af_key.c 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/netns/generic.h>
  30. #include <net/xfrm.h>
  31. #include <net/sock.h>
  32. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  33. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  34. static int pfkey_net_id __read_mostly;
  35. struct netns_pfkey {
  36. /* List of all pfkey sockets. */
  37. struct hlist_head table;
  38. atomic_t socks_nr;
  39. };
  40. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  41. static DEFINE_RWLOCK(pfkey_table_lock);
  42. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  43. struct pfkey_sock {
  44. /* struct sock must be the first member of struct pfkey_sock */
  45. struct sock sk;
  46. int registered;
  47. int promisc;
  48. struct {
  49. uint8_t msg_version;
  50. uint32_t msg_pid;
  51. int (*dump)(struct pfkey_sock *sk);
  52. void (*done)(struct pfkey_sock *sk);
  53. union {
  54. struct xfrm_policy_walk policy;
  55. struct xfrm_state_walk state;
  56. } u;
  57. struct sk_buff *skb;
  58. } dump;
  59. };
  60. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  61. {
  62. return (struct pfkey_sock *)sk;
  63. }
  64. static int pfkey_can_dump(struct sock *sk)
  65. {
  66. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  67. return 1;
  68. return 0;
  69. }
  70. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  71. {
  72. if (pfk->dump.dump) {
  73. if (pfk->dump.skb) {
  74. kfree_skb(pfk->dump.skb);
  75. pfk->dump.skb = NULL;
  76. }
  77. pfk->dump.done(pfk);
  78. pfk->dump.dump = NULL;
  79. pfk->dump.done = NULL;
  80. }
  81. }
  82. static void pfkey_sock_destruct(struct sock *sk)
  83. {
  84. struct net *net = sock_net(sk);
  85. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  86. pfkey_terminate_dump(pfkey_sk(sk));
  87. skb_queue_purge(&sk->sk_receive_queue);
  88. if (!sock_flag(sk, SOCK_DEAD)) {
  89. printk("Attempt to release alive pfkey socket: %p\n", sk);
  90. return;
  91. }
  92. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  93. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  94. atomic_dec(&net_pfkey->socks_nr);
  95. }
  96. static void pfkey_table_grab(void)
  97. {
  98. write_lock_bh(&pfkey_table_lock);
  99. if (atomic_read(&pfkey_table_users)) {
  100. DECLARE_WAITQUEUE(wait, current);
  101. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  102. for(;;) {
  103. set_current_state(TASK_UNINTERRUPTIBLE);
  104. if (atomic_read(&pfkey_table_users) == 0)
  105. break;
  106. write_unlock_bh(&pfkey_table_lock);
  107. schedule();
  108. write_lock_bh(&pfkey_table_lock);
  109. }
  110. __set_current_state(TASK_RUNNING);
  111. remove_wait_queue(&pfkey_table_wait, &wait);
  112. }
  113. }
  114. static __inline__ void pfkey_table_ungrab(void)
  115. {
  116. write_unlock_bh(&pfkey_table_lock);
  117. wake_up(&pfkey_table_wait);
  118. }
  119. static __inline__ void pfkey_lock_table(void)
  120. {
  121. /* read_lock() synchronizes us to pfkey_table_grab */
  122. read_lock(&pfkey_table_lock);
  123. atomic_inc(&pfkey_table_users);
  124. read_unlock(&pfkey_table_lock);
  125. }
  126. static __inline__ void pfkey_unlock_table(void)
  127. {
  128. if (atomic_dec_and_test(&pfkey_table_users))
  129. wake_up(&pfkey_table_wait);
  130. }
  131. static const struct proto_ops pfkey_ops;
  132. static void pfkey_insert(struct sock *sk)
  133. {
  134. struct net *net = sock_net(sk);
  135. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  136. pfkey_table_grab();
  137. sk_add_node(sk, &net_pfkey->table);
  138. pfkey_table_ungrab();
  139. }
  140. static void pfkey_remove(struct sock *sk)
  141. {
  142. pfkey_table_grab();
  143. sk_del_node_init(sk);
  144. pfkey_table_ungrab();
  145. }
  146. static struct proto key_proto = {
  147. .name = "KEY",
  148. .owner = THIS_MODULE,
  149. .obj_size = sizeof(struct pfkey_sock),
  150. };
  151. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  152. int kern)
  153. {
  154. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  155. struct sock *sk;
  156. int err;
  157. if (!capable(CAP_NET_ADMIN))
  158. return -EPERM;
  159. if (sock->type != SOCK_RAW)
  160. return -ESOCKTNOSUPPORT;
  161. if (protocol != PF_KEY_V2)
  162. return -EPROTONOSUPPORT;
  163. err = -ENOMEM;
  164. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  165. if (sk == NULL)
  166. goto out;
  167. sock->ops = &pfkey_ops;
  168. sock_init_data(sock, sk);
  169. sk->sk_family = PF_KEY;
  170. sk->sk_destruct = pfkey_sock_destruct;
  171. atomic_inc(&net_pfkey->socks_nr);
  172. pfkey_insert(sk);
  173. return 0;
  174. out:
  175. return err;
  176. }
  177. static int pfkey_release(struct socket *sock)
  178. {
  179. struct sock *sk = sock->sk;
  180. if (!sk)
  181. return 0;
  182. pfkey_remove(sk);
  183. sock_orphan(sk);
  184. sock->sk = NULL;
  185. skb_queue_purge(&sk->sk_write_queue);
  186. sock_put(sk);
  187. return 0;
  188. }
  189. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  190. gfp_t allocation, struct sock *sk)
  191. {
  192. int err = -ENOBUFS;
  193. sock_hold(sk);
  194. if (*skb2 == NULL) {
  195. if (atomic_read(&skb->users) != 1) {
  196. *skb2 = skb_clone(skb, allocation);
  197. } else {
  198. *skb2 = skb;
  199. atomic_inc(&skb->users);
  200. }
  201. }
  202. if (*skb2 != NULL) {
  203. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  204. skb_orphan(*skb2);
  205. skb_set_owner_r(*skb2, sk);
  206. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  207. sk->sk_data_ready(sk, (*skb2)->len);
  208. *skb2 = NULL;
  209. err = 0;
  210. }
  211. }
  212. sock_put(sk);
  213. return err;
  214. }
  215. /* Send SKB to all pfkey sockets matching selected criteria. */
  216. #define BROADCAST_ALL 0
  217. #define BROADCAST_ONE 1
  218. #define BROADCAST_REGISTERED 2
  219. #define BROADCAST_PROMISC_ONLY 4
  220. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  221. int broadcast_flags, struct sock *one_sk,
  222. struct net *net)
  223. {
  224. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  225. struct sock *sk;
  226. struct hlist_node *node;
  227. struct sk_buff *skb2 = NULL;
  228. int err = -ESRCH;
  229. /* XXX Do we need something like netlink_overrun? I think
  230. * XXX PF_KEY socket apps will not mind current behavior.
  231. */
  232. if (!skb)
  233. return -ENOMEM;
  234. pfkey_lock_table();
  235. sk_for_each(sk, node, &net_pfkey->table) {
  236. struct pfkey_sock *pfk = pfkey_sk(sk);
  237. int err2;
  238. /* Yes, it means that if you are meant to receive this
  239. * pfkey message you receive it twice as promiscuous
  240. * socket.
  241. */
  242. if (pfk->promisc)
  243. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  244. /* the exact target will be processed later */
  245. if (sk == one_sk)
  246. continue;
  247. if (broadcast_flags != BROADCAST_ALL) {
  248. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  249. continue;
  250. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  251. !pfk->registered)
  252. continue;
  253. if (broadcast_flags & BROADCAST_ONE)
  254. continue;
  255. }
  256. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  257. /* Error is cleare after succecful sending to at least one
  258. * registered KM */
  259. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  260. err = err2;
  261. }
  262. pfkey_unlock_table();
  263. if (one_sk != NULL)
  264. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  265. kfree_skb(skb2);
  266. kfree_skb(skb);
  267. return err;
  268. }
  269. static int pfkey_do_dump(struct pfkey_sock *pfk)
  270. {
  271. struct sadb_msg *hdr;
  272. int rc;
  273. rc = pfk->dump.dump(pfk);
  274. if (rc == -ENOBUFS)
  275. return 0;
  276. if (pfk->dump.skb) {
  277. if (!pfkey_can_dump(&pfk->sk))
  278. return 0;
  279. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  280. hdr->sadb_msg_seq = 0;
  281. hdr->sadb_msg_errno = rc;
  282. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  283. &pfk->sk, sock_net(&pfk->sk));
  284. pfk->dump.skb = NULL;
  285. }
  286. pfkey_terminate_dump(pfk);
  287. return rc;
  288. }
  289. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  290. {
  291. *new = *orig;
  292. }
  293. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  294. {
  295. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  296. struct sadb_msg *hdr;
  297. if (!skb)
  298. return -ENOBUFS;
  299. /* Woe be to the platform trying to support PFKEY yet
  300. * having normal errnos outside the 1-255 range, inclusive.
  301. */
  302. err = -err;
  303. if (err == ERESTARTSYS ||
  304. err == ERESTARTNOHAND ||
  305. err == ERESTARTNOINTR)
  306. err = EINTR;
  307. if (err >= 512)
  308. err = EINVAL;
  309. BUG_ON(err <= 0 || err >= 256);
  310. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  311. pfkey_hdr_dup(hdr, orig);
  312. hdr->sadb_msg_errno = (uint8_t) err;
  313. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  314. sizeof(uint64_t));
  315. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  316. return 0;
  317. }
  318. static u8 sadb_ext_min_len[] = {
  319. [SADB_EXT_RESERVED] = (u8) 0,
  320. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  321. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  322. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  323. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  324. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  325. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  326. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  327. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  328. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  329. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  330. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  331. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  332. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  333. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  334. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  335. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  336. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  337. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  338. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  339. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  340. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  341. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  342. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  343. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  344. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  345. };
  346. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  347. static int verify_address_len(void *p)
  348. {
  349. struct sadb_address *sp = p;
  350. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  351. struct sockaddr_in *sin;
  352. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  353. struct sockaddr_in6 *sin6;
  354. #endif
  355. int len;
  356. switch (addr->sa_family) {
  357. case AF_INET:
  358. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  359. if (sp->sadb_address_len != len ||
  360. sp->sadb_address_prefixlen > 32)
  361. return -EINVAL;
  362. break;
  363. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  364. case AF_INET6:
  365. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  366. if (sp->sadb_address_len != len ||
  367. sp->sadb_address_prefixlen > 128)
  368. return -EINVAL;
  369. break;
  370. #endif
  371. default:
  372. /* It is user using kernel to keep track of security
  373. * associations for another protocol, such as
  374. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  375. * lengths.
  376. *
  377. * XXX Actually, association/policy database is not yet
  378. * XXX able to cope with arbitrary sockaddr families.
  379. * XXX When it can, remove this -EINVAL. -DaveM
  380. */
  381. return -EINVAL;
  382. break;
  383. }
  384. return 0;
  385. }
  386. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  387. {
  388. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  389. sec_ctx->sadb_x_ctx_len,
  390. sizeof(uint64_t));
  391. }
  392. static inline int verify_sec_ctx_len(void *p)
  393. {
  394. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  395. int len = sec_ctx->sadb_x_ctx_len;
  396. if (len > PAGE_SIZE)
  397. return -EINVAL;
  398. len = pfkey_sec_ctx_len(sec_ctx);
  399. if (sec_ctx->sadb_x_sec_len != len)
  400. return -EINVAL;
  401. return 0;
  402. }
  403. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  404. {
  405. struct xfrm_user_sec_ctx *uctx = NULL;
  406. int ctx_size = sec_ctx->sadb_x_ctx_len;
  407. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  408. if (!uctx)
  409. return NULL;
  410. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  411. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  412. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  413. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  414. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  415. memcpy(uctx + 1, sec_ctx + 1,
  416. uctx->ctx_len);
  417. return uctx;
  418. }
  419. static int present_and_same_family(struct sadb_address *src,
  420. struct sadb_address *dst)
  421. {
  422. struct sockaddr *s_addr, *d_addr;
  423. if (!src || !dst)
  424. return 0;
  425. s_addr = (struct sockaddr *)(src + 1);
  426. d_addr = (struct sockaddr *)(dst + 1);
  427. if (s_addr->sa_family != d_addr->sa_family)
  428. return 0;
  429. if (s_addr->sa_family != AF_INET
  430. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  431. && s_addr->sa_family != AF_INET6
  432. #endif
  433. )
  434. return 0;
  435. return 1;
  436. }
  437. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  438. {
  439. char *p = (char *) hdr;
  440. int len = skb->len;
  441. len -= sizeof(*hdr);
  442. p += sizeof(*hdr);
  443. while (len > 0) {
  444. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  445. uint16_t ext_type;
  446. int ext_len;
  447. ext_len = ehdr->sadb_ext_len;
  448. ext_len *= sizeof(uint64_t);
  449. ext_type = ehdr->sadb_ext_type;
  450. if (ext_len < sizeof(uint64_t) ||
  451. ext_len > len ||
  452. ext_type == SADB_EXT_RESERVED)
  453. return -EINVAL;
  454. if (ext_type <= SADB_EXT_MAX) {
  455. int min = (int) sadb_ext_min_len[ext_type];
  456. if (ext_len < min)
  457. return -EINVAL;
  458. if (ext_hdrs[ext_type-1] != NULL)
  459. return -EINVAL;
  460. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  461. ext_type == SADB_EXT_ADDRESS_DST ||
  462. ext_type == SADB_EXT_ADDRESS_PROXY ||
  463. ext_type == SADB_X_EXT_NAT_T_OA) {
  464. if (verify_address_len(p))
  465. return -EINVAL;
  466. }
  467. if (ext_type == SADB_X_EXT_SEC_CTX) {
  468. if (verify_sec_ctx_len(p))
  469. return -EINVAL;
  470. }
  471. ext_hdrs[ext_type-1] = p;
  472. }
  473. p += ext_len;
  474. len -= ext_len;
  475. }
  476. return 0;
  477. }
  478. static uint16_t
  479. pfkey_satype2proto(uint8_t satype)
  480. {
  481. switch (satype) {
  482. case SADB_SATYPE_UNSPEC:
  483. return IPSEC_PROTO_ANY;
  484. case SADB_SATYPE_AH:
  485. return IPPROTO_AH;
  486. case SADB_SATYPE_ESP:
  487. return IPPROTO_ESP;
  488. case SADB_X_SATYPE_IPCOMP:
  489. return IPPROTO_COMP;
  490. break;
  491. default:
  492. return 0;
  493. }
  494. /* NOTREACHED */
  495. }
  496. static uint8_t
  497. pfkey_proto2satype(uint16_t proto)
  498. {
  499. switch (proto) {
  500. case IPPROTO_AH:
  501. return SADB_SATYPE_AH;
  502. case IPPROTO_ESP:
  503. return SADB_SATYPE_ESP;
  504. case IPPROTO_COMP:
  505. return SADB_X_SATYPE_IPCOMP;
  506. break;
  507. default:
  508. return 0;
  509. }
  510. /* NOTREACHED */
  511. }
  512. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  513. * say specifically 'just raw sockets' as we encode them as 255.
  514. */
  515. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  516. {
  517. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  518. }
  519. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  520. {
  521. return (proto ? proto : IPSEC_PROTO_ANY);
  522. }
  523. static inline int pfkey_sockaddr_len(sa_family_t family)
  524. {
  525. switch (family) {
  526. case AF_INET:
  527. return sizeof(struct sockaddr_in);
  528. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  529. case AF_INET6:
  530. return sizeof(struct sockaddr_in6);
  531. #endif
  532. }
  533. return 0;
  534. }
  535. static
  536. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  537. {
  538. switch (sa->sa_family) {
  539. case AF_INET:
  540. xaddr->a4 =
  541. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  542. return AF_INET;
  543. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  544. case AF_INET6:
  545. memcpy(xaddr->a6,
  546. &((struct sockaddr_in6 *)sa)->sin6_addr,
  547. sizeof(struct in6_addr));
  548. return AF_INET6;
  549. #endif
  550. }
  551. return 0;
  552. }
  553. static
  554. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  555. {
  556. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  557. xaddr);
  558. }
  559. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, struct sadb_msg *hdr, void **ext_hdrs)
  560. {
  561. struct sadb_sa *sa;
  562. struct sadb_address *addr;
  563. uint16_t proto;
  564. unsigned short family;
  565. xfrm_address_t *xaddr;
  566. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  567. if (sa == NULL)
  568. return NULL;
  569. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  570. if (proto == 0)
  571. return NULL;
  572. /* sadb_address_len should be checked by caller */
  573. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  574. if (addr == NULL)
  575. return NULL;
  576. family = ((struct sockaddr *)(addr + 1))->sa_family;
  577. switch (family) {
  578. case AF_INET:
  579. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  580. break;
  581. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  582. case AF_INET6:
  583. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  584. break;
  585. #endif
  586. default:
  587. xaddr = NULL;
  588. }
  589. if (!xaddr)
  590. return NULL;
  591. return xfrm_state_lookup(net, xaddr, sa->sadb_sa_spi, proto, family);
  592. }
  593. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  594. static int
  595. pfkey_sockaddr_size(sa_family_t family)
  596. {
  597. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  598. }
  599. static inline int pfkey_mode_from_xfrm(int mode)
  600. {
  601. switch(mode) {
  602. case XFRM_MODE_TRANSPORT:
  603. return IPSEC_MODE_TRANSPORT;
  604. case XFRM_MODE_TUNNEL:
  605. return IPSEC_MODE_TUNNEL;
  606. case XFRM_MODE_BEET:
  607. return IPSEC_MODE_BEET;
  608. default:
  609. return -1;
  610. }
  611. }
  612. static inline int pfkey_mode_to_xfrm(int mode)
  613. {
  614. switch(mode) {
  615. case IPSEC_MODE_ANY: /*XXX*/
  616. case IPSEC_MODE_TRANSPORT:
  617. return XFRM_MODE_TRANSPORT;
  618. case IPSEC_MODE_TUNNEL:
  619. return XFRM_MODE_TUNNEL;
  620. case IPSEC_MODE_BEET:
  621. return XFRM_MODE_BEET;
  622. default:
  623. return -1;
  624. }
  625. }
  626. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  627. struct sockaddr *sa,
  628. unsigned short family)
  629. {
  630. switch (family) {
  631. case AF_INET:
  632. {
  633. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  634. sin->sin_family = AF_INET;
  635. sin->sin_port = port;
  636. sin->sin_addr.s_addr = xaddr->a4;
  637. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  638. return 32;
  639. }
  640. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  641. case AF_INET6:
  642. {
  643. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  644. sin6->sin6_family = AF_INET6;
  645. sin6->sin6_port = port;
  646. sin6->sin6_flowinfo = 0;
  647. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  648. sin6->sin6_scope_id = 0;
  649. return 128;
  650. }
  651. #endif
  652. }
  653. return 0;
  654. }
  655. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  656. int add_keys, int hsc)
  657. {
  658. struct sk_buff *skb;
  659. struct sadb_msg *hdr;
  660. struct sadb_sa *sa;
  661. struct sadb_lifetime *lifetime;
  662. struct sadb_address *addr;
  663. struct sadb_key *key;
  664. struct sadb_x_sa2 *sa2;
  665. struct sadb_x_sec_ctx *sec_ctx;
  666. struct xfrm_sec_ctx *xfrm_ctx;
  667. int ctx_size = 0;
  668. int size;
  669. int auth_key_size = 0;
  670. int encrypt_key_size = 0;
  671. int sockaddr_size;
  672. struct xfrm_encap_tmpl *natt = NULL;
  673. int mode;
  674. /* address family check */
  675. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  676. if (!sockaddr_size)
  677. return ERR_PTR(-EINVAL);
  678. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  679. key(AE), (identity(SD),) (sensitivity)> */
  680. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  681. sizeof(struct sadb_lifetime) +
  682. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  683. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  684. sizeof(struct sadb_address)*2 +
  685. sockaddr_size*2 +
  686. sizeof(struct sadb_x_sa2);
  687. if ((xfrm_ctx = x->security)) {
  688. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  689. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  690. }
  691. /* identity & sensitivity */
  692. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  693. size += sizeof(struct sadb_address) + sockaddr_size;
  694. if (add_keys) {
  695. if (x->aalg && x->aalg->alg_key_len) {
  696. auth_key_size =
  697. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  698. size += sizeof(struct sadb_key) + auth_key_size;
  699. }
  700. if (x->ealg && x->ealg->alg_key_len) {
  701. encrypt_key_size =
  702. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  703. size += sizeof(struct sadb_key) + encrypt_key_size;
  704. }
  705. }
  706. if (x->encap)
  707. natt = x->encap;
  708. if (natt && natt->encap_type) {
  709. size += sizeof(struct sadb_x_nat_t_type);
  710. size += sizeof(struct sadb_x_nat_t_port);
  711. size += sizeof(struct sadb_x_nat_t_port);
  712. }
  713. skb = alloc_skb(size + 16, GFP_ATOMIC);
  714. if (skb == NULL)
  715. return ERR_PTR(-ENOBUFS);
  716. /* call should fill header later */
  717. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  718. memset(hdr, 0, size); /* XXX do we need this ? */
  719. hdr->sadb_msg_len = size / sizeof(uint64_t);
  720. /* sa */
  721. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  722. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  723. sa->sadb_sa_exttype = SADB_EXT_SA;
  724. sa->sadb_sa_spi = x->id.spi;
  725. sa->sadb_sa_replay = x->props.replay_window;
  726. switch (x->km.state) {
  727. case XFRM_STATE_VALID:
  728. sa->sadb_sa_state = x->km.dying ?
  729. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  730. break;
  731. case XFRM_STATE_ACQ:
  732. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  733. break;
  734. default:
  735. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  736. break;
  737. }
  738. sa->sadb_sa_auth = 0;
  739. if (x->aalg) {
  740. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  741. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  742. }
  743. sa->sadb_sa_encrypt = 0;
  744. BUG_ON(x->ealg && x->calg);
  745. if (x->ealg) {
  746. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  747. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  748. }
  749. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  750. if (x->calg) {
  751. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  752. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  753. }
  754. sa->sadb_sa_flags = 0;
  755. if (x->props.flags & XFRM_STATE_NOECN)
  756. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  757. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  758. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  759. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  760. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  761. /* hard time */
  762. if (hsc & 2) {
  763. lifetime = (struct sadb_lifetime *) skb_put(skb,
  764. sizeof(struct sadb_lifetime));
  765. lifetime->sadb_lifetime_len =
  766. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  767. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  768. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  769. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  770. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  771. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  772. }
  773. /* soft time */
  774. if (hsc & 1) {
  775. lifetime = (struct sadb_lifetime *) skb_put(skb,
  776. sizeof(struct sadb_lifetime));
  777. lifetime->sadb_lifetime_len =
  778. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  779. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  780. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  781. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  782. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  783. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  784. }
  785. /* current time */
  786. lifetime = (struct sadb_lifetime *) skb_put(skb,
  787. sizeof(struct sadb_lifetime));
  788. lifetime->sadb_lifetime_len =
  789. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  790. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  791. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  792. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  793. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  794. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  795. /* src address */
  796. addr = (struct sadb_address*) skb_put(skb,
  797. sizeof(struct sadb_address)+sockaddr_size);
  798. addr->sadb_address_len =
  799. (sizeof(struct sadb_address)+sockaddr_size)/
  800. sizeof(uint64_t);
  801. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  802. /* "if the ports are non-zero, then the sadb_address_proto field,
  803. normally zero, MUST be filled in with the transport
  804. protocol's number." - RFC2367 */
  805. addr->sadb_address_proto = 0;
  806. addr->sadb_address_reserved = 0;
  807. addr->sadb_address_prefixlen =
  808. pfkey_sockaddr_fill(&x->props.saddr, 0,
  809. (struct sockaddr *) (addr + 1),
  810. x->props.family);
  811. if (!addr->sadb_address_prefixlen)
  812. BUG();
  813. /* dst address */
  814. addr = (struct sadb_address*) skb_put(skb,
  815. sizeof(struct sadb_address)+sockaddr_size);
  816. addr->sadb_address_len =
  817. (sizeof(struct sadb_address)+sockaddr_size)/
  818. sizeof(uint64_t);
  819. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  820. addr->sadb_address_proto = 0;
  821. addr->sadb_address_reserved = 0;
  822. addr->sadb_address_prefixlen =
  823. pfkey_sockaddr_fill(&x->id.daddr, 0,
  824. (struct sockaddr *) (addr + 1),
  825. x->props.family);
  826. if (!addr->sadb_address_prefixlen)
  827. BUG();
  828. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  829. x->props.family)) {
  830. addr = (struct sadb_address*) skb_put(skb,
  831. sizeof(struct sadb_address)+sockaddr_size);
  832. addr->sadb_address_len =
  833. (sizeof(struct sadb_address)+sockaddr_size)/
  834. sizeof(uint64_t);
  835. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  836. addr->sadb_address_proto =
  837. pfkey_proto_from_xfrm(x->sel.proto);
  838. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  839. addr->sadb_address_reserved = 0;
  840. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  841. (struct sockaddr *) (addr + 1),
  842. x->props.family);
  843. }
  844. /* auth key */
  845. if (add_keys && auth_key_size) {
  846. key = (struct sadb_key *) skb_put(skb,
  847. sizeof(struct sadb_key)+auth_key_size);
  848. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  849. sizeof(uint64_t);
  850. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  851. key->sadb_key_bits = x->aalg->alg_key_len;
  852. key->sadb_key_reserved = 0;
  853. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  854. }
  855. /* encrypt key */
  856. if (add_keys && encrypt_key_size) {
  857. key = (struct sadb_key *) skb_put(skb,
  858. sizeof(struct sadb_key)+encrypt_key_size);
  859. key->sadb_key_len = (sizeof(struct sadb_key) +
  860. encrypt_key_size) / sizeof(uint64_t);
  861. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  862. key->sadb_key_bits = x->ealg->alg_key_len;
  863. key->sadb_key_reserved = 0;
  864. memcpy(key + 1, x->ealg->alg_key,
  865. (x->ealg->alg_key_len+7)/8);
  866. }
  867. /* sa */
  868. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  869. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  870. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  871. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  872. kfree_skb(skb);
  873. return ERR_PTR(-EINVAL);
  874. }
  875. sa2->sadb_x_sa2_mode = mode;
  876. sa2->sadb_x_sa2_reserved1 = 0;
  877. sa2->sadb_x_sa2_reserved2 = 0;
  878. sa2->sadb_x_sa2_sequence = 0;
  879. sa2->sadb_x_sa2_reqid = x->props.reqid;
  880. if (natt && natt->encap_type) {
  881. struct sadb_x_nat_t_type *n_type;
  882. struct sadb_x_nat_t_port *n_port;
  883. /* type */
  884. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  885. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  886. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  887. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  888. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  889. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  890. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  891. /* source port */
  892. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  893. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  894. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  895. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  896. n_port->sadb_x_nat_t_port_reserved = 0;
  897. /* dest port */
  898. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  899. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  900. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  901. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  902. n_port->sadb_x_nat_t_port_reserved = 0;
  903. }
  904. /* security context */
  905. if (xfrm_ctx) {
  906. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  907. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  908. sec_ctx->sadb_x_sec_len =
  909. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  910. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  911. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  912. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  913. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  914. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  915. xfrm_ctx->ctx_len);
  916. }
  917. return skb;
  918. }
  919. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  920. {
  921. struct sk_buff *skb;
  922. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  923. return skb;
  924. }
  925. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  926. int hsc)
  927. {
  928. return __pfkey_xfrm_state2msg(x, 0, hsc);
  929. }
  930. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  931. struct sadb_msg *hdr,
  932. void **ext_hdrs)
  933. {
  934. struct xfrm_state *x;
  935. struct sadb_lifetime *lifetime;
  936. struct sadb_sa *sa;
  937. struct sadb_key *key;
  938. struct sadb_x_sec_ctx *sec_ctx;
  939. uint16_t proto;
  940. int err;
  941. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  942. if (!sa ||
  943. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  944. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  945. return ERR_PTR(-EINVAL);
  946. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  947. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  948. return ERR_PTR(-EINVAL);
  949. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  950. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  951. return ERR_PTR(-EINVAL);
  952. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  953. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  954. return ERR_PTR(-EINVAL);
  955. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  956. if (proto == 0)
  957. return ERR_PTR(-EINVAL);
  958. /* default error is no buffer space */
  959. err = -ENOBUFS;
  960. /* RFC2367:
  961. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  962. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  963. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  964. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  965. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  966. not true.
  967. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  968. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  969. */
  970. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  971. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  972. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  973. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  974. return ERR_PTR(-EINVAL);
  975. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  976. if (key != NULL &&
  977. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  978. ((key->sadb_key_bits+7) / 8 == 0 ||
  979. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  980. return ERR_PTR(-EINVAL);
  981. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  982. if (key != NULL &&
  983. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  984. ((key->sadb_key_bits+7) / 8 == 0 ||
  985. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  986. return ERR_PTR(-EINVAL);
  987. x = xfrm_state_alloc(net);
  988. if (x == NULL)
  989. return ERR_PTR(-ENOBUFS);
  990. x->id.proto = proto;
  991. x->id.spi = sa->sadb_sa_spi;
  992. x->props.replay_window = sa->sadb_sa_replay;
  993. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  994. x->props.flags |= XFRM_STATE_NOECN;
  995. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  996. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  997. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  998. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  999. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  1000. if (lifetime != NULL) {
  1001. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1002. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1003. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1004. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1005. }
  1006. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  1007. if (lifetime != NULL) {
  1008. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1009. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1010. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1011. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1012. }
  1013. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1014. if (sec_ctx != NULL) {
  1015. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1016. if (!uctx)
  1017. goto out;
  1018. err = security_xfrm_state_alloc(x, uctx);
  1019. kfree(uctx);
  1020. if (err)
  1021. goto out;
  1022. }
  1023. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1024. if (sa->sadb_sa_auth) {
  1025. int keysize = 0;
  1026. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1027. if (!a) {
  1028. err = -ENOSYS;
  1029. goto out;
  1030. }
  1031. if (key)
  1032. keysize = (key->sadb_key_bits + 7) / 8;
  1033. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1034. if (!x->aalg)
  1035. goto out;
  1036. strcpy(x->aalg->alg_name, a->name);
  1037. x->aalg->alg_key_len = 0;
  1038. if (key) {
  1039. x->aalg->alg_key_len = key->sadb_key_bits;
  1040. memcpy(x->aalg->alg_key, key+1, keysize);
  1041. }
  1042. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1043. x->props.aalgo = sa->sadb_sa_auth;
  1044. /* x->algo.flags = sa->sadb_sa_flags; */
  1045. }
  1046. if (sa->sadb_sa_encrypt) {
  1047. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1048. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1049. if (!a) {
  1050. err = -ENOSYS;
  1051. goto out;
  1052. }
  1053. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1054. if (!x->calg)
  1055. goto out;
  1056. strcpy(x->calg->alg_name, a->name);
  1057. x->props.calgo = sa->sadb_sa_encrypt;
  1058. } else {
  1059. int keysize = 0;
  1060. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1061. if (!a) {
  1062. err = -ENOSYS;
  1063. goto out;
  1064. }
  1065. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1066. if (key)
  1067. keysize = (key->sadb_key_bits + 7) / 8;
  1068. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1069. if (!x->ealg)
  1070. goto out;
  1071. strcpy(x->ealg->alg_name, a->name);
  1072. x->ealg->alg_key_len = 0;
  1073. if (key) {
  1074. x->ealg->alg_key_len = key->sadb_key_bits;
  1075. memcpy(x->ealg->alg_key, key+1, keysize);
  1076. }
  1077. x->props.ealgo = sa->sadb_sa_encrypt;
  1078. }
  1079. }
  1080. /* x->algo.flags = sa->sadb_sa_flags; */
  1081. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1082. &x->props.saddr);
  1083. if (!x->props.family) {
  1084. err = -EAFNOSUPPORT;
  1085. goto out;
  1086. }
  1087. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1088. &x->id.daddr);
  1089. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1090. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1091. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1092. if (mode < 0) {
  1093. err = -EINVAL;
  1094. goto out;
  1095. }
  1096. x->props.mode = mode;
  1097. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1098. }
  1099. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1100. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1101. /* Nobody uses this, but we try. */
  1102. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1103. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1104. }
  1105. if (!x->sel.family)
  1106. x->sel.family = x->props.family;
  1107. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1108. struct sadb_x_nat_t_type* n_type;
  1109. struct xfrm_encap_tmpl *natt;
  1110. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1111. if (!x->encap)
  1112. goto out;
  1113. natt = x->encap;
  1114. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1115. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1116. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1117. struct sadb_x_nat_t_port* n_port =
  1118. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1119. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1120. }
  1121. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1122. struct sadb_x_nat_t_port* n_port =
  1123. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1124. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1125. }
  1126. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1127. }
  1128. err = xfrm_init_state(x);
  1129. if (err)
  1130. goto out;
  1131. x->km.seq = hdr->sadb_msg_seq;
  1132. return x;
  1133. out:
  1134. x->km.state = XFRM_STATE_DEAD;
  1135. xfrm_state_put(x);
  1136. return ERR_PTR(err);
  1137. }
  1138. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1139. {
  1140. return -EOPNOTSUPP;
  1141. }
  1142. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1143. {
  1144. struct net *net = sock_net(sk);
  1145. struct sk_buff *resp_skb;
  1146. struct sadb_x_sa2 *sa2;
  1147. struct sadb_address *saddr, *daddr;
  1148. struct sadb_msg *out_hdr;
  1149. struct sadb_spirange *range;
  1150. struct xfrm_state *x = NULL;
  1151. int mode;
  1152. int err;
  1153. u32 min_spi, max_spi;
  1154. u32 reqid;
  1155. u8 proto;
  1156. unsigned short family;
  1157. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1158. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1159. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1160. return -EINVAL;
  1161. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1162. if (proto == 0)
  1163. return -EINVAL;
  1164. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1165. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1166. if (mode < 0)
  1167. return -EINVAL;
  1168. reqid = sa2->sadb_x_sa2_reqid;
  1169. } else {
  1170. mode = 0;
  1171. reqid = 0;
  1172. }
  1173. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1174. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1175. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1176. switch (family) {
  1177. case AF_INET:
  1178. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1179. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1180. break;
  1181. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1182. case AF_INET6:
  1183. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1184. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1185. break;
  1186. #endif
  1187. }
  1188. if (hdr->sadb_msg_seq) {
  1189. x = xfrm_find_acq_byseq(net, hdr->sadb_msg_seq);
  1190. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1191. xfrm_state_put(x);
  1192. x = NULL;
  1193. }
  1194. }
  1195. if (!x)
  1196. x = xfrm_find_acq(net, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1197. if (x == NULL)
  1198. return -ENOENT;
  1199. min_spi = 0x100;
  1200. max_spi = 0x0fffffff;
  1201. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1202. if (range) {
  1203. min_spi = range->sadb_spirange_min;
  1204. max_spi = range->sadb_spirange_max;
  1205. }
  1206. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1207. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1208. if (IS_ERR(resp_skb)) {
  1209. xfrm_state_put(x);
  1210. return PTR_ERR(resp_skb);
  1211. }
  1212. out_hdr = (struct sadb_msg *) resp_skb->data;
  1213. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1214. out_hdr->sadb_msg_type = SADB_GETSPI;
  1215. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1216. out_hdr->sadb_msg_errno = 0;
  1217. out_hdr->sadb_msg_reserved = 0;
  1218. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1219. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1220. xfrm_state_put(x);
  1221. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1222. return 0;
  1223. }
  1224. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1225. {
  1226. struct net *net = sock_net(sk);
  1227. struct xfrm_state *x;
  1228. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1229. return -EOPNOTSUPP;
  1230. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1231. return 0;
  1232. x = xfrm_find_acq_byseq(net, hdr->sadb_msg_seq);
  1233. if (x == NULL)
  1234. return 0;
  1235. spin_lock_bh(&x->lock);
  1236. if (x->km.state == XFRM_STATE_ACQ) {
  1237. x->km.state = XFRM_STATE_ERROR;
  1238. wake_up(&net->xfrm.km_waitq);
  1239. }
  1240. spin_unlock_bh(&x->lock);
  1241. xfrm_state_put(x);
  1242. return 0;
  1243. }
  1244. static inline int event2poltype(int event)
  1245. {
  1246. switch (event) {
  1247. case XFRM_MSG_DELPOLICY:
  1248. return SADB_X_SPDDELETE;
  1249. case XFRM_MSG_NEWPOLICY:
  1250. return SADB_X_SPDADD;
  1251. case XFRM_MSG_UPDPOLICY:
  1252. return SADB_X_SPDUPDATE;
  1253. case XFRM_MSG_POLEXPIRE:
  1254. // return SADB_X_SPDEXPIRE;
  1255. default:
  1256. printk("pfkey: Unknown policy event %d\n", event);
  1257. break;
  1258. }
  1259. return 0;
  1260. }
  1261. static inline int event2keytype(int event)
  1262. {
  1263. switch (event) {
  1264. case XFRM_MSG_DELSA:
  1265. return SADB_DELETE;
  1266. case XFRM_MSG_NEWSA:
  1267. return SADB_ADD;
  1268. case XFRM_MSG_UPDSA:
  1269. return SADB_UPDATE;
  1270. case XFRM_MSG_EXPIRE:
  1271. return SADB_EXPIRE;
  1272. default:
  1273. printk("pfkey: Unknown SA event %d\n", event);
  1274. break;
  1275. }
  1276. return 0;
  1277. }
  1278. /* ADD/UPD/DEL */
  1279. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1280. {
  1281. struct sk_buff *skb;
  1282. struct sadb_msg *hdr;
  1283. skb = pfkey_xfrm_state2msg(x);
  1284. if (IS_ERR(skb))
  1285. return PTR_ERR(skb);
  1286. hdr = (struct sadb_msg *) skb->data;
  1287. hdr->sadb_msg_version = PF_KEY_V2;
  1288. hdr->sadb_msg_type = event2keytype(c->event);
  1289. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1290. hdr->sadb_msg_errno = 0;
  1291. hdr->sadb_msg_reserved = 0;
  1292. hdr->sadb_msg_seq = c->seq;
  1293. hdr->sadb_msg_pid = c->pid;
  1294. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1295. return 0;
  1296. }
  1297. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1298. {
  1299. struct net *net = sock_net(sk);
  1300. struct xfrm_state *x;
  1301. int err;
  1302. struct km_event c;
  1303. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1304. if (IS_ERR(x))
  1305. return PTR_ERR(x);
  1306. xfrm_state_hold(x);
  1307. if (hdr->sadb_msg_type == SADB_ADD)
  1308. err = xfrm_state_add(x);
  1309. else
  1310. err = xfrm_state_update(x);
  1311. xfrm_audit_state_add(x, err ? 0 : 1,
  1312. audit_get_loginuid(current),
  1313. audit_get_sessionid(current), 0);
  1314. if (err < 0) {
  1315. x->km.state = XFRM_STATE_DEAD;
  1316. __xfrm_state_put(x);
  1317. goto out;
  1318. }
  1319. if (hdr->sadb_msg_type == SADB_ADD)
  1320. c.event = XFRM_MSG_NEWSA;
  1321. else
  1322. c.event = XFRM_MSG_UPDSA;
  1323. c.seq = hdr->sadb_msg_seq;
  1324. c.pid = hdr->sadb_msg_pid;
  1325. km_state_notify(x, &c);
  1326. out:
  1327. xfrm_state_put(x);
  1328. return err;
  1329. }
  1330. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1331. {
  1332. struct net *net = sock_net(sk);
  1333. struct xfrm_state *x;
  1334. struct km_event c;
  1335. int err;
  1336. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1337. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1338. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1339. return -EINVAL;
  1340. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1341. if (x == NULL)
  1342. return -ESRCH;
  1343. if ((err = security_xfrm_state_delete(x)))
  1344. goto out;
  1345. if (xfrm_state_kern(x)) {
  1346. err = -EPERM;
  1347. goto out;
  1348. }
  1349. err = xfrm_state_delete(x);
  1350. if (err < 0)
  1351. goto out;
  1352. c.seq = hdr->sadb_msg_seq;
  1353. c.pid = hdr->sadb_msg_pid;
  1354. c.event = XFRM_MSG_DELSA;
  1355. km_state_notify(x, &c);
  1356. out:
  1357. xfrm_audit_state_delete(x, err ? 0 : 1,
  1358. audit_get_loginuid(current),
  1359. audit_get_sessionid(current), 0);
  1360. xfrm_state_put(x);
  1361. return err;
  1362. }
  1363. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1364. {
  1365. struct net *net = sock_net(sk);
  1366. __u8 proto;
  1367. struct sk_buff *out_skb;
  1368. struct sadb_msg *out_hdr;
  1369. struct xfrm_state *x;
  1370. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1371. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1372. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1373. return -EINVAL;
  1374. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1375. if (x == NULL)
  1376. return -ESRCH;
  1377. out_skb = pfkey_xfrm_state2msg(x);
  1378. proto = x->id.proto;
  1379. xfrm_state_put(x);
  1380. if (IS_ERR(out_skb))
  1381. return PTR_ERR(out_skb);
  1382. out_hdr = (struct sadb_msg *) out_skb->data;
  1383. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1384. out_hdr->sadb_msg_type = SADB_GET;
  1385. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1386. out_hdr->sadb_msg_errno = 0;
  1387. out_hdr->sadb_msg_reserved = 0;
  1388. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1389. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1390. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1391. return 0;
  1392. }
  1393. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1394. gfp_t allocation)
  1395. {
  1396. struct sk_buff *skb;
  1397. struct sadb_msg *hdr;
  1398. int len, auth_len, enc_len, i;
  1399. auth_len = xfrm_count_auth_supported();
  1400. if (auth_len) {
  1401. auth_len *= sizeof(struct sadb_alg);
  1402. auth_len += sizeof(struct sadb_supported);
  1403. }
  1404. enc_len = xfrm_count_enc_supported();
  1405. if (enc_len) {
  1406. enc_len *= sizeof(struct sadb_alg);
  1407. enc_len += sizeof(struct sadb_supported);
  1408. }
  1409. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1410. skb = alloc_skb(len + 16, allocation);
  1411. if (!skb)
  1412. goto out_put_algs;
  1413. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1414. pfkey_hdr_dup(hdr, orig);
  1415. hdr->sadb_msg_errno = 0;
  1416. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1417. if (auth_len) {
  1418. struct sadb_supported *sp;
  1419. struct sadb_alg *ap;
  1420. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1421. ap = (struct sadb_alg *) (sp + 1);
  1422. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1423. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1424. for (i = 0; ; i++) {
  1425. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1426. if (!aalg)
  1427. break;
  1428. if (aalg->available)
  1429. *ap++ = aalg->desc;
  1430. }
  1431. }
  1432. if (enc_len) {
  1433. struct sadb_supported *sp;
  1434. struct sadb_alg *ap;
  1435. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1436. ap = (struct sadb_alg *) (sp + 1);
  1437. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1438. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1439. for (i = 0; ; i++) {
  1440. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1441. if (!ealg)
  1442. break;
  1443. if (ealg->available)
  1444. *ap++ = ealg->desc;
  1445. }
  1446. }
  1447. out_put_algs:
  1448. return skb;
  1449. }
  1450. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1451. {
  1452. struct pfkey_sock *pfk = pfkey_sk(sk);
  1453. struct sk_buff *supp_skb;
  1454. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1455. return -EINVAL;
  1456. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1457. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1458. return -EEXIST;
  1459. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1460. }
  1461. xfrm_probe_algs();
  1462. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1463. if (!supp_skb) {
  1464. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1465. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1466. return -ENOBUFS;
  1467. }
  1468. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1469. return 0;
  1470. }
  1471. static int key_notify_sa_flush(struct km_event *c)
  1472. {
  1473. struct sk_buff *skb;
  1474. struct sadb_msg *hdr;
  1475. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1476. if (!skb)
  1477. return -ENOBUFS;
  1478. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1479. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1480. hdr->sadb_msg_type = SADB_FLUSH;
  1481. hdr->sadb_msg_seq = c->seq;
  1482. hdr->sadb_msg_pid = c->pid;
  1483. hdr->sadb_msg_version = PF_KEY_V2;
  1484. hdr->sadb_msg_errno = (uint8_t) 0;
  1485. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1486. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1487. return 0;
  1488. }
  1489. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1490. {
  1491. struct net *net = sock_net(sk);
  1492. unsigned proto;
  1493. struct km_event c;
  1494. struct xfrm_audit audit_info;
  1495. int err;
  1496. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1497. if (proto == 0)
  1498. return -EINVAL;
  1499. audit_info.loginuid = audit_get_loginuid(current);
  1500. audit_info.sessionid = audit_get_sessionid(current);
  1501. audit_info.secid = 0;
  1502. err = xfrm_state_flush(net, proto, &audit_info);
  1503. if (err)
  1504. return 0;
  1505. c.data.proto = proto;
  1506. c.seq = hdr->sadb_msg_seq;
  1507. c.pid = hdr->sadb_msg_pid;
  1508. c.event = XFRM_MSG_FLUSHSA;
  1509. c.net = net;
  1510. km_state_notify(NULL, &c);
  1511. return 0;
  1512. }
  1513. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1514. {
  1515. struct pfkey_sock *pfk = ptr;
  1516. struct sk_buff *out_skb;
  1517. struct sadb_msg *out_hdr;
  1518. if (!pfkey_can_dump(&pfk->sk))
  1519. return -ENOBUFS;
  1520. out_skb = pfkey_xfrm_state2msg(x);
  1521. if (IS_ERR(out_skb))
  1522. return PTR_ERR(out_skb);
  1523. out_hdr = (struct sadb_msg *) out_skb->data;
  1524. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1525. out_hdr->sadb_msg_type = SADB_DUMP;
  1526. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1527. out_hdr->sadb_msg_errno = 0;
  1528. out_hdr->sadb_msg_reserved = 0;
  1529. out_hdr->sadb_msg_seq = count + 1;
  1530. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1531. if (pfk->dump.skb)
  1532. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1533. &pfk->sk, sock_net(&pfk->sk));
  1534. pfk->dump.skb = out_skb;
  1535. return 0;
  1536. }
  1537. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1538. {
  1539. struct net *net = sock_net(&pfk->sk);
  1540. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1541. }
  1542. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1543. {
  1544. xfrm_state_walk_done(&pfk->dump.u.state);
  1545. }
  1546. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1547. {
  1548. u8 proto;
  1549. struct pfkey_sock *pfk = pfkey_sk(sk);
  1550. if (pfk->dump.dump != NULL)
  1551. return -EBUSY;
  1552. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1553. if (proto == 0)
  1554. return -EINVAL;
  1555. pfk->dump.msg_version = hdr->sadb_msg_version;
  1556. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1557. pfk->dump.dump = pfkey_dump_sa;
  1558. pfk->dump.done = pfkey_dump_sa_done;
  1559. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1560. return pfkey_do_dump(pfk);
  1561. }
  1562. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1563. {
  1564. struct pfkey_sock *pfk = pfkey_sk(sk);
  1565. int satype = hdr->sadb_msg_satype;
  1566. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1567. /* XXX we mangle packet... */
  1568. hdr->sadb_msg_errno = 0;
  1569. if (satype != 0 && satype != 1)
  1570. return -EINVAL;
  1571. pfk->promisc = satype;
  1572. }
  1573. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1574. return 0;
  1575. }
  1576. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1577. {
  1578. int i;
  1579. u32 reqid = *(u32*)ptr;
  1580. for (i=0; i<xp->xfrm_nr; i++) {
  1581. if (xp->xfrm_vec[i].reqid == reqid)
  1582. return -EEXIST;
  1583. }
  1584. return 0;
  1585. }
  1586. static u32 gen_reqid(struct net *net)
  1587. {
  1588. struct xfrm_policy_walk walk;
  1589. u32 start;
  1590. int rc;
  1591. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1592. start = reqid;
  1593. do {
  1594. ++reqid;
  1595. if (reqid == 0)
  1596. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1597. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1598. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1599. xfrm_policy_walk_done(&walk);
  1600. if (rc != -EEXIST)
  1601. return reqid;
  1602. } while (reqid != start);
  1603. return 0;
  1604. }
  1605. static int
  1606. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1607. {
  1608. struct net *net = xp_net(xp);
  1609. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1610. int mode;
  1611. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1612. return -ELOOP;
  1613. if (rq->sadb_x_ipsecrequest_mode == 0)
  1614. return -EINVAL;
  1615. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1616. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1617. return -EINVAL;
  1618. t->mode = mode;
  1619. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1620. t->optional = 1;
  1621. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1622. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1623. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1624. t->reqid = 0;
  1625. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1626. return -ENOBUFS;
  1627. }
  1628. /* addresses present only in tunnel mode */
  1629. if (t->mode == XFRM_MODE_TUNNEL) {
  1630. u8 *sa = (u8 *) (rq + 1);
  1631. int family, socklen;
  1632. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1633. &t->saddr);
  1634. if (!family)
  1635. return -EINVAL;
  1636. socklen = pfkey_sockaddr_len(family);
  1637. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1638. &t->id.daddr) != family)
  1639. return -EINVAL;
  1640. t->encap_family = family;
  1641. } else
  1642. t->encap_family = xp->family;
  1643. /* No way to set this via kame pfkey */
  1644. t->allalgs = 1;
  1645. xp->xfrm_nr++;
  1646. return 0;
  1647. }
  1648. static int
  1649. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1650. {
  1651. int err;
  1652. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1653. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1654. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1655. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1656. return err;
  1657. len -= rq->sadb_x_ipsecrequest_len;
  1658. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1659. }
  1660. return 0;
  1661. }
  1662. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1663. {
  1664. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1665. if (xfrm_ctx) {
  1666. int len = sizeof(struct sadb_x_sec_ctx);
  1667. len += xfrm_ctx->ctx_len;
  1668. return PFKEY_ALIGN8(len);
  1669. }
  1670. return 0;
  1671. }
  1672. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1673. {
  1674. struct xfrm_tmpl *t;
  1675. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1676. int socklen = 0;
  1677. int i;
  1678. for (i=0; i<xp->xfrm_nr; i++) {
  1679. t = xp->xfrm_vec + i;
  1680. socklen += pfkey_sockaddr_len(t->encap_family);
  1681. }
  1682. return sizeof(struct sadb_msg) +
  1683. (sizeof(struct sadb_lifetime) * 3) +
  1684. (sizeof(struct sadb_address) * 2) +
  1685. (sockaddr_size * 2) +
  1686. sizeof(struct sadb_x_policy) +
  1687. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1688. (socklen * 2) +
  1689. pfkey_xfrm_policy2sec_ctx_size(xp);
  1690. }
  1691. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1692. {
  1693. struct sk_buff *skb;
  1694. int size;
  1695. size = pfkey_xfrm_policy2msg_size(xp);
  1696. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1697. if (skb == NULL)
  1698. return ERR_PTR(-ENOBUFS);
  1699. return skb;
  1700. }
  1701. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1702. {
  1703. struct sadb_msg *hdr;
  1704. struct sadb_address *addr;
  1705. struct sadb_lifetime *lifetime;
  1706. struct sadb_x_policy *pol;
  1707. struct sadb_x_sec_ctx *sec_ctx;
  1708. struct xfrm_sec_ctx *xfrm_ctx;
  1709. int i;
  1710. int size;
  1711. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1712. int socklen = pfkey_sockaddr_len(xp->family);
  1713. size = pfkey_xfrm_policy2msg_size(xp);
  1714. /* call should fill header later */
  1715. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1716. memset(hdr, 0, size); /* XXX do we need this ? */
  1717. /* src address */
  1718. addr = (struct sadb_address*) skb_put(skb,
  1719. sizeof(struct sadb_address)+sockaddr_size);
  1720. addr->sadb_address_len =
  1721. (sizeof(struct sadb_address)+sockaddr_size)/
  1722. sizeof(uint64_t);
  1723. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1724. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1725. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1726. addr->sadb_address_reserved = 0;
  1727. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1728. xp->selector.sport,
  1729. (struct sockaddr *) (addr + 1),
  1730. xp->family))
  1731. BUG();
  1732. /* dst address */
  1733. addr = (struct sadb_address*) skb_put(skb,
  1734. sizeof(struct sadb_address)+sockaddr_size);
  1735. addr->sadb_address_len =
  1736. (sizeof(struct sadb_address)+sockaddr_size)/
  1737. sizeof(uint64_t);
  1738. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1739. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1740. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1741. addr->sadb_address_reserved = 0;
  1742. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1743. (struct sockaddr *) (addr + 1),
  1744. xp->family);
  1745. /* hard time */
  1746. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1747. sizeof(struct sadb_lifetime));
  1748. lifetime->sadb_lifetime_len =
  1749. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1750. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1751. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1752. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1753. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1754. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1755. /* soft time */
  1756. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1757. sizeof(struct sadb_lifetime));
  1758. lifetime->sadb_lifetime_len =
  1759. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1760. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1761. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1762. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1763. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1764. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1765. /* current time */
  1766. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1767. sizeof(struct sadb_lifetime));
  1768. lifetime->sadb_lifetime_len =
  1769. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1770. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1771. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1772. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1773. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1774. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1775. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1776. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1777. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1778. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1779. if (xp->action == XFRM_POLICY_ALLOW) {
  1780. if (xp->xfrm_nr)
  1781. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1782. else
  1783. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1784. }
  1785. pol->sadb_x_policy_dir = dir+1;
  1786. pol->sadb_x_policy_id = xp->index;
  1787. pol->sadb_x_policy_priority = xp->priority;
  1788. for (i=0; i<xp->xfrm_nr; i++) {
  1789. struct sadb_x_ipsecrequest *rq;
  1790. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1791. int req_size;
  1792. int mode;
  1793. req_size = sizeof(struct sadb_x_ipsecrequest);
  1794. if (t->mode == XFRM_MODE_TUNNEL) {
  1795. socklen = pfkey_sockaddr_len(t->encap_family);
  1796. req_size += socklen * 2;
  1797. } else {
  1798. size -= 2*socklen;
  1799. }
  1800. rq = (void*)skb_put(skb, req_size);
  1801. pol->sadb_x_policy_len += req_size/8;
  1802. memset(rq, 0, sizeof(*rq));
  1803. rq->sadb_x_ipsecrequest_len = req_size;
  1804. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1805. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1806. return -EINVAL;
  1807. rq->sadb_x_ipsecrequest_mode = mode;
  1808. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1809. if (t->reqid)
  1810. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1811. if (t->optional)
  1812. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1813. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1814. if (t->mode == XFRM_MODE_TUNNEL) {
  1815. u8 *sa = (void *)(rq + 1);
  1816. pfkey_sockaddr_fill(&t->saddr, 0,
  1817. (struct sockaddr *)sa,
  1818. t->encap_family);
  1819. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1820. (struct sockaddr *) (sa + socklen),
  1821. t->encap_family);
  1822. }
  1823. }
  1824. /* security context */
  1825. if ((xfrm_ctx = xp->security)) {
  1826. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1827. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1828. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1829. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1830. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1831. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1832. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1833. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1834. xfrm_ctx->ctx_len);
  1835. }
  1836. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1837. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1838. return 0;
  1839. }
  1840. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1841. {
  1842. struct sk_buff *out_skb;
  1843. struct sadb_msg *out_hdr;
  1844. int err;
  1845. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1846. if (IS_ERR(out_skb)) {
  1847. err = PTR_ERR(out_skb);
  1848. goto out;
  1849. }
  1850. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1851. if (err < 0)
  1852. return err;
  1853. out_hdr = (struct sadb_msg *) out_skb->data;
  1854. out_hdr->sadb_msg_version = PF_KEY_V2;
  1855. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1856. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1857. else
  1858. out_hdr->sadb_msg_type = event2poltype(c->event);
  1859. out_hdr->sadb_msg_errno = 0;
  1860. out_hdr->sadb_msg_seq = c->seq;
  1861. out_hdr->sadb_msg_pid = c->pid;
  1862. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1863. out:
  1864. return 0;
  1865. }
  1866. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1867. {
  1868. struct net *net = sock_net(sk);
  1869. int err = 0;
  1870. struct sadb_lifetime *lifetime;
  1871. struct sadb_address *sa;
  1872. struct sadb_x_policy *pol;
  1873. struct xfrm_policy *xp;
  1874. struct km_event c;
  1875. struct sadb_x_sec_ctx *sec_ctx;
  1876. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1877. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1878. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1879. return -EINVAL;
  1880. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1881. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1882. return -EINVAL;
  1883. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1884. return -EINVAL;
  1885. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1886. if (xp == NULL)
  1887. return -ENOBUFS;
  1888. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1889. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1890. xp->priority = pol->sadb_x_policy_priority;
  1891. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1892. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1893. if (!xp->family) {
  1894. err = -EINVAL;
  1895. goto out;
  1896. }
  1897. xp->selector.family = xp->family;
  1898. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1899. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1900. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1901. if (xp->selector.sport)
  1902. xp->selector.sport_mask = htons(0xffff);
  1903. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1904. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1905. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1906. /* Amusing, we set this twice. KAME apps appear to set same value
  1907. * in both addresses.
  1908. */
  1909. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1910. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1911. if (xp->selector.dport)
  1912. xp->selector.dport_mask = htons(0xffff);
  1913. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1914. if (sec_ctx != NULL) {
  1915. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1916. if (!uctx) {
  1917. err = -ENOBUFS;
  1918. goto out;
  1919. }
  1920. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1921. kfree(uctx);
  1922. if (err)
  1923. goto out;
  1924. }
  1925. xp->lft.soft_byte_limit = XFRM_INF;
  1926. xp->lft.hard_byte_limit = XFRM_INF;
  1927. xp->lft.soft_packet_limit = XFRM_INF;
  1928. xp->lft.hard_packet_limit = XFRM_INF;
  1929. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1930. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1931. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1932. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1933. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1934. }
  1935. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1936. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1937. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1938. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1939. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1940. }
  1941. xp->xfrm_nr = 0;
  1942. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1943. (err = parse_ipsecrequests(xp, pol)) < 0)
  1944. goto out;
  1945. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1946. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1947. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1948. audit_get_loginuid(current),
  1949. audit_get_sessionid(current), 0);
  1950. if (err)
  1951. goto out;
  1952. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1953. c.event = XFRM_MSG_UPDPOLICY;
  1954. else
  1955. c.event = XFRM_MSG_NEWPOLICY;
  1956. c.seq = hdr->sadb_msg_seq;
  1957. c.pid = hdr->sadb_msg_pid;
  1958. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1959. xfrm_pol_put(xp);
  1960. return 0;
  1961. out:
  1962. xp->walk.dead = 1;
  1963. xfrm_policy_destroy(xp);
  1964. return err;
  1965. }
  1966. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1967. {
  1968. struct net *net = sock_net(sk);
  1969. int err;
  1970. struct sadb_address *sa;
  1971. struct sadb_x_policy *pol;
  1972. struct xfrm_policy *xp;
  1973. struct xfrm_selector sel;
  1974. struct km_event c;
  1975. struct sadb_x_sec_ctx *sec_ctx;
  1976. struct xfrm_sec_ctx *pol_ctx = NULL;
  1977. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1978. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1979. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1980. return -EINVAL;
  1981. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1982. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1983. return -EINVAL;
  1984. memset(&sel, 0, sizeof(sel));
  1985. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1986. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1987. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1988. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1989. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1990. if (sel.sport)
  1991. sel.sport_mask = htons(0xffff);
  1992. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1993. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1994. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1995. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1996. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1997. if (sel.dport)
  1998. sel.dport_mask = htons(0xffff);
  1999. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2000. if (sec_ctx != NULL) {
  2001. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2002. if (!uctx)
  2003. return -ENOMEM;
  2004. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  2005. kfree(uctx);
  2006. if (err)
  2007. return err;
  2008. }
  2009. xp = xfrm_policy_bysel_ctx(net, XFRM_POLICY_TYPE_MAIN,
  2010. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2011. 1, &err);
  2012. security_xfrm_policy_free(pol_ctx);
  2013. if (xp == NULL)
  2014. return -ENOENT;
  2015. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2016. audit_get_loginuid(current),
  2017. audit_get_sessionid(current), 0);
  2018. if (err)
  2019. goto out;
  2020. c.seq = hdr->sadb_msg_seq;
  2021. c.pid = hdr->sadb_msg_pid;
  2022. c.data.byid = 0;
  2023. c.event = XFRM_MSG_DELPOLICY;
  2024. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2025. out:
  2026. xfrm_pol_put(xp);
  2027. return err;
  2028. }
  2029. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2030. {
  2031. int err;
  2032. struct sk_buff *out_skb;
  2033. struct sadb_msg *out_hdr;
  2034. err = 0;
  2035. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2036. if (IS_ERR(out_skb)) {
  2037. err = PTR_ERR(out_skb);
  2038. goto out;
  2039. }
  2040. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2041. if (err < 0)
  2042. goto out;
  2043. out_hdr = (struct sadb_msg *) out_skb->data;
  2044. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2045. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2046. out_hdr->sadb_msg_satype = 0;
  2047. out_hdr->sadb_msg_errno = 0;
  2048. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2049. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2050. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2051. err = 0;
  2052. out:
  2053. return err;
  2054. }
  2055. #ifdef CONFIG_NET_KEY_MIGRATE
  2056. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2057. {
  2058. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2059. }
  2060. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2061. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2062. u16 *family)
  2063. {
  2064. int af, socklen;
  2065. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2066. return -EINVAL;
  2067. af = pfkey_sockaddr_extract(sa, saddr);
  2068. if (!af)
  2069. return -EINVAL;
  2070. socklen = pfkey_sockaddr_len(af);
  2071. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2072. daddr) != af)
  2073. return -EINVAL;
  2074. *family = af;
  2075. return 0;
  2076. }
  2077. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2078. struct xfrm_migrate *m)
  2079. {
  2080. int err;
  2081. struct sadb_x_ipsecrequest *rq2;
  2082. int mode;
  2083. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2084. len < rq1->sadb_x_ipsecrequest_len)
  2085. return -EINVAL;
  2086. /* old endoints */
  2087. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2088. rq1->sadb_x_ipsecrequest_len,
  2089. &m->old_saddr, &m->old_daddr,
  2090. &m->old_family);
  2091. if (err)
  2092. return err;
  2093. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2094. len -= rq1->sadb_x_ipsecrequest_len;
  2095. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2096. len < rq2->sadb_x_ipsecrequest_len)
  2097. return -EINVAL;
  2098. /* new endpoints */
  2099. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2100. rq2->sadb_x_ipsecrequest_len,
  2101. &m->new_saddr, &m->new_daddr,
  2102. &m->new_family);
  2103. if (err)
  2104. return err;
  2105. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2106. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2107. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2108. return -EINVAL;
  2109. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2110. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2111. return -EINVAL;
  2112. m->mode = mode;
  2113. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2114. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2115. rq2->sadb_x_ipsecrequest_len));
  2116. }
  2117. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2118. struct sadb_msg *hdr, void **ext_hdrs)
  2119. {
  2120. int i, len, ret, err = -EINVAL;
  2121. u8 dir;
  2122. struct sadb_address *sa;
  2123. struct sadb_x_kmaddress *kma;
  2124. struct sadb_x_policy *pol;
  2125. struct sadb_x_ipsecrequest *rq;
  2126. struct xfrm_selector sel;
  2127. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2128. struct xfrm_kmaddress k;
  2129. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2130. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2131. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2132. err = -EINVAL;
  2133. goto out;
  2134. }
  2135. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2136. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2137. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2138. err = -EINVAL;
  2139. goto out;
  2140. }
  2141. if (kma) {
  2142. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2143. k.reserved = kma->sadb_x_kmaddress_reserved;
  2144. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2145. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2146. &k.local, &k.remote, &k.family);
  2147. if (ret < 0) {
  2148. err = ret;
  2149. goto out;
  2150. }
  2151. }
  2152. dir = pol->sadb_x_policy_dir - 1;
  2153. memset(&sel, 0, sizeof(sel));
  2154. /* set source address info of selector */
  2155. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2156. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2157. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2158. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2159. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2160. if (sel.sport)
  2161. sel.sport_mask = htons(0xffff);
  2162. /* set destination address info of selector */
  2163. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2164. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2165. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2166. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2167. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2168. if (sel.dport)
  2169. sel.dport_mask = htons(0xffff);
  2170. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2171. /* extract ipsecrequests */
  2172. i = 0;
  2173. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2174. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2175. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2176. if (ret < 0) {
  2177. err = ret;
  2178. goto out;
  2179. } else {
  2180. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2181. len -= ret;
  2182. i++;
  2183. }
  2184. }
  2185. if (!i || len > 0) {
  2186. err = -EINVAL;
  2187. goto out;
  2188. }
  2189. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2190. kma ? &k : NULL);
  2191. out:
  2192. return err;
  2193. }
  2194. #else
  2195. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2196. struct sadb_msg *hdr, void **ext_hdrs)
  2197. {
  2198. return -ENOPROTOOPT;
  2199. }
  2200. #endif
  2201. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2202. {
  2203. struct net *net = sock_net(sk);
  2204. unsigned int dir;
  2205. int err = 0, delete;
  2206. struct sadb_x_policy *pol;
  2207. struct xfrm_policy *xp;
  2208. struct km_event c;
  2209. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2210. return -EINVAL;
  2211. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2212. if (dir >= XFRM_POLICY_MAX)
  2213. return -EINVAL;
  2214. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2215. xp = xfrm_policy_byid(net, XFRM_POLICY_TYPE_MAIN, dir,
  2216. pol->sadb_x_policy_id, delete, &err);
  2217. if (xp == NULL)
  2218. return -ENOENT;
  2219. if (delete) {
  2220. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2221. audit_get_loginuid(current),
  2222. audit_get_sessionid(current), 0);
  2223. if (err)
  2224. goto out;
  2225. c.seq = hdr->sadb_msg_seq;
  2226. c.pid = hdr->sadb_msg_pid;
  2227. c.data.byid = 1;
  2228. c.event = XFRM_MSG_DELPOLICY;
  2229. km_policy_notify(xp, dir, &c);
  2230. } else {
  2231. err = key_pol_get_resp(sk, xp, hdr, dir);
  2232. }
  2233. out:
  2234. xfrm_pol_put(xp);
  2235. return err;
  2236. }
  2237. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2238. {
  2239. struct pfkey_sock *pfk = ptr;
  2240. struct sk_buff *out_skb;
  2241. struct sadb_msg *out_hdr;
  2242. int err;
  2243. if (!pfkey_can_dump(&pfk->sk))
  2244. return -ENOBUFS;
  2245. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2246. if (IS_ERR(out_skb))
  2247. return PTR_ERR(out_skb);
  2248. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2249. if (err < 0)
  2250. return err;
  2251. out_hdr = (struct sadb_msg *) out_skb->data;
  2252. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2253. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2254. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2255. out_hdr->sadb_msg_errno = 0;
  2256. out_hdr->sadb_msg_seq = count + 1;
  2257. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2258. if (pfk->dump.skb)
  2259. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2260. &pfk->sk, sock_net(&pfk->sk));
  2261. pfk->dump.skb = out_skb;
  2262. return 0;
  2263. }
  2264. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2265. {
  2266. struct net *net = sock_net(&pfk->sk);
  2267. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2268. }
  2269. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2270. {
  2271. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2272. }
  2273. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2274. {
  2275. struct pfkey_sock *pfk = pfkey_sk(sk);
  2276. if (pfk->dump.dump != NULL)
  2277. return -EBUSY;
  2278. pfk->dump.msg_version = hdr->sadb_msg_version;
  2279. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2280. pfk->dump.dump = pfkey_dump_sp;
  2281. pfk->dump.done = pfkey_dump_sp_done;
  2282. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2283. return pfkey_do_dump(pfk);
  2284. }
  2285. static int key_notify_policy_flush(struct km_event *c)
  2286. {
  2287. struct sk_buff *skb_out;
  2288. struct sadb_msg *hdr;
  2289. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2290. if (!skb_out)
  2291. return -ENOBUFS;
  2292. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2293. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2294. hdr->sadb_msg_seq = c->seq;
  2295. hdr->sadb_msg_pid = c->pid;
  2296. hdr->sadb_msg_version = PF_KEY_V2;
  2297. hdr->sadb_msg_errno = (uint8_t) 0;
  2298. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2299. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2300. return 0;
  2301. }
  2302. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2303. {
  2304. struct net *net = sock_net(sk);
  2305. struct km_event c;
  2306. struct xfrm_audit audit_info;
  2307. int err;
  2308. audit_info.loginuid = audit_get_loginuid(current);
  2309. audit_info.sessionid = audit_get_sessionid(current);
  2310. audit_info.secid = 0;
  2311. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2312. if (err)
  2313. return err;
  2314. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2315. c.event = XFRM_MSG_FLUSHPOLICY;
  2316. c.pid = hdr->sadb_msg_pid;
  2317. c.seq = hdr->sadb_msg_seq;
  2318. c.net = net;
  2319. km_policy_notify(NULL, 0, &c);
  2320. return 0;
  2321. }
  2322. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2323. struct sadb_msg *hdr, void **ext_hdrs);
  2324. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2325. [SADB_RESERVED] = pfkey_reserved,
  2326. [SADB_GETSPI] = pfkey_getspi,
  2327. [SADB_UPDATE] = pfkey_add,
  2328. [SADB_ADD] = pfkey_add,
  2329. [SADB_DELETE] = pfkey_delete,
  2330. [SADB_GET] = pfkey_get,
  2331. [SADB_ACQUIRE] = pfkey_acquire,
  2332. [SADB_REGISTER] = pfkey_register,
  2333. [SADB_EXPIRE] = NULL,
  2334. [SADB_FLUSH] = pfkey_flush,
  2335. [SADB_DUMP] = pfkey_dump,
  2336. [SADB_X_PROMISC] = pfkey_promisc,
  2337. [SADB_X_PCHANGE] = NULL,
  2338. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2339. [SADB_X_SPDADD] = pfkey_spdadd,
  2340. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2341. [SADB_X_SPDGET] = pfkey_spdget,
  2342. [SADB_X_SPDACQUIRE] = NULL,
  2343. [SADB_X_SPDDUMP] = pfkey_spddump,
  2344. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2345. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2346. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2347. [SADB_X_MIGRATE] = pfkey_migrate,
  2348. };
  2349. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2350. {
  2351. void *ext_hdrs[SADB_EXT_MAX];
  2352. int err;
  2353. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2354. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2355. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2356. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2357. if (!err) {
  2358. err = -EOPNOTSUPP;
  2359. if (pfkey_funcs[hdr->sadb_msg_type])
  2360. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2361. }
  2362. return err;
  2363. }
  2364. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2365. {
  2366. struct sadb_msg *hdr = NULL;
  2367. if (skb->len < sizeof(*hdr)) {
  2368. *errp = -EMSGSIZE;
  2369. } else {
  2370. hdr = (struct sadb_msg *) skb->data;
  2371. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2372. hdr->sadb_msg_reserved != 0 ||
  2373. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2374. hdr->sadb_msg_type > SADB_MAX)) {
  2375. hdr = NULL;
  2376. *errp = -EINVAL;
  2377. } else if (hdr->sadb_msg_len != (skb->len /
  2378. sizeof(uint64_t)) ||
  2379. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2380. sizeof(uint64_t))) {
  2381. hdr = NULL;
  2382. *errp = -EMSGSIZE;
  2383. } else {
  2384. *errp = 0;
  2385. }
  2386. }
  2387. return hdr;
  2388. }
  2389. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2390. {
  2391. unsigned int id = d->desc.sadb_alg_id;
  2392. if (id >= sizeof(t->aalgos) * 8)
  2393. return 0;
  2394. return (t->aalgos >> id) & 1;
  2395. }
  2396. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2397. {
  2398. unsigned int id = d->desc.sadb_alg_id;
  2399. if (id >= sizeof(t->ealgos) * 8)
  2400. return 0;
  2401. return (t->ealgos >> id) & 1;
  2402. }
  2403. static int count_ah_combs(struct xfrm_tmpl *t)
  2404. {
  2405. int i, sz = 0;
  2406. for (i = 0; ; i++) {
  2407. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2408. if (!aalg)
  2409. break;
  2410. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2411. sz += sizeof(struct sadb_comb);
  2412. }
  2413. return sz + sizeof(struct sadb_prop);
  2414. }
  2415. static int count_esp_combs(struct xfrm_tmpl *t)
  2416. {
  2417. int i, k, sz = 0;
  2418. for (i = 0; ; i++) {
  2419. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2420. if (!ealg)
  2421. break;
  2422. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2423. continue;
  2424. for (k = 1; ; k++) {
  2425. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2426. if (!aalg)
  2427. break;
  2428. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2429. sz += sizeof(struct sadb_comb);
  2430. }
  2431. }
  2432. return sz + sizeof(struct sadb_prop);
  2433. }
  2434. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2435. {
  2436. struct sadb_prop *p;
  2437. int i;
  2438. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2439. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2440. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2441. p->sadb_prop_replay = 32;
  2442. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2443. for (i = 0; ; i++) {
  2444. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2445. if (!aalg)
  2446. break;
  2447. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2448. struct sadb_comb *c;
  2449. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2450. memset(c, 0, sizeof(*c));
  2451. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2452. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2453. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2454. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2455. c->sadb_comb_hard_addtime = 24*60*60;
  2456. c->sadb_comb_soft_addtime = 20*60*60;
  2457. c->sadb_comb_hard_usetime = 8*60*60;
  2458. c->sadb_comb_soft_usetime = 7*60*60;
  2459. }
  2460. }
  2461. }
  2462. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2463. {
  2464. struct sadb_prop *p;
  2465. int i, k;
  2466. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2467. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2468. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2469. p->sadb_prop_replay = 32;
  2470. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2471. for (i=0; ; i++) {
  2472. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2473. if (!ealg)
  2474. break;
  2475. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2476. continue;
  2477. for (k = 1; ; k++) {
  2478. struct sadb_comb *c;
  2479. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2480. if (!aalg)
  2481. break;
  2482. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2483. continue;
  2484. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2485. memset(c, 0, sizeof(*c));
  2486. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2487. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2488. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2489. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2490. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2491. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2492. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2493. c->sadb_comb_hard_addtime = 24*60*60;
  2494. c->sadb_comb_soft_addtime = 20*60*60;
  2495. c->sadb_comb_hard_usetime = 8*60*60;
  2496. c->sadb_comb_soft_usetime = 7*60*60;
  2497. }
  2498. }
  2499. }
  2500. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2501. {
  2502. return 0;
  2503. }
  2504. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2505. {
  2506. struct sk_buff *out_skb;
  2507. struct sadb_msg *out_hdr;
  2508. int hard;
  2509. int hsc;
  2510. hard = c->data.hard;
  2511. if (hard)
  2512. hsc = 2;
  2513. else
  2514. hsc = 1;
  2515. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2516. if (IS_ERR(out_skb))
  2517. return PTR_ERR(out_skb);
  2518. out_hdr = (struct sadb_msg *) out_skb->data;
  2519. out_hdr->sadb_msg_version = PF_KEY_V2;
  2520. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2521. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2522. out_hdr->sadb_msg_errno = 0;
  2523. out_hdr->sadb_msg_reserved = 0;
  2524. out_hdr->sadb_msg_seq = 0;
  2525. out_hdr->sadb_msg_pid = 0;
  2526. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2527. return 0;
  2528. }
  2529. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2530. {
  2531. struct net *net = x ? xs_net(x) : c->net;
  2532. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2533. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2534. return 0;
  2535. switch (c->event) {
  2536. case XFRM_MSG_EXPIRE:
  2537. return key_notify_sa_expire(x, c);
  2538. case XFRM_MSG_DELSA:
  2539. case XFRM_MSG_NEWSA:
  2540. case XFRM_MSG_UPDSA:
  2541. return key_notify_sa(x, c);
  2542. case XFRM_MSG_FLUSHSA:
  2543. return key_notify_sa_flush(c);
  2544. case XFRM_MSG_NEWAE: /* not yet supported */
  2545. break;
  2546. default:
  2547. printk("pfkey: Unknown SA event %d\n", c->event);
  2548. break;
  2549. }
  2550. return 0;
  2551. }
  2552. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2553. {
  2554. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2555. return 0;
  2556. switch (c->event) {
  2557. case XFRM_MSG_POLEXPIRE:
  2558. return key_notify_policy_expire(xp, c);
  2559. case XFRM_MSG_DELPOLICY:
  2560. case XFRM_MSG_NEWPOLICY:
  2561. case XFRM_MSG_UPDPOLICY:
  2562. return key_notify_policy(xp, dir, c);
  2563. case XFRM_MSG_FLUSHPOLICY:
  2564. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2565. break;
  2566. return key_notify_policy_flush(c);
  2567. default:
  2568. printk("pfkey: Unknown policy event %d\n", c->event);
  2569. break;
  2570. }
  2571. return 0;
  2572. }
  2573. static u32 get_acqseq(void)
  2574. {
  2575. u32 res;
  2576. static atomic_t acqseq;
  2577. do {
  2578. res = atomic_inc_return(&acqseq);
  2579. } while (!res);
  2580. return res;
  2581. }
  2582. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2583. {
  2584. struct sk_buff *skb;
  2585. struct sadb_msg *hdr;
  2586. struct sadb_address *addr;
  2587. struct sadb_x_policy *pol;
  2588. int sockaddr_size;
  2589. int size;
  2590. struct sadb_x_sec_ctx *sec_ctx;
  2591. struct xfrm_sec_ctx *xfrm_ctx;
  2592. int ctx_size = 0;
  2593. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2594. if (!sockaddr_size)
  2595. return -EINVAL;
  2596. size = sizeof(struct sadb_msg) +
  2597. (sizeof(struct sadb_address) * 2) +
  2598. (sockaddr_size * 2) +
  2599. sizeof(struct sadb_x_policy);
  2600. if (x->id.proto == IPPROTO_AH)
  2601. size += count_ah_combs(t);
  2602. else if (x->id.proto == IPPROTO_ESP)
  2603. size += count_esp_combs(t);
  2604. if ((xfrm_ctx = x->security)) {
  2605. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2606. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2607. }
  2608. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2609. if (skb == NULL)
  2610. return -ENOMEM;
  2611. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2612. hdr->sadb_msg_version = PF_KEY_V2;
  2613. hdr->sadb_msg_type = SADB_ACQUIRE;
  2614. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2615. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2616. hdr->sadb_msg_errno = 0;
  2617. hdr->sadb_msg_reserved = 0;
  2618. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2619. hdr->sadb_msg_pid = 0;
  2620. /* src address */
  2621. addr = (struct sadb_address*) skb_put(skb,
  2622. sizeof(struct sadb_address)+sockaddr_size);
  2623. addr->sadb_address_len =
  2624. (sizeof(struct sadb_address)+sockaddr_size)/
  2625. sizeof(uint64_t);
  2626. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2627. addr->sadb_address_proto = 0;
  2628. addr->sadb_address_reserved = 0;
  2629. addr->sadb_address_prefixlen =
  2630. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2631. (struct sockaddr *) (addr + 1),
  2632. x->props.family);
  2633. if (!addr->sadb_address_prefixlen)
  2634. BUG();
  2635. /* dst address */
  2636. addr = (struct sadb_address*) skb_put(skb,
  2637. sizeof(struct sadb_address)+sockaddr_size);
  2638. addr->sadb_address_len =
  2639. (sizeof(struct sadb_address)+sockaddr_size)/
  2640. sizeof(uint64_t);
  2641. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2642. addr->sadb_address_proto = 0;
  2643. addr->sadb_address_reserved = 0;
  2644. addr->sadb_address_prefixlen =
  2645. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2646. (struct sockaddr *) (addr + 1),
  2647. x->props.family);
  2648. if (!addr->sadb_address_prefixlen)
  2649. BUG();
  2650. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2651. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2652. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2653. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2654. pol->sadb_x_policy_dir = dir+1;
  2655. pol->sadb_x_policy_id = xp->index;
  2656. /* Set sadb_comb's. */
  2657. if (x->id.proto == IPPROTO_AH)
  2658. dump_ah_combs(skb, t);
  2659. else if (x->id.proto == IPPROTO_ESP)
  2660. dump_esp_combs(skb, t);
  2661. /* security context */
  2662. if (xfrm_ctx) {
  2663. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2664. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2665. sec_ctx->sadb_x_sec_len =
  2666. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2667. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2668. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2669. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2670. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2671. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2672. xfrm_ctx->ctx_len);
  2673. }
  2674. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2675. }
  2676. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2677. u8 *data, int len, int *dir)
  2678. {
  2679. struct net *net = sock_net(sk);
  2680. struct xfrm_policy *xp;
  2681. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2682. struct sadb_x_sec_ctx *sec_ctx;
  2683. switch (sk->sk_family) {
  2684. case AF_INET:
  2685. if (opt != IP_IPSEC_POLICY) {
  2686. *dir = -EOPNOTSUPP;
  2687. return NULL;
  2688. }
  2689. break;
  2690. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2691. case AF_INET6:
  2692. if (opt != IPV6_IPSEC_POLICY) {
  2693. *dir = -EOPNOTSUPP;
  2694. return NULL;
  2695. }
  2696. break;
  2697. #endif
  2698. default:
  2699. *dir = -EINVAL;
  2700. return NULL;
  2701. }
  2702. *dir = -EINVAL;
  2703. if (len < sizeof(struct sadb_x_policy) ||
  2704. pol->sadb_x_policy_len*8 > len ||
  2705. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2706. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2707. return NULL;
  2708. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2709. if (xp == NULL) {
  2710. *dir = -ENOBUFS;
  2711. return NULL;
  2712. }
  2713. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2714. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2715. xp->lft.soft_byte_limit = XFRM_INF;
  2716. xp->lft.hard_byte_limit = XFRM_INF;
  2717. xp->lft.soft_packet_limit = XFRM_INF;
  2718. xp->lft.hard_packet_limit = XFRM_INF;
  2719. xp->family = sk->sk_family;
  2720. xp->xfrm_nr = 0;
  2721. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2722. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2723. goto out;
  2724. /* security context too */
  2725. if (len >= (pol->sadb_x_policy_len*8 +
  2726. sizeof(struct sadb_x_sec_ctx))) {
  2727. char *p = (char *)pol;
  2728. struct xfrm_user_sec_ctx *uctx;
  2729. p += pol->sadb_x_policy_len*8;
  2730. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2731. if (len < pol->sadb_x_policy_len*8 +
  2732. sec_ctx->sadb_x_sec_len) {
  2733. *dir = -EINVAL;
  2734. goto out;
  2735. }
  2736. if ((*dir = verify_sec_ctx_len(p)))
  2737. goto out;
  2738. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2739. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2740. kfree(uctx);
  2741. if (*dir)
  2742. goto out;
  2743. }
  2744. *dir = pol->sadb_x_policy_dir-1;
  2745. return xp;
  2746. out:
  2747. xp->walk.dead = 1;
  2748. xfrm_policy_destroy(xp);
  2749. return NULL;
  2750. }
  2751. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2752. {
  2753. struct sk_buff *skb;
  2754. struct sadb_msg *hdr;
  2755. struct sadb_sa *sa;
  2756. struct sadb_address *addr;
  2757. struct sadb_x_nat_t_port *n_port;
  2758. int sockaddr_size;
  2759. int size;
  2760. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2761. struct xfrm_encap_tmpl *natt = NULL;
  2762. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2763. if (!sockaddr_size)
  2764. return -EINVAL;
  2765. if (!satype)
  2766. return -EINVAL;
  2767. if (!x->encap)
  2768. return -EINVAL;
  2769. natt = x->encap;
  2770. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2771. *
  2772. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2773. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2774. */
  2775. size = sizeof(struct sadb_msg) +
  2776. sizeof(struct sadb_sa) +
  2777. (sizeof(struct sadb_address) * 2) +
  2778. (sockaddr_size * 2) +
  2779. (sizeof(struct sadb_x_nat_t_port) * 2);
  2780. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2781. if (skb == NULL)
  2782. return -ENOMEM;
  2783. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2784. hdr->sadb_msg_version = PF_KEY_V2;
  2785. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2786. hdr->sadb_msg_satype = satype;
  2787. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2788. hdr->sadb_msg_errno = 0;
  2789. hdr->sadb_msg_reserved = 0;
  2790. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2791. hdr->sadb_msg_pid = 0;
  2792. /* SA */
  2793. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2794. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2795. sa->sadb_sa_exttype = SADB_EXT_SA;
  2796. sa->sadb_sa_spi = x->id.spi;
  2797. sa->sadb_sa_replay = 0;
  2798. sa->sadb_sa_state = 0;
  2799. sa->sadb_sa_auth = 0;
  2800. sa->sadb_sa_encrypt = 0;
  2801. sa->sadb_sa_flags = 0;
  2802. /* ADDRESS_SRC (old addr) */
  2803. addr = (struct sadb_address*)
  2804. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2805. addr->sadb_address_len =
  2806. (sizeof(struct sadb_address)+sockaddr_size)/
  2807. sizeof(uint64_t);
  2808. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2809. addr->sadb_address_proto = 0;
  2810. addr->sadb_address_reserved = 0;
  2811. addr->sadb_address_prefixlen =
  2812. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2813. (struct sockaddr *) (addr + 1),
  2814. x->props.family);
  2815. if (!addr->sadb_address_prefixlen)
  2816. BUG();
  2817. /* NAT_T_SPORT (old port) */
  2818. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2819. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2820. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2821. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2822. n_port->sadb_x_nat_t_port_reserved = 0;
  2823. /* ADDRESS_DST (new addr) */
  2824. addr = (struct sadb_address*)
  2825. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2826. addr->sadb_address_len =
  2827. (sizeof(struct sadb_address)+sockaddr_size)/
  2828. sizeof(uint64_t);
  2829. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2830. addr->sadb_address_proto = 0;
  2831. addr->sadb_address_reserved = 0;
  2832. addr->sadb_address_prefixlen =
  2833. pfkey_sockaddr_fill(ipaddr, 0,
  2834. (struct sockaddr *) (addr + 1),
  2835. x->props.family);
  2836. if (!addr->sadb_address_prefixlen)
  2837. BUG();
  2838. /* NAT_T_DPORT (new port) */
  2839. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2840. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2841. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2842. n_port->sadb_x_nat_t_port_port = sport;
  2843. n_port->sadb_x_nat_t_port_reserved = 0;
  2844. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2845. }
  2846. #ifdef CONFIG_NET_KEY_MIGRATE
  2847. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2848. struct xfrm_selector *sel)
  2849. {
  2850. struct sadb_address *addr;
  2851. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2852. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2853. addr->sadb_address_exttype = type;
  2854. addr->sadb_address_proto = sel->proto;
  2855. addr->sadb_address_reserved = 0;
  2856. switch (type) {
  2857. case SADB_EXT_ADDRESS_SRC:
  2858. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2859. pfkey_sockaddr_fill(&sel->saddr, 0,
  2860. (struct sockaddr *)(addr + 1),
  2861. sel->family);
  2862. break;
  2863. case SADB_EXT_ADDRESS_DST:
  2864. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2865. pfkey_sockaddr_fill(&sel->daddr, 0,
  2866. (struct sockaddr *)(addr + 1),
  2867. sel->family);
  2868. break;
  2869. default:
  2870. return -EINVAL;
  2871. }
  2872. return 0;
  2873. }
  2874. static int set_sadb_kmaddress(struct sk_buff *skb, struct xfrm_kmaddress *k)
  2875. {
  2876. struct sadb_x_kmaddress *kma;
  2877. u8 *sa;
  2878. int family = k->family;
  2879. int socklen = pfkey_sockaddr_len(family);
  2880. int size_req;
  2881. size_req = (sizeof(struct sadb_x_kmaddress) +
  2882. pfkey_sockaddr_pair_size(family));
  2883. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2884. memset(kma, 0, size_req);
  2885. kma->sadb_x_kmaddress_len = size_req / 8;
  2886. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2887. kma->sadb_x_kmaddress_reserved = k->reserved;
  2888. sa = (u8 *)(kma + 1);
  2889. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2890. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2891. return -EINVAL;
  2892. return 0;
  2893. }
  2894. static int set_ipsecrequest(struct sk_buff *skb,
  2895. uint8_t proto, uint8_t mode, int level,
  2896. uint32_t reqid, uint8_t family,
  2897. xfrm_address_t *src, xfrm_address_t *dst)
  2898. {
  2899. struct sadb_x_ipsecrequest *rq;
  2900. u8 *sa;
  2901. int socklen = pfkey_sockaddr_len(family);
  2902. int size_req;
  2903. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2904. pfkey_sockaddr_pair_size(family);
  2905. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2906. memset(rq, 0, size_req);
  2907. rq->sadb_x_ipsecrequest_len = size_req;
  2908. rq->sadb_x_ipsecrequest_proto = proto;
  2909. rq->sadb_x_ipsecrequest_mode = mode;
  2910. rq->sadb_x_ipsecrequest_level = level;
  2911. rq->sadb_x_ipsecrequest_reqid = reqid;
  2912. sa = (u8 *) (rq + 1);
  2913. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2914. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2915. return -EINVAL;
  2916. return 0;
  2917. }
  2918. #endif
  2919. #ifdef CONFIG_NET_KEY_MIGRATE
  2920. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2921. struct xfrm_migrate *m, int num_bundles,
  2922. struct xfrm_kmaddress *k)
  2923. {
  2924. int i;
  2925. int sasize_sel;
  2926. int size = 0;
  2927. int size_pol = 0;
  2928. struct sk_buff *skb;
  2929. struct sadb_msg *hdr;
  2930. struct sadb_x_policy *pol;
  2931. struct xfrm_migrate *mp;
  2932. if (type != XFRM_POLICY_TYPE_MAIN)
  2933. return 0;
  2934. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2935. return -EINVAL;
  2936. if (k != NULL) {
  2937. /* addresses for KM */
  2938. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2939. pfkey_sockaddr_pair_size(k->family));
  2940. }
  2941. /* selector */
  2942. sasize_sel = pfkey_sockaddr_size(sel->family);
  2943. if (!sasize_sel)
  2944. return -EINVAL;
  2945. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2946. /* policy info */
  2947. size_pol += sizeof(struct sadb_x_policy);
  2948. /* ipsecrequests */
  2949. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2950. /* old locator pair */
  2951. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2952. pfkey_sockaddr_pair_size(mp->old_family);
  2953. /* new locator pair */
  2954. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2955. pfkey_sockaddr_pair_size(mp->new_family);
  2956. }
  2957. size += sizeof(struct sadb_msg) + size_pol;
  2958. /* alloc buffer */
  2959. skb = alloc_skb(size, GFP_ATOMIC);
  2960. if (skb == NULL)
  2961. return -ENOMEM;
  2962. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2963. hdr->sadb_msg_version = PF_KEY_V2;
  2964. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2965. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2966. hdr->sadb_msg_len = size / 8;
  2967. hdr->sadb_msg_errno = 0;
  2968. hdr->sadb_msg_reserved = 0;
  2969. hdr->sadb_msg_seq = 0;
  2970. hdr->sadb_msg_pid = 0;
  2971. /* Addresses to be used by KM for negotiation, if ext is available */
  2972. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2973. return -EINVAL;
  2974. /* selector src */
  2975. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2976. /* selector dst */
  2977. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2978. /* policy information */
  2979. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2980. pol->sadb_x_policy_len = size_pol / 8;
  2981. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2982. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2983. pol->sadb_x_policy_dir = dir + 1;
  2984. pol->sadb_x_policy_id = 0;
  2985. pol->sadb_x_policy_priority = 0;
  2986. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2987. /* old ipsecrequest */
  2988. int mode = pfkey_mode_from_xfrm(mp->mode);
  2989. if (mode < 0)
  2990. goto err;
  2991. if (set_ipsecrequest(skb, mp->proto, mode,
  2992. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2993. mp->reqid, mp->old_family,
  2994. &mp->old_saddr, &mp->old_daddr) < 0)
  2995. goto err;
  2996. /* new ipsecrequest */
  2997. if (set_ipsecrequest(skb, mp->proto, mode,
  2998. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2999. mp->reqid, mp->new_family,
  3000. &mp->new_saddr, &mp->new_daddr) < 0)
  3001. goto err;
  3002. }
  3003. /* broadcast migrate message to sockets */
  3004. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3005. return 0;
  3006. err:
  3007. kfree_skb(skb);
  3008. return -EINVAL;
  3009. }
  3010. #else
  3011. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3012. struct xfrm_migrate *m, int num_bundles,
  3013. struct xfrm_kmaddress *k)
  3014. {
  3015. return -ENOPROTOOPT;
  3016. }
  3017. #endif
  3018. static int pfkey_sendmsg(struct kiocb *kiocb,
  3019. struct socket *sock, struct msghdr *msg, size_t len)
  3020. {
  3021. struct sock *sk = sock->sk;
  3022. struct sk_buff *skb = NULL;
  3023. struct sadb_msg *hdr = NULL;
  3024. int err;
  3025. err = -EOPNOTSUPP;
  3026. if (msg->msg_flags & MSG_OOB)
  3027. goto out;
  3028. err = -EMSGSIZE;
  3029. if ((unsigned)len > sk->sk_sndbuf - 32)
  3030. goto out;
  3031. err = -ENOBUFS;
  3032. skb = alloc_skb(len, GFP_KERNEL);
  3033. if (skb == NULL)
  3034. goto out;
  3035. err = -EFAULT;
  3036. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3037. goto out;
  3038. hdr = pfkey_get_base_msg(skb, &err);
  3039. if (!hdr)
  3040. goto out;
  3041. mutex_lock(&xfrm_cfg_mutex);
  3042. err = pfkey_process(sk, skb, hdr);
  3043. mutex_unlock(&xfrm_cfg_mutex);
  3044. out:
  3045. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3046. err = 0;
  3047. kfree_skb(skb);
  3048. return err ? : len;
  3049. }
  3050. static int pfkey_recvmsg(struct kiocb *kiocb,
  3051. struct socket *sock, struct msghdr *msg, size_t len,
  3052. int flags)
  3053. {
  3054. struct sock *sk = sock->sk;
  3055. struct pfkey_sock *pfk = pfkey_sk(sk);
  3056. struct sk_buff *skb;
  3057. int copied, err;
  3058. err = -EINVAL;
  3059. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3060. goto out;
  3061. msg->msg_namelen = 0;
  3062. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3063. if (skb == NULL)
  3064. goto out;
  3065. copied = skb->len;
  3066. if (copied > len) {
  3067. msg->msg_flags |= MSG_TRUNC;
  3068. copied = len;
  3069. }
  3070. skb_reset_transport_header(skb);
  3071. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3072. if (err)
  3073. goto out_free;
  3074. sock_recv_ts_and_drops(msg, sk, skb);
  3075. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3076. if (pfk->dump.dump != NULL &&
  3077. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3078. pfkey_do_dump(pfk);
  3079. out_free:
  3080. skb_free_datagram(sk, skb);
  3081. out:
  3082. return err;
  3083. }
  3084. static const struct proto_ops pfkey_ops = {
  3085. .family = PF_KEY,
  3086. .owner = THIS_MODULE,
  3087. /* Operations that make no sense on pfkey sockets. */
  3088. .bind = sock_no_bind,
  3089. .connect = sock_no_connect,
  3090. .socketpair = sock_no_socketpair,
  3091. .accept = sock_no_accept,
  3092. .getname = sock_no_getname,
  3093. .ioctl = sock_no_ioctl,
  3094. .listen = sock_no_listen,
  3095. .shutdown = sock_no_shutdown,
  3096. .setsockopt = sock_no_setsockopt,
  3097. .getsockopt = sock_no_getsockopt,
  3098. .mmap = sock_no_mmap,
  3099. .sendpage = sock_no_sendpage,
  3100. /* Now the operations that really occur. */
  3101. .release = pfkey_release,
  3102. .poll = datagram_poll,
  3103. .sendmsg = pfkey_sendmsg,
  3104. .recvmsg = pfkey_recvmsg,
  3105. };
  3106. static const struct net_proto_family pfkey_family_ops = {
  3107. .family = PF_KEY,
  3108. .create = pfkey_create,
  3109. .owner = THIS_MODULE,
  3110. };
  3111. #ifdef CONFIG_PROC_FS
  3112. static int pfkey_seq_show(struct seq_file *f, void *v)
  3113. {
  3114. struct sock *s = sk_entry(v);
  3115. if (v == SEQ_START_TOKEN)
  3116. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3117. else
  3118. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3119. s,
  3120. atomic_read(&s->sk_refcnt),
  3121. sk_rmem_alloc_get(s),
  3122. sk_wmem_alloc_get(s),
  3123. sock_i_uid(s),
  3124. sock_i_ino(s)
  3125. );
  3126. return 0;
  3127. }
  3128. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3129. {
  3130. struct net *net = seq_file_net(f);
  3131. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3132. read_lock(&pfkey_table_lock);
  3133. return seq_hlist_start_head(&net_pfkey->table, *ppos);
  3134. }
  3135. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3136. {
  3137. struct net *net = seq_file_net(f);
  3138. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3139. return seq_hlist_next(v, &net_pfkey->table, ppos);
  3140. }
  3141. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3142. {
  3143. read_unlock(&pfkey_table_lock);
  3144. }
  3145. static const struct seq_operations pfkey_seq_ops = {
  3146. .start = pfkey_seq_start,
  3147. .next = pfkey_seq_next,
  3148. .stop = pfkey_seq_stop,
  3149. .show = pfkey_seq_show,
  3150. };
  3151. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3152. {
  3153. return seq_open_net(inode, file, &pfkey_seq_ops,
  3154. sizeof(struct seq_net_private));
  3155. }
  3156. static const struct file_operations pfkey_proc_ops = {
  3157. .open = pfkey_seq_open,
  3158. .read = seq_read,
  3159. .llseek = seq_lseek,
  3160. .release = seq_release_net,
  3161. };
  3162. static int __net_init pfkey_init_proc(struct net *net)
  3163. {
  3164. struct proc_dir_entry *e;
  3165. e = proc_net_fops_create(net, "pfkey", 0, &pfkey_proc_ops);
  3166. if (e == NULL)
  3167. return -ENOMEM;
  3168. return 0;
  3169. }
  3170. static void __net_exit pfkey_exit_proc(struct net *net)
  3171. {
  3172. proc_net_remove(net, "pfkey");
  3173. }
  3174. #else
  3175. static inline int pfkey_init_proc(struct net *net)
  3176. {
  3177. return 0;
  3178. }
  3179. static inline void pfkey_exit_proc(struct net *net)
  3180. {
  3181. }
  3182. #endif
  3183. static struct xfrm_mgr pfkeyv2_mgr =
  3184. {
  3185. .id = "pfkeyv2",
  3186. .notify = pfkey_send_notify,
  3187. .acquire = pfkey_send_acquire,
  3188. .compile_policy = pfkey_compile_policy,
  3189. .new_mapping = pfkey_send_new_mapping,
  3190. .notify_policy = pfkey_send_policy_notify,
  3191. .migrate = pfkey_send_migrate,
  3192. };
  3193. static int __net_init pfkey_net_init(struct net *net)
  3194. {
  3195. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3196. int rv;
  3197. INIT_HLIST_HEAD(&net_pfkey->table);
  3198. atomic_set(&net_pfkey->socks_nr, 0);
  3199. rv = pfkey_init_proc(net);
  3200. return rv;
  3201. }
  3202. static void __net_exit pfkey_net_exit(struct net *net)
  3203. {
  3204. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3205. pfkey_exit_proc(net);
  3206. BUG_ON(!hlist_empty(&net_pfkey->table));
  3207. }
  3208. static struct pernet_operations pfkey_net_ops = {
  3209. .init = pfkey_net_init,
  3210. .exit = pfkey_net_exit,
  3211. .id = &pfkey_net_id,
  3212. .size = sizeof(struct netns_pfkey),
  3213. };
  3214. static void __exit ipsec_pfkey_exit(void)
  3215. {
  3216. xfrm_unregister_km(&pfkeyv2_mgr);
  3217. sock_unregister(PF_KEY);
  3218. unregister_pernet_subsys(&pfkey_net_ops);
  3219. proto_unregister(&key_proto);
  3220. }
  3221. static int __init ipsec_pfkey_init(void)
  3222. {
  3223. int err = proto_register(&key_proto, 0);
  3224. if (err != 0)
  3225. goto out;
  3226. err = register_pernet_subsys(&pfkey_net_ops);
  3227. if (err != 0)
  3228. goto out_unregister_key_proto;
  3229. err = sock_register(&pfkey_family_ops);
  3230. if (err != 0)
  3231. goto out_unregister_pernet;
  3232. err = xfrm_register_km(&pfkeyv2_mgr);
  3233. if (err != 0)
  3234. goto out_sock_unregister;
  3235. out:
  3236. return err;
  3237. out_sock_unregister:
  3238. sock_unregister(PF_KEY);
  3239. out_unregister_pernet:
  3240. unregister_pernet_subsys(&pfkey_net_ops);
  3241. out_unregister_key_proto:
  3242. proto_unregister(&key_proto);
  3243. goto out;
  3244. }
  3245. module_init(ipsec_pfkey_init);
  3246. module_exit(ipsec_pfkey_exit);
  3247. MODULE_LICENSE("GPL");
  3248. MODULE_ALIAS_NETPROTO(PF_KEY);