pgtable.h 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2000
  4. * Author(s): Hartmut Penner (hp@de.ibm.com)
  5. * Ulrich Weigand (weigand@de.ibm.com)
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. *
  8. * Derived from "include/asm-i386/pgtable.h"
  9. */
  10. #ifndef _ASM_S390_PGTABLE_H
  11. #define _ASM_S390_PGTABLE_H
  12. /*
  13. * The Linux memory management assumes a three-level page table setup. For
  14. * s390 31 bit we "fold" the mid level into the top-level page table, so
  15. * that we physically have the same two-level page table as the s390 mmu
  16. * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  17. * the hardware provides (region first and region second tables are not
  18. * used).
  19. *
  20. * The "pgd_xxx()" functions are trivial for a folded two-level
  21. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  22. * into the pgd entry)
  23. *
  24. * This file contains the functions and defines necessary to modify and use
  25. * the S390 page table tree.
  26. */
  27. #ifndef __ASSEMBLY__
  28. #include <linux/sched.h>
  29. #include <linux/mm_types.h>
  30. #include <linux/page-flags.h>
  31. #include <asm/bug.h>
  32. #include <asm/page.h>
  33. extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  34. extern void paging_init(void);
  35. extern void vmem_map_init(void);
  36. /*
  37. * The S390 doesn't have any external MMU info: the kernel page
  38. * tables contain all the necessary information.
  39. */
  40. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  41. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  42. /*
  43. * ZERO_PAGE is a global shared page that is always zero; used
  44. * for zero-mapped memory areas etc..
  45. */
  46. extern unsigned long empty_zero_page;
  47. extern unsigned long zero_page_mask;
  48. #define ZERO_PAGE(vaddr) \
  49. (virt_to_page((void *)(empty_zero_page + \
  50. (((unsigned long)(vaddr)) &zero_page_mask))))
  51. #define __HAVE_COLOR_ZERO_PAGE
  52. /* TODO: s390 cannot support io_remap_pfn_range... */
  53. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  54. remap_pfn_range(vma, vaddr, pfn, size, prot)
  55. #endif /* !__ASSEMBLY__ */
  56. /*
  57. * PMD_SHIFT determines the size of the area a second-level page
  58. * table can map
  59. * PGDIR_SHIFT determines what a third-level page table entry can map
  60. */
  61. #ifndef CONFIG_64BIT
  62. # define PMD_SHIFT 20
  63. # define PUD_SHIFT 20
  64. # define PGDIR_SHIFT 20
  65. #else /* CONFIG_64BIT */
  66. # define PMD_SHIFT 20
  67. # define PUD_SHIFT 31
  68. # define PGDIR_SHIFT 42
  69. #endif /* CONFIG_64BIT */
  70. #define PMD_SIZE (1UL << PMD_SHIFT)
  71. #define PMD_MASK (~(PMD_SIZE-1))
  72. #define PUD_SIZE (1UL << PUD_SHIFT)
  73. #define PUD_MASK (~(PUD_SIZE-1))
  74. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  75. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  76. /*
  77. * entries per page directory level: the S390 is two-level, so
  78. * we don't really have any PMD directory physically.
  79. * for S390 segment-table entries are combined to one PGD
  80. * that leads to 1024 pte per pgd
  81. */
  82. #define PTRS_PER_PTE 256
  83. #ifndef CONFIG_64BIT
  84. #define PTRS_PER_PMD 1
  85. #define PTRS_PER_PUD 1
  86. #else /* CONFIG_64BIT */
  87. #define PTRS_PER_PMD 2048
  88. #define PTRS_PER_PUD 2048
  89. #endif /* CONFIG_64BIT */
  90. #define PTRS_PER_PGD 2048
  91. #define FIRST_USER_ADDRESS 0
  92. #define pte_ERROR(e) \
  93. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  94. #define pmd_ERROR(e) \
  95. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  96. #define pud_ERROR(e) \
  97. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  98. #define pgd_ERROR(e) \
  99. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  100. #ifndef __ASSEMBLY__
  101. /*
  102. * The vmalloc and module area will always be on the topmost area of the kernel
  103. * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
  104. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  105. * modules will reside. That makes sure that inter module branches always
  106. * happen without trampolines and in addition the placement within a 2GB frame
  107. * is branch prediction unit friendly.
  108. */
  109. extern unsigned long VMALLOC_START;
  110. extern unsigned long VMALLOC_END;
  111. extern struct page *vmemmap;
  112. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  113. #ifdef CONFIG_64BIT
  114. extern unsigned long MODULES_VADDR;
  115. extern unsigned long MODULES_END;
  116. #define MODULES_VADDR MODULES_VADDR
  117. #define MODULES_END MODULES_END
  118. #define MODULES_LEN (1UL << 31)
  119. #endif
  120. /*
  121. * A 31 bit pagetable entry of S390 has following format:
  122. * | PFRA | | OS |
  123. * 0 0IP0
  124. * 00000000001111111111222222222233
  125. * 01234567890123456789012345678901
  126. *
  127. * I Page-Invalid Bit: Page is not available for address-translation
  128. * P Page-Protection Bit: Store access not possible for page
  129. *
  130. * A 31 bit segmenttable entry of S390 has following format:
  131. * | P-table origin | |PTL
  132. * 0 IC
  133. * 00000000001111111111222222222233
  134. * 01234567890123456789012345678901
  135. *
  136. * I Segment-Invalid Bit: Segment is not available for address-translation
  137. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  138. * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
  139. *
  140. * The 31 bit segmenttable origin of S390 has following format:
  141. *
  142. * |S-table origin | | STL |
  143. * X **GPS
  144. * 00000000001111111111222222222233
  145. * 01234567890123456789012345678901
  146. *
  147. * X Space-Switch event:
  148. * G Segment-Invalid Bit: *
  149. * P Private-Space Bit: Segment is not private (PoP 3-30)
  150. * S Storage-Alteration:
  151. * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
  152. *
  153. * A 64 bit pagetable entry of S390 has following format:
  154. * | PFRA |0IPC| OS |
  155. * 0000000000111111111122222222223333333333444444444455555555556666
  156. * 0123456789012345678901234567890123456789012345678901234567890123
  157. *
  158. * I Page-Invalid Bit: Page is not available for address-translation
  159. * P Page-Protection Bit: Store access not possible for page
  160. * C Change-bit override: HW is not required to set change bit
  161. *
  162. * A 64 bit segmenttable entry of S390 has following format:
  163. * | P-table origin | TT
  164. * 0000000000111111111122222222223333333333444444444455555555556666
  165. * 0123456789012345678901234567890123456789012345678901234567890123
  166. *
  167. * I Segment-Invalid Bit: Segment is not available for address-translation
  168. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  169. * P Page-Protection Bit: Store access not possible for page
  170. * TT Type 00
  171. *
  172. * A 64 bit region table entry of S390 has following format:
  173. * | S-table origin | TF TTTL
  174. * 0000000000111111111122222222223333333333444444444455555555556666
  175. * 0123456789012345678901234567890123456789012345678901234567890123
  176. *
  177. * I Segment-Invalid Bit: Segment is not available for address-translation
  178. * TT Type 01
  179. * TF
  180. * TL Table length
  181. *
  182. * The 64 bit regiontable origin of S390 has following format:
  183. * | region table origon | DTTL
  184. * 0000000000111111111122222222223333333333444444444455555555556666
  185. * 0123456789012345678901234567890123456789012345678901234567890123
  186. *
  187. * X Space-Switch event:
  188. * G Segment-Invalid Bit:
  189. * P Private-Space Bit:
  190. * S Storage-Alteration:
  191. * R Real space
  192. * TL Table-Length:
  193. *
  194. * A storage key has the following format:
  195. * | ACC |F|R|C|0|
  196. * 0 3 4 5 6 7
  197. * ACC: access key
  198. * F : fetch protection bit
  199. * R : referenced bit
  200. * C : changed bit
  201. */
  202. /* Hardware bits in the page table entry */
  203. #define _PAGE_CO 0x100 /* HW Change-bit override */
  204. #define _PAGE_RO 0x200 /* HW read-only bit */
  205. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  206. /* Software bits in the page table entry */
  207. #define _PAGE_SWT 0x001 /* SW pte type bit t */
  208. #define _PAGE_SWX 0x002 /* SW pte type bit x */
  209. #define _PAGE_SWC 0x004 /* SW pte changed bit */
  210. #define _PAGE_SWR 0x008 /* SW pte referenced bit */
  211. #define _PAGE_SWW 0x010 /* SW pte write bit */
  212. #define _PAGE_SPECIAL 0x020 /* SW associated with special page */
  213. #define __HAVE_ARCH_PTE_SPECIAL
  214. /* Set of bits not changed in pte_modify */
  215. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
  216. _PAGE_SWC | _PAGE_SWR)
  217. /* Six different types of pages. */
  218. #define _PAGE_TYPE_EMPTY 0x400
  219. #define _PAGE_TYPE_NONE 0x401
  220. #define _PAGE_TYPE_SWAP 0x403
  221. #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
  222. #define _PAGE_TYPE_RO 0x200
  223. #define _PAGE_TYPE_RW 0x000
  224. /*
  225. * Only four types for huge pages, using the invalid bit and protection bit
  226. * of a segment table entry.
  227. */
  228. #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
  229. #define _HPAGE_TYPE_NONE 0x220
  230. #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
  231. #define _HPAGE_TYPE_RW 0x000
  232. /*
  233. * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
  234. * pte_none and pte_file to find out the pte type WITHOUT holding the page
  235. * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
  236. * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
  237. * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
  238. * This change is done while holding the lock, but the intermediate step
  239. * of a previously valid pte with the hw invalid bit set can be observed by
  240. * handle_pte_fault. That makes it necessary that all valid pte types with
  241. * the hw invalid bit set must be distinguishable from the four pte types
  242. * empty, none, swap and file.
  243. *
  244. * irxt ipte irxt
  245. * _PAGE_TYPE_EMPTY 1000 -> 1000
  246. * _PAGE_TYPE_NONE 1001 -> 1001
  247. * _PAGE_TYPE_SWAP 1011 -> 1011
  248. * _PAGE_TYPE_FILE 11?1 -> 11?1
  249. * _PAGE_TYPE_RO 0100 -> 1100
  250. * _PAGE_TYPE_RW 0000 -> 1000
  251. *
  252. * pte_none is true for bits combinations 1000, 1010, 1100, 1110
  253. * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
  254. * pte_file is true for bits combinations 1101, 1111
  255. * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
  256. */
  257. #ifndef CONFIG_64BIT
  258. /* Bits in the segment table address-space-control-element */
  259. #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
  260. #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
  261. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  262. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  263. #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
  264. /* Bits in the segment table entry */
  265. #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
  266. #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
  267. #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
  268. #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
  269. #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
  270. #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
  271. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
  272. /* Page status table bits for virtualization */
  273. #define RCP_ACC_BITS 0xf0000000UL
  274. #define RCP_FP_BIT 0x08000000UL
  275. #define RCP_PCL_BIT 0x00800000UL
  276. #define RCP_HR_BIT 0x00400000UL
  277. #define RCP_HC_BIT 0x00200000UL
  278. #define RCP_GR_BIT 0x00040000UL
  279. #define RCP_GC_BIT 0x00020000UL
  280. #define RCP_IN_BIT 0x00008000UL /* IPTE notify bit */
  281. /* User dirty / referenced bit for KVM's migration feature */
  282. #define KVM_UR_BIT 0x00008000UL
  283. #define KVM_UC_BIT 0x00004000UL
  284. #else /* CONFIG_64BIT */
  285. /* Bits in the segment/region table address-space-control-element */
  286. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  287. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  288. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  289. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  290. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  291. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  292. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  293. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  294. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  295. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  296. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  297. /* Bits in the region table entry */
  298. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  299. #define _REGION_ENTRY_RO 0x200 /* region protection bit */
  300. #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
  301. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  302. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  303. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  304. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  305. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  306. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  307. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
  308. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  309. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
  310. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  311. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
  312. #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
  313. #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
  314. #define _REGION3_ENTRY_CO 0x100 /* change-recording override */
  315. /* Bits in the segment table entry */
  316. #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
  317. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  318. #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
  319. #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
  320. #define _SEGMENT_ENTRY (0)
  321. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
  322. #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
  323. #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
  324. #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
  325. #define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
  326. /* Set of bits not changed in pmd_modify */
  327. #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
  328. | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
  329. /* Page status table bits for virtualization */
  330. #define RCP_ACC_BITS 0xf000000000000000UL
  331. #define RCP_FP_BIT 0x0800000000000000UL
  332. #define RCP_PCL_BIT 0x0080000000000000UL
  333. #define RCP_HR_BIT 0x0040000000000000UL
  334. #define RCP_HC_BIT 0x0020000000000000UL
  335. #define RCP_GR_BIT 0x0004000000000000UL
  336. #define RCP_GC_BIT 0x0002000000000000UL
  337. #define RCP_IN_BIT 0x0000800000000000UL /* IPTE notify bit */
  338. /* User dirty / referenced bit for KVM's migration feature */
  339. #define KVM_UR_BIT 0x0000800000000000UL
  340. #define KVM_UC_BIT 0x0000400000000000UL
  341. #endif /* CONFIG_64BIT */
  342. /*
  343. * A user page table pointer has the space-switch-event bit, the
  344. * private-space-control bit and the storage-alteration-event-control
  345. * bit set. A kernel page table pointer doesn't need them.
  346. */
  347. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  348. _ASCE_ALT_EVENT)
  349. /*
  350. * Page protection definitions.
  351. */
  352. #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
  353. #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
  354. #define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
  355. #define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
  356. #define PAGE_KERNEL PAGE_RWC
  357. #define PAGE_SHARED PAGE_KERNEL
  358. #define PAGE_COPY PAGE_RO
  359. /*
  360. * On s390 the page table entry has an invalid bit and a read-only bit.
  361. * Read permission implies execute permission and write permission
  362. * implies read permission.
  363. */
  364. /*xwr*/
  365. #define __P000 PAGE_NONE
  366. #define __P001 PAGE_RO
  367. #define __P010 PAGE_RO
  368. #define __P011 PAGE_RO
  369. #define __P100 PAGE_RO
  370. #define __P101 PAGE_RO
  371. #define __P110 PAGE_RO
  372. #define __P111 PAGE_RO
  373. #define __S000 PAGE_NONE
  374. #define __S001 PAGE_RO
  375. #define __S010 PAGE_RW
  376. #define __S011 PAGE_RW
  377. #define __S100 PAGE_RO
  378. #define __S101 PAGE_RO
  379. #define __S110 PAGE_RW
  380. #define __S111 PAGE_RW
  381. /*
  382. * Segment entry (large page) protection definitions.
  383. */
  384. #define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE)
  385. #define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO)
  386. #define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW)
  387. static inline int mm_exclusive(struct mm_struct *mm)
  388. {
  389. return likely(mm == current->active_mm &&
  390. atomic_read(&mm->context.attach_count) <= 1);
  391. }
  392. static inline int mm_has_pgste(struct mm_struct *mm)
  393. {
  394. #ifdef CONFIG_PGSTE
  395. if (unlikely(mm->context.has_pgste))
  396. return 1;
  397. #endif
  398. return 0;
  399. }
  400. /*
  401. * pgd/pmd/pte query functions
  402. */
  403. #ifndef CONFIG_64BIT
  404. static inline int pgd_present(pgd_t pgd) { return 1; }
  405. static inline int pgd_none(pgd_t pgd) { return 0; }
  406. static inline int pgd_bad(pgd_t pgd) { return 0; }
  407. static inline int pud_present(pud_t pud) { return 1; }
  408. static inline int pud_none(pud_t pud) { return 0; }
  409. static inline int pud_large(pud_t pud) { return 0; }
  410. static inline int pud_bad(pud_t pud) { return 0; }
  411. #else /* CONFIG_64BIT */
  412. static inline int pgd_present(pgd_t pgd)
  413. {
  414. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  415. return 1;
  416. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  417. }
  418. static inline int pgd_none(pgd_t pgd)
  419. {
  420. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  421. return 0;
  422. return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
  423. }
  424. static inline int pgd_bad(pgd_t pgd)
  425. {
  426. /*
  427. * With dynamic page table levels the pgd can be a region table
  428. * entry or a segment table entry. Check for the bit that are
  429. * invalid for either table entry.
  430. */
  431. unsigned long mask =
  432. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
  433. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  434. return (pgd_val(pgd) & mask) != 0;
  435. }
  436. static inline int pud_present(pud_t pud)
  437. {
  438. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  439. return 1;
  440. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  441. }
  442. static inline int pud_none(pud_t pud)
  443. {
  444. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  445. return 0;
  446. return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
  447. }
  448. static inline int pud_large(pud_t pud)
  449. {
  450. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
  451. return 0;
  452. return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
  453. }
  454. static inline int pud_bad(pud_t pud)
  455. {
  456. /*
  457. * With dynamic page table levels the pud can be a region table
  458. * entry or a segment table entry. Check for the bit that are
  459. * invalid for either table entry.
  460. */
  461. unsigned long mask =
  462. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
  463. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  464. return (pud_val(pud) & mask) != 0;
  465. }
  466. #endif /* CONFIG_64BIT */
  467. static inline int pmd_present(pmd_t pmd)
  468. {
  469. unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
  470. return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
  471. !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
  472. }
  473. static inline int pmd_none(pmd_t pmd)
  474. {
  475. return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
  476. !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
  477. }
  478. static inline int pmd_large(pmd_t pmd)
  479. {
  480. #ifdef CONFIG_64BIT
  481. return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
  482. #else
  483. return 0;
  484. #endif
  485. }
  486. static inline int pmd_bad(pmd_t pmd)
  487. {
  488. unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
  489. return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
  490. }
  491. #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
  492. extern void pmdp_splitting_flush(struct vm_area_struct *vma,
  493. unsigned long addr, pmd_t *pmdp);
  494. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  495. extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  496. unsigned long address, pmd_t *pmdp,
  497. pmd_t entry, int dirty);
  498. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  499. extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
  500. unsigned long address, pmd_t *pmdp);
  501. #define __HAVE_ARCH_PMD_WRITE
  502. static inline int pmd_write(pmd_t pmd)
  503. {
  504. return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
  505. }
  506. static inline int pmd_young(pmd_t pmd)
  507. {
  508. return 0;
  509. }
  510. static inline int pte_none(pte_t pte)
  511. {
  512. return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
  513. }
  514. static inline int pte_present(pte_t pte)
  515. {
  516. unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
  517. return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
  518. (!(pte_val(pte) & _PAGE_INVALID) &&
  519. !(pte_val(pte) & _PAGE_SWT));
  520. }
  521. static inline int pte_file(pte_t pte)
  522. {
  523. unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
  524. return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
  525. }
  526. static inline int pte_special(pte_t pte)
  527. {
  528. return (pte_val(pte) & _PAGE_SPECIAL);
  529. }
  530. #define __HAVE_ARCH_PTE_SAME
  531. static inline int pte_same(pte_t a, pte_t b)
  532. {
  533. return pte_val(a) == pte_val(b);
  534. }
  535. static inline pgste_t pgste_get_lock(pte_t *ptep)
  536. {
  537. unsigned long new = 0;
  538. #ifdef CONFIG_PGSTE
  539. unsigned long old;
  540. preempt_disable();
  541. asm(
  542. " lg %0,%2\n"
  543. "0: lgr %1,%0\n"
  544. " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
  545. " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
  546. " csg %0,%1,%2\n"
  547. " jl 0b\n"
  548. : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
  549. : "Q" (ptep[PTRS_PER_PTE]) : "cc");
  550. #endif
  551. return __pgste(new);
  552. }
  553. static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
  554. {
  555. #ifdef CONFIG_PGSTE
  556. asm(
  557. " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
  558. " stg %1,%0\n"
  559. : "=Q" (ptep[PTRS_PER_PTE])
  560. : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
  561. preempt_enable();
  562. #endif
  563. }
  564. static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
  565. {
  566. #ifdef CONFIG_PGSTE
  567. unsigned long address, bits;
  568. unsigned char skey;
  569. if (!pte_present(*ptep))
  570. return pgste;
  571. address = pte_val(*ptep) & PAGE_MASK;
  572. skey = page_get_storage_key(address);
  573. bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
  574. /* Clear page changed & referenced bit in the storage key */
  575. if (bits & _PAGE_CHANGED)
  576. page_set_storage_key(address, skey ^ bits, 0);
  577. else if (bits)
  578. page_reset_referenced(address);
  579. /* Transfer page changed & referenced bit to guest bits in pgste */
  580. pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */
  581. /* Get host changed & referenced bits from pgste */
  582. bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
  583. /* Transfer page changed & referenced bit to kvm user bits */
  584. pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */
  585. /* Clear relevant host bits in pgste. */
  586. pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
  587. pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
  588. /* Copy page access key and fetch protection bit to pgste */
  589. pgste_val(pgste) |=
  590. (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
  591. /* Transfer referenced bit to pte */
  592. pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
  593. #endif
  594. return pgste;
  595. }
  596. static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
  597. {
  598. #ifdef CONFIG_PGSTE
  599. int young;
  600. if (!pte_present(*ptep))
  601. return pgste;
  602. /* Get referenced bit from storage key */
  603. young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
  604. if (young)
  605. pgste_val(pgste) |= RCP_GR_BIT;
  606. /* Get host referenced bit from pgste */
  607. if (pgste_val(pgste) & RCP_HR_BIT) {
  608. pgste_val(pgste) &= ~RCP_HR_BIT;
  609. young = 1;
  610. }
  611. /* Transfer referenced bit to kvm user bits and pte */
  612. if (young) {
  613. pgste_val(pgste) |= KVM_UR_BIT;
  614. pte_val(*ptep) |= _PAGE_SWR;
  615. }
  616. #endif
  617. return pgste;
  618. }
  619. static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
  620. {
  621. #ifdef CONFIG_PGSTE
  622. unsigned long address;
  623. unsigned long okey, nkey;
  624. if (!pte_present(entry))
  625. return;
  626. address = pte_val(entry) & PAGE_MASK;
  627. okey = nkey = page_get_storage_key(address);
  628. nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
  629. /* Set page access key and fetch protection bit from pgste */
  630. nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
  631. if (okey != nkey)
  632. page_set_storage_key(address, nkey, 0);
  633. #endif
  634. }
  635. static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
  636. {
  637. if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
  638. /*
  639. * Without enhanced suppression-on-protection force
  640. * the dirty bit on for all writable ptes.
  641. */
  642. pte_val(entry) |= _PAGE_SWC;
  643. pte_val(entry) &= ~_PAGE_RO;
  644. }
  645. *ptep = entry;
  646. }
  647. /**
  648. * struct gmap_struct - guest address space
  649. * @mm: pointer to the parent mm_struct
  650. * @table: pointer to the page directory
  651. * @asce: address space control element for gmap page table
  652. * @crst_list: list of all crst tables used in the guest address space
  653. */
  654. struct gmap {
  655. struct list_head list;
  656. struct mm_struct *mm;
  657. unsigned long *table;
  658. unsigned long asce;
  659. struct list_head crst_list;
  660. };
  661. /**
  662. * struct gmap_rmap - reverse mapping for segment table entries
  663. * @gmap: pointer to the gmap_struct
  664. * @entry: pointer to a segment table entry
  665. * @vmaddr: virtual address in the guest address space
  666. */
  667. struct gmap_rmap {
  668. struct list_head list;
  669. struct gmap *gmap;
  670. unsigned long *entry;
  671. unsigned long vmaddr;
  672. };
  673. /**
  674. * struct gmap_pgtable - gmap information attached to a page table
  675. * @vmaddr: address of the 1MB segment in the process virtual memory
  676. * @mapper: list of segment table entries mapping a page table
  677. */
  678. struct gmap_pgtable {
  679. unsigned long vmaddr;
  680. struct list_head mapper;
  681. };
  682. /**
  683. * struct gmap_notifier - notify function block for page invalidation
  684. * @notifier_call: address of callback function
  685. */
  686. struct gmap_notifier {
  687. struct list_head list;
  688. void (*notifier_call)(struct gmap *gmap, unsigned long address);
  689. };
  690. struct gmap *gmap_alloc(struct mm_struct *mm);
  691. void gmap_free(struct gmap *gmap);
  692. void gmap_enable(struct gmap *gmap);
  693. void gmap_disable(struct gmap *gmap);
  694. int gmap_map_segment(struct gmap *gmap, unsigned long from,
  695. unsigned long to, unsigned long len);
  696. int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
  697. unsigned long __gmap_translate(unsigned long address, struct gmap *);
  698. unsigned long gmap_translate(unsigned long address, struct gmap *);
  699. unsigned long __gmap_fault(unsigned long address, struct gmap *);
  700. unsigned long gmap_fault(unsigned long address, struct gmap *);
  701. void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
  702. void gmap_register_ipte_notifier(struct gmap_notifier *);
  703. void gmap_unregister_ipte_notifier(struct gmap_notifier *);
  704. int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
  705. void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
  706. static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
  707. unsigned long addr,
  708. pte_t *ptep, pgste_t pgste)
  709. {
  710. #ifdef CONFIG_PGSTE
  711. if (pgste_val(pgste) & RCP_IN_BIT) {
  712. pgste_val(pgste) &= ~RCP_IN_BIT;
  713. gmap_do_ipte_notify(mm, addr, ptep);
  714. }
  715. #endif
  716. return pgste;
  717. }
  718. /*
  719. * Certain architectures need to do special things when PTEs
  720. * within a page table are directly modified. Thus, the following
  721. * hook is made available.
  722. */
  723. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  724. pte_t *ptep, pte_t entry)
  725. {
  726. pgste_t pgste;
  727. if (mm_has_pgste(mm)) {
  728. pgste = pgste_get_lock(ptep);
  729. pgste_set_key(ptep, pgste, entry);
  730. pgste_set_pte(ptep, entry);
  731. pgste_set_unlock(ptep, pgste);
  732. } else {
  733. if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
  734. pte_val(entry) |= _PAGE_CO;
  735. *ptep = entry;
  736. }
  737. }
  738. /*
  739. * query functions pte_write/pte_dirty/pte_young only work if
  740. * pte_present() is true. Undefined behaviour if not..
  741. */
  742. static inline int pte_write(pte_t pte)
  743. {
  744. return (pte_val(pte) & _PAGE_SWW) != 0;
  745. }
  746. static inline int pte_dirty(pte_t pte)
  747. {
  748. return (pte_val(pte) & _PAGE_SWC) != 0;
  749. }
  750. static inline int pte_young(pte_t pte)
  751. {
  752. #ifdef CONFIG_PGSTE
  753. if (pte_val(pte) & _PAGE_SWR)
  754. return 1;
  755. #endif
  756. return 0;
  757. }
  758. /*
  759. * pgd/pmd/pte modification functions
  760. */
  761. static inline void pgd_clear(pgd_t *pgd)
  762. {
  763. #ifdef CONFIG_64BIT
  764. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  765. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  766. #endif
  767. }
  768. static inline void pud_clear(pud_t *pud)
  769. {
  770. #ifdef CONFIG_64BIT
  771. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  772. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  773. #endif
  774. }
  775. static inline void pmd_clear(pmd_t *pmdp)
  776. {
  777. pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
  778. }
  779. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  780. {
  781. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  782. }
  783. /*
  784. * The following pte modification functions only work if
  785. * pte_present() is true. Undefined behaviour if not..
  786. */
  787. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  788. {
  789. pte_val(pte) &= _PAGE_CHG_MASK;
  790. pte_val(pte) |= pgprot_val(newprot);
  791. if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
  792. pte_val(pte) &= ~_PAGE_RO;
  793. return pte;
  794. }
  795. static inline pte_t pte_wrprotect(pte_t pte)
  796. {
  797. pte_val(pte) &= ~_PAGE_SWW;
  798. /* Do not clobber _PAGE_TYPE_NONE pages! */
  799. if (!(pte_val(pte) & _PAGE_INVALID))
  800. pte_val(pte) |= _PAGE_RO;
  801. return pte;
  802. }
  803. static inline pte_t pte_mkwrite(pte_t pte)
  804. {
  805. pte_val(pte) |= _PAGE_SWW;
  806. if (pte_val(pte) & _PAGE_SWC)
  807. pte_val(pte) &= ~_PAGE_RO;
  808. return pte;
  809. }
  810. static inline pte_t pte_mkclean(pte_t pte)
  811. {
  812. pte_val(pte) &= ~_PAGE_SWC;
  813. /* Do not clobber _PAGE_TYPE_NONE pages! */
  814. if (!(pte_val(pte) & _PAGE_INVALID))
  815. pte_val(pte) |= _PAGE_RO;
  816. return pte;
  817. }
  818. static inline pte_t pte_mkdirty(pte_t pte)
  819. {
  820. pte_val(pte) |= _PAGE_SWC;
  821. if (pte_val(pte) & _PAGE_SWW)
  822. pte_val(pte) &= ~_PAGE_RO;
  823. return pte;
  824. }
  825. static inline pte_t pte_mkold(pte_t pte)
  826. {
  827. #ifdef CONFIG_PGSTE
  828. pte_val(pte) &= ~_PAGE_SWR;
  829. #endif
  830. return pte;
  831. }
  832. static inline pte_t pte_mkyoung(pte_t pte)
  833. {
  834. return pte;
  835. }
  836. static inline pte_t pte_mkspecial(pte_t pte)
  837. {
  838. pte_val(pte) |= _PAGE_SPECIAL;
  839. return pte;
  840. }
  841. #ifdef CONFIG_HUGETLB_PAGE
  842. static inline pte_t pte_mkhuge(pte_t pte)
  843. {
  844. pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
  845. return pte;
  846. }
  847. #endif
  848. /*
  849. * Get (and clear) the user dirty bit for a pte.
  850. */
  851. static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
  852. pte_t *ptep)
  853. {
  854. pgste_t pgste;
  855. int dirty = 0;
  856. if (mm_has_pgste(mm)) {
  857. pgste = pgste_get_lock(ptep);
  858. pgste = pgste_update_all(ptep, pgste);
  859. dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
  860. pgste_val(pgste) &= ~KVM_UC_BIT;
  861. pgste_set_unlock(ptep, pgste);
  862. return dirty;
  863. }
  864. return dirty;
  865. }
  866. /*
  867. * Get (and clear) the user referenced bit for a pte.
  868. */
  869. static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
  870. pte_t *ptep)
  871. {
  872. pgste_t pgste;
  873. int young = 0;
  874. if (mm_has_pgste(mm)) {
  875. pgste = pgste_get_lock(ptep);
  876. pgste = pgste_update_young(ptep, pgste);
  877. young = !!(pgste_val(pgste) & KVM_UR_BIT);
  878. pgste_val(pgste) &= ~KVM_UR_BIT;
  879. pgste_set_unlock(ptep, pgste);
  880. }
  881. return young;
  882. }
  883. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  884. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  885. unsigned long addr, pte_t *ptep)
  886. {
  887. pgste_t pgste;
  888. pte_t pte;
  889. if (mm_has_pgste(vma->vm_mm)) {
  890. pgste = pgste_get_lock(ptep);
  891. pgste = pgste_update_young(ptep, pgste);
  892. pte = *ptep;
  893. *ptep = pte_mkold(pte);
  894. pgste_set_unlock(ptep, pgste);
  895. return pte_young(pte);
  896. }
  897. return 0;
  898. }
  899. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  900. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  901. unsigned long address, pte_t *ptep)
  902. {
  903. /* No need to flush TLB
  904. * On s390 reference bits are in storage key and never in TLB
  905. * With virtualization we handle the reference bit, without we
  906. * we can simply return */
  907. return ptep_test_and_clear_young(vma, address, ptep);
  908. }
  909. static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
  910. {
  911. if (!(pte_val(*ptep) & _PAGE_INVALID)) {
  912. #ifndef CONFIG_64BIT
  913. /* pto must point to the start of the segment table */
  914. pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
  915. #else
  916. /* ipte in zarch mode can do the math */
  917. pte_t *pto = ptep;
  918. #endif
  919. asm volatile(
  920. " ipte %2,%3"
  921. : "=m" (*ptep) : "m" (*ptep),
  922. "a" (pto), "a" (address));
  923. }
  924. }
  925. /*
  926. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  927. * both clear the TLB for the unmapped pte. The reason is that
  928. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  929. * to modify an active pte. The sequence is
  930. * 1) ptep_get_and_clear
  931. * 2) set_pte_at
  932. * 3) flush_tlb_range
  933. * On s390 the tlb needs to get flushed with the modification of the pte
  934. * if the pte is active. The only way how this can be implemented is to
  935. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  936. * is a nop.
  937. */
  938. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  939. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  940. unsigned long address, pte_t *ptep)
  941. {
  942. pgste_t pgste;
  943. pte_t pte;
  944. mm->context.flush_mm = 1;
  945. if (mm_has_pgste(mm)) {
  946. pgste = pgste_get_lock(ptep);
  947. pgste = pgste_ipte_notify(mm, address, ptep, pgste);
  948. }
  949. pte = *ptep;
  950. if (!mm_exclusive(mm))
  951. __ptep_ipte(address, ptep);
  952. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  953. if (mm_has_pgste(mm)) {
  954. pgste = pgste_update_all(&pte, pgste);
  955. pgste_set_unlock(ptep, pgste);
  956. }
  957. return pte;
  958. }
  959. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  960. static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
  961. unsigned long address,
  962. pte_t *ptep)
  963. {
  964. pgste_t pgste;
  965. pte_t pte;
  966. mm->context.flush_mm = 1;
  967. if (mm_has_pgste(mm)) {
  968. pgste = pgste_get_lock(ptep);
  969. pgste_ipte_notify(mm, address, ptep, pgste);
  970. }
  971. pte = *ptep;
  972. if (!mm_exclusive(mm))
  973. __ptep_ipte(address, ptep);
  974. return pte;
  975. }
  976. static inline void ptep_modify_prot_commit(struct mm_struct *mm,
  977. unsigned long address,
  978. pte_t *ptep, pte_t pte)
  979. {
  980. if (mm_has_pgste(mm)) {
  981. pgste_set_pte(ptep, pte);
  982. pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
  983. } else
  984. *ptep = pte;
  985. }
  986. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  987. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  988. unsigned long address, pte_t *ptep)
  989. {
  990. pgste_t pgste;
  991. pte_t pte;
  992. if (mm_has_pgste(vma->vm_mm)) {
  993. pgste = pgste_get_lock(ptep);
  994. pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
  995. }
  996. pte = *ptep;
  997. __ptep_ipte(address, ptep);
  998. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  999. if (mm_has_pgste(vma->vm_mm)) {
  1000. pgste = pgste_update_all(&pte, pgste);
  1001. pgste_set_unlock(ptep, pgste);
  1002. }
  1003. return pte;
  1004. }
  1005. /*
  1006. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  1007. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  1008. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  1009. * cannot be accessed while the batched unmap is running. In this case
  1010. * full==1 and a simple pte_clear is enough. See tlb.h.
  1011. */
  1012. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  1013. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  1014. unsigned long address,
  1015. pte_t *ptep, int full)
  1016. {
  1017. pgste_t pgste;
  1018. pte_t pte;
  1019. if (mm_has_pgste(mm)) {
  1020. pgste = pgste_get_lock(ptep);
  1021. if (!full)
  1022. pgste = pgste_ipte_notify(mm, address, ptep, pgste);
  1023. }
  1024. pte = *ptep;
  1025. if (!full)
  1026. __ptep_ipte(address, ptep);
  1027. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  1028. if (mm_has_pgste(mm)) {
  1029. pgste = pgste_update_all(&pte, pgste);
  1030. pgste_set_unlock(ptep, pgste);
  1031. }
  1032. return pte;
  1033. }
  1034. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  1035. static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
  1036. unsigned long address, pte_t *ptep)
  1037. {
  1038. pgste_t pgste;
  1039. pte_t pte = *ptep;
  1040. if (pte_write(pte)) {
  1041. mm->context.flush_mm = 1;
  1042. if (mm_has_pgste(mm)) {
  1043. pgste = pgste_get_lock(ptep);
  1044. pgste = pgste_ipte_notify(mm, address, ptep, pgste);
  1045. }
  1046. if (!mm_exclusive(mm))
  1047. __ptep_ipte(address, ptep);
  1048. pte = pte_wrprotect(pte);
  1049. if (mm_has_pgste(mm)) {
  1050. pgste_set_pte(ptep, pte);
  1051. pgste_set_unlock(ptep, pgste);
  1052. } else
  1053. *ptep = pte;
  1054. }
  1055. return pte;
  1056. }
  1057. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  1058. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  1059. unsigned long address, pte_t *ptep,
  1060. pte_t entry, int dirty)
  1061. {
  1062. pgste_t pgste;
  1063. if (pte_same(*ptep, entry))
  1064. return 0;
  1065. if (mm_has_pgste(vma->vm_mm)) {
  1066. pgste = pgste_get_lock(ptep);
  1067. pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
  1068. }
  1069. __ptep_ipte(address, ptep);
  1070. if (mm_has_pgste(vma->vm_mm)) {
  1071. pgste_set_pte(ptep, entry);
  1072. pgste_set_unlock(ptep, pgste);
  1073. } else
  1074. *ptep = entry;
  1075. return 1;
  1076. }
  1077. /*
  1078. * Conversion functions: convert a page and protection to a page entry,
  1079. * and a page entry and page directory to the page they refer to.
  1080. */
  1081. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  1082. {
  1083. pte_t __pte;
  1084. pte_val(__pte) = physpage + pgprot_val(pgprot);
  1085. return __pte;
  1086. }
  1087. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  1088. {
  1089. unsigned long physpage = page_to_phys(page);
  1090. pte_t __pte = mk_pte_phys(physpage, pgprot);
  1091. if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
  1092. pte_val(__pte) |= _PAGE_SWC;
  1093. pte_val(__pte) &= ~_PAGE_RO;
  1094. }
  1095. return __pte;
  1096. }
  1097. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  1098. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  1099. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  1100. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  1101. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  1102. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  1103. #ifndef CONFIG_64BIT
  1104. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  1105. #define pud_deref(pmd) ({ BUG(); 0UL; })
  1106. #define pgd_deref(pmd) ({ BUG(); 0UL; })
  1107. #define pud_offset(pgd, address) ((pud_t *) pgd)
  1108. #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
  1109. #else /* CONFIG_64BIT */
  1110. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  1111. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  1112. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  1113. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  1114. {
  1115. pud_t *pud = (pud_t *) pgd;
  1116. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  1117. pud = (pud_t *) pgd_deref(*pgd);
  1118. return pud + pud_index(address);
  1119. }
  1120. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  1121. {
  1122. pmd_t *pmd = (pmd_t *) pud;
  1123. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  1124. pmd = (pmd_t *) pud_deref(*pud);
  1125. return pmd + pmd_index(address);
  1126. }
  1127. #endif /* CONFIG_64BIT */
  1128. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  1129. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  1130. #define pte_page(x) pfn_to_page(pte_pfn(x))
  1131. #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
  1132. /* Find an entry in the lowest level page table.. */
  1133. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  1134. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  1135. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  1136. #define pte_unmap(pte) do { } while (0)
  1137. static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
  1138. {
  1139. unsigned long sto = (unsigned long) pmdp -
  1140. pmd_index(address) * sizeof(pmd_t);
  1141. if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
  1142. asm volatile(
  1143. " .insn rrf,0xb98e0000,%2,%3,0,0"
  1144. : "=m" (*pmdp)
  1145. : "m" (*pmdp), "a" (sto),
  1146. "a" ((address & HPAGE_MASK))
  1147. : "cc"
  1148. );
  1149. }
  1150. }
  1151. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
  1152. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1153. {
  1154. /*
  1155. * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
  1156. * Convert to segment table entry format.
  1157. */
  1158. if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
  1159. return pgprot_val(SEGMENT_NONE);
  1160. if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
  1161. return pgprot_val(SEGMENT_RO);
  1162. return pgprot_val(SEGMENT_RW);
  1163. }
  1164. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1165. {
  1166. pmd_val(pmd) &= _SEGMENT_CHG_MASK;
  1167. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1168. return pmd;
  1169. }
  1170. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1171. {
  1172. pmd_t __pmd;
  1173. pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
  1174. return __pmd;
  1175. }
  1176. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  1177. {
  1178. /* Do not clobber _HPAGE_TYPE_NONE pages! */
  1179. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
  1180. pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
  1181. return pmd;
  1182. }
  1183. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
  1184. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1185. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1186. extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
  1187. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1188. extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
  1189. static inline int pmd_trans_splitting(pmd_t pmd)
  1190. {
  1191. return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
  1192. }
  1193. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1194. pmd_t *pmdp, pmd_t entry)
  1195. {
  1196. if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
  1197. pmd_val(entry) |= _SEGMENT_ENTRY_CO;
  1198. *pmdp = entry;
  1199. }
  1200. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1201. {
  1202. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
  1203. return pmd;
  1204. }
  1205. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  1206. {
  1207. pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
  1208. return pmd;
  1209. }
  1210. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  1211. {
  1212. /* No dirty bit in the segment table entry. */
  1213. return pmd;
  1214. }
  1215. static inline pmd_t pmd_mkold(pmd_t pmd)
  1216. {
  1217. /* No referenced bit in the segment table entry. */
  1218. return pmd;
  1219. }
  1220. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1221. {
  1222. /* No referenced bit in the segment table entry. */
  1223. return pmd;
  1224. }
  1225. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1226. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1227. unsigned long address, pmd_t *pmdp)
  1228. {
  1229. unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
  1230. long tmp, rc;
  1231. int counter;
  1232. rc = 0;
  1233. if (MACHINE_HAS_RRBM) {
  1234. counter = PTRS_PER_PTE >> 6;
  1235. asm volatile(
  1236. "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
  1237. " ogr %1,%0\n"
  1238. " la %3,0(%4,%3)\n"
  1239. " brct %2,0b\n"
  1240. : "=&d" (tmp), "+&d" (rc), "+d" (counter),
  1241. "+a" (pmd_addr)
  1242. : "a" (64 * 4096UL) : "cc");
  1243. rc = !!rc;
  1244. } else {
  1245. counter = PTRS_PER_PTE;
  1246. asm volatile(
  1247. "0: rrbe 0,%2\n"
  1248. " la %2,0(%3,%2)\n"
  1249. " brc 12,1f\n"
  1250. " lhi %0,1\n"
  1251. "1: brct %1,0b\n"
  1252. : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
  1253. : "a" (4096UL) : "cc");
  1254. }
  1255. return rc;
  1256. }
  1257. #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
  1258. static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
  1259. unsigned long address, pmd_t *pmdp)
  1260. {
  1261. pmd_t pmd = *pmdp;
  1262. __pmd_idte(address, pmdp);
  1263. pmd_clear(pmdp);
  1264. return pmd;
  1265. }
  1266. #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
  1267. static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
  1268. unsigned long address, pmd_t *pmdp)
  1269. {
  1270. return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
  1271. }
  1272. #define __HAVE_ARCH_PMDP_INVALIDATE
  1273. static inline void pmdp_invalidate(struct vm_area_struct *vma,
  1274. unsigned long address, pmd_t *pmdp)
  1275. {
  1276. __pmd_idte(address, pmdp);
  1277. }
  1278. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  1279. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  1280. unsigned long address, pmd_t *pmdp)
  1281. {
  1282. pmd_t pmd = *pmdp;
  1283. if (pmd_write(pmd)) {
  1284. __pmd_idte(address, pmdp);
  1285. set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
  1286. }
  1287. }
  1288. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
  1289. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1290. static inline int pmd_trans_huge(pmd_t pmd)
  1291. {
  1292. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1293. }
  1294. static inline int has_transparent_hugepage(void)
  1295. {
  1296. return MACHINE_HAS_HPAGE ? 1 : 0;
  1297. }
  1298. static inline unsigned long pmd_pfn(pmd_t pmd)
  1299. {
  1300. return pmd_val(pmd) >> PAGE_SHIFT;
  1301. }
  1302. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1303. /*
  1304. * 31 bit swap entry format:
  1305. * A page-table entry has some bits we have to treat in a special way.
  1306. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
  1307. * exception will occur instead of a page translation exception. The
  1308. * specifiation exception has the bad habit not to store necessary
  1309. * information in the lowcore.
  1310. * Bit 21 and bit 22 are the page invalid bit and the page protection
  1311. * bit. We set both to indicate a swapped page.
  1312. * Bit 30 and 31 are used to distinguish the different page types. For
  1313. * a swapped page these bits need to be zero.
  1314. * This leaves the bits 1-19 and bits 24-29 to store type and offset.
  1315. * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
  1316. * plus 24 for the offset.
  1317. * 0| offset |0110|o|type |00|
  1318. * 0 0000000001111111111 2222 2 22222 33
  1319. * 0 1234567890123456789 0123 4 56789 01
  1320. *
  1321. * 64 bit swap entry format:
  1322. * A page-table entry has some bits we have to treat in a special way.
  1323. * Bits 52 and bit 55 have to be zero, otherwise an specification
  1324. * exception will occur instead of a page translation exception. The
  1325. * specifiation exception has the bad habit not to store necessary
  1326. * information in the lowcore.
  1327. * Bit 53 and bit 54 are the page invalid bit and the page protection
  1328. * bit. We set both to indicate a swapped page.
  1329. * Bit 62 and 63 are used to distinguish the different page types. For
  1330. * a swapped page these bits need to be zero.
  1331. * This leaves the bits 0-51 and bits 56-61 to store type and offset.
  1332. * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
  1333. * plus 56 for the offset.
  1334. * | offset |0110|o|type |00|
  1335. * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
  1336. * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
  1337. */
  1338. #ifndef CONFIG_64BIT
  1339. #define __SWP_OFFSET_MASK (~0UL >> 12)
  1340. #else
  1341. #define __SWP_OFFSET_MASK (~0UL >> 11)
  1342. #endif
  1343. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1344. {
  1345. pte_t pte;
  1346. offset &= __SWP_OFFSET_MASK;
  1347. pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
  1348. ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
  1349. return pte;
  1350. }
  1351. #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
  1352. #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
  1353. #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
  1354. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1355. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1356. #ifndef CONFIG_64BIT
  1357. # define PTE_FILE_MAX_BITS 26
  1358. #else /* CONFIG_64BIT */
  1359. # define PTE_FILE_MAX_BITS 59
  1360. #endif /* CONFIG_64BIT */
  1361. #define pte_to_pgoff(__pte) \
  1362. ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
  1363. #define pgoff_to_pte(__off) \
  1364. ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
  1365. | _PAGE_TYPE_FILE })
  1366. #endif /* !__ASSEMBLY__ */
  1367. #define kern_addr_valid(addr) (1)
  1368. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1369. extern int vmem_remove_mapping(unsigned long start, unsigned long size);
  1370. extern int s390_enable_sie(void);
  1371. /*
  1372. * No page table caches to initialise
  1373. */
  1374. static inline void pgtable_cache_init(void) { }
  1375. static inline void check_pgt_cache(void) { }
  1376. #include <asm-generic/pgtable.h>
  1377. #endif /* _S390_PAGE_H */