kvm-ia64.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966
  1. /*
  2. * kvm_ia64.c: Basic KVM support On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/fs.h>
  26. #include <linux/slab.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <linux/pci.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/gcc_intrin.h>
  38. #include <asm/pal.h>
  39. #include <asm/cacheflush.h>
  40. #include <asm/div64.h>
  41. #include <asm/tlb.h>
  42. #include <asm/elf.h>
  43. #include <asm/sn/addrs.h>
  44. #include <asm/sn/clksupport.h>
  45. #include <asm/sn/shub_mmr.h>
  46. #include "misc.h"
  47. #include "vti.h"
  48. #include "iodev.h"
  49. #include "ioapic.h"
  50. #include "lapic.h"
  51. #include "irq.h"
  52. static unsigned long kvm_vmm_base;
  53. static unsigned long kvm_vsa_base;
  54. static unsigned long kvm_vm_buffer;
  55. static unsigned long kvm_vm_buffer_size;
  56. unsigned long kvm_vmm_gp;
  57. static long vp_env_info;
  58. static struct kvm_vmm_info *kvm_vmm_info;
  59. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  60. struct kvm_stats_debugfs_item debugfs_entries[] = {
  61. { NULL }
  62. };
  63. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  64. {
  65. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  66. if (vcpu->kvm->arch.is_sn2)
  67. return rtc_time();
  68. else
  69. #endif
  70. return ia64_getreg(_IA64_REG_AR_ITC);
  71. }
  72. static void kvm_flush_icache(unsigned long start, unsigned long len)
  73. {
  74. int l;
  75. for (l = 0; l < (len + 32); l += 32)
  76. ia64_fc((void *)(start + l));
  77. ia64_sync_i();
  78. ia64_srlz_i();
  79. }
  80. static void kvm_flush_tlb_all(void)
  81. {
  82. unsigned long i, j, count0, count1, stride0, stride1, addr;
  83. long flags;
  84. addr = local_cpu_data->ptce_base;
  85. count0 = local_cpu_data->ptce_count[0];
  86. count1 = local_cpu_data->ptce_count[1];
  87. stride0 = local_cpu_data->ptce_stride[0];
  88. stride1 = local_cpu_data->ptce_stride[1];
  89. local_irq_save(flags);
  90. for (i = 0; i < count0; ++i) {
  91. for (j = 0; j < count1; ++j) {
  92. ia64_ptce(addr);
  93. addr += stride1;
  94. }
  95. addr += stride0;
  96. }
  97. local_irq_restore(flags);
  98. ia64_srlz_i(); /* srlz.i implies srlz.d */
  99. }
  100. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  101. {
  102. struct ia64_pal_retval iprv;
  103. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  104. (u64)opt_handler);
  105. return iprv.status;
  106. }
  107. static DEFINE_SPINLOCK(vp_lock);
  108. int kvm_arch_hardware_enable(void *garbage)
  109. {
  110. long status;
  111. long tmp_base;
  112. unsigned long pte;
  113. unsigned long saved_psr;
  114. int slot;
  115. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  116. local_irq_save(saved_psr);
  117. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  118. local_irq_restore(saved_psr);
  119. if (slot < 0)
  120. return -EINVAL;
  121. spin_lock(&vp_lock);
  122. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  123. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  124. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  125. if (status != 0) {
  126. spin_unlock(&vp_lock);
  127. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  128. return -EINVAL;
  129. }
  130. if (!kvm_vsa_base) {
  131. kvm_vsa_base = tmp_base;
  132. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  133. }
  134. spin_unlock(&vp_lock);
  135. ia64_ptr_entry(0x3, slot);
  136. return 0;
  137. }
  138. void kvm_arch_hardware_disable(void *garbage)
  139. {
  140. long status;
  141. int slot;
  142. unsigned long pte;
  143. unsigned long saved_psr;
  144. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  145. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  146. PAGE_KERNEL));
  147. local_irq_save(saved_psr);
  148. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  149. local_irq_restore(saved_psr);
  150. if (slot < 0)
  151. return;
  152. status = ia64_pal_vp_exit_env(host_iva);
  153. if (status)
  154. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  155. status);
  156. ia64_ptr_entry(0x3, slot);
  157. }
  158. void kvm_arch_check_processor_compat(void *rtn)
  159. {
  160. *(int *)rtn = 0;
  161. }
  162. int kvm_dev_ioctl_check_extension(long ext)
  163. {
  164. int r;
  165. switch (ext) {
  166. case KVM_CAP_IRQCHIP:
  167. case KVM_CAP_MP_STATE:
  168. case KVM_CAP_IRQ_INJECT_STATUS:
  169. r = 1;
  170. break;
  171. case KVM_CAP_COALESCED_MMIO:
  172. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  173. break;
  174. #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
  175. case KVM_CAP_IOMMU:
  176. r = iommu_present(&pci_bus_type);
  177. break;
  178. #endif
  179. default:
  180. r = 0;
  181. }
  182. return r;
  183. }
  184. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  185. {
  186. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  187. kvm_run->hw.hardware_exit_reason = 1;
  188. return 0;
  189. }
  190. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  191. {
  192. struct kvm_mmio_req *p;
  193. struct kvm_io_device *mmio_dev;
  194. int r;
  195. p = kvm_get_vcpu_ioreq(vcpu);
  196. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  197. goto mmio;
  198. vcpu->mmio_needed = 1;
  199. vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr;
  200. vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size;
  201. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  202. if (vcpu->mmio_is_write)
  203. memcpy(vcpu->arch.mmio_data, &p->data, p->size);
  204. memcpy(kvm_run->mmio.data, &p->data, p->size);
  205. kvm_run->exit_reason = KVM_EXIT_MMIO;
  206. return 0;
  207. mmio:
  208. if (p->dir)
  209. r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  210. p->size, &p->data);
  211. else
  212. r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  213. p->size, &p->data);
  214. if (r)
  215. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  216. p->state = STATE_IORESP_READY;
  217. return 1;
  218. }
  219. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  220. {
  221. struct exit_ctl_data *p;
  222. p = kvm_get_exit_data(vcpu);
  223. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  224. return kvm_pal_emul(vcpu, kvm_run);
  225. else {
  226. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  227. kvm_run->hw.hardware_exit_reason = 2;
  228. return 0;
  229. }
  230. }
  231. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  232. {
  233. struct exit_ctl_data *p;
  234. p = kvm_get_exit_data(vcpu);
  235. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  236. kvm_sal_emul(vcpu);
  237. return 1;
  238. } else {
  239. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  240. kvm_run->hw.hardware_exit_reason = 3;
  241. return 0;
  242. }
  243. }
  244. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  245. {
  246. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  247. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  248. vcpu->arch.irq_new_pending = 1;
  249. kvm_vcpu_kick(vcpu);
  250. return 1;
  251. }
  252. return 0;
  253. }
  254. /*
  255. * offset: address offset to IPI space.
  256. * value: deliver value.
  257. */
  258. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  259. uint64_t vector)
  260. {
  261. switch (dm) {
  262. case SAPIC_FIXED:
  263. break;
  264. case SAPIC_NMI:
  265. vector = 2;
  266. break;
  267. case SAPIC_EXTINT:
  268. vector = 0;
  269. break;
  270. case SAPIC_INIT:
  271. case SAPIC_PMI:
  272. default:
  273. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  274. return;
  275. }
  276. __apic_accept_irq(vcpu, vector);
  277. }
  278. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  279. unsigned long eid)
  280. {
  281. union ia64_lid lid;
  282. int i;
  283. struct kvm_vcpu *vcpu;
  284. kvm_for_each_vcpu(i, vcpu, kvm) {
  285. lid.val = VCPU_LID(vcpu);
  286. if (lid.id == id && lid.eid == eid)
  287. return vcpu;
  288. }
  289. return NULL;
  290. }
  291. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  292. {
  293. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  294. struct kvm_vcpu *target_vcpu;
  295. struct kvm_pt_regs *regs;
  296. union ia64_ipi_a addr = p->u.ipi_data.addr;
  297. union ia64_ipi_d data = p->u.ipi_data.data;
  298. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  299. if (!target_vcpu)
  300. return handle_vm_error(vcpu, kvm_run);
  301. if (!target_vcpu->arch.launched) {
  302. regs = vcpu_regs(target_vcpu);
  303. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  304. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  305. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  306. if (waitqueue_active(&target_vcpu->wq))
  307. wake_up_interruptible(&target_vcpu->wq);
  308. } else {
  309. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  310. if (target_vcpu != vcpu)
  311. kvm_vcpu_kick(target_vcpu);
  312. }
  313. return 1;
  314. }
  315. struct call_data {
  316. struct kvm_ptc_g ptc_g_data;
  317. struct kvm_vcpu *vcpu;
  318. };
  319. static void vcpu_global_purge(void *info)
  320. {
  321. struct call_data *p = (struct call_data *)info;
  322. struct kvm_vcpu *vcpu = p->vcpu;
  323. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  324. return;
  325. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  326. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  327. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  328. p->ptc_g_data;
  329. } else {
  330. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  331. vcpu->arch.ptc_g_count = 0;
  332. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  333. }
  334. }
  335. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  336. {
  337. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  338. struct kvm *kvm = vcpu->kvm;
  339. struct call_data call_data;
  340. int i;
  341. struct kvm_vcpu *vcpui;
  342. call_data.ptc_g_data = p->u.ptc_g_data;
  343. kvm_for_each_vcpu(i, vcpui, kvm) {
  344. if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
  345. vcpu == vcpui)
  346. continue;
  347. if (waitqueue_active(&vcpui->wq))
  348. wake_up_interruptible(&vcpui->wq);
  349. if (vcpui->cpu != -1) {
  350. call_data.vcpu = vcpui;
  351. smp_call_function_single(vcpui->cpu,
  352. vcpu_global_purge, &call_data, 1);
  353. } else
  354. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  355. }
  356. return 1;
  357. }
  358. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  359. {
  360. return 1;
  361. }
  362. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  363. {
  364. unsigned long pte, rtc_phys_addr, map_addr;
  365. int slot;
  366. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  367. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  368. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  369. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  370. vcpu->arch.sn_rtc_tr_slot = slot;
  371. if (slot < 0) {
  372. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  373. slot = 0;
  374. }
  375. return slot;
  376. }
  377. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  378. {
  379. ktime_t kt;
  380. long itc_diff;
  381. unsigned long vcpu_now_itc;
  382. unsigned long expires;
  383. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  384. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  385. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  386. if (irqchip_in_kernel(vcpu->kvm)) {
  387. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  388. if (time_after(vcpu_now_itc, vpd->itm)) {
  389. vcpu->arch.timer_check = 1;
  390. return 1;
  391. }
  392. itc_diff = vpd->itm - vcpu_now_itc;
  393. if (itc_diff < 0)
  394. itc_diff = -itc_diff;
  395. expires = div64_u64(itc_diff, cyc_per_usec);
  396. kt = ktime_set(0, 1000 * expires);
  397. vcpu->arch.ht_active = 1;
  398. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  399. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  400. kvm_vcpu_block(vcpu);
  401. hrtimer_cancel(p_ht);
  402. vcpu->arch.ht_active = 0;
  403. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  404. kvm_cpu_has_pending_timer(vcpu))
  405. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  406. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  407. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  408. return -EINTR;
  409. return 1;
  410. } else {
  411. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  412. return 0;
  413. }
  414. }
  415. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  416. struct kvm_run *kvm_run)
  417. {
  418. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  419. return 0;
  420. }
  421. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  422. struct kvm_run *kvm_run)
  423. {
  424. return 1;
  425. }
  426. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  427. struct kvm_run *kvm_run)
  428. {
  429. printk("VMM: %s", vcpu->arch.log_buf);
  430. return 1;
  431. }
  432. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  433. struct kvm_run *kvm_run) = {
  434. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  435. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  436. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  437. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  438. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  439. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  440. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  441. [EXIT_REASON_IPI] = handle_ipi,
  442. [EXIT_REASON_PTC_G] = handle_global_purge,
  443. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  444. };
  445. static const int kvm_vti_max_exit_handlers =
  446. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  447. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  448. {
  449. struct exit_ctl_data *p_exit_data;
  450. p_exit_data = kvm_get_exit_data(vcpu);
  451. return p_exit_data->exit_reason;
  452. }
  453. /*
  454. * The guest has exited. See if we can fix it or if we need userspace
  455. * assistance.
  456. */
  457. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  458. {
  459. u32 exit_reason = kvm_get_exit_reason(vcpu);
  460. vcpu->arch.last_exit = exit_reason;
  461. if (exit_reason < kvm_vti_max_exit_handlers
  462. && kvm_vti_exit_handlers[exit_reason])
  463. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  464. else {
  465. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  466. kvm_run->hw.hardware_exit_reason = exit_reason;
  467. }
  468. return 0;
  469. }
  470. static inline void vti_set_rr6(unsigned long rr6)
  471. {
  472. ia64_set_rr(RR6, rr6);
  473. ia64_srlz_i();
  474. }
  475. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  476. {
  477. unsigned long pte;
  478. struct kvm *kvm = vcpu->kvm;
  479. int r;
  480. /*Insert a pair of tr to map vmm*/
  481. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  482. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  483. if (r < 0)
  484. goto out;
  485. vcpu->arch.vmm_tr_slot = r;
  486. /*Insert a pairt of tr to map data of vm*/
  487. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  488. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  489. pte, KVM_VM_DATA_SHIFT);
  490. if (r < 0)
  491. goto out;
  492. vcpu->arch.vm_tr_slot = r;
  493. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  494. if (kvm->arch.is_sn2) {
  495. r = kvm_sn2_setup_mappings(vcpu);
  496. if (r < 0)
  497. goto out;
  498. }
  499. #endif
  500. r = 0;
  501. out:
  502. return r;
  503. }
  504. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  505. {
  506. struct kvm *kvm = vcpu->kvm;
  507. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  508. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  509. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  510. if (kvm->arch.is_sn2)
  511. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  512. #endif
  513. }
  514. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  515. {
  516. unsigned long psr;
  517. int r;
  518. int cpu = smp_processor_id();
  519. if (vcpu->arch.last_run_cpu != cpu ||
  520. per_cpu(last_vcpu, cpu) != vcpu) {
  521. per_cpu(last_vcpu, cpu) = vcpu;
  522. vcpu->arch.last_run_cpu = cpu;
  523. kvm_flush_tlb_all();
  524. }
  525. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  526. vti_set_rr6(vcpu->arch.vmm_rr);
  527. local_irq_save(psr);
  528. r = kvm_insert_vmm_mapping(vcpu);
  529. local_irq_restore(psr);
  530. return r;
  531. }
  532. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  533. {
  534. kvm_purge_vmm_mapping(vcpu);
  535. vti_set_rr6(vcpu->arch.host_rr6);
  536. }
  537. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  538. {
  539. union context *host_ctx, *guest_ctx;
  540. int r, idx;
  541. idx = srcu_read_lock(&vcpu->kvm->srcu);
  542. again:
  543. if (signal_pending(current)) {
  544. r = -EINTR;
  545. kvm_run->exit_reason = KVM_EXIT_INTR;
  546. goto out;
  547. }
  548. preempt_disable();
  549. local_irq_disable();
  550. /*Get host and guest context with guest address space.*/
  551. host_ctx = kvm_get_host_context(vcpu);
  552. guest_ctx = kvm_get_guest_context(vcpu);
  553. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  554. r = kvm_vcpu_pre_transition(vcpu);
  555. if (r < 0)
  556. goto vcpu_run_fail;
  557. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  558. vcpu->mode = IN_GUEST_MODE;
  559. kvm_guest_enter();
  560. /*
  561. * Transition to the guest
  562. */
  563. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  564. kvm_vcpu_post_transition(vcpu);
  565. vcpu->arch.launched = 1;
  566. set_bit(KVM_REQ_KICK, &vcpu->requests);
  567. local_irq_enable();
  568. /*
  569. * We must have an instruction between local_irq_enable() and
  570. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  571. * the interrupt shadow. The stat.exits increment will do nicely.
  572. * But we need to prevent reordering, hence this barrier():
  573. */
  574. barrier();
  575. kvm_guest_exit();
  576. vcpu->mode = OUTSIDE_GUEST_MODE;
  577. preempt_enable();
  578. idx = srcu_read_lock(&vcpu->kvm->srcu);
  579. r = kvm_handle_exit(kvm_run, vcpu);
  580. if (r > 0) {
  581. if (!need_resched())
  582. goto again;
  583. }
  584. out:
  585. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  586. if (r > 0) {
  587. kvm_resched(vcpu);
  588. idx = srcu_read_lock(&vcpu->kvm->srcu);
  589. goto again;
  590. }
  591. return r;
  592. vcpu_run_fail:
  593. local_irq_enable();
  594. preempt_enable();
  595. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  596. goto out;
  597. }
  598. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  599. {
  600. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  601. if (!vcpu->mmio_is_write)
  602. memcpy(&p->data, vcpu->arch.mmio_data, 8);
  603. p->state = STATE_IORESP_READY;
  604. }
  605. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  606. {
  607. int r;
  608. sigset_t sigsaved;
  609. if (vcpu->sigset_active)
  610. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  611. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  612. kvm_vcpu_block(vcpu);
  613. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  614. r = -EAGAIN;
  615. goto out;
  616. }
  617. if (vcpu->mmio_needed) {
  618. memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8);
  619. kvm_set_mmio_data(vcpu);
  620. vcpu->mmio_read_completed = 1;
  621. vcpu->mmio_needed = 0;
  622. }
  623. r = __vcpu_run(vcpu, kvm_run);
  624. out:
  625. if (vcpu->sigset_active)
  626. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  627. return r;
  628. }
  629. struct kvm *kvm_arch_alloc_vm(void)
  630. {
  631. struct kvm *kvm;
  632. uint64_t vm_base;
  633. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  634. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  635. if (!vm_base)
  636. return NULL;
  637. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  638. kvm = (struct kvm *)(vm_base +
  639. offsetof(struct kvm_vm_data, kvm_vm_struct));
  640. kvm->arch.vm_base = vm_base;
  641. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  642. return kvm;
  643. }
  644. struct kvm_ia64_io_range {
  645. unsigned long start;
  646. unsigned long size;
  647. unsigned long type;
  648. };
  649. static const struct kvm_ia64_io_range io_ranges[] = {
  650. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  651. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  652. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  653. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  654. {PIB_START, PIB_SIZE, GPFN_PIB},
  655. };
  656. static void kvm_build_io_pmt(struct kvm *kvm)
  657. {
  658. unsigned long i, j;
  659. /* Mark I/O ranges */
  660. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  661. i++) {
  662. for (j = io_ranges[i].start;
  663. j < io_ranges[i].start + io_ranges[i].size;
  664. j += PAGE_SIZE)
  665. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  666. io_ranges[i].type, 0);
  667. }
  668. }
  669. /*Use unused rids to virtualize guest rid.*/
  670. #define GUEST_PHYSICAL_RR0 0x1739
  671. #define GUEST_PHYSICAL_RR4 0x2739
  672. #define VMM_INIT_RR 0x1660
  673. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  674. {
  675. BUG_ON(!kvm);
  676. if (type)
  677. return -EINVAL;
  678. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  679. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  680. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  681. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  682. /*
  683. *Fill P2M entries for MMIO/IO ranges
  684. */
  685. kvm_build_io_pmt(kvm);
  686. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  687. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  688. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  689. return 0;
  690. }
  691. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  692. struct kvm_irqchip *chip)
  693. {
  694. int r;
  695. r = 0;
  696. switch (chip->chip_id) {
  697. case KVM_IRQCHIP_IOAPIC:
  698. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  699. break;
  700. default:
  701. r = -EINVAL;
  702. break;
  703. }
  704. return r;
  705. }
  706. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  707. {
  708. int r;
  709. r = 0;
  710. switch (chip->chip_id) {
  711. case KVM_IRQCHIP_IOAPIC:
  712. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  713. break;
  714. default:
  715. r = -EINVAL;
  716. break;
  717. }
  718. return r;
  719. }
  720. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  721. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  722. {
  723. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  724. int i;
  725. for (i = 0; i < 16; i++) {
  726. vpd->vgr[i] = regs->vpd.vgr[i];
  727. vpd->vbgr[i] = regs->vpd.vbgr[i];
  728. }
  729. for (i = 0; i < 128; i++)
  730. vpd->vcr[i] = regs->vpd.vcr[i];
  731. vpd->vhpi = regs->vpd.vhpi;
  732. vpd->vnat = regs->vpd.vnat;
  733. vpd->vbnat = regs->vpd.vbnat;
  734. vpd->vpsr = regs->vpd.vpsr;
  735. vpd->vpr = regs->vpd.vpr;
  736. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  737. RESTORE_REGS(mp_state);
  738. RESTORE_REGS(vmm_rr);
  739. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  740. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  741. RESTORE_REGS(itr_regions);
  742. RESTORE_REGS(dtr_regions);
  743. RESTORE_REGS(tc_regions);
  744. RESTORE_REGS(irq_check);
  745. RESTORE_REGS(itc_check);
  746. RESTORE_REGS(timer_check);
  747. RESTORE_REGS(timer_pending);
  748. RESTORE_REGS(last_itc);
  749. for (i = 0; i < 8; i++) {
  750. vcpu->arch.vrr[i] = regs->vrr[i];
  751. vcpu->arch.ibr[i] = regs->ibr[i];
  752. vcpu->arch.dbr[i] = regs->dbr[i];
  753. }
  754. for (i = 0; i < 4; i++)
  755. vcpu->arch.insvc[i] = regs->insvc[i];
  756. RESTORE_REGS(xtp);
  757. RESTORE_REGS(metaphysical_rr0);
  758. RESTORE_REGS(metaphysical_rr4);
  759. RESTORE_REGS(metaphysical_saved_rr0);
  760. RESTORE_REGS(metaphysical_saved_rr4);
  761. RESTORE_REGS(fp_psr);
  762. RESTORE_REGS(saved_gp);
  763. vcpu->arch.irq_new_pending = 1;
  764. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  765. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  766. return 0;
  767. }
  768. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
  769. bool line_status)
  770. {
  771. if (!irqchip_in_kernel(kvm))
  772. return -ENXIO;
  773. irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  774. irq_event->irq, irq_event->level,
  775. line_status);
  776. return 0;
  777. }
  778. long kvm_arch_vm_ioctl(struct file *filp,
  779. unsigned int ioctl, unsigned long arg)
  780. {
  781. struct kvm *kvm = filp->private_data;
  782. void __user *argp = (void __user *)arg;
  783. int r = -ENOTTY;
  784. switch (ioctl) {
  785. case KVM_CREATE_IRQCHIP:
  786. r = -EFAULT;
  787. r = kvm_ioapic_init(kvm);
  788. if (r)
  789. goto out;
  790. r = kvm_setup_default_irq_routing(kvm);
  791. if (r) {
  792. mutex_lock(&kvm->slots_lock);
  793. kvm_ioapic_destroy(kvm);
  794. mutex_unlock(&kvm->slots_lock);
  795. goto out;
  796. }
  797. break;
  798. case KVM_GET_IRQCHIP: {
  799. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  800. struct kvm_irqchip chip;
  801. r = -EFAULT;
  802. if (copy_from_user(&chip, argp, sizeof chip))
  803. goto out;
  804. r = -ENXIO;
  805. if (!irqchip_in_kernel(kvm))
  806. goto out;
  807. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  808. if (r)
  809. goto out;
  810. r = -EFAULT;
  811. if (copy_to_user(argp, &chip, sizeof chip))
  812. goto out;
  813. r = 0;
  814. break;
  815. }
  816. case KVM_SET_IRQCHIP: {
  817. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  818. struct kvm_irqchip chip;
  819. r = -EFAULT;
  820. if (copy_from_user(&chip, argp, sizeof chip))
  821. goto out;
  822. r = -ENXIO;
  823. if (!irqchip_in_kernel(kvm))
  824. goto out;
  825. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  826. if (r)
  827. goto out;
  828. r = 0;
  829. break;
  830. }
  831. default:
  832. ;
  833. }
  834. out:
  835. return r;
  836. }
  837. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  838. struct kvm_sregs *sregs)
  839. {
  840. return -EINVAL;
  841. }
  842. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  843. struct kvm_sregs *sregs)
  844. {
  845. return -EINVAL;
  846. }
  847. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  848. struct kvm_translation *tr)
  849. {
  850. return -EINVAL;
  851. }
  852. static int kvm_alloc_vmm_area(void)
  853. {
  854. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  855. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  856. get_order(KVM_VMM_SIZE));
  857. if (!kvm_vmm_base)
  858. return -ENOMEM;
  859. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  860. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  861. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  862. kvm_vmm_base, kvm_vm_buffer);
  863. }
  864. return 0;
  865. }
  866. static void kvm_free_vmm_area(void)
  867. {
  868. if (kvm_vmm_base) {
  869. /*Zero this area before free to avoid bits leak!!*/
  870. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  871. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  872. kvm_vmm_base = 0;
  873. kvm_vm_buffer = 0;
  874. kvm_vsa_base = 0;
  875. }
  876. }
  877. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  878. {
  879. int i;
  880. union cpuid3_t cpuid3;
  881. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  882. if (IS_ERR(vpd))
  883. return PTR_ERR(vpd);
  884. /* CPUID init */
  885. for (i = 0; i < 5; i++)
  886. vpd->vcpuid[i] = ia64_get_cpuid(i);
  887. /* Limit the CPUID number to 5 */
  888. cpuid3.value = vpd->vcpuid[3];
  889. cpuid3.number = 4; /* 5 - 1 */
  890. vpd->vcpuid[3] = cpuid3.value;
  891. /*Set vac and vdc fields*/
  892. vpd->vac.a_from_int_cr = 1;
  893. vpd->vac.a_to_int_cr = 1;
  894. vpd->vac.a_from_psr = 1;
  895. vpd->vac.a_from_cpuid = 1;
  896. vpd->vac.a_cover = 1;
  897. vpd->vac.a_bsw = 1;
  898. vpd->vac.a_int = 1;
  899. vpd->vdc.d_vmsw = 1;
  900. /*Set virtual buffer*/
  901. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  902. return 0;
  903. }
  904. static int vti_create_vp(struct kvm_vcpu *vcpu)
  905. {
  906. long ret;
  907. struct vpd *vpd = vcpu->arch.vpd;
  908. unsigned long vmm_ivt;
  909. vmm_ivt = kvm_vmm_info->vmm_ivt;
  910. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  911. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  912. if (ret) {
  913. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  914. return -EINVAL;
  915. }
  916. return 0;
  917. }
  918. static void init_ptce_info(struct kvm_vcpu *vcpu)
  919. {
  920. ia64_ptce_info_t ptce = {0};
  921. ia64_get_ptce(&ptce);
  922. vcpu->arch.ptce_base = ptce.base;
  923. vcpu->arch.ptce_count[0] = ptce.count[0];
  924. vcpu->arch.ptce_count[1] = ptce.count[1];
  925. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  926. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  927. }
  928. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  929. {
  930. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  931. if (hrtimer_cancel(p_ht))
  932. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  933. }
  934. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  935. {
  936. struct kvm_vcpu *vcpu;
  937. wait_queue_head_t *q;
  938. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  939. q = &vcpu->wq;
  940. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  941. goto out;
  942. if (waitqueue_active(q))
  943. wake_up_interruptible(q);
  944. out:
  945. vcpu->arch.timer_fired = 1;
  946. vcpu->arch.timer_check = 1;
  947. return HRTIMER_NORESTART;
  948. }
  949. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  950. bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
  951. {
  952. return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
  953. }
  954. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  955. {
  956. struct kvm_vcpu *v;
  957. int r;
  958. int i;
  959. long itc_offset;
  960. struct kvm *kvm = vcpu->kvm;
  961. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  962. union context *p_ctx = &vcpu->arch.guest;
  963. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  964. /*Init vcpu context for first run.*/
  965. if (IS_ERR(vmm_vcpu))
  966. return PTR_ERR(vmm_vcpu);
  967. if (kvm_vcpu_is_bsp(vcpu)) {
  968. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  969. /*Set entry address for first run.*/
  970. regs->cr_iip = PALE_RESET_ENTRY;
  971. /*Initialize itc offset for vcpus*/
  972. itc_offset = 0UL - kvm_get_itc(vcpu);
  973. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  974. v = (struct kvm_vcpu *)((char *)vcpu +
  975. sizeof(struct kvm_vcpu_data) * i);
  976. v->arch.itc_offset = itc_offset;
  977. v->arch.last_itc = 0;
  978. }
  979. } else
  980. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  981. r = -ENOMEM;
  982. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  983. if (!vcpu->arch.apic)
  984. goto out;
  985. vcpu->arch.apic->vcpu = vcpu;
  986. p_ctx->gr[1] = 0;
  987. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  988. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  989. p_ctx->psr = 0x1008522000UL;
  990. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  991. p_ctx->caller_unat = 0;
  992. p_ctx->pr = 0x0;
  993. p_ctx->ar[36] = 0x0; /*unat*/
  994. p_ctx->ar[19] = 0x0; /*rnat*/
  995. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  996. ((sizeof(struct kvm_vcpu)+15) & ~15);
  997. p_ctx->ar[64] = 0x0; /*pfs*/
  998. p_ctx->cr[0] = 0x7e04UL;
  999. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1000. p_ctx->cr[8] = 0x3c;
  1001. /*Initialize region register*/
  1002. p_ctx->rr[0] = 0x30;
  1003. p_ctx->rr[1] = 0x30;
  1004. p_ctx->rr[2] = 0x30;
  1005. p_ctx->rr[3] = 0x30;
  1006. p_ctx->rr[4] = 0x30;
  1007. p_ctx->rr[5] = 0x30;
  1008. p_ctx->rr[7] = 0x30;
  1009. /*Initialize branch register 0*/
  1010. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1011. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1012. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1013. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1014. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1015. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1016. vcpu->arch.last_run_cpu = -1;
  1017. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1018. vcpu->arch.vsa_base = kvm_vsa_base;
  1019. vcpu->arch.__gp = kvm_vmm_gp;
  1020. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1021. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1022. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1023. init_ptce_info(vcpu);
  1024. r = 0;
  1025. out:
  1026. return r;
  1027. }
  1028. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1029. {
  1030. unsigned long psr;
  1031. int r;
  1032. local_irq_save(psr);
  1033. r = kvm_insert_vmm_mapping(vcpu);
  1034. local_irq_restore(psr);
  1035. if (r)
  1036. goto fail;
  1037. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1038. if (r)
  1039. goto fail;
  1040. r = vti_init_vpd(vcpu);
  1041. if (r) {
  1042. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1043. goto uninit;
  1044. }
  1045. r = vti_create_vp(vcpu);
  1046. if (r)
  1047. goto uninit;
  1048. kvm_purge_vmm_mapping(vcpu);
  1049. return 0;
  1050. uninit:
  1051. kvm_vcpu_uninit(vcpu);
  1052. fail:
  1053. return r;
  1054. }
  1055. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1056. unsigned int id)
  1057. {
  1058. struct kvm_vcpu *vcpu;
  1059. unsigned long vm_base = kvm->arch.vm_base;
  1060. int r;
  1061. int cpu;
  1062. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1063. r = -EINVAL;
  1064. if (id >= KVM_MAX_VCPUS) {
  1065. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1066. KVM_MAX_VCPUS);
  1067. goto fail;
  1068. }
  1069. r = -ENOMEM;
  1070. if (!vm_base) {
  1071. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1072. goto fail;
  1073. }
  1074. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1075. vcpu_data[id].vcpu_struct));
  1076. vcpu->kvm = kvm;
  1077. cpu = get_cpu();
  1078. r = vti_vcpu_setup(vcpu, id);
  1079. put_cpu();
  1080. if (r) {
  1081. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1082. goto fail;
  1083. }
  1084. return vcpu;
  1085. fail:
  1086. return ERR_PTR(r);
  1087. }
  1088. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1089. {
  1090. return 0;
  1091. }
  1092. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  1093. {
  1094. return 0;
  1095. }
  1096. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1097. {
  1098. return -EINVAL;
  1099. }
  1100. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1101. {
  1102. return -EINVAL;
  1103. }
  1104. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1105. struct kvm_guest_debug *dbg)
  1106. {
  1107. return -EINVAL;
  1108. }
  1109. void kvm_arch_free_vm(struct kvm *kvm)
  1110. {
  1111. unsigned long vm_base = kvm->arch.vm_base;
  1112. if (vm_base) {
  1113. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1114. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1115. }
  1116. }
  1117. static void kvm_release_vm_pages(struct kvm *kvm)
  1118. {
  1119. struct kvm_memslots *slots;
  1120. struct kvm_memory_slot *memslot;
  1121. int j;
  1122. slots = kvm_memslots(kvm);
  1123. kvm_for_each_memslot(memslot, slots) {
  1124. for (j = 0; j < memslot->npages; j++) {
  1125. if (memslot->rmap[j])
  1126. put_page((struct page *)memslot->rmap[j]);
  1127. }
  1128. }
  1129. }
  1130. void kvm_arch_sync_events(struct kvm *kvm)
  1131. {
  1132. }
  1133. void kvm_arch_destroy_vm(struct kvm *kvm)
  1134. {
  1135. kvm_iommu_unmap_guest(kvm);
  1136. kvm_free_all_assigned_devices(kvm);
  1137. kfree(kvm->arch.vioapic);
  1138. kvm_release_vm_pages(kvm);
  1139. }
  1140. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1141. {
  1142. }
  1143. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1144. {
  1145. if (cpu != vcpu->cpu) {
  1146. vcpu->cpu = cpu;
  1147. if (vcpu->arch.ht_active)
  1148. kvm_migrate_hlt_timer(vcpu);
  1149. }
  1150. }
  1151. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1152. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1153. {
  1154. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1155. int i;
  1156. vcpu_load(vcpu);
  1157. for (i = 0; i < 16; i++) {
  1158. regs->vpd.vgr[i] = vpd->vgr[i];
  1159. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1160. }
  1161. for (i = 0; i < 128; i++)
  1162. regs->vpd.vcr[i] = vpd->vcr[i];
  1163. regs->vpd.vhpi = vpd->vhpi;
  1164. regs->vpd.vnat = vpd->vnat;
  1165. regs->vpd.vbnat = vpd->vbnat;
  1166. regs->vpd.vpsr = vpd->vpsr;
  1167. regs->vpd.vpr = vpd->vpr;
  1168. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1169. SAVE_REGS(mp_state);
  1170. SAVE_REGS(vmm_rr);
  1171. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1172. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1173. SAVE_REGS(itr_regions);
  1174. SAVE_REGS(dtr_regions);
  1175. SAVE_REGS(tc_regions);
  1176. SAVE_REGS(irq_check);
  1177. SAVE_REGS(itc_check);
  1178. SAVE_REGS(timer_check);
  1179. SAVE_REGS(timer_pending);
  1180. SAVE_REGS(last_itc);
  1181. for (i = 0; i < 8; i++) {
  1182. regs->vrr[i] = vcpu->arch.vrr[i];
  1183. regs->ibr[i] = vcpu->arch.ibr[i];
  1184. regs->dbr[i] = vcpu->arch.dbr[i];
  1185. }
  1186. for (i = 0; i < 4; i++)
  1187. regs->insvc[i] = vcpu->arch.insvc[i];
  1188. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1189. SAVE_REGS(xtp);
  1190. SAVE_REGS(metaphysical_rr0);
  1191. SAVE_REGS(metaphysical_rr4);
  1192. SAVE_REGS(metaphysical_saved_rr0);
  1193. SAVE_REGS(metaphysical_saved_rr4);
  1194. SAVE_REGS(fp_psr);
  1195. SAVE_REGS(saved_gp);
  1196. vcpu_put(vcpu);
  1197. return 0;
  1198. }
  1199. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1200. struct kvm_ia64_vcpu_stack *stack)
  1201. {
  1202. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1203. return 0;
  1204. }
  1205. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1206. struct kvm_ia64_vcpu_stack *stack)
  1207. {
  1208. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1209. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1210. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1211. return 0;
  1212. }
  1213. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1214. {
  1215. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1216. kfree(vcpu->arch.apic);
  1217. }
  1218. long kvm_arch_vcpu_ioctl(struct file *filp,
  1219. unsigned int ioctl, unsigned long arg)
  1220. {
  1221. struct kvm_vcpu *vcpu = filp->private_data;
  1222. void __user *argp = (void __user *)arg;
  1223. struct kvm_ia64_vcpu_stack *stack = NULL;
  1224. long r;
  1225. switch (ioctl) {
  1226. case KVM_IA64_VCPU_GET_STACK: {
  1227. struct kvm_ia64_vcpu_stack __user *user_stack;
  1228. void __user *first_p = argp;
  1229. r = -EFAULT;
  1230. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1231. goto out;
  1232. if (!access_ok(VERIFY_WRITE, user_stack,
  1233. sizeof(struct kvm_ia64_vcpu_stack))) {
  1234. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1235. "Illegal user destination address for stack\n");
  1236. goto out;
  1237. }
  1238. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1239. if (!stack) {
  1240. r = -ENOMEM;
  1241. goto out;
  1242. }
  1243. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1244. if (r)
  1245. goto out;
  1246. if (copy_to_user(user_stack, stack,
  1247. sizeof(struct kvm_ia64_vcpu_stack))) {
  1248. r = -EFAULT;
  1249. goto out;
  1250. }
  1251. break;
  1252. }
  1253. case KVM_IA64_VCPU_SET_STACK: {
  1254. struct kvm_ia64_vcpu_stack __user *user_stack;
  1255. void __user *first_p = argp;
  1256. r = -EFAULT;
  1257. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1258. goto out;
  1259. if (!access_ok(VERIFY_READ, user_stack,
  1260. sizeof(struct kvm_ia64_vcpu_stack))) {
  1261. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1262. "Illegal user address for stack\n");
  1263. goto out;
  1264. }
  1265. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1266. if (!stack) {
  1267. r = -ENOMEM;
  1268. goto out;
  1269. }
  1270. if (copy_from_user(stack, user_stack,
  1271. sizeof(struct kvm_ia64_vcpu_stack)))
  1272. goto out;
  1273. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1274. break;
  1275. }
  1276. default:
  1277. r = -EINVAL;
  1278. }
  1279. out:
  1280. kfree(stack);
  1281. return r;
  1282. }
  1283. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  1284. {
  1285. return VM_FAULT_SIGBUS;
  1286. }
  1287. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  1288. struct kvm_memory_slot *dont)
  1289. {
  1290. }
  1291. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  1292. {
  1293. return 0;
  1294. }
  1295. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  1296. struct kvm_memory_slot *memslot,
  1297. struct kvm_userspace_memory_region *mem,
  1298. enum kvm_mr_change change)
  1299. {
  1300. unsigned long i;
  1301. unsigned long pfn;
  1302. int npages = memslot->npages;
  1303. unsigned long base_gfn = memslot->base_gfn;
  1304. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1305. return -ENOMEM;
  1306. for (i = 0; i < npages; i++) {
  1307. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1308. if (!kvm_is_mmio_pfn(pfn)) {
  1309. kvm_set_pmt_entry(kvm, base_gfn + i,
  1310. pfn << PAGE_SHIFT,
  1311. _PAGE_AR_RWX | _PAGE_MA_WB);
  1312. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1313. } else {
  1314. kvm_set_pmt_entry(kvm, base_gfn + i,
  1315. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1316. _PAGE_MA_UC);
  1317. memslot->rmap[i] = 0;
  1318. }
  1319. }
  1320. return 0;
  1321. }
  1322. void kvm_arch_commit_memory_region(struct kvm *kvm,
  1323. struct kvm_userspace_memory_region *mem,
  1324. const struct kvm_memory_slot *old,
  1325. enum kvm_mr_change change)
  1326. {
  1327. return;
  1328. }
  1329. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  1330. {
  1331. kvm_flush_remote_tlbs(kvm);
  1332. }
  1333. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  1334. struct kvm_memory_slot *slot)
  1335. {
  1336. kvm_arch_flush_shadow_all();
  1337. }
  1338. long kvm_arch_dev_ioctl(struct file *filp,
  1339. unsigned int ioctl, unsigned long arg)
  1340. {
  1341. return -EINVAL;
  1342. }
  1343. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1344. {
  1345. kvm_vcpu_uninit(vcpu);
  1346. }
  1347. static int vti_cpu_has_kvm_support(void)
  1348. {
  1349. long avail = 1, status = 1, control = 1;
  1350. long ret;
  1351. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1352. if (ret)
  1353. goto out;
  1354. if (!(avail & PAL_PROC_VM_BIT))
  1355. goto out;
  1356. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1357. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1358. if (ret)
  1359. goto out;
  1360. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1361. if (!(vp_env_info & VP_OPCODE)) {
  1362. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1363. "vm_env_info:0x%lx\n", vp_env_info);
  1364. }
  1365. return 1;
  1366. out:
  1367. return 0;
  1368. }
  1369. /*
  1370. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1371. * SN2 RTC, replacing the ITC based default verion.
  1372. */
  1373. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1374. struct module *module)
  1375. {
  1376. unsigned long new_ar, new_ar_sn2;
  1377. unsigned long module_base;
  1378. if (!ia64_platform_is("sn2"))
  1379. return;
  1380. module_base = (unsigned long)module->module_core;
  1381. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1382. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1383. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1384. "as source\n");
  1385. /*
  1386. * Copy the SN2 version of mov_ar into place. They are both
  1387. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1388. */
  1389. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1390. }
  1391. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1392. struct module *module)
  1393. {
  1394. unsigned long module_base;
  1395. unsigned long vmm_size;
  1396. unsigned long vmm_offset, func_offset, fdesc_offset;
  1397. struct fdesc *p_fdesc;
  1398. BUG_ON(!module);
  1399. if (!kvm_vmm_base) {
  1400. printk("kvm: kvm area hasn't been initialized yet!!\n");
  1401. return -EFAULT;
  1402. }
  1403. /*Calculate new position of relocated vmm module.*/
  1404. module_base = (unsigned long)module->module_core;
  1405. vmm_size = module->core_size;
  1406. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1407. return -EFAULT;
  1408. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1409. kvm_patch_vmm(vmm_info, module);
  1410. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1411. /*Recalculate kvm_vmm_info based on new VMM*/
  1412. vmm_offset = vmm_info->vmm_ivt - module_base;
  1413. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1414. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1415. kvm_vmm_info->vmm_ivt);
  1416. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1417. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1418. fdesc_offset);
  1419. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1420. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1421. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1422. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1423. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1424. KVM_VMM_BASE+func_offset);
  1425. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1426. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1427. fdesc_offset);
  1428. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1429. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1430. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1431. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1432. kvm_vmm_gp = p_fdesc->gp;
  1433. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1434. kvm_vmm_info->vmm_entry);
  1435. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1436. KVM_VMM_BASE + func_offset);
  1437. return 0;
  1438. }
  1439. int kvm_arch_init(void *opaque)
  1440. {
  1441. int r;
  1442. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1443. if (!vti_cpu_has_kvm_support()) {
  1444. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1445. r = -EOPNOTSUPP;
  1446. goto out;
  1447. }
  1448. if (kvm_vmm_info) {
  1449. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1450. r = -EEXIST;
  1451. goto out;
  1452. }
  1453. r = -ENOMEM;
  1454. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1455. if (!kvm_vmm_info)
  1456. goto out;
  1457. if (kvm_alloc_vmm_area())
  1458. goto out_free0;
  1459. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1460. if (r)
  1461. goto out_free1;
  1462. return 0;
  1463. out_free1:
  1464. kvm_free_vmm_area();
  1465. out_free0:
  1466. kfree(kvm_vmm_info);
  1467. out:
  1468. return r;
  1469. }
  1470. void kvm_arch_exit(void)
  1471. {
  1472. kvm_free_vmm_area();
  1473. kfree(kvm_vmm_info);
  1474. kvm_vmm_info = NULL;
  1475. }
  1476. static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1477. struct kvm_memory_slot *memslot)
  1478. {
  1479. int i;
  1480. long base;
  1481. unsigned long n;
  1482. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1483. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1484. n = kvm_dirty_bitmap_bytes(memslot);
  1485. base = memslot->base_gfn / BITS_PER_LONG;
  1486. spin_lock(&kvm->arch.dirty_log_lock);
  1487. for (i = 0; i < n/sizeof(long); ++i) {
  1488. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1489. dirty_bitmap[base + i] = 0;
  1490. }
  1491. spin_unlock(&kvm->arch.dirty_log_lock);
  1492. }
  1493. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1494. struct kvm_dirty_log *log)
  1495. {
  1496. int r;
  1497. unsigned long n;
  1498. struct kvm_memory_slot *memslot;
  1499. int is_dirty = 0;
  1500. mutex_lock(&kvm->slots_lock);
  1501. r = -EINVAL;
  1502. if (log->slot >= KVM_USER_MEM_SLOTS)
  1503. goto out;
  1504. memslot = id_to_memslot(kvm->memslots, log->slot);
  1505. r = -ENOENT;
  1506. if (!memslot->dirty_bitmap)
  1507. goto out;
  1508. kvm_ia64_sync_dirty_log(kvm, memslot);
  1509. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1510. if (r)
  1511. goto out;
  1512. /* If nothing is dirty, don't bother messing with page tables. */
  1513. if (is_dirty) {
  1514. kvm_flush_remote_tlbs(kvm);
  1515. n = kvm_dirty_bitmap_bytes(memslot);
  1516. memset(memslot->dirty_bitmap, 0, n);
  1517. }
  1518. r = 0;
  1519. out:
  1520. mutex_unlock(&kvm->slots_lock);
  1521. return r;
  1522. }
  1523. int kvm_arch_hardware_setup(void)
  1524. {
  1525. return 0;
  1526. }
  1527. void kvm_arch_hardware_unsetup(void)
  1528. {
  1529. }
  1530. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1531. {
  1532. return __apic_accept_irq(vcpu, irq->vector);
  1533. }
  1534. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1535. {
  1536. return apic->vcpu->vcpu_id == dest;
  1537. }
  1538. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1539. {
  1540. return 0;
  1541. }
  1542. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1543. {
  1544. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1545. }
  1546. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1547. int short_hand, int dest, int dest_mode)
  1548. {
  1549. struct kvm_lapic *target = vcpu->arch.apic;
  1550. return (dest_mode == 0) ?
  1551. kvm_apic_match_physical_addr(target, dest) :
  1552. kvm_apic_match_logical_addr(target, dest);
  1553. }
  1554. static int find_highest_bits(int *dat)
  1555. {
  1556. u32 bits, bitnum;
  1557. int i;
  1558. /* loop for all 256 bits */
  1559. for (i = 7; i >= 0 ; i--) {
  1560. bits = dat[i];
  1561. if (bits) {
  1562. bitnum = fls(bits);
  1563. return i * 32 + bitnum - 1;
  1564. }
  1565. }
  1566. return -1;
  1567. }
  1568. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1569. {
  1570. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1571. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1572. return NMI_VECTOR;
  1573. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1574. return ExtINT_VECTOR;
  1575. return find_highest_bits((int *)&vpd->irr[0]);
  1576. }
  1577. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1578. {
  1579. return vcpu->arch.timer_fired;
  1580. }
  1581. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1582. {
  1583. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
  1584. (kvm_highest_pending_irq(vcpu) != -1);
  1585. }
  1586. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  1587. {
  1588. return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests));
  1589. }
  1590. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1591. struct kvm_mp_state *mp_state)
  1592. {
  1593. mp_state->mp_state = vcpu->arch.mp_state;
  1594. return 0;
  1595. }
  1596. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1597. {
  1598. int r;
  1599. long psr;
  1600. local_irq_save(psr);
  1601. r = kvm_insert_vmm_mapping(vcpu);
  1602. local_irq_restore(psr);
  1603. if (r)
  1604. goto fail;
  1605. vcpu->arch.launched = 0;
  1606. kvm_arch_vcpu_uninit(vcpu);
  1607. r = kvm_arch_vcpu_init(vcpu);
  1608. if (r)
  1609. goto fail;
  1610. kvm_purge_vmm_mapping(vcpu);
  1611. r = 0;
  1612. fail:
  1613. return r;
  1614. }
  1615. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1616. struct kvm_mp_state *mp_state)
  1617. {
  1618. int r = 0;
  1619. vcpu->arch.mp_state = mp_state->mp_state;
  1620. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1621. r = vcpu_reset(vcpu);
  1622. return r;
  1623. }