parent, &pages)) {
  1693. struct kvm_mmu_page *sp;
  1694. for_each_sp(pages, sp, parents, i) {
  1695. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1696. mmu_pages_clear_parents(&parents);
  1697. zapped++;
  1698. }
  1699. kvm_mmu_pages_init(parent, &parents, &pages);
  1700. }
  1701. return zapped;
  1702. }
  1703. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1704. struct list_head *invalid_list)
  1705. {
  1706. int ret;
  1707. trace_kvm_mmu_prepare_zap_page(sp);
  1708. ++kvm->stat.mmu_shadow_zapped;
  1709. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1710. kvm_mmu_page_unlink_children(kvm, sp);
  1711. kvm_mmu_unlink_parents(kvm, sp);
  1712. if (!sp->role.invalid && !sp->role.direct)
  1713. unaccount_shadowed(kvm, sp->gfn);
  1714. if (sp->unsync)
  1715. kvm_unlink_unsync_page(kvm, sp);
  1716. if (!sp->root_count) {
  1717. /* Count self */
  1718. ret++;
  1719. list_move(&sp->link, invalid_list);
  1720. kvm_mod_used_mmu_pages(kvm, -1);
  1721. } else {
  1722. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1723. kvm_reload_remote_mmus(kvm);
  1724. }
  1725. sp->role.invalid = 1;
  1726. return ret;
  1727. }
  1728. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1729. struct list_head *invalid_list)
  1730. {
  1731. struct kvm_mmu_page *sp, *nsp;
  1732. if (list_empty(invalid_list))
  1733. return;
  1734. /*
  1735. * wmb: make sure everyone sees our modifications to the page tables
  1736. * rmb: make sure we see changes to vcpu->mode
  1737. */
  1738. smp_mb();
  1739. /*
  1740. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1741. * page table walks.
  1742. */
  1743. kvm_flush_remote_tlbs(kvm);
  1744. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1745. WARN_ON(!sp->role.invalid || sp->root_count);
  1746. kvm_mmu_free_page(sp);
  1747. }
  1748. }
  1749. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1750. struct list_head *invalid_list)
  1751. {
  1752. struct kvm_mmu_page *sp;
  1753. if (list_empty(&kvm->arch.active_mmu_pages))
  1754. return false;
  1755. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1756. struct kvm_mmu_page, link);
  1757. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1758. return true;
  1759. }
  1760. /*
  1761. * Changing the number of mmu pages allocated to the vm
  1762. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1763. */
  1764. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1765. {
  1766. LIST_HEAD(invalid_list);
  1767. spin_lock(&kvm->mmu_lock);
  1768. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1769. /* Need to free some mmu pages to achieve the goal. */
  1770. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1771. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1772. break;
  1773. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1774. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1775. }
  1776. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1777. spin_unlock(&kvm->mmu_lock);
  1778. }
  1779. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1780. {
  1781. struct kvm_mmu_page *sp;
  1782. LIST_HEAD(invalid_list);
  1783. int r;
  1784. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1785. r = 0;
  1786. spin_lock(&kvm->mmu_lock);
  1787. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1788. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1789. sp->role.word);
  1790. r = 1;
  1791. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1792. }
  1793. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1794. spin_unlock(&kvm->mmu_lock);
  1795. return r;
  1796. }
  1797. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1798. /*
  1799. * The function is based on mtrr_type_lookup() in
  1800. * arch/x86/kernel/cpu/mtrr/generic.c
  1801. */
  1802. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1803. u64 start, u64 end)
  1804. {
  1805. int i;
  1806. u64 base, mask;
  1807. u8 prev_match, curr_match;
  1808. int num_var_ranges = KVM_NR_VAR_MTRR;
  1809. if (!mtrr_state->enabled)
  1810. return 0xFF;
  1811. /* Make end inclusive end, instead of exclusive */
  1812. end--;
  1813. /* Look in fixed ranges. Just return the type as per start */
  1814. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1815. int idx;
  1816. if (start < 0x80000) {
  1817. idx = 0;
  1818. idx += (start >> 16);
  1819. return mtrr_state->fixed_ranges[idx];
  1820. } else if (start < 0xC0000) {
  1821. idx = 1 * 8;
  1822. idx += ((start - 0x80000) >> 14);
  1823. return mtrr_state->fixed_ranges[idx];
  1824. } else if (start < 0x1000000) {
  1825. idx = 3 * 8;
  1826. idx += ((start - 0xC0000) >> 12);
  1827. return mtrr_state->fixed_ranges[idx];
  1828. }
  1829. }
  1830. /*
  1831. * Look in variable ranges
  1832. * Look of multiple ranges matching this address and pick type
  1833. * as per MTRR precedence
  1834. */
  1835. if (!(mtrr_state->enabled & 2))
  1836. return mtrr_state->def_type;
  1837. prev_match = 0xFF;
  1838. for (i = 0; i < num_var_ranges; ++i) {
  1839. unsigned short start_state, end_state;
  1840. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1841. continue;
  1842. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1843. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1844. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1845. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1846. start_state = ((start & mask) == (base & mask));
  1847. end_state = ((end & mask) == (base & mask));
  1848. if (start_state != end_state)
  1849. return 0xFE;
  1850. if ((start & mask) != (base & mask))
  1851. continue;
  1852. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1853. if (prev_match == 0xFF) {
  1854. prev_match = curr_match;
  1855. continue;
  1856. }
  1857. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1858. curr_match == MTRR_TYPE_UNCACHABLE)
  1859. return MTRR_TYPE_UNCACHABLE;
  1860. if ((prev_match == MTRR_TYPE_WRBACK &&
  1861. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1862. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1863. curr_match == MTRR_TYPE_WRBACK)) {
  1864. prev_match = MTRR_TYPE_WRTHROUGH;
  1865. curr_match = MTRR_TYPE_WRTHROUGH;
  1866. }
  1867. if (prev_match != curr_match)
  1868. return MTRR_TYPE_UNCACHABLE;
  1869. }
  1870. if (prev_match != 0xFF)
  1871. return prev_match;
  1872. return mtrr_state->def_type;
  1873. }
  1874. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1875. {
  1876. u8 mtrr;
  1877. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1878. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1879. if (mtrr == 0xfe || mtrr == 0xff)
  1880. mtrr = MTRR_TYPE_WRBACK;
  1881. return mtrr;
  1882. }
  1883. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1884. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1885. {
  1886. trace_kvm_mmu_unsync_page(sp);
  1887. ++vcpu->kvm->stat.mmu_unsync;
  1888. sp->unsync = 1;
  1889. kvm_mmu_mark_parents_unsync(sp);
  1890. }
  1891. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1892. {
  1893. struct kvm_mmu_page *s;
  1894. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1895. if (s->unsync)
  1896. continue;
  1897. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1898. __kvm_unsync_page(vcpu, s);
  1899. }
  1900. }
  1901. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1902. bool can_unsync)
  1903. {
  1904. struct kvm_mmu_page *s;
  1905. bool need_unsync = false;
  1906. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1907. if (!can_unsync)
  1908. return 1;
  1909. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1910. return 1;
  1911. if (!s->unsync)
  1912. need_unsync = true;
  1913. }
  1914. if (need_unsync)
  1915. kvm_unsync_pages(vcpu, gfn);
  1916. return 0;
  1917. }
  1918. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1919. unsigned pte_access, int level,
  1920. gfn_t gfn, pfn_t pfn, bool speculative,
  1921. bool can_unsync, bool host_writable)
  1922. {
  1923. u64 spte;
  1924. int ret = 0;
  1925. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1926. return 0;
  1927. spte = PT_PRESENT_MASK;
  1928. if (!speculative)
  1929. spte |= shadow_accessed_mask;
  1930. if (pte_access & ACC_EXEC_MASK)
  1931. spte |= shadow_x_mask;
  1932. else
  1933. spte |= shadow_nx_mask;
  1934. if (pte_access & ACC_USER_MASK)
  1935. spte |= shadow_user_mask;
  1936. if (level > PT_PAGE_TABLE_LEVEL)
  1937. spte |= PT_PAGE_SIZE_MASK;
  1938. if (tdp_enabled)
  1939. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1940. kvm_is_mmio_pfn(pfn));
  1941. if (host_writable)
  1942. spte |= SPTE_HOST_WRITEABLE;
  1943. else
  1944. pte_access &= ~ACC_WRITE_MASK;
  1945. spte |= (u64)pfn << PAGE_SHIFT;
  1946. if (pte_access & ACC_WRITE_MASK) {
  1947. /*
  1948. * Other vcpu creates new sp in the window between
  1949. * mapping_level() and acquiring mmu-lock. We can
  1950. * allow guest to retry the access, the mapping can
  1951. * be fixed if guest refault.
  1952. */
  1953. if (level > PT_PAGE_TABLE_LEVEL &&
  1954. has_wrprotected_page(vcpu->kvm, gfn, level))
  1955. goto done;
  1956. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1957. /*
  1958. * Optimization: for pte sync, if spte was writable the hash
  1959. * lookup is unnecessary (and expensive). Write protection
  1960. * is responsibility of mmu_get_page / kvm_sync_page.
  1961. * Same reasoning can be applied to dirty page accounting.
  1962. */
  1963. if (!can_unsync && is_writable_pte(*sptep))
  1964. goto set_pte;
  1965. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1966. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1967. __func__, gfn);
  1968. ret = 1;
  1969. pte_access &= ~ACC_WRITE_MASK;
  1970. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  1971. }
  1972. }
  1973. if (pte_access & ACC_WRITE_MASK)
  1974. mark_page_dirty(vcpu->kvm, gfn);
  1975. set_pte:
  1976. if (mmu_spte_update(sptep, spte))
  1977. kvm_flush_remote_tlbs(vcpu->kvm);
  1978. done:
  1979. return ret;
  1980. }
  1981. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1982. unsigned pte_access, int write_fault, int *emulate,
  1983. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  1984. bool host_writable)
  1985. {
  1986. int was_rmapped = 0;
  1987. int rmap_count;
  1988. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  1989. *sptep, write_fault, gfn);
  1990. if (is_rmap_spte(*sptep)) {
  1991. /*
  1992. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1993. * the parent of the now unreachable PTE.
  1994. */
  1995. if (level > PT_PAGE_TABLE_LEVEL &&
  1996. !is_large_pte(*sptep)) {
  1997. struct kvm_mmu_page *child;
  1998. u64 pte = *sptep;
  1999. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2000. drop_parent_pte(child, sptep);
  2001. kvm_flush_remote_tlbs(vcpu->kvm);
  2002. } else if (pfn != spte_to_pfn(*sptep)) {
  2003. pgprintk("hfn old %llx new %llx\n",
  2004. spte_to_pfn(*sptep), pfn);
  2005. drop_spte(vcpu->kvm, sptep);
  2006. kvm_flush_remote_tlbs(vcpu->kvm);
  2007. } else
  2008. was_rmapped = 1;
  2009. }
  2010. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2011. true, host_writable)) {
  2012. if (write_fault)
  2013. *emulate = 1;
  2014. kvm_mmu_flush_tlb(vcpu);
  2015. }
  2016. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2017. *emulate = 1;
  2018. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2019. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2020. is_large_pte(*sptep)? "2MB" : "4kB",
  2021. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2022. *sptep, sptep);
  2023. if (!was_rmapped && is_large_pte(*sptep))
  2024. ++vcpu->kvm->stat.lpages;
  2025. if (is_shadow_present_pte(*sptep)) {
  2026. if (!was_rmapped) {
  2027. rmap_count = rmap_add(vcpu, sptep, gfn);
  2028. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2029. rmap_recycle(vcpu, sptep, gfn);
  2030. }
  2031. }
  2032. kvm_release_pfn_clean(pfn);
  2033. }
  2034. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2035. {
  2036. mmu_free_roots(vcpu);
  2037. }
  2038. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2039. {
  2040. int bit7;
  2041. bit7 = (gpte >> 7) & 1;
  2042. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2043. }
  2044. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2045. bool no_dirty_log)
  2046. {
  2047. struct kvm_memory_slot *slot;
  2048. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2049. if (!slot)
  2050. return KVM_PFN_ERR_FAULT;
  2051. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2052. }
  2053. static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
  2054. struct kvm_mmu_page *sp, u64 *spte,
  2055. u64 gpte)
  2056. {
  2057. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  2058. goto no_present;
  2059. if (!is_present_gpte(gpte))
  2060. goto no_present;
  2061. if (!(gpte & PT_ACCESSED_MASK))
  2062. goto no_present;
  2063. return false;
  2064. no_present:
  2065. drop_spte(vcpu->kvm, spte);
  2066. return true;
  2067. }
  2068. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2069. struct kvm_mmu_page *sp,
  2070. u64 *start, u64 *end)
  2071. {
  2072. struct page *pages[PTE_PREFETCH_NUM];
  2073. unsigned access = sp->role.access;
  2074. int i, ret;
  2075. gfn_t gfn;
  2076. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2077. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2078. return -1;
  2079. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2080. if (ret <= 0)
  2081. return -1;
  2082. for (i = 0; i < ret; i++, gfn++, start++)
  2083. mmu_set_spte(vcpu, start, access, 0, NULL,
  2084. sp->role.level, gfn, page_to_pfn(pages[i]),
  2085. true, true);
  2086. return 0;
  2087. }
  2088. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2089. struct kvm_mmu_page *sp, u64 *sptep)
  2090. {
  2091. u64 *spte, *start = NULL;
  2092. int i;
  2093. WARN_ON(!sp->role.direct);
  2094. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2095. spte = sp->spt + i;
  2096. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2097. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2098. if (!start)
  2099. continue;
  2100. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2101. break;
  2102. start = NULL;
  2103. } else if (!start)
  2104. start = spte;
  2105. }
  2106. }
  2107. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2108. {
  2109. struct kvm_mmu_page *sp;
  2110. /*
  2111. * Since it's no accessed bit on EPT, it's no way to
  2112. * distinguish between actually accessed translations
  2113. * and prefetched, so disable pte prefetch if EPT is
  2114. * enabled.
  2115. */
  2116. if (!shadow_accessed_mask)
  2117. return;
  2118. sp = page_header(__pa(sptep));
  2119. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2120. return;
  2121. __direct_pte_prefetch(vcpu, sp, sptep);
  2122. }
  2123. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2124. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2125. bool prefault)
  2126. {
  2127. struct kvm_shadow_walk_iterator iterator;
  2128. struct kvm_mmu_page *sp;
  2129. int emulate = 0;
  2130. gfn_t pseudo_gfn;
  2131. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2132. if (iterator.level == level) {
  2133. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2134. write, &emulate, level, gfn, pfn,
  2135. prefault, map_writable);
  2136. direct_pte_prefetch(vcpu, iterator.sptep);
  2137. ++vcpu->stat.pf_fixed;
  2138. break;
  2139. }
  2140. if (!is_shadow_present_pte(*iterator.sptep)) {
  2141. u64 base_addr = iterator.addr;
  2142. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2143. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2144. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2145. iterator.level - 1,
  2146. 1, ACC_ALL, iterator.sptep);
  2147. link_shadow_page(iterator.sptep, sp);
  2148. }
  2149. }
  2150. return emulate;
  2151. }
  2152. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2153. {
  2154. siginfo_t info;
  2155. info.si_signo = SIGBUS;
  2156. info.si_errno = 0;
  2157. info.si_code = BUS_MCEERR_AR;
  2158. info.si_addr = (void __user *)address;
  2159. info.si_addr_lsb = PAGE_SHIFT;
  2160. send_sig_info(SIGBUS, &info, tsk);
  2161. }
  2162. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2163. {
  2164. /*
  2165. * Do not cache the mmio info caused by writing the readonly gfn
  2166. * into the spte otherwise read access on readonly gfn also can
  2167. * caused mmio page fault and treat it as mmio access.
  2168. * Return 1 to tell kvm to emulate it.
  2169. */
  2170. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2171. return 1;
  2172. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2173. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2174. return 0;
  2175. }
  2176. return -EFAULT;
  2177. }
  2178. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2179. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2180. {
  2181. pfn_t pfn = *pfnp;
  2182. gfn_t gfn = *gfnp;
  2183. int level = *levelp;
  2184. /*
  2185. * Check if it's a transparent hugepage. If this would be an
  2186. * hugetlbfs page, level wouldn't be set to
  2187. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2188. * here.
  2189. */
  2190. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2191. level == PT_PAGE_TABLE_LEVEL &&
  2192. PageTransCompound(pfn_to_page(pfn)) &&
  2193. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2194. unsigned long mask;
  2195. /*
  2196. * mmu_notifier_retry was successful and we hold the
  2197. * mmu_lock here, so the pmd can't become splitting
  2198. * from under us, and in turn
  2199. * __split_huge_page_refcount() can't run from under
  2200. * us and we can safely transfer the refcount from
  2201. * PG_tail to PG_head as we switch the pfn to tail to
  2202. * head.
  2203. */
  2204. *levelp = level = PT_DIRECTORY_LEVEL;
  2205. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2206. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2207. if (pfn & mask) {
  2208. gfn &= ~mask;
  2209. *gfnp = gfn;
  2210. kvm_release_pfn_clean(pfn);
  2211. pfn &= ~mask;
  2212. kvm_get_pfn(pfn);
  2213. *pfnp = pfn;
  2214. }
  2215. }
  2216. }
  2217. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2218. pfn_t pfn, unsigned access, int *ret_val)
  2219. {
  2220. bool ret = true;
  2221. /* The pfn is invalid, report the error! */
  2222. if (unlikely(is_error_pfn(pfn))) {
  2223. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2224. goto exit;
  2225. }
  2226. if (unlikely(is_noslot_pfn(pfn)))
  2227. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2228. ret = false;
  2229. exit:
  2230. return ret;
  2231. }
  2232. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2233. {
  2234. /*
  2235. * #PF can be fast only if the shadow page table is present and it
  2236. * is caused by write-protect, that means we just need change the
  2237. * W bit of the spte which can be done out of mmu-lock.
  2238. */
  2239. if (!(error_code & PFERR_PRESENT_MASK) ||
  2240. !(error_code & PFERR_WRITE_MASK))
  2241. return false;
  2242. return true;
  2243. }
  2244. static bool
  2245. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2246. {
  2247. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2248. gfn_t gfn;
  2249. WARN_ON(!sp->role.direct);
  2250. /*
  2251. * The gfn of direct spte is stable since it is calculated
  2252. * by sp->gfn.
  2253. */
  2254. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2255. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2256. mark_page_dirty(vcpu->kvm, gfn);
  2257. return true;
  2258. }
  2259. /*
  2260. * Return value:
  2261. * - true: let the vcpu to access on the same address again.
  2262. * - false: let the real page fault path to fix it.
  2263. */
  2264. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2265. u32 error_code)
  2266. {
  2267. struct kvm_shadow_walk_iterator iterator;
  2268. bool ret = false;
  2269. u64 spte = 0ull;
  2270. if (!page_fault_can_be_fast(vcpu, error_code))
  2271. return false;
  2272. walk_shadow_page_lockless_begin(vcpu);
  2273. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2274. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2275. break;
  2276. /*
  2277. * If the mapping has been changed, let the vcpu fault on the
  2278. * same address again.
  2279. */
  2280. if (!is_rmap_spte(spte)) {
  2281. ret = true;
  2282. goto exit;
  2283. }
  2284. if (!is_last_spte(spte, level))
  2285. goto exit;
  2286. /*
  2287. * Check if it is a spurious fault caused by TLB lazily flushed.
  2288. *
  2289. * Need not check the access of upper level table entries since
  2290. * they are always ACC_ALL.
  2291. */
  2292. if (is_writable_pte(spte)) {
  2293. ret = true;
  2294. goto exit;
  2295. }
  2296. /*
  2297. * Currently, to simplify the code, only the spte write-protected
  2298. * by dirty-log can be fast fixed.
  2299. */
  2300. if (!spte_is_locklessly_modifiable(spte))
  2301. goto exit;
  2302. /*
  2303. * Currently, fast page fault only works for direct mapping since
  2304. * the gfn is not stable for indirect shadow page.
  2305. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2306. */
  2307. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2308. exit:
  2309. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2310. spte, ret);
  2311. walk_shadow_page_lockless_end(vcpu);
  2312. return ret;
  2313. }
  2314. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2315. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2316. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2317. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2318. gfn_t gfn, bool prefault)
  2319. {
  2320. int r;
  2321. int level;
  2322. int force_pt_level;
  2323. pfn_t pfn;
  2324. unsigned long mmu_seq;
  2325. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2326. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2327. if (likely(!force_pt_level)) {
  2328. level = mapping_level(vcpu, gfn);
  2329. /*
  2330. * This path builds a PAE pagetable - so we can map
  2331. * 2mb pages at maximum. Therefore check if the level
  2332. * is larger than that.
  2333. */
  2334. if (level > PT_DIRECTORY_LEVEL)
  2335. level = PT_DIRECTORY_LEVEL;
  2336. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2337. } else
  2338. level = PT_PAGE_TABLE_LEVEL;
  2339. if (fast_page_fault(vcpu, v, level, error_code))
  2340. return 0;
  2341. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2342. smp_rmb();
  2343. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2344. return 0;
  2345. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2346. return r;
  2347. spin_lock(&vcpu->kvm->mmu_lock);
  2348. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2349. goto out_unlock;
  2350. make_mmu_pages_available(vcpu);
  2351. if (likely(!force_pt_level))
  2352. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2353. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2354. prefault);
  2355. spin_unlock(&vcpu->kvm->mmu_lock);
  2356. return r;
  2357. out_unlock:
  2358. spin_unlock(&vcpu->kvm->mmu_lock);
  2359. kvm_release_pfn_clean(pfn);
  2360. return 0;
  2361. }
  2362. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2363. {
  2364. int i;
  2365. struct kvm_mmu_page *sp;
  2366. LIST_HEAD(invalid_list);
  2367. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2368. return;
  2369. spin_lock(&vcpu->kvm->mmu_lock);
  2370. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2371. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2372. vcpu->arch.mmu.direct_map)) {
  2373. hpa_t root = vcpu->arch.mmu.root_hpa;
  2374. sp = page_header(root);
  2375. --sp->root_count;
  2376. if (!sp->root_count && sp->role.invalid) {
  2377. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2378. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2379. }
  2380. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2381. spin_unlock(&vcpu->kvm->mmu_lock);
  2382. return;
  2383. }
  2384. for (i = 0; i < 4; ++i) {
  2385. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2386. if (root) {
  2387. root &= PT64_BASE_ADDR_MASK;
  2388. sp = page_header(root);
  2389. --sp->root_count;
  2390. if (!sp->root_count && sp->role.invalid)
  2391. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2392. &invalid_list);
  2393. }
  2394. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2395. }
  2396. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2397. spin_unlock(&vcpu->kvm->mmu_lock);
  2398. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2399. }
  2400. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2401. {
  2402. int ret = 0;
  2403. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2404. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2405. ret = 1;
  2406. }
  2407. return ret;
  2408. }
  2409. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2410. {
  2411. struct kvm_mmu_page *sp;
  2412. unsigned i;
  2413. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2414. spin_lock(&vcpu->kvm->mmu_lock);
  2415. make_mmu_pages_available(vcpu);
  2416. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2417. 1, ACC_ALL, NULL);
  2418. ++sp->root_count;
  2419. spin_unlock(&vcpu->kvm->mmu_lock);
  2420. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2421. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2422. for (i = 0; i < 4; ++i) {
  2423. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2424. ASSERT(!VALID_PAGE(root));
  2425. spin_lock(&vcpu->kvm->mmu_lock);
  2426. make_mmu_pages_available(vcpu);
  2427. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2428. i << 30,
  2429. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2430. NULL);
  2431. root = __pa(sp->spt);
  2432. ++sp->root_count;
  2433. spin_unlock(&vcpu->kvm->mmu_lock);
  2434. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2435. }
  2436. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2437. } else
  2438. BUG();
  2439. return 0;
  2440. }
  2441. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2442. {
  2443. struct kvm_mmu_page *sp;
  2444. u64 pdptr, pm_mask;
  2445. gfn_t root_gfn;
  2446. int i;
  2447. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2448. if (mmu_check_root(vcpu, root_gfn))
  2449. return 1;
  2450. /*
  2451. * Do we shadow a long mode page table? If so we need to
  2452. * write-protect the guests page table root.
  2453. */
  2454. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2455. hpa_t root = vcpu->arch.mmu.root_hpa;
  2456. ASSERT(!VALID_PAGE(root));
  2457. spin_lock(&vcpu->kvm->mmu_lock);
  2458. make_mmu_pages_available(vcpu);
  2459. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2460. 0, ACC_ALL, NULL);
  2461. root = __pa(sp->spt);
  2462. ++sp->root_count;
  2463. spin_unlock(&vcpu->kvm->mmu_lock);
  2464. vcpu->arch.mmu.root_hpa = root;
  2465. return 0;
  2466. }
  2467. /*
  2468. * We shadow a 32 bit page table. This may be a legacy 2-level
  2469. * or a PAE 3-level page table. In either case we need to be aware that
  2470. * the shadow page table may be a PAE or a long mode page table.
  2471. */
  2472. pm_mask = PT_PRESENT_MASK;
  2473. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2474. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2475. for (i = 0; i < 4; ++i) {
  2476. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2477. ASSERT(!VALID_PAGE(root));
  2478. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2479. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2480. if (!is_present_gpte(pdptr)) {
  2481. vcpu->arch.mmu.pae_root[i] = 0;
  2482. continue;
  2483. }
  2484. root_gfn = pdptr >> PAGE_SHIFT;
  2485. if (mmu_check_root(vcpu, root_gfn))
  2486. return 1;
  2487. }
  2488. spin_lock(&vcpu->kvm->mmu_lock);
  2489. make_mmu_pages_available(vcpu);
  2490. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2491. PT32_ROOT_LEVEL, 0,
  2492. ACC_ALL, NULL);
  2493. root = __pa(sp->spt);
  2494. ++sp->root_count;
  2495. spin_unlock(&vcpu->kvm->mmu_lock);
  2496. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2497. }
  2498. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2499. /*
  2500. * If we shadow a 32 bit page table with a long mode page
  2501. * table we enter this path.
  2502. */
  2503. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2504. if (vcpu->arch.mmu.lm_root == NULL) {
  2505. /*
  2506. * The additional page necessary for this is only
  2507. * allocated on demand.
  2508. */
  2509. u64 *lm_root;
  2510. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2511. if (lm_root == NULL)
  2512. return 1;
  2513. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2514. vcpu->arch.mmu.lm_root = lm_root;
  2515. }
  2516. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2517. }
  2518. return 0;
  2519. }
  2520. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2521. {
  2522. if (vcpu->arch.mmu.direct_map)
  2523. return mmu_alloc_direct_roots(vcpu);
  2524. else
  2525. return mmu_alloc_shadow_roots(vcpu);
  2526. }
  2527. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2528. {
  2529. int i;
  2530. struct kvm_mmu_page *sp;
  2531. if (vcpu->arch.mmu.direct_map)
  2532. return;
  2533. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2534. return;
  2535. vcpu_clear_mmio_info(vcpu, ~0ul);
  2536. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2537. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2538. hpa_t root = vcpu->arch.mmu.root_hpa;
  2539. sp = page_header(root);
  2540. mmu_sync_children(vcpu, sp);
  2541. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2542. return;
  2543. }
  2544. for (i = 0; i < 4; ++i) {
  2545. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2546. if (root && VALID_PAGE(root)) {
  2547. root &= PT64_BASE_ADDR_MASK;
  2548. sp = page_header(root);
  2549. mmu_sync_children(vcpu, sp);
  2550. }
  2551. }
  2552. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2553. }
  2554. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2555. {
  2556. spin_lock(&vcpu->kvm->mmu_lock);
  2557. mmu_sync_roots(vcpu);
  2558. spin_unlock(&vcpu->kvm->mmu_lock);
  2559. }
  2560. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2561. u32 access, struct x86_exception *exception)
  2562. {
  2563. if (exception)
  2564. exception->error_code = 0;
  2565. return vaddr;
  2566. }
  2567. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2568. u32 access,
  2569. struct x86_exception *exception)
  2570. {
  2571. if (exception)
  2572. exception->error_code = 0;
  2573. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2574. }
  2575. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2576. {
  2577. if (direct)
  2578. return vcpu_match_mmio_gpa(vcpu, addr);
  2579. return vcpu_match_mmio_gva(vcpu, addr);
  2580. }
  2581. /*
  2582. * On direct hosts, the last spte is only allows two states
  2583. * for mmio page fault:
  2584. * - It is the mmio spte
  2585. * - It is zapped or it is being zapped.
  2586. *
  2587. * This function completely checks the spte when the last spte
  2588. * is not the mmio spte.
  2589. */
  2590. static bool check_direct_spte_mmio_pf(u64 spte)
  2591. {
  2592. return __check_direct_spte_mmio_pf(spte);
  2593. }
  2594. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2595. {
  2596. struct kvm_shadow_walk_iterator iterator;
  2597. u64 spte = 0ull;
  2598. walk_shadow_page_lockless_begin(vcpu);
  2599. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2600. if (!is_shadow_present_pte(spte))
  2601. break;
  2602. walk_shadow_page_lockless_end(vcpu);
  2603. return spte;
  2604. }
  2605. /*
  2606. * If it is a real mmio page fault, return 1 and emulat the instruction
  2607. * directly, return 0 to let CPU fault again on the address, -1 is
  2608. * returned if bug is detected.
  2609. */
  2610. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2611. {
  2612. u64 spte;
  2613. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2614. return 1;
  2615. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2616. if (is_mmio_spte(spte)) {
  2617. gfn_t gfn = get_mmio_spte_gfn(spte);
  2618. unsigned access = get_mmio_spte_access(spte);
  2619. if (direct)
  2620. addr = 0;
  2621. trace_handle_mmio_page_fault(addr, gfn, access);
  2622. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2623. return 1;
  2624. }
  2625. /*
  2626. * It's ok if the gva is remapped by other cpus on shadow guest,
  2627. * it's a BUG if the gfn is not a mmio page.
  2628. */
  2629. if (direct && !check_direct_spte_mmio_pf(spte))
  2630. return -1;
  2631. /*
  2632. * If the page table is zapped by other cpus, let CPU fault again on
  2633. * the address.
  2634. */
  2635. return 0;
  2636. }
  2637. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2638. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2639. u32 error_code, bool direct)
  2640. {
  2641. int ret;
  2642. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2643. WARN_ON(ret < 0);
  2644. return ret;
  2645. }
  2646. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2647. u32 error_code, bool prefault)
  2648. {
  2649. gfn_t gfn;
  2650. int r;
  2651. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2652. if (unlikely(error_code & PFERR_RSVD_MASK))
  2653. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2654. r = mmu_topup_memory_caches(vcpu);
  2655. if (r)
  2656. return r;
  2657. ASSERT(vcpu);
  2658. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2659. gfn = gva >> PAGE_SHIFT;
  2660. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2661. error_code, gfn, prefault);
  2662. }
  2663. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2664. {
  2665. struct kvm_arch_async_pf arch;
  2666. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2667. arch.gfn = gfn;
  2668. arch.direct_map = vcpu->arch.mmu.direct_map;
  2669. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2670. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2671. }
  2672. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2673. {
  2674. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2675. kvm_event_needs_reinjection(vcpu)))
  2676. return false;
  2677. return kvm_x86_ops->interrupt_allowed(vcpu);
  2678. }
  2679. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2680. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2681. {
  2682. bool async;
  2683. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2684. if (!async)
  2685. return false; /* *pfn has correct page already */
  2686. if (!prefault && can_do_async_pf(vcpu)) {
  2687. trace_kvm_try_async_get_page(gva, gfn);
  2688. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2689. trace_kvm_async_pf_doublefault(gva, gfn);
  2690. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2691. return true;
  2692. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2693. return true;
  2694. }
  2695. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2696. return false;
  2697. }
  2698. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2699. bool prefault)
  2700. {
  2701. pfn_t pfn;
  2702. int r;
  2703. int level;
  2704. int force_pt_level;
  2705. gfn_t gfn = gpa >> PAGE_SHIFT;
  2706. unsigned long mmu_seq;
  2707. int write = error_code & PFERR_WRITE_MASK;
  2708. bool map_writable;
  2709. ASSERT(vcpu);
  2710. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2711. if (unlikely(error_code & PFERR_RSVD_MASK))
  2712. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2713. r = mmu_topup_memory_caches(vcpu);
  2714. if (r)
  2715. return r;
  2716. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2717. if (likely(!force_pt_level)) {
  2718. level = mapping_level(vcpu, gfn);
  2719. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2720. } else
  2721. level = PT_PAGE_TABLE_LEVEL;
  2722. if (fast_page_fault(vcpu, gpa, level, error_code))
  2723. return 0;
  2724. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2725. smp_rmb();
  2726. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2727. return 0;
  2728. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2729. return r;
  2730. spin_lock(&vcpu->kvm->mmu_lock);
  2731. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2732. goto out_unlock;
  2733. make_mmu_pages_available(vcpu);
  2734. if (likely(!force_pt_level))
  2735. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2736. r = __direct_map(vcpu, gpa, write, map_writable,
  2737. level, gfn, pfn, prefault);
  2738. spin_unlock(&vcpu->kvm->mmu_lock);
  2739. return r;
  2740. out_unlock:
  2741. spin_unlock(&vcpu->kvm->mmu_lock);
  2742. kvm_release_pfn_clean(pfn);
  2743. return 0;
  2744. }
  2745. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2746. {
  2747. mmu_free_roots(vcpu);
  2748. }
  2749. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2750. struct kvm_mmu *context)
  2751. {
  2752. context->new_cr3 = nonpaging_new_cr3;
  2753. context->page_fault = nonpaging_page_fault;
  2754. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2755. context->free = nonpaging_free;
  2756. context->sync_page = nonpaging_sync_page;
  2757. context->invlpg = nonpaging_invlpg;
  2758. context->update_pte = nonpaging_update_pte;
  2759. context->root_level = 0;
  2760. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2761. context->root_hpa = INVALID_PAGE;
  2762. context->direct_map = true;
  2763. context->nx = false;
  2764. return 0;
  2765. }
  2766. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2767. {
  2768. ++vcpu->stat.tlb_flush;
  2769. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2770. }
  2771. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2772. {
  2773. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2774. mmu_free_roots(vcpu);
  2775. }
  2776. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2777. {
  2778. return kvm_read_cr3(vcpu);
  2779. }
  2780. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2781. struct x86_exception *fault)
  2782. {
  2783. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2784. }
  2785. static void paging_free(struct kvm_vcpu *vcpu)
  2786. {
  2787. nonpaging_free(vcpu);
  2788. }
  2789. static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
  2790. {
  2791. unsigned mask;
  2792. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  2793. mask = (unsigned)~ACC_WRITE_MASK;
  2794. /* Allow write access to dirty gptes */
  2795. mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
  2796. *access &= mask;
  2797. }
  2798. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2799. int *nr_present)
  2800. {
  2801. if (unlikely(is_mmio_spte(*sptep))) {
  2802. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2803. mmu_spte_clear_no_track(sptep);
  2804. return true;
  2805. }
  2806. (*nr_present)++;
  2807. mark_mmio_spte(sptep, gfn, access);
  2808. return true;
  2809. }
  2810. return false;
  2811. }
  2812. static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
  2813. {
  2814. unsigned access;
  2815. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  2816. access &= ~(gpte >> PT64_NX_SHIFT);
  2817. return access;
  2818. }
  2819. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2820. {
  2821. unsigned index;
  2822. index = level - 1;
  2823. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2824. return mmu->last_pte_bitmap & (1 << index);
  2825. }
  2826. #define PTTYPE 64
  2827. #include "paging_tmpl.h"
  2828. #undef PTTYPE
  2829. #define PTTYPE 32
  2830. #include "paging_tmpl.h"
  2831. #undef PTTYPE
  2832. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2833. struct kvm_mmu *context)
  2834. {
  2835. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2836. u64 exb_bit_rsvd = 0;
  2837. if (!context->nx)
  2838. exb_bit_rsvd = rsvd_bits(63, 63);
  2839. switch (context->root_level) {
  2840. case PT32_ROOT_LEVEL:
  2841. /* no rsvd bits for 2 level 4K page table entries */
  2842. context->rsvd_bits_mask[0][1] = 0;
  2843. context->rsvd_bits_mask[0][0] = 0;
  2844. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2845. if (!is_pse(vcpu)) {
  2846. context->rsvd_bits_mask[1][1] = 0;
  2847. break;
  2848. }
  2849. if (is_cpuid_PSE36())
  2850. /* 36bits PSE 4MB page */
  2851. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2852. else
  2853. /* 32 bits PSE 4MB page */
  2854. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2855. break;
  2856. case PT32E_ROOT_LEVEL:
  2857. context->rsvd_bits_mask[0][2] =
  2858. rsvd_bits(maxphyaddr, 63) |
  2859. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2860. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2861. rsvd_bits(maxphyaddr, 62); /* PDE */
  2862. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2863. rsvd_bits(maxphyaddr, 62); /* PTE */
  2864. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2865. rsvd_bits(maxphyaddr, 62) |
  2866. rsvd_bits(13, 20); /* large page */
  2867. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2868. break;
  2869. case PT64_ROOT_LEVEL:
  2870. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2871. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2872. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2873. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2874. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2875. rsvd_bits(maxphyaddr, 51);
  2876. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2877. rsvd_bits(maxphyaddr, 51);
  2878. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2879. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2880. rsvd_bits(maxphyaddr, 51) |
  2881. rsvd_bits(13, 29);
  2882. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2883. rsvd_bits(maxphyaddr, 51) |
  2884. rsvd_bits(13, 20); /* large page */
  2885. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2886. break;
  2887. }
  2888. }
  2889. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2890. {
  2891. unsigned bit, byte, pfec;
  2892. u8 map;
  2893. bool fault, x, w, u, wf, uf, ff, smep;
  2894. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2895. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2896. pfec = byte << 1;
  2897. map = 0;
  2898. wf = pfec & PFERR_WRITE_MASK;
  2899. uf = pfec & PFERR_USER_MASK;
  2900. ff = pfec & PFERR_FETCH_MASK;
  2901. for (bit = 0; bit < 8; ++bit) {
  2902. x = bit & ACC_EXEC_MASK;
  2903. w = bit & ACC_WRITE_MASK;
  2904. u = bit & ACC_USER_MASK;
  2905. /* Not really needed: !nx will cause pte.nx to fault */
  2906. x |= !mmu->nx;
  2907. /* Allow supervisor writes if !cr0.wp */
  2908. w |= !is_write_protection(vcpu) && !uf;
  2909. /* Disallow supervisor fetches of user code if cr4.smep */
  2910. x &= !(smep && u && !uf);
  2911. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2912. map |= fault << bit;
  2913. }
  2914. mmu->permissions[byte] = map;
  2915. }
  2916. }
  2917. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2918. {
  2919. u8 map;
  2920. unsigned level, root_level = mmu->root_level;
  2921. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2922. if (root_level == PT32E_ROOT_LEVEL)
  2923. --root_level;
  2924. /* PT_PAGE_TABLE_LEVEL always terminates */
  2925. map = 1 | (1 << ps_set_index);
  2926. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2927. if (level <= PT_PDPE_LEVEL
  2928. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2929. map |= 1 << (ps_set_index | (level - 1));
  2930. }
  2931. mmu->last_pte_bitmap = map;
  2932. }
  2933. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2934. struct kvm_mmu *context,
  2935. int level)
  2936. {
  2937. context->nx = is_nx(vcpu);
  2938. context->root_level = level;
  2939. reset_rsvds_bits_mask(vcpu, context);
  2940. update_permission_bitmask(vcpu, context);
  2941. update_last_pte_bitmap(vcpu, context);
  2942. ASSERT(is_pae(vcpu));
  2943. context->new_cr3 = paging_new_cr3;
  2944. context->page_fault = paging64_page_fault;
  2945. context->gva_to_gpa = paging64_gva_to_gpa;
  2946. context->sync_page = paging64_sync_page;
  2947. context->invlpg = paging64_invlpg;
  2948. context->update_pte = paging64_update_pte;
  2949. context->free = paging_free;
  2950. context->shadow_root_level = level;
  2951. context->root_hpa = INVALID_PAGE;
  2952. context->direct_map = false;
  2953. return 0;
  2954. }
  2955. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2956. struct kvm_mmu *context)
  2957. {
  2958. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2959. }
  2960. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2961. struct kvm_mmu *context)
  2962. {
  2963. context->nx = false;
  2964. context->root_level = PT32_ROOT_LEVEL;
  2965. reset_rsvds_bits_mask(vcpu, context);
  2966. update_permission_bitmask(vcpu, context);
  2967. update_last_pte_bitmap(vcpu, context);
  2968. context->new_cr3 = paging_new_cr3;
  2969. context->page_fault = paging32_page_fault;
  2970. context->gva_to_gpa = paging32_gva_to_gpa;
  2971. context->free = paging_free;
  2972. context->sync_page = paging32_sync_page;
  2973. context->invlpg = paging32_invlpg;
  2974. context->update_pte = paging32_update_pte;
  2975. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2976. context->root_hpa = INVALID_PAGE;
  2977. context->direct_map = false;
  2978. return 0;
  2979. }
  2980. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2981. struct kvm_mmu *context)
  2982. {
  2983. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2984. }
  2985. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2986. {
  2987. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2988. context->base_role.word = 0;
  2989. context->new_cr3 = nonpaging_new_cr3;
  2990. context->page_fault = tdp_page_fault;
  2991. context->free = nonpaging_free;
  2992. context->sync_page = nonpaging_sync_page;
  2993. context->invlpg = nonpaging_invlpg;
  2994. context->update_pte = nonpaging_update_pte;
  2995. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2996. context->root_hpa = INVALID_PAGE;
  2997. context->direct_map = true;
  2998. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2999. context->get_cr3 = get_cr3;
  3000. context->get_pdptr = kvm_pdptr_read;
  3001. context->inject_page_fault = kvm_inject_page_fault;
  3002. if (!is_paging(vcpu)) {
  3003. context->nx = false;
  3004. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3005. context->root_level = 0;
  3006. } else if (is_long_mode(vcpu)) {
  3007. context->nx = is_nx(vcpu);
  3008. context->root_level = PT64_ROOT_LEVEL;
  3009. reset_rsvds_bits_mask(vcpu, context);
  3010. context->gva_to_gpa = paging64_gva_to_gpa;
  3011. } else if (is_pae(vcpu)) {
  3012. context->nx = is_nx(vcpu);
  3013. context->root_level = PT32E_ROOT_LEVEL;
  3014. reset_rsvds_bits_mask(vcpu, context);
  3015. context->gva_to_gpa = paging64_gva_to_gpa;
  3016. } else {
  3017. context->nx = false;
  3018. context->root_level = PT32_ROOT_LEVEL;
  3019. reset_rsvds_bits_mask(vcpu, context);
  3020. context->gva_to_gpa = paging32_gva_to_gpa;
  3021. }
  3022. update_permission_bitmask(vcpu, context);
  3023. update_last_pte_bitmap(vcpu, context);
  3024. return 0;
  3025. }
  3026. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3027. {
  3028. int r;
  3029. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3030. ASSERT(vcpu);
  3031. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3032. if (!is_paging(vcpu))
  3033. r = nonpaging_init_context(vcpu, context);
  3034. else if (is_long_mode(vcpu))
  3035. r = paging64_init_context(vcpu, context);
  3036. else if (is_pae(vcpu))
  3037. r = paging32E_init_context(vcpu, context);
  3038. else
  3039. r = paging32_init_context(vcpu, context);
  3040. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3041. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3042. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3043. vcpu->arch.mmu.base_role.smep_andnot_wp
  3044. = smep && !is_write_protection(vcpu);
  3045. return r;
  3046. }
  3047. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3048. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3049. {
  3050. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3051. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3052. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3053. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3054. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3055. return r;
  3056. }
  3057. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3058. {
  3059. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3060. g_context->get_cr3 = get_cr3;
  3061. g_context->get_pdptr = kvm_pdptr_read;
  3062. g_context->inject_page_fault = kvm_inject_page_fault;
  3063. /*
  3064. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3065. * translation of l2_gpa to l1_gpa addresses is done using the
  3066. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3067. * functions between mmu and nested_mmu are swapped.
  3068. */
  3069. if (!is_paging(vcpu)) {
  3070. g_context->nx = false;
  3071. g_context->root_level = 0;
  3072. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3073. } else if (is_long_mode(vcpu)) {
  3074. g_context->nx = is_nx(vcpu);
  3075. g_context->root_level = PT64_ROOT_LEVEL;
  3076. reset_rsvds_bits_mask(vcpu, g_context);
  3077. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3078. } else if (is_pae(vcpu)) {
  3079. g_context->nx = is_nx(vcpu);
  3080. g_context->root_level = PT32E_ROOT_LEVEL;
  3081. reset_rsvds_bits_mask(vcpu, g_context);
  3082. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3083. } else {
  3084. g_context->nx = false;
  3085. g_context->root_level = PT32_ROOT_LEVEL;
  3086. reset_rsvds_bits_mask(vcpu, g_context);
  3087. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3088. }
  3089. update_permission_bitmask(vcpu, g_context);
  3090. update_last_pte_bitmap(vcpu, g_context);
  3091. return 0;
  3092. }
  3093. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3094. {
  3095. if (mmu_is_nested(vcpu))
  3096. return init_kvm_nested_mmu(vcpu);
  3097. else if (tdp_enabled)
  3098. return init_kvm_tdp_mmu(vcpu);
  3099. else
  3100. return init_kvm_softmmu(vcpu);
  3101. }
  3102. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3103. {
  3104. ASSERT(vcpu);
  3105. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3106. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3107. vcpu->arch.mmu.free(vcpu);
  3108. }
  3109. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3110. {
  3111. destroy_kvm_mmu(vcpu);
  3112. return init_kvm_mmu(vcpu);
  3113. }
  3114. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3115. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3116. {
  3117. int r;
  3118. r = mmu_topup_memory_caches(vcpu);
  3119. if (r)
  3120. goto out;
  3121. r = mmu_alloc_roots(vcpu);
  3122. spin_lock(&vcpu->kvm->mmu_lock);
  3123. mmu_sync_roots(vcpu);
  3124. spin_unlock(&vcpu->kvm->mmu_lock);
  3125. if (r)
  3126. goto out;
  3127. /* set_cr3() should ensure TLB has been flushed */
  3128. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3129. out:
  3130. return r;
  3131. }
  3132. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3133. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3134. {
  3135. mmu_free_roots(vcpu);
  3136. }
  3137. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3138. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3139. struct kvm_mmu_page *sp, u64 *spte,
  3140. const void *new)
  3141. {
  3142. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3143. ++vcpu->kvm->stat.mmu_pde_zapped;
  3144. return;
  3145. }
  3146. ++vcpu->kvm->stat.mmu_pte_updated;
  3147. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3148. }
  3149. static bool need_remote_flush(u64 old, u64 new)
  3150. {
  3151. if (!is_shadow_present_pte(old))
  3152. return false;
  3153. if (!is_shadow_present_pte(new))
  3154. return true;
  3155. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3156. return true;
  3157. old ^= PT64_NX_MASK;
  3158. new ^= PT64_NX_MASK;
  3159. return (old & ~new & PT64_PERM_MASK) != 0;
  3160. }
  3161. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3162. bool remote_flush, bool local_flush)
  3163. {
  3164. if (zap_page)
  3165. return;
  3166. if (remote_flush)
  3167. kvm_flush_remote_tlbs(vcpu->kvm);
  3168. else if (local_flush)
  3169. kvm_mmu_flush_tlb(vcpu);
  3170. }
  3171. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3172. const u8 *new, int *bytes)
  3173. {
  3174. u64 gentry;
  3175. int r;
  3176. /*
  3177. * Assume that the pte write on a page table of the same type
  3178. * as the current vcpu paging mode since we update the sptes only
  3179. * when they have the same mode.
  3180. */
  3181. if (is_pae(vcpu) && *bytes == 4) {
  3182. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3183. *gpa &= ~(gpa_t)7;
  3184. *bytes = 8;
  3185. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3186. if (r)
  3187. gentry = 0;
  3188. new = (const u8 *)&gentry;
  3189. }
  3190. switch (*bytes) {
  3191. case 4:
  3192. gentry = *(const u32 *)new;
  3193. break;
  3194. case 8:
  3195. gentry = *(const u64 *)new;
  3196. break;
  3197. default:
  3198. gentry = 0;
  3199. break;
  3200. }
  3201. return gentry;
  3202. }
  3203. /*
  3204. * If we're seeing too many writes to a page, it may no longer be a page table,
  3205. * or we may be forking, in which case it is better to unmap the page.
  3206. */
  3207. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3208. {
  3209. /*
  3210. * Skip write-flooding detected for the sp whose level is 1, because
  3211. * it can become unsync, then the guest page is not write-protected.
  3212. */
  3213. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3214. return false;
  3215. return ++sp->write_flooding_count >= 3;
  3216. }
  3217. /*
  3218. * Misaligned accesses are too much trouble to fix up; also, they usually
  3219. * indicate a page is not used as a page table.
  3220. */
  3221. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3222. int bytes)
  3223. {
  3224. unsigned offset, pte_size, misaligned;
  3225. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3226. gpa, bytes, sp->role.word);
  3227. offset = offset_in_page(gpa);
  3228. pte_size = sp->role.cr4_pae ? 8 : 4;
  3229. /*
  3230. * Sometimes, the OS only writes the last one bytes to update status
  3231. * bits, for example, in linux, andb instruction is used in clear_bit().
  3232. */
  3233. if (!(offset & (pte_size - 1)) && bytes == 1)
  3234. return false;
  3235. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3236. misaligned |= bytes < 4;
  3237. return misaligned;
  3238. }
  3239. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3240. {
  3241. unsigned page_offset, quadrant;
  3242. u64 *spte;
  3243. int level;
  3244. page_offset = offset_in_page(gpa);
  3245. level = sp->role.level;
  3246. *nspte = 1;
  3247. if (!sp->role.cr4_pae) {
  3248. page_offset <<= 1; /* 32->64 */
  3249. /*
  3250. * A 32-bit pde maps 4MB while the shadow pdes map
  3251. * only 2MB. So we need to double the offset again
  3252. * and zap two pdes instead of one.
  3253. */
  3254. if (level == PT32_ROOT_LEVEL) {
  3255. page_offset &= ~7; /* kill rounding error */
  3256. page_offset <<= 1;
  3257. *nspte = 2;
  3258. }
  3259. quadrant = page_offset >> PAGE_SHIFT;
  3260. page_offset &= ~PAGE_MASK;
  3261. if (quadrant != sp->role.quadrant)
  3262. return NULL;
  3263. }
  3264. spte = &sp->spt[page_offset / sizeof(*spte)];
  3265. return spte;
  3266. }
  3267. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3268. const u8 *new, int bytes)
  3269. {
  3270. gfn_t gfn = gpa >> PAGE_SHIFT;
  3271. union kvm_mmu_page_role mask = { .word = 0 };
  3272. struct kvm_mmu_page *sp;
  3273. LIST_HEAD(invalid_list);
  3274. u64 entry, gentry, *spte;
  3275. int npte;
  3276. bool remote_flush, local_flush, zap_page;
  3277. /*
  3278. * If we don't have indirect shadow pages, it means no page is
  3279. * write-protected, so we can exit simply.
  3280. */
  3281. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3282. return;
  3283. zap_page = remote_flush = local_flush = false;
  3284. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3285. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3286. /*
  3287. * No need to care whether allocation memory is successful
  3288. * or not since pte prefetch is skiped if it does not have
  3289. * enough objects in the cache.
  3290. */
  3291. mmu_topup_memory_caches(vcpu);
  3292. spin_lock(&vcpu->kvm->mmu_lock);
  3293. ++vcpu->kvm->stat.mmu_pte_write;
  3294. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3295. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3296. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3297. if (detect_write_misaligned(sp, gpa, bytes) ||
  3298. detect_write_flooding(sp)) {
  3299. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3300. &invalid_list);
  3301. ++vcpu->kvm->stat.mmu_flooded;
  3302. continue;
  3303. }
  3304. spte = get_written_sptes(sp, gpa, &npte);
  3305. if (!spte)
  3306. continue;
  3307. local_flush = true;
  3308. while (npte--) {
  3309. entry = *spte;
  3310. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3311. if (gentry &&
  3312. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3313. & mask.word) && rmap_can_add(vcpu))
  3314. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3315. if (need_remote_flush(entry, *spte))
  3316. remote_flush = true;
  3317. ++spte;
  3318. }
  3319. }
  3320. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3321. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3322. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3323. spin_unlock(&vcpu->kvm->mmu_lock);
  3324. }
  3325. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3326. {
  3327. gpa_t gpa;
  3328. int r;
  3329. if (vcpu->arch.mmu.direct_map)
  3330. return 0;
  3331. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3332. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3333. return r;
  3334. }
  3335. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3336. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3337. {
  3338. LIST_HEAD(invalid_list);
  3339. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3340. return;
  3341. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3342. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3343. break;
  3344. ++vcpu->kvm->stat.mmu_recycled;
  3345. }
  3346. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3347. }
  3348. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3349. {
  3350. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3351. return vcpu_match_mmio_gpa(vcpu, addr);
  3352. return vcpu_match_mmio_gva(vcpu, addr);
  3353. }
  3354. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3355. void *insn, int insn_len)
  3356. {
  3357. int r, emulation_type = EMULTYPE_RETRY;
  3358. enum emulation_result er;
  3359. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3360. if (r < 0)
  3361. goto out;
  3362. if (!r) {
  3363. r = 1;
  3364. goto out;
  3365. }
  3366. if (is_mmio_page_fault(vcpu, cr2))
  3367. emulation_type = 0;
  3368. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3369. switch (er) {
  3370. case EMULATE_DONE:
  3371. return 1;
  3372. case EMULATE_DO_MMIO:
  3373. ++vcpu->stat.mmio_exits;
  3374. /* fall through */
  3375. case EMULATE_FAIL:
  3376. return 0;
  3377. default:
  3378. BUG();
  3379. }
  3380. out:
  3381. return r;
  3382. }
  3383. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3384. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3385. {
  3386. vcpu->arch.mmu.invlpg(vcpu, gva);
  3387. kvm_mmu_flush_tlb(vcpu);
  3388. ++vcpu->stat.invlpg;
  3389. }
  3390. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3391. void kvm_enable_tdp(void)
  3392. {
  3393. tdp_enabled = true;
  3394. }
  3395. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3396. void kvm_disable_tdp(void)
  3397. {
  3398. tdp_enabled = false;
  3399. }
  3400. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3401. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3402. {
  3403. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3404. if (vcpu->arch.mmu.lm_root != NULL)
  3405. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3406. }
  3407. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3408. {
  3409. struct page *page;
  3410. int i;
  3411. ASSERT(vcpu);
  3412. /*
  3413. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3414. * Therefore we need to allocate shadow page tables in the first
  3415. * 4GB of memory, which happens to fit the DMA32 zone.
  3416. */
  3417. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3418. if (!page)
  3419. return -ENOMEM;
  3420. vcpu->arch.mmu.pae_root = page_address(page);
  3421. for (i = 0; i < 4; ++i)
  3422. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3423. return 0;
  3424. }
  3425. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3426. {
  3427. ASSERT(vcpu);
  3428. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3429. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3430. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3431. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3432. return alloc_mmu_pages(vcpu);
  3433. }
  3434. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3435. {
  3436. ASSERT(vcpu);
  3437. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3438. return init_kvm_mmu(vcpu);
  3439. }
  3440. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3441. {
  3442. struct kvm_memory_slot *memslot;
  3443. gfn_t last_gfn;
  3444. int i;
  3445. memslot = id_to_memslot(kvm->memslots, slot);
  3446. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3447. spin_lock(&kvm->mmu_lock);
  3448. for (i = PT_PAGE_TABLE_LEVEL;
  3449. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3450. unsigned long *rmapp;
  3451. unsigned long last_index, index;
  3452. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3453. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3454. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3455. if (*rmapp)
  3456. __rmap_write_protect(kvm, rmapp, false);
  3457. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3458. kvm_flush_remote_tlbs(kvm);
  3459. cond_resched_lock(&kvm->mmu_lock);
  3460. }
  3461. }
  3462. }
  3463. kvm_flush_remote_tlbs(kvm);
  3464. spin_unlock(&kvm->mmu_lock);
  3465. }
  3466. void kvm_mmu_zap_all(struct kvm *kvm)
  3467. {
  3468. struct kvm_mmu_page *sp, *node;
  3469. LIST_HEAD(invalid_list);
  3470. spin_lock(&kvm->mmu_lock);
  3471. restart:
  3472. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3473. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3474. goto restart;
  3475. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3476. spin_unlock(&kvm->mmu_lock);
  3477. }
  3478. void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
  3479. {
  3480. struct kvm_mmu_page *sp, *node;
  3481. LIST_HEAD(invalid_list);
  3482. spin_lock(&kvm->mmu_lock);
  3483. restart:
  3484. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
  3485. if (!sp->mmio_cached)
  3486. continue;
  3487. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3488. goto restart;
  3489. }
  3490. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3491. spin_unlock(&kvm->mmu_lock);
  3492. }
  3493. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3494. {
  3495. struct kvm *kvm;
  3496. int nr_to_scan = sc->nr_to_scan;
  3497. if (nr_to_scan == 0)
  3498. goto out;
  3499. raw_spin_lock(&kvm_lock);
  3500. list_for_each_entry(kvm, &vm_list, vm_list) {
  3501. int idx;
  3502. LIST_HEAD(invalid_list);
  3503. /*
  3504. * Never scan more than sc->nr_to_scan VM instances.
  3505. * Will not hit this condition practically since we do not try
  3506. * to shrink more than one VM and it is very unlikely to see
  3507. * !n_used_mmu_pages so many times.
  3508. */
  3509. if (!nr_to_scan--)
  3510. break;
  3511. /*
  3512. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3513. * here. We may skip a VM instance errorneosly, but we do not
  3514. * want to shrink a VM that only started to populate its MMU
  3515. * anyway.
  3516. */
  3517. if (!kvm->arch.n_used_mmu_pages)
  3518. continue;
  3519. idx = srcu_read_lock(&kvm->srcu);
  3520. spin_lock(&kvm->mmu_lock);
  3521. prepare_zap_oldest_mmu_page(kvm, &invalid_list);
  3522. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3523. spin_unlock(&kvm->mmu_lock);
  3524. srcu_read_unlock(&kvm->srcu, idx);
  3525. list_move_tail(&kvm->vm_list, &vm_list);
  3526. break;
  3527. }
  3528. raw_spin_unlock(&kvm_lock);
  3529. out:
  3530. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3531. }
  3532. static struct shrinker mmu_shrinker = {
  3533. .shrink = mmu_shrink,
  3534. .seeks = DEFAULT_SEEKS * 10,
  3535. };
  3536. static void mmu_destroy_caches(void)
  3537. {
  3538. if (pte_list_desc_cache)
  3539. kmem_cache_destroy(pte_list_desc_cache);
  3540. if (mmu_page_header_cache)
  3541. kmem_cache_destroy(mmu_page_header_cache);
  3542. }
  3543. int kvm_mmu_module_init(void)
  3544. {
  3545. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3546. sizeof(struct pte_list_desc),
  3547. 0, 0, NULL);
  3548. if (!pte_list_desc_cache)
  3549. goto nomem;
  3550. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3551. sizeof(struct kvm_mmu_page),
  3552. 0, 0, NULL);
  3553. if (!mmu_page_header_cache)
  3554. goto nomem;
  3555. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3556. goto nomem;
  3557. register_shrinker(&mmu_shrinker);
  3558. return 0;
  3559. nomem:
  3560. mmu_destroy_caches();
  3561. return -ENOMEM;
  3562. }
  3563. /*
  3564. * Caculate mmu pages needed for kvm.
  3565. */
  3566. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3567. {
  3568. unsigned int nr_mmu_pages;
  3569. unsigned int nr_pages = 0;
  3570. struct kvm_memslots *slots;
  3571. struct kvm_memory_slot *memslot;
  3572. slots = kvm_memslots(kvm);
  3573. kvm_for_each_memslot(memslot, slots)
  3574. nr_pages += memslot->npages;
  3575. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3576. nr_mmu_pages = max(nr_mmu_pages,
  3577. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3578. return nr_mmu_pages;
  3579. }
  3580. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3581. {
  3582. struct kvm_shadow_walk_iterator iterator;
  3583. u64 spte;
  3584. int nr_sptes = 0;
  3585. walk_shadow_page_lockless_begin(vcpu);
  3586. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3587. sptes[iterator.level-1] = spte;
  3588. nr_sptes++;
  3589. if (!is_shadow_present_pte(spte))
  3590. break;
  3591. }
  3592. walk_shadow_page_lockless_end(vcpu);
  3593. return nr_sptes;
  3594. }
  3595. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3596. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3597. {
  3598. ASSERT(vcpu);
  3599. destroy_kvm_mmu(vcpu);
  3600. free_mmu_pages(vcpu);
  3601. mmu_free_memory_caches(vcpu);
  3602. }
  3603. void kvm_mmu_module_exit(void)
  3604. {
  3605. mmu_destroy_caches();
  3606. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3607. unregister_shrinker(&mmu_shrinker);
  3608. mmu_audit_disable();
  3609. }