platsmp.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. /* linux/arch/arm/mach-exynos4/platsmp.c
  2. *
  3. * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * Cloned from linux/arch/arm/mach-vexpress/platsmp.c
  7. *
  8. * Copyright (C) 2002 ARM Ltd.
  9. * All Rights Reserved
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License version 2 as
  13. * published by the Free Software Foundation.
  14. */
  15. #include <linux/init.h>
  16. #include <linux/errno.h>
  17. #include <linux/delay.h>
  18. #include <linux/device.h>
  19. #include <linux/jiffies.h>
  20. #include <linux/smp.h>
  21. #include <linux/io.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/smp_scu.h>
  25. #include <asm/firmware.h>
  26. #include <mach/hardware.h>
  27. #include <mach/regs-clock.h>
  28. #include <mach/regs-pmu.h>
  29. #include <plat/cpu.h>
  30. #include "common.h"
  31. extern void exynos4_secondary_startup(void);
  32. static inline void __iomem *cpu_boot_reg_base(void)
  33. {
  34. if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_1_1)
  35. return S5P_INFORM5;
  36. return S5P_VA_SYSRAM;
  37. }
  38. static inline void __iomem *cpu_boot_reg(int cpu)
  39. {
  40. void __iomem *boot_reg;
  41. boot_reg = cpu_boot_reg_base();
  42. if (soc_is_exynos4412())
  43. boot_reg += 4*cpu;
  44. return boot_reg;
  45. }
  46. /*
  47. * Write pen_release in a way that is guaranteed to be visible to all
  48. * observers, irrespective of whether they're taking part in coherency
  49. * or not. This is necessary for the hotplug code to work reliably.
  50. */
  51. static void write_pen_release(int val)
  52. {
  53. pen_release = val;
  54. smp_wmb();
  55. __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
  56. outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
  57. }
  58. static void __iomem *scu_base_addr(void)
  59. {
  60. return (void __iomem *)(S5P_VA_SCU);
  61. }
  62. static DEFINE_SPINLOCK(boot_lock);
  63. static void __cpuinit exynos_secondary_init(unsigned int cpu)
  64. {
  65. /*
  66. * let the primary processor know we're out of the
  67. * pen, then head off into the C entry point
  68. */
  69. write_pen_release(-1);
  70. /*
  71. * Synchronise with the boot thread.
  72. */
  73. spin_lock(&boot_lock);
  74. spin_unlock(&boot_lock);
  75. }
  76. static int __cpuinit exynos_boot_secondary(unsigned int cpu, struct task_struct *idle)
  77. {
  78. unsigned long timeout;
  79. unsigned long phys_cpu = cpu_logical_map(cpu);
  80. /*
  81. * Set synchronisation state between this boot processor
  82. * and the secondary one
  83. */
  84. spin_lock(&boot_lock);
  85. /*
  86. * The secondary processor is waiting to be released from
  87. * the holding pen - release it, then wait for it to flag
  88. * that it has been released by resetting pen_release.
  89. *
  90. * Note that "pen_release" is the hardware CPU ID, whereas
  91. * "cpu" is Linux's internal ID.
  92. */
  93. write_pen_release(phys_cpu);
  94. if (!(__raw_readl(S5P_ARM_CORE1_STATUS) & S5P_CORE_LOCAL_PWR_EN)) {
  95. __raw_writel(S5P_CORE_LOCAL_PWR_EN,
  96. S5P_ARM_CORE1_CONFIGURATION);
  97. timeout = 10;
  98. /* wait max 10 ms until cpu1 is on */
  99. while ((__raw_readl(S5P_ARM_CORE1_STATUS)
  100. & S5P_CORE_LOCAL_PWR_EN) != S5P_CORE_LOCAL_PWR_EN) {
  101. if (timeout-- == 0)
  102. break;
  103. mdelay(1);
  104. }
  105. if (timeout == 0) {
  106. printk(KERN_ERR "cpu1 power enable failed");
  107. spin_unlock(&boot_lock);
  108. return -ETIMEDOUT;
  109. }
  110. }
  111. /*
  112. * Send the secondary CPU a soft interrupt, thereby causing
  113. * the boot monitor to read the system wide flags register,
  114. * and branch to the address found there.
  115. */
  116. timeout = jiffies + (1 * HZ);
  117. while (time_before(jiffies, timeout)) {
  118. unsigned long boot_addr;
  119. smp_rmb();
  120. boot_addr = virt_to_phys(exynos4_secondary_startup);
  121. /*
  122. * Try to set boot address using firmware first
  123. * and fall back to boot register if it fails.
  124. */
  125. if (call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr))
  126. __raw_writel(boot_addr, cpu_boot_reg(phys_cpu));
  127. call_firmware_op(cpu_boot, phys_cpu);
  128. arch_send_wakeup_ipi_mask(cpumask_of(cpu));
  129. if (pen_release == -1)
  130. break;
  131. udelay(10);
  132. }
  133. /*
  134. * now the secondary core is starting up let it run its
  135. * calibrations, then wait for it to finish
  136. */
  137. spin_unlock(&boot_lock);
  138. return pen_release != -1 ? -ENOSYS : 0;
  139. }
  140. /*
  141. * Initialise the CPU possible map early - this describes the CPUs
  142. * which may be present or become present in the system.
  143. */
  144. static void __init exynos_smp_init_cpus(void)
  145. {
  146. void __iomem *scu_base = scu_base_addr();
  147. unsigned int i, ncores;
  148. if (soc_is_exynos5250())
  149. ncores = 2;
  150. else
  151. ncores = scu_base ? scu_get_core_count(scu_base) : 1;
  152. /* sanity check */
  153. if (ncores > nr_cpu_ids) {
  154. pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
  155. ncores, nr_cpu_ids);
  156. ncores = nr_cpu_ids;
  157. }
  158. for (i = 0; i < ncores; i++)
  159. set_cpu_possible(i, true);
  160. }
  161. static void __init exynos_smp_prepare_cpus(unsigned int max_cpus)
  162. {
  163. int i;
  164. if (!(soc_is_exynos5250() || soc_is_exynos5440()))
  165. scu_enable(scu_base_addr());
  166. /*
  167. * Write the address of secondary startup into the
  168. * system-wide flags register. The boot monitor waits
  169. * until it receives a soft interrupt, and then the
  170. * secondary CPU branches to this address.
  171. *
  172. * Try using firmware operation first and fall back to
  173. * boot register if it fails.
  174. */
  175. for (i = 1; i < max_cpus; ++i) {
  176. unsigned long phys_cpu;
  177. unsigned long boot_addr;
  178. phys_cpu = cpu_logical_map(i);
  179. boot_addr = virt_to_phys(exynos4_secondary_startup);
  180. if (call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr))
  181. __raw_writel(boot_addr, cpu_boot_reg(phys_cpu));
  182. }
  183. }
  184. struct smp_operations exynos_smp_ops __initdata = {
  185. .smp_init_cpus = exynos_smp_init_cpus,
  186. .smp_prepare_cpus = exynos_smp_prepare_cpus,
  187. .smp_secondary_init = exynos_secondary_init,
  188. .smp_boot_secondary = exynos_boot_secondary,
  189. #ifdef CONFIG_HOTPLUG_CPU
  190. .cpu_die = exynos_cpu_die,
  191. #endif
  192. };