rt61pci.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt61pci
  19. Abstract: rt61pci device specific routines.
  20. Supported chipsets: RT2561, RT2561s, RT2661.
  21. */
  22. #include <linux/crc-itu-t.h>
  23. #include <linux/delay.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/eeprom_93cx6.h>
  30. #include "rt2x00.h"
  31. #include "rt2x00pci.h"
  32. #include "rt61pci.h"
  33. /*
  34. * Register access.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attampt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. */
  44. static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  45. {
  46. u32 reg;
  47. unsigned int i;
  48. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  49. rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
  50. if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
  51. break;
  52. udelay(REGISTER_BUSY_DELAY);
  53. }
  54. return reg;
  55. }
  56. static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  57. const unsigned int word, const u8 value)
  58. {
  59. u32 reg;
  60. /*
  61. * Wait until the BBP becomes ready.
  62. */
  63. reg = rt61pci_bbp_check(rt2x00dev);
  64. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  65. ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
  66. return;
  67. }
  68. /*
  69. * Write the data into the BBP.
  70. */
  71. reg = 0;
  72. rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  73. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  74. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  75. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  76. rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  77. }
  78. static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  79. const unsigned int word, u8 *value)
  80. {
  81. u32 reg;
  82. /*
  83. * Wait until the BBP becomes ready.
  84. */
  85. reg = rt61pci_bbp_check(rt2x00dev);
  86. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  87. ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
  88. return;
  89. }
  90. /*
  91. * Write the request into the BBP.
  92. */
  93. reg = 0;
  94. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  95. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  96. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
  97. rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  98. /*
  99. * Wait until the BBP becomes ready.
  100. */
  101. reg = rt61pci_bbp_check(rt2x00dev);
  102. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  103. ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
  104. *value = 0xff;
  105. return;
  106. }
  107. *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
  108. }
  109. static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
  110. const unsigned int word, const u32 value)
  111. {
  112. u32 reg;
  113. unsigned int i;
  114. if (!word)
  115. return;
  116. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  117. rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
  118. if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
  119. goto rf_write;
  120. udelay(REGISTER_BUSY_DELAY);
  121. }
  122. ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
  123. return;
  124. rf_write:
  125. reg = 0;
  126. rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
  127. rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
  128. rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
  129. rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
  130. rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
  131. rt2x00_rf_write(rt2x00dev, word, value);
  132. }
  133. #ifdef CONFIG_RT61PCI_LEDS
  134. /*
  135. * This function is only called from rt61pci_led_brightness()
  136. * make gcc happy by placing this function inside the
  137. * same ifdef statement as the caller.
  138. */
  139. static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
  140. const u8 command, const u8 token,
  141. const u8 arg0, const u8 arg1)
  142. {
  143. u32 reg;
  144. rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
  145. if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
  146. ERROR(rt2x00dev, "mcu request error. "
  147. "Request 0x%02x failed for token 0x%02x.\n",
  148. command, token);
  149. return;
  150. }
  151. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
  152. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
  153. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
  154. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
  155. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
  156. rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
  157. rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
  158. rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
  159. rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
  160. }
  161. #endif /* CONFIG_RT61PCI_LEDS */
  162. static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  163. {
  164. struct rt2x00_dev *rt2x00dev = eeprom->data;
  165. u32 reg;
  166. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  167. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  168. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  169. eeprom->reg_data_clock =
  170. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  171. eeprom->reg_chip_select =
  172. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  173. }
  174. static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  175. {
  176. struct rt2x00_dev *rt2x00dev = eeprom->data;
  177. u32 reg = 0;
  178. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  179. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  180. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  181. !!eeprom->reg_data_clock);
  182. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  183. !!eeprom->reg_chip_select);
  184. rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
  185. }
  186. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  187. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  188. static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
  189. const unsigned int word, u32 *data)
  190. {
  191. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  192. }
  193. static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
  194. const unsigned int word, u32 data)
  195. {
  196. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  197. }
  198. static const struct rt2x00debug rt61pci_rt2x00debug = {
  199. .owner = THIS_MODULE,
  200. .csr = {
  201. .read = rt61pci_read_csr,
  202. .write = rt61pci_write_csr,
  203. .word_size = sizeof(u32),
  204. .word_count = CSR_REG_SIZE / sizeof(u32),
  205. },
  206. .eeprom = {
  207. .read = rt2x00_eeprom_read,
  208. .write = rt2x00_eeprom_write,
  209. .word_size = sizeof(u16),
  210. .word_count = EEPROM_SIZE / sizeof(u16),
  211. },
  212. .bbp = {
  213. .read = rt61pci_bbp_read,
  214. .write = rt61pci_bbp_write,
  215. .word_size = sizeof(u8),
  216. .word_count = BBP_SIZE / sizeof(u8),
  217. },
  218. .rf = {
  219. .read = rt2x00_rf_read,
  220. .write = rt61pci_rf_write,
  221. .word_size = sizeof(u32),
  222. .word_count = RF_SIZE / sizeof(u32),
  223. },
  224. };
  225. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  226. #ifdef CONFIG_RT61PCI_RFKILL
  227. static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  228. {
  229. u32 reg;
  230. rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
  231. return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
  232. }
  233. #else
  234. #define rt61pci_rfkill_poll NULL
  235. #endif /* CONFIG_RT61PCI_RFKILL */
  236. #ifdef CONFIG_RT61PCI_LEDS
  237. static void rt61pci_led_brightness(struct led_classdev *led_cdev,
  238. enum led_brightness brightness)
  239. {
  240. struct rt2x00_led *led =
  241. container_of(led_cdev, struct rt2x00_led, led_dev);
  242. unsigned int enabled = brightness != LED_OFF;
  243. unsigned int a_mode =
  244. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  245. unsigned int bg_mode =
  246. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  247. if (led->type == LED_TYPE_RADIO) {
  248. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  249. MCU_LEDCS_RADIO_STATUS, enabled);
  250. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  251. (led->rt2x00dev->led_mcu_reg & 0xff),
  252. ((led->rt2x00dev->led_mcu_reg >> 8)));
  253. } else if (led->type == LED_TYPE_ASSOC) {
  254. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  255. MCU_LEDCS_LINK_BG_STATUS, bg_mode);
  256. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  257. MCU_LEDCS_LINK_A_STATUS, a_mode);
  258. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  259. (led->rt2x00dev->led_mcu_reg & 0xff),
  260. ((led->rt2x00dev->led_mcu_reg >> 8)));
  261. } else if (led->type == LED_TYPE_QUALITY) {
  262. /*
  263. * The brightness is divided into 6 levels (0 - 5),
  264. * this means we need to convert the brightness
  265. * argument into the matching level within that range.
  266. */
  267. rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
  268. brightness / (LED_FULL / 6), 0);
  269. }
  270. }
  271. #else
  272. #define rt61pci_led_brightness NULL
  273. #endif /* CONFIG_RT61PCI_LEDS */
  274. /*
  275. * Configuration handlers.
  276. */
  277. static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
  278. struct rt2x00_intf *intf,
  279. struct rt2x00intf_conf *conf,
  280. const unsigned int flags)
  281. {
  282. unsigned int beacon_base;
  283. u32 reg;
  284. if (flags & CONFIG_UPDATE_TYPE) {
  285. /*
  286. * Clear current synchronisation setup.
  287. * For the Beacon base registers we only need to clear
  288. * the first byte since that byte contains the VALID and OWNER
  289. * bits which (when set to 0) will invalidate the entire beacon.
  290. */
  291. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  292. rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
  293. /*
  294. * Enable synchronisation.
  295. */
  296. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  297. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  298. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
  299. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  300. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  301. }
  302. if (flags & CONFIG_UPDATE_MAC) {
  303. reg = le32_to_cpu(conf->mac[1]);
  304. rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
  305. conf->mac[1] = cpu_to_le32(reg);
  306. rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
  307. conf->mac, sizeof(conf->mac));
  308. }
  309. if (flags & CONFIG_UPDATE_BSSID) {
  310. reg = le32_to_cpu(conf->bssid[1]);
  311. rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
  312. conf->bssid[1] = cpu_to_le32(reg);
  313. rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
  314. conf->bssid, sizeof(conf->bssid));
  315. }
  316. }
  317. static int rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
  318. struct rt2x00lib_erp *erp)
  319. {
  320. u32 reg;
  321. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  322. rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
  323. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  324. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  325. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
  326. !!erp->short_preamble);
  327. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  328. return 0;
  329. }
  330. static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  331. const int basic_rate_mask)
  332. {
  333. rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
  334. }
  335. static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
  336. struct rf_channel *rf, const int txpower)
  337. {
  338. u8 r3;
  339. u8 r94;
  340. u8 smart;
  341. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  342. rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
  343. smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  344. rt2x00_rf(&rt2x00dev->chip, RF2527));
  345. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  346. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
  347. rt61pci_bbp_write(rt2x00dev, 3, r3);
  348. r94 = 6;
  349. if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
  350. r94 += txpower - MAX_TXPOWER;
  351. else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
  352. r94 += txpower;
  353. rt61pci_bbp_write(rt2x00dev, 94, r94);
  354. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  355. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  356. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  357. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  358. udelay(200);
  359. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  360. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  361. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
  362. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  363. udelay(200);
  364. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  365. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  366. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  367. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  368. msleep(1);
  369. }
  370. static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  371. const int txpower)
  372. {
  373. struct rf_channel rf;
  374. rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
  375. rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
  376. rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
  377. rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
  378. rt61pci_config_channel(rt2x00dev, &rf, txpower);
  379. }
  380. static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
  381. struct antenna_setup *ant)
  382. {
  383. u8 r3;
  384. u8 r4;
  385. u8 r77;
  386. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  387. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  388. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  389. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
  390. rt2x00_rf(&rt2x00dev->chip, RF5325));
  391. /*
  392. * Configure the RX antenna.
  393. */
  394. switch (ant->rx) {
  395. case ANTENNA_HW_DIVERSITY:
  396. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  397. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  398. (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
  399. break;
  400. case ANTENNA_A:
  401. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  402. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  403. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  404. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  405. else
  406. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  407. break;
  408. case ANTENNA_B:
  409. default:
  410. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  411. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  412. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  413. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  414. else
  415. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  416. break;
  417. }
  418. rt61pci_bbp_write(rt2x00dev, 77, r77);
  419. rt61pci_bbp_write(rt2x00dev, 3, r3);
  420. rt61pci_bbp_write(rt2x00dev, 4, r4);
  421. }
  422. static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
  423. struct antenna_setup *ant)
  424. {
  425. u8 r3;
  426. u8 r4;
  427. u8 r77;
  428. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  429. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  430. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  431. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
  432. rt2x00_rf(&rt2x00dev->chip, RF2529));
  433. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  434. !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
  435. /*
  436. * Configure the RX antenna.
  437. */
  438. switch (ant->rx) {
  439. case ANTENNA_HW_DIVERSITY:
  440. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  441. break;
  442. case ANTENNA_A:
  443. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  444. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  445. break;
  446. case ANTENNA_B:
  447. default:
  448. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  449. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  450. break;
  451. }
  452. rt61pci_bbp_write(rt2x00dev, 77, r77);
  453. rt61pci_bbp_write(rt2x00dev, 3, r3);
  454. rt61pci_bbp_write(rt2x00dev, 4, r4);
  455. }
  456. static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
  457. const int p1, const int p2)
  458. {
  459. u32 reg;
  460. rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
  461. rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
  462. rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
  463. rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
  464. rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
  465. rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
  466. }
  467. static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
  468. struct antenna_setup *ant)
  469. {
  470. u8 r3;
  471. u8 r4;
  472. u8 r77;
  473. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  474. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  475. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  476. /*
  477. * Configure the RX antenna.
  478. */
  479. switch (ant->rx) {
  480. case ANTENNA_A:
  481. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  482. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  483. rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
  484. break;
  485. case ANTENNA_HW_DIVERSITY:
  486. /*
  487. * FIXME: Antenna selection for the rf 2529 is very confusing
  488. * in the legacy driver. Just default to antenna B until the
  489. * legacy code can be properly translated into rt2x00 code.
  490. */
  491. case ANTENNA_B:
  492. default:
  493. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  494. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  495. rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
  496. break;
  497. }
  498. rt61pci_bbp_write(rt2x00dev, 77, r77);
  499. rt61pci_bbp_write(rt2x00dev, 3, r3);
  500. rt61pci_bbp_write(rt2x00dev, 4, r4);
  501. }
  502. struct antenna_sel {
  503. u8 word;
  504. /*
  505. * value[0] -> non-LNA
  506. * value[1] -> LNA
  507. */
  508. u8 value[2];
  509. };
  510. static const struct antenna_sel antenna_sel_a[] = {
  511. { 96, { 0x58, 0x78 } },
  512. { 104, { 0x38, 0x48 } },
  513. { 75, { 0xfe, 0x80 } },
  514. { 86, { 0xfe, 0x80 } },
  515. { 88, { 0xfe, 0x80 } },
  516. { 35, { 0x60, 0x60 } },
  517. { 97, { 0x58, 0x58 } },
  518. { 98, { 0x58, 0x58 } },
  519. };
  520. static const struct antenna_sel antenna_sel_bg[] = {
  521. { 96, { 0x48, 0x68 } },
  522. { 104, { 0x2c, 0x3c } },
  523. { 75, { 0xfe, 0x80 } },
  524. { 86, { 0xfe, 0x80 } },
  525. { 88, { 0xfe, 0x80 } },
  526. { 35, { 0x50, 0x50 } },
  527. { 97, { 0x48, 0x48 } },
  528. { 98, { 0x48, 0x48 } },
  529. };
  530. static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  531. struct antenna_setup *ant)
  532. {
  533. const struct antenna_sel *sel;
  534. unsigned int lna;
  535. unsigned int i;
  536. u32 reg;
  537. /*
  538. * We should never come here because rt2x00lib is supposed
  539. * to catch this and send us the correct antenna explicitely.
  540. */
  541. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  542. ant->tx == ANTENNA_SW_DIVERSITY);
  543. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
  544. sel = antenna_sel_a;
  545. lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  546. } else {
  547. sel = antenna_sel_bg;
  548. lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  549. }
  550. for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
  551. rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
  552. rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
  553. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
  554. rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  555. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
  556. rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  557. rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
  558. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  559. rt2x00_rf(&rt2x00dev->chip, RF5325))
  560. rt61pci_config_antenna_5x(rt2x00dev, ant);
  561. else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
  562. rt61pci_config_antenna_2x(rt2x00dev, ant);
  563. else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
  564. if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
  565. rt61pci_config_antenna_2x(rt2x00dev, ant);
  566. else
  567. rt61pci_config_antenna_2529(rt2x00dev, ant);
  568. }
  569. }
  570. static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
  571. struct rt2x00lib_conf *libconf)
  572. {
  573. u32 reg;
  574. rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
  575. rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
  576. rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
  577. rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
  578. rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
  579. rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
  580. rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
  581. rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
  582. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  583. rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
  584. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  585. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  586. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
  587. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  588. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  589. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
  590. libconf->conf->beacon_int * 16);
  591. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  592. }
  593. static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
  594. struct rt2x00lib_conf *libconf,
  595. const unsigned int flags)
  596. {
  597. if (flags & CONFIG_UPDATE_PHYMODE)
  598. rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
  599. if (flags & CONFIG_UPDATE_CHANNEL)
  600. rt61pci_config_channel(rt2x00dev, &libconf->rf,
  601. libconf->conf->power_level);
  602. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  603. rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
  604. if (flags & CONFIG_UPDATE_ANTENNA)
  605. rt61pci_config_antenna(rt2x00dev, &libconf->ant);
  606. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  607. rt61pci_config_duration(rt2x00dev, libconf);
  608. }
  609. /*
  610. * Link tuning
  611. */
  612. static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
  613. struct link_qual *qual)
  614. {
  615. u32 reg;
  616. /*
  617. * Update FCS error count from register.
  618. */
  619. rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
  620. qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
  621. /*
  622. * Update False CCA count from register.
  623. */
  624. rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
  625. qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
  626. }
  627. static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  628. {
  629. rt61pci_bbp_write(rt2x00dev, 17, 0x20);
  630. rt2x00dev->link.vgc_level = 0x20;
  631. }
  632. static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  633. {
  634. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  635. u8 r17;
  636. u8 up_bound;
  637. u8 low_bound;
  638. rt61pci_bbp_read(rt2x00dev, 17, &r17);
  639. /*
  640. * Determine r17 bounds.
  641. */
  642. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  643. low_bound = 0x28;
  644. up_bound = 0x48;
  645. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
  646. low_bound += 0x10;
  647. up_bound += 0x10;
  648. }
  649. } else {
  650. low_bound = 0x20;
  651. up_bound = 0x40;
  652. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
  653. low_bound += 0x10;
  654. up_bound += 0x10;
  655. }
  656. }
  657. /*
  658. * If we are not associated, we should go straight to the
  659. * dynamic CCA tuning.
  660. */
  661. if (!rt2x00dev->intf_associated)
  662. goto dynamic_cca_tune;
  663. /*
  664. * Special big-R17 for very short distance
  665. */
  666. if (rssi >= -35) {
  667. if (r17 != 0x60)
  668. rt61pci_bbp_write(rt2x00dev, 17, 0x60);
  669. return;
  670. }
  671. /*
  672. * Special big-R17 for short distance
  673. */
  674. if (rssi >= -58) {
  675. if (r17 != up_bound)
  676. rt61pci_bbp_write(rt2x00dev, 17, up_bound);
  677. return;
  678. }
  679. /*
  680. * Special big-R17 for middle-short distance
  681. */
  682. if (rssi >= -66) {
  683. low_bound += 0x10;
  684. if (r17 != low_bound)
  685. rt61pci_bbp_write(rt2x00dev, 17, low_bound);
  686. return;
  687. }
  688. /*
  689. * Special mid-R17 for middle distance
  690. */
  691. if (rssi >= -74) {
  692. low_bound += 0x08;
  693. if (r17 != low_bound)
  694. rt61pci_bbp_write(rt2x00dev, 17, low_bound);
  695. return;
  696. }
  697. /*
  698. * Special case: Change up_bound based on the rssi.
  699. * Lower up_bound when rssi is weaker then -74 dBm.
  700. */
  701. up_bound -= 2 * (-74 - rssi);
  702. if (low_bound > up_bound)
  703. up_bound = low_bound;
  704. if (r17 > up_bound) {
  705. rt61pci_bbp_write(rt2x00dev, 17, up_bound);
  706. return;
  707. }
  708. dynamic_cca_tune:
  709. /*
  710. * r17 does not yet exceed upper limit, continue and base
  711. * the r17 tuning on the false CCA count.
  712. */
  713. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  714. if (++r17 > up_bound)
  715. r17 = up_bound;
  716. rt61pci_bbp_write(rt2x00dev, 17, r17);
  717. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  718. if (--r17 < low_bound)
  719. r17 = low_bound;
  720. rt61pci_bbp_write(rt2x00dev, 17, r17);
  721. }
  722. }
  723. /*
  724. * Firmware functions
  725. */
  726. static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  727. {
  728. char *fw_name;
  729. switch (rt2x00dev->chip.rt) {
  730. case RT2561:
  731. fw_name = FIRMWARE_RT2561;
  732. break;
  733. case RT2561s:
  734. fw_name = FIRMWARE_RT2561s;
  735. break;
  736. case RT2661:
  737. fw_name = FIRMWARE_RT2661;
  738. break;
  739. default:
  740. fw_name = NULL;
  741. break;
  742. }
  743. return fw_name;
  744. }
  745. static u16 rt61pci_get_firmware_crc(void *data, const size_t len)
  746. {
  747. u16 crc;
  748. /*
  749. * Use the crc itu-t algorithm.
  750. * The last 2 bytes in the firmware array are the crc checksum itself,
  751. * this means that we should never pass those 2 bytes to the crc
  752. * algorithm.
  753. */
  754. crc = crc_itu_t(0, data, len - 2);
  755. crc = crc_itu_t_byte(crc, 0);
  756. crc = crc_itu_t_byte(crc, 0);
  757. return crc;
  758. }
  759. static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
  760. const size_t len)
  761. {
  762. int i;
  763. u32 reg;
  764. /*
  765. * Wait for stable hardware.
  766. */
  767. for (i = 0; i < 100; i++) {
  768. rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
  769. if (reg)
  770. break;
  771. msleep(1);
  772. }
  773. if (!reg) {
  774. ERROR(rt2x00dev, "Unstable hardware.\n");
  775. return -EBUSY;
  776. }
  777. /*
  778. * Prepare MCU and mailbox for firmware loading.
  779. */
  780. reg = 0;
  781. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  782. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  783. rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  784. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  785. rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
  786. /*
  787. * Write firmware to device.
  788. */
  789. reg = 0;
  790. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  791. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
  792. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  793. rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  794. data, len);
  795. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
  796. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  797. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
  798. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  799. for (i = 0; i < 100; i++) {
  800. rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
  801. if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
  802. break;
  803. msleep(1);
  804. }
  805. if (i == 100) {
  806. ERROR(rt2x00dev, "MCU Control register not ready.\n");
  807. return -EBUSY;
  808. }
  809. /*
  810. * Reset MAC and BBP registers.
  811. */
  812. reg = 0;
  813. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  814. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  815. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  816. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  817. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  818. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  819. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  820. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  821. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  822. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  823. return 0;
  824. }
  825. /*
  826. * Initialization functions.
  827. */
  828. static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  829. struct queue_entry *entry)
  830. {
  831. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  832. u32 word;
  833. rt2x00_desc_read(priv_rx->desc, 5, &word);
  834. rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
  835. priv_rx->data_dma);
  836. rt2x00_desc_write(priv_rx->desc, 5, word);
  837. rt2x00_desc_read(priv_rx->desc, 0, &word);
  838. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  839. rt2x00_desc_write(priv_rx->desc, 0, word);
  840. }
  841. static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  842. struct queue_entry *entry)
  843. {
  844. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  845. u32 word;
  846. rt2x00_desc_read(priv_tx->desc, 1, &word);
  847. rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
  848. rt2x00_desc_write(priv_tx->desc, 1, word);
  849. rt2x00_desc_read(priv_tx->desc, 5, &word);
  850. rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
  851. rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
  852. rt2x00_desc_write(priv_tx->desc, 5, word);
  853. rt2x00_desc_read(priv_tx->desc, 6, &word);
  854. rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
  855. priv_tx->data_dma);
  856. rt2x00_desc_write(priv_tx->desc, 6, word);
  857. rt2x00_desc_read(priv_tx->desc, 0, &word);
  858. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  859. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  860. rt2x00_desc_write(priv_tx->desc, 0, word);
  861. }
  862. static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
  863. {
  864. struct queue_entry_priv_pci_rx *priv_rx;
  865. struct queue_entry_priv_pci_tx *priv_tx;
  866. u32 reg;
  867. /*
  868. * Initialize registers.
  869. */
  870. rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
  871. rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
  872. rt2x00dev->tx[0].limit);
  873. rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
  874. rt2x00dev->tx[1].limit);
  875. rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
  876. rt2x00dev->tx[2].limit);
  877. rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
  878. rt2x00dev->tx[3].limit);
  879. rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
  880. rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
  881. rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
  882. rt2x00dev->tx[0].desc_size / 4);
  883. rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
  884. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  885. rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
  886. rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
  887. priv_tx->desc_dma);
  888. rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
  889. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  890. rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
  891. rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
  892. priv_tx->desc_dma);
  893. rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
  894. priv_tx = rt2x00dev->tx[2].entries[0].priv_data;
  895. rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
  896. rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
  897. priv_tx->desc_dma);
  898. rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
  899. priv_tx = rt2x00dev->tx[3].entries[0].priv_data;
  900. rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
  901. rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
  902. priv_tx->desc_dma);
  903. rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
  904. rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
  905. rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
  906. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
  907. rt2x00dev->rx->desc_size / 4);
  908. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
  909. rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
  910. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  911. rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
  912. rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
  913. priv_rx->desc_dma);
  914. rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
  915. rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
  916. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
  917. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
  918. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
  919. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
  920. rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
  921. rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
  922. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
  923. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
  924. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
  925. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
  926. rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
  927. rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
  928. rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
  929. rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  930. return 0;
  931. }
  932. static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
  933. {
  934. u32 reg;
  935. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  936. rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
  937. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
  938. rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
  939. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  940. rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
  941. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
  942. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
  943. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
  944. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
  945. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
  946. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
  947. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
  948. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
  949. rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
  950. /*
  951. * CCK TXD BBP registers
  952. */
  953. rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
  954. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
  955. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
  956. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
  957. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
  958. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
  959. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
  960. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
  961. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
  962. rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
  963. /*
  964. * OFDM TXD BBP registers
  965. */
  966. rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
  967. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
  968. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
  969. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
  970. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
  971. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
  972. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
  973. rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
  974. rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
  975. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
  976. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
  977. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
  978. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
  979. rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
  980. rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
  981. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
  982. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
  983. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
  984. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
  985. rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
  986. rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
  987. rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
  988. rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
  989. rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
  990. rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
  991. rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
  992. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  993. return -EBUSY;
  994. rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
  995. rt2x00pci_register_read(rt2x00dev, MAC_CSR14, &reg);
  996. rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, 70);
  997. rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, 30);
  998. rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
  999. /*
  1000. * Invalidate all Shared Keys (SEC_CSR0),
  1001. * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
  1002. */
  1003. rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
  1004. rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
  1005. rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
  1006. rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
  1007. rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
  1008. rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
  1009. rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
  1010. rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
  1011. rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
  1012. rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  1013. rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
  1014. rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
  1015. rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
  1016. rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
  1017. rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
  1018. rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
  1019. rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
  1020. rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
  1021. /*
  1022. * Clear all beacons
  1023. * For the Beacon base registers we only need to clear
  1024. * the first byte since that byte contains the VALID and OWNER
  1025. * bits which (when set to 0) will invalidate the entire beacon.
  1026. */
  1027. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
  1028. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
  1029. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
  1030. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
  1031. /*
  1032. * We must clear the error counters.
  1033. * These registers are cleared on read,
  1034. * so we may pass a useless variable to store the value.
  1035. */
  1036. rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
  1037. rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
  1038. rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
  1039. /*
  1040. * Reset MAC and BBP registers.
  1041. */
  1042. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1043. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  1044. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  1045. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1046. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1047. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  1048. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  1049. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1050. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1051. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  1052. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1053. return 0;
  1054. }
  1055. static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  1056. {
  1057. unsigned int i;
  1058. u16 eeprom;
  1059. u8 reg_id;
  1060. u8 value;
  1061. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1062. rt61pci_bbp_read(rt2x00dev, 0, &value);
  1063. if ((value != 0xff) && (value != 0x00))
  1064. goto continue_csr_init;
  1065. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  1066. udelay(REGISTER_BUSY_DELAY);
  1067. }
  1068. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  1069. return -EACCES;
  1070. continue_csr_init:
  1071. rt61pci_bbp_write(rt2x00dev, 3, 0x00);
  1072. rt61pci_bbp_write(rt2x00dev, 15, 0x30);
  1073. rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
  1074. rt61pci_bbp_write(rt2x00dev, 22, 0x38);
  1075. rt61pci_bbp_write(rt2x00dev, 23, 0x06);
  1076. rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
  1077. rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
  1078. rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
  1079. rt61pci_bbp_write(rt2x00dev, 34, 0x12);
  1080. rt61pci_bbp_write(rt2x00dev, 37, 0x07);
  1081. rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
  1082. rt61pci_bbp_write(rt2x00dev, 41, 0x60);
  1083. rt61pci_bbp_write(rt2x00dev, 53, 0x10);
  1084. rt61pci_bbp_write(rt2x00dev, 54, 0x18);
  1085. rt61pci_bbp_write(rt2x00dev, 60, 0x10);
  1086. rt61pci_bbp_write(rt2x00dev, 61, 0x04);
  1087. rt61pci_bbp_write(rt2x00dev, 62, 0x04);
  1088. rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
  1089. rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
  1090. rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
  1091. rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
  1092. rt61pci_bbp_write(rt2x00dev, 99, 0x00);
  1093. rt61pci_bbp_write(rt2x00dev, 102, 0x16);
  1094. rt61pci_bbp_write(rt2x00dev, 107, 0x04);
  1095. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  1096. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  1097. if (eeprom != 0xffff && eeprom != 0x0000) {
  1098. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  1099. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  1100. rt61pci_bbp_write(rt2x00dev, reg_id, value);
  1101. }
  1102. }
  1103. return 0;
  1104. }
  1105. /*
  1106. * Device state switch handlers.
  1107. */
  1108. static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  1109. enum dev_state state)
  1110. {
  1111. u32 reg;
  1112. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  1113. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
  1114. state == STATE_RADIO_RX_OFF);
  1115. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  1116. }
  1117. static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  1118. enum dev_state state)
  1119. {
  1120. int mask = (state == STATE_RADIO_IRQ_OFF);
  1121. u32 reg;
  1122. /*
  1123. * When interrupts are being enabled, the interrupt registers
  1124. * should clear the register to assure a clean state.
  1125. */
  1126. if (state == STATE_RADIO_IRQ_ON) {
  1127. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1128. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1129. rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
  1130. rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
  1131. }
  1132. /*
  1133. * Only toggle the interrupts bits we are going to use.
  1134. * Non-checked interrupt bits are disabled by default.
  1135. */
  1136. rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  1137. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
  1138. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
  1139. rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
  1140. rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
  1141. rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
  1142. rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
  1143. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
  1144. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
  1145. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
  1146. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
  1147. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
  1148. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
  1149. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
  1150. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
  1151. rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
  1152. }
  1153. static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  1154. {
  1155. u32 reg;
  1156. /*
  1157. * Initialize all registers.
  1158. */
  1159. if (rt61pci_init_queues(rt2x00dev) ||
  1160. rt61pci_init_registers(rt2x00dev) ||
  1161. rt61pci_init_bbp(rt2x00dev)) {
  1162. ERROR(rt2x00dev, "Register initialization failed.\n");
  1163. return -EIO;
  1164. }
  1165. /*
  1166. * Enable interrupts.
  1167. */
  1168. rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  1169. /*
  1170. * Enable RX.
  1171. */
  1172. rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
  1173. rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
  1174. rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  1175. return 0;
  1176. }
  1177. static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  1178. {
  1179. u32 reg;
  1180. rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
  1181. /*
  1182. * Disable synchronisation.
  1183. */
  1184. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
  1185. /*
  1186. * Cancel RX and TX.
  1187. */
  1188. rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
  1189. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
  1190. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
  1191. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
  1192. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
  1193. rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  1194. /*
  1195. * Disable interrupts.
  1196. */
  1197. rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  1198. }
  1199. static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  1200. {
  1201. u32 reg;
  1202. unsigned int i;
  1203. char put_to_sleep;
  1204. char current_state;
  1205. put_to_sleep = (state != STATE_AWAKE);
  1206. rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
  1207. rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
  1208. rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
  1209. rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
  1210. /*
  1211. * Device is not guaranteed to be in the requested state yet.
  1212. * We must wait until the register indicates that the
  1213. * device has entered the correct state.
  1214. */
  1215. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1216. rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
  1217. current_state =
  1218. rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
  1219. if (current_state == !put_to_sleep)
  1220. return 0;
  1221. msleep(10);
  1222. }
  1223. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  1224. "current device state %d.\n", !put_to_sleep, current_state);
  1225. return -EBUSY;
  1226. }
  1227. static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1228. enum dev_state state)
  1229. {
  1230. int retval = 0;
  1231. switch (state) {
  1232. case STATE_RADIO_ON:
  1233. retval = rt61pci_enable_radio(rt2x00dev);
  1234. break;
  1235. case STATE_RADIO_OFF:
  1236. rt61pci_disable_radio(rt2x00dev);
  1237. break;
  1238. case STATE_RADIO_RX_ON:
  1239. case STATE_RADIO_RX_ON_LINK:
  1240. rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  1241. break;
  1242. case STATE_RADIO_RX_OFF:
  1243. case STATE_RADIO_RX_OFF_LINK:
  1244. rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  1245. break;
  1246. case STATE_DEEP_SLEEP:
  1247. case STATE_SLEEP:
  1248. case STATE_STANDBY:
  1249. case STATE_AWAKE:
  1250. retval = rt61pci_set_state(rt2x00dev, state);
  1251. break;
  1252. default:
  1253. retval = -ENOTSUPP;
  1254. break;
  1255. }
  1256. return retval;
  1257. }
  1258. /*
  1259. * TX descriptor initialization
  1260. */
  1261. static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1262. struct sk_buff *skb,
  1263. struct txentry_desc *txdesc,
  1264. struct ieee80211_tx_control *control)
  1265. {
  1266. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1267. __le32 *txd = skbdesc->desc;
  1268. u32 word;
  1269. /*
  1270. * Start writing the descriptor words.
  1271. */
  1272. rt2x00_desc_read(txd, 1, &word);
  1273. rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
  1274. rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
  1275. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  1276. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  1277. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
  1278. rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
  1279. rt2x00_desc_write(txd, 1, word);
  1280. rt2x00_desc_read(txd, 2, &word);
  1281. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  1282. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  1283. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  1284. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  1285. rt2x00_desc_write(txd, 2, word);
  1286. rt2x00_desc_read(txd, 5, &word);
  1287. rt2x00_set_field32(&word, TXD_W5_TX_POWER,
  1288. TXPOWER_TO_DEV(rt2x00dev->tx_power));
  1289. rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
  1290. rt2x00_desc_write(txd, 5, word);
  1291. if (skbdesc->desc_len > TXINFO_SIZE) {
  1292. rt2x00_desc_read(txd, 11, &word);
  1293. rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
  1294. rt2x00_desc_write(txd, 11, word);
  1295. }
  1296. rt2x00_desc_read(txd, 0, &word);
  1297. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1298. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1299. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1300. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1301. rt2x00_set_field32(&word, TXD_W0_ACK,
  1302. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1303. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1304. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1305. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1306. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1307. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1308. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1309. !!(control->flags &
  1310. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1311. rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
  1312. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1313. rt2x00_set_field32(&word, TXD_W0_BURST,
  1314. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  1315. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1316. rt2x00_desc_write(txd, 0, word);
  1317. }
  1318. /*
  1319. * TX data initialization
  1320. */
  1321. static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1322. const unsigned int queue)
  1323. {
  1324. u32 reg;
  1325. if (queue == RT2X00_BCN_QUEUE_BEACON) {
  1326. /*
  1327. * For Wi-Fi faily generated beacons between participating
  1328. * stations. Set TBTT phase adaptive adjustment step to 8us.
  1329. */
  1330. rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
  1331. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  1332. if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
  1333. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  1334. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  1335. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
  1336. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  1337. }
  1338. return;
  1339. }
  1340. rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
  1341. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0,
  1342. (queue == IEEE80211_TX_QUEUE_DATA0));
  1343. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1,
  1344. (queue == IEEE80211_TX_QUEUE_DATA1));
  1345. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2,
  1346. (queue == IEEE80211_TX_QUEUE_DATA2));
  1347. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3,
  1348. (queue == IEEE80211_TX_QUEUE_DATA3));
  1349. rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  1350. }
  1351. /*
  1352. * RX control handlers
  1353. */
  1354. static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
  1355. {
  1356. u16 eeprom;
  1357. u8 offset;
  1358. u8 lna;
  1359. lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
  1360. switch (lna) {
  1361. case 3:
  1362. offset = 90;
  1363. break;
  1364. case 2:
  1365. offset = 74;
  1366. break;
  1367. case 1:
  1368. offset = 64;
  1369. break;
  1370. default:
  1371. return 0;
  1372. }
  1373. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  1374. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
  1375. offset += 14;
  1376. if (lna == 3 || lna == 2)
  1377. offset += 10;
  1378. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
  1379. offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
  1380. } else {
  1381. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
  1382. offset += 14;
  1383. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
  1384. offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
  1385. }
  1386. return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
  1387. }
  1388. static void rt61pci_fill_rxdone(struct queue_entry *entry,
  1389. struct rxdone_entry_desc *rxdesc)
  1390. {
  1391. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  1392. u32 word0;
  1393. u32 word1;
  1394. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  1395. rt2x00_desc_read(priv_rx->desc, 1, &word1);
  1396. rxdesc->flags = 0;
  1397. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1398. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1399. /*
  1400. * Obtain the status about this packet.
  1401. * When frame was received with an OFDM bitrate,
  1402. * the signal is the PLCP value. If it was received with
  1403. * a CCK bitrate the signal is the rate in 100kbit/s.
  1404. */
  1405. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1406. rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
  1407. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1408. rxdesc->dev_flags = 0;
  1409. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1410. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1411. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1412. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1413. }
  1414. /*
  1415. * Interrupt functions.
  1416. */
  1417. static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
  1418. {
  1419. struct data_queue *queue;
  1420. struct queue_entry *entry;
  1421. struct queue_entry *entry_done;
  1422. struct queue_entry_priv_pci_tx *priv_tx;
  1423. struct txdone_entry_desc txdesc;
  1424. u32 word;
  1425. u32 reg;
  1426. u32 old_reg;
  1427. int type;
  1428. int index;
  1429. /*
  1430. * During each loop we will compare the freshly read
  1431. * STA_CSR4 register value with the value read from
  1432. * the previous loop. If the 2 values are equal then
  1433. * we should stop processing because the chance it
  1434. * quite big that the device has been unplugged and
  1435. * we risk going into an endless loop.
  1436. */
  1437. old_reg = 0;
  1438. while (1) {
  1439. rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
  1440. if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
  1441. break;
  1442. if (old_reg == reg)
  1443. break;
  1444. old_reg = reg;
  1445. /*
  1446. * Skip this entry when it contains an invalid
  1447. * queue identication number.
  1448. */
  1449. type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
  1450. queue = rt2x00queue_get_queue(rt2x00dev, type);
  1451. if (unlikely(!queue))
  1452. continue;
  1453. /*
  1454. * Skip this entry when it contains an invalid
  1455. * index number.
  1456. */
  1457. index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
  1458. if (unlikely(index >= queue->limit))
  1459. continue;
  1460. entry = &queue->entries[index];
  1461. priv_tx = entry->priv_data;
  1462. rt2x00_desc_read(priv_tx->desc, 0, &word);
  1463. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1464. !rt2x00_get_field32(word, TXD_W0_VALID))
  1465. return;
  1466. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1467. while (entry != entry_done) {
  1468. /* Catch up.
  1469. * Just report any entries we missed as failed.
  1470. */
  1471. WARNING(rt2x00dev,
  1472. "TX status report missed for entry %d\n",
  1473. entry_done->entry_idx);
  1474. txdesc.status = TX_FAIL_OTHER;
  1475. txdesc.retry = 0;
  1476. rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
  1477. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1478. }
  1479. /*
  1480. * Obtain the status about this packet.
  1481. */
  1482. txdesc.status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
  1483. txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
  1484. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1485. }
  1486. }
  1487. static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
  1488. {
  1489. struct rt2x00_dev *rt2x00dev = dev_instance;
  1490. u32 reg_mcu;
  1491. u32 reg;
  1492. /*
  1493. * Get the interrupt sources & saved to local variable.
  1494. * Write register value back to clear pending interrupts.
  1495. */
  1496. rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
  1497. rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
  1498. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1499. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1500. if (!reg && !reg_mcu)
  1501. return IRQ_NONE;
  1502. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1503. return IRQ_HANDLED;
  1504. /*
  1505. * Handle interrupts, walk through all bits
  1506. * and run the tasks, the bits are checked in order of
  1507. * priority.
  1508. */
  1509. /*
  1510. * 1 - Rx ring done interrupt.
  1511. */
  1512. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
  1513. rt2x00pci_rxdone(rt2x00dev);
  1514. /*
  1515. * 2 - Tx ring done interrupt.
  1516. */
  1517. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
  1518. rt61pci_txdone(rt2x00dev);
  1519. /*
  1520. * 3 - Handle MCU command done.
  1521. */
  1522. if (reg_mcu)
  1523. rt2x00pci_register_write(rt2x00dev,
  1524. M2H_CMD_DONE_CSR, 0xffffffff);
  1525. return IRQ_HANDLED;
  1526. }
  1527. /*
  1528. * Device probe functions.
  1529. */
  1530. static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1531. {
  1532. struct eeprom_93cx6 eeprom;
  1533. u32 reg;
  1534. u16 word;
  1535. u8 *mac;
  1536. s8 value;
  1537. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  1538. eeprom.data = rt2x00dev;
  1539. eeprom.register_read = rt61pci_eepromregister_read;
  1540. eeprom.register_write = rt61pci_eepromregister_write;
  1541. eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
  1542. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1543. eeprom.reg_data_in = 0;
  1544. eeprom.reg_data_out = 0;
  1545. eeprom.reg_data_clock = 0;
  1546. eeprom.reg_chip_select = 0;
  1547. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1548. EEPROM_SIZE / sizeof(u16));
  1549. /*
  1550. * Start validation of the data that has been read.
  1551. */
  1552. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1553. if (!is_valid_ether_addr(mac)) {
  1554. DECLARE_MAC_BUF(macbuf);
  1555. random_ether_addr(mac);
  1556. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1557. }
  1558. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1559. if (word == 0xffff) {
  1560. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1561. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1562. ANTENNA_B);
  1563. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1564. ANTENNA_B);
  1565. rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
  1566. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1567. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1568. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
  1569. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1570. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1571. }
  1572. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1573. if (word == 0xffff) {
  1574. rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
  1575. rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
  1576. rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
  1577. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
  1578. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1579. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
  1580. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1581. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1582. }
  1583. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
  1584. if (word == 0xffff) {
  1585. rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
  1586. LED_MODE_DEFAULT);
  1587. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
  1588. EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
  1589. }
  1590. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  1591. if (word == 0xffff) {
  1592. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  1593. rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
  1594. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  1595. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  1596. }
  1597. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
  1598. if (word == 0xffff) {
  1599. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1600. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1601. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1602. EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
  1603. } else {
  1604. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
  1605. if (value < -10 || value > 10)
  1606. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1607. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
  1608. if (value < -10 || value > 10)
  1609. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1610. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1611. }
  1612. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
  1613. if (word == 0xffff) {
  1614. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1615. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1616. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1617. EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
  1618. } else {
  1619. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
  1620. if (value < -10 || value > 10)
  1621. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1622. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
  1623. if (value < -10 || value > 10)
  1624. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1625. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1626. }
  1627. return 0;
  1628. }
  1629. static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1630. {
  1631. u32 reg;
  1632. u16 value;
  1633. u16 eeprom;
  1634. u16 device;
  1635. /*
  1636. * Read EEPROM word for configuration.
  1637. */
  1638. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1639. /*
  1640. * Identify RF chipset.
  1641. * To determine the RT chip we have to read the
  1642. * PCI header of the device.
  1643. */
  1644. pci_read_config_word(rt2x00dev_pci(rt2x00dev),
  1645. PCI_CONFIG_HEADER_DEVICE, &device);
  1646. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1647. rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
  1648. rt2x00_set_chip(rt2x00dev, device, value, reg);
  1649. if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
  1650. !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
  1651. !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
  1652. !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
  1653. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1654. return -ENODEV;
  1655. }
  1656. /*
  1657. * Determine number of antenna's.
  1658. */
  1659. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
  1660. __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
  1661. /*
  1662. * Identify default antenna configuration.
  1663. */
  1664. rt2x00dev->default_ant.tx =
  1665. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1666. rt2x00dev->default_ant.rx =
  1667. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1668. /*
  1669. * Read the Frame type.
  1670. */
  1671. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
  1672. __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
  1673. /*
  1674. * Detect if this device has an hardware controlled radio.
  1675. */
  1676. #ifdef CONFIG_RT61PCI_RFKILL
  1677. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1678. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1679. #endif /* CONFIG_RT61PCI_RFKILL */
  1680. /*
  1681. * Read frequency offset and RF programming sequence.
  1682. */
  1683. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  1684. if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
  1685. __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
  1686. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  1687. /*
  1688. * Read external LNA informations.
  1689. */
  1690. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1691. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
  1692. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  1693. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
  1694. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  1695. /*
  1696. * When working with a RF2529 chip without double antenna
  1697. * the antenna settings should be gathered from the NIC
  1698. * eeprom word.
  1699. */
  1700. if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
  1701. !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
  1702. switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
  1703. case 0:
  1704. rt2x00dev->default_ant.tx = ANTENNA_B;
  1705. rt2x00dev->default_ant.rx = ANTENNA_A;
  1706. break;
  1707. case 1:
  1708. rt2x00dev->default_ant.tx = ANTENNA_B;
  1709. rt2x00dev->default_ant.rx = ANTENNA_B;
  1710. break;
  1711. case 2:
  1712. rt2x00dev->default_ant.tx = ANTENNA_A;
  1713. rt2x00dev->default_ant.rx = ANTENNA_A;
  1714. break;
  1715. case 3:
  1716. rt2x00dev->default_ant.tx = ANTENNA_A;
  1717. rt2x00dev->default_ant.rx = ANTENNA_B;
  1718. break;
  1719. }
  1720. if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
  1721. rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
  1722. if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
  1723. rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
  1724. }
  1725. /*
  1726. * Store led settings, for correct led behaviour.
  1727. * If the eeprom value is invalid,
  1728. * switch to default led mode.
  1729. */
  1730. #ifdef CONFIG_RT61PCI_LEDS
  1731. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
  1732. value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
  1733. switch (value) {
  1734. case LED_MODE_TXRX_ACTIVITY:
  1735. case LED_MODE_ASUS:
  1736. case LED_MODE_ALPHA:
  1737. case LED_MODE_DEFAULT:
  1738. rt2x00dev->led_flags =
  1739. LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC;
  1740. break;
  1741. case LED_MODE_SIGNAL_STRENGTH:
  1742. rt2x00dev->led_flags =
  1743. LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC |
  1744. LED_SUPPORT_QUALITY;
  1745. break;
  1746. }
  1747. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
  1748. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
  1749. rt2x00_get_field16(eeprom,
  1750. EEPROM_LED_POLARITY_GPIO_0));
  1751. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
  1752. rt2x00_get_field16(eeprom,
  1753. EEPROM_LED_POLARITY_GPIO_1));
  1754. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
  1755. rt2x00_get_field16(eeprom,
  1756. EEPROM_LED_POLARITY_GPIO_2));
  1757. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
  1758. rt2x00_get_field16(eeprom,
  1759. EEPROM_LED_POLARITY_GPIO_3));
  1760. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
  1761. rt2x00_get_field16(eeprom,
  1762. EEPROM_LED_POLARITY_GPIO_4));
  1763. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
  1764. rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
  1765. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
  1766. rt2x00_get_field16(eeprom,
  1767. EEPROM_LED_POLARITY_RDY_G));
  1768. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
  1769. rt2x00_get_field16(eeprom,
  1770. EEPROM_LED_POLARITY_RDY_A));
  1771. #endif /* CONFIG_RT61PCI_LEDS */
  1772. return 0;
  1773. }
  1774. /*
  1775. * RF value list for RF5225 & RF5325
  1776. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
  1777. */
  1778. static const struct rf_channel rf_vals_noseq[] = {
  1779. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1780. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1781. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1782. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1783. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1784. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1785. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1786. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1787. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1788. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1789. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1790. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1791. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1792. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1793. /* 802.11 UNI / HyperLan 2 */
  1794. { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
  1795. { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
  1796. { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
  1797. { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
  1798. { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
  1799. { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
  1800. { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
  1801. { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
  1802. /* 802.11 HyperLan 2 */
  1803. { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
  1804. { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
  1805. { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
  1806. { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
  1807. { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
  1808. { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
  1809. { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
  1810. { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
  1811. { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
  1812. { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
  1813. /* 802.11 UNII */
  1814. { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
  1815. { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
  1816. { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
  1817. { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
  1818. { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
  1819. { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
  1820. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1821. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
  1822. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
  1823. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
  1824. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
  1825. };
  1826. /*
  1827. * RF value list for RF5225 & RF5325
  1828. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
  1829. */
  1830. static const struct rf_channel rf_vals_seq[] = {
  1831. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1832. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1833. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1834. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1835. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1836. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1837. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1838. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1839. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1840. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1841. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1842. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1843. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1844. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1845. /* 802.11 UNI / HyperLan 2 */
  1846. { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
  1847. { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
  1848. { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
  1849. { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
  1850. { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
  1851. { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
  1852. { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
  1853. { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
  1854. /* 802.11 HyperLan 2 */
  1855. { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
  1856. { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
  1857. { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
  1858. { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
  1859. { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
  1860. { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
  1861. { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
  1862. { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
  1863. { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
  1864. { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
  1865. /* 802.11 UNII */
  1866. { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
  1867. { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
  1868. { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
  1869. { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
  1870. { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
  1871. { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
  1872. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1873. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
  1874. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
  1875. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
  1876. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
  1877. };
  1878. static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1879. {
  1880. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1881. u8 *txpower;
  1882. unsigned int i;
  1883. /*
  1884. * Initialize all hw fields.
  1885. */
  1886. rt2x00dev->hw->flags =
  1887. IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
  1888. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1889. rt2x00dev->hw->extra_tx_headroom = 0;
  1890. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1891. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1892. rt2x00dev->hw->queues = 4;
  1893. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1894. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1895. rt2x00_eeprom_addr(rt2x00dev,
  1896. EEPROM_MAC_ADDR_0));
  1897. /*
  1898. * Convert tx_power array in eeprom.
  1899. */
  1900. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
  1901. for (i = 0; i < 14; i++)
  1902. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1903. /*
  1904. * Initialize hw_mode information.
  1905. */
  1906. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1907. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1908. spec->tx_power_a = NULL;
  1909. spec->tx_power_bg = txpower;
  1910. spec->tx_power_default = DEFAULT_TXPOWER;
  1911. if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
  1912. spec->num_channels = 14;
  1913. spec->channels = rf_vals_noseq;
  1914. } else {
  1915. spec->num_channels = 14;
  1916. spec->channels = rf_vals_seq;
  1917. }
  1918. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  1919. rt2x00_rf(&rt2x00dev->chip, RF5325)) {
  1920. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1921. spec->num_channels = ARRAY_SIZE(rf_vals_seq);
  1922. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
  1923. for (i = 0; i < 14; i++)
  1924. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1925. spec->tx_power_a = txpower;
  1926. }
  1927. }
  1928. static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1929. {
  1930. int retval;
  1931. /*
  1932. * Allocate eeprom data.
  1933. */
  1934. retval = rt61pci_validate_eeprom(rt2x00dev);
  1935. if (retval)
  1936. return retval;
  1937. retval = rt61pci_init_eeprom(rt2x00dev);
  1938. if (retval)
  1939. return retval;
  1940. /*
  1941. * Initialize hw specifications.
  1942. */
  1943. rt61pci_probe_hw_mode(rt2x00dev);
  1944. /*
  1945. * This device requires firmware.
  1946. */
  1947. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1948. /*
  1949. * Set the rssi offset.
  1950. */
  1951. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1952. return 0;
  1953. }
  1954. /*
  1955. * IEEE80211 stack callback functions.
  1956. */
  1957. static void rt61pci_configure_filter(struct ieee80211_hw *hw,
  1958. unsigned int changed_flags,
  1959. unsigned int *total_flags,
  1960. int mc_count,
  1961. struct dev_addr_list *mc_list)
  1962. {
  1963. struct rt2x00_dev *rt2x00dev = hw->priv;
  1964. u32 reg;
  1965. /*
  1966. * Mask off any flags we are going to ignore from
  1967. * the total_flags field.
  1968. */
  1969. *total_flags &=
  1970. FIF_ALLMULTI |
  1971. FIF_FCSFAIL |
  1972. FIF_PLCPFAIL |
  1973. FIF_CONTROL |
  1974. FIF_OTHER_BSS |
  1975. FIF_PROMISC_IN_BSS;
  1976. /*
  1977. * Apply some rules to the filters:
  1978. * - Some filters imply different filters to be set.
  1979. * - Some things we can't filter out at all.
  1980. * - Multicast filter seems to kill broadcast traffic so never use it.
  1981. */
  1982. *total_flags |= FIF_ALLMULTI;
  1983. if (*total_flags & FIF_OTHER_BSS ||
  1984. *total_flags & FIF_PROMISC_IN_BSS)
  1985. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1986. /*
  1987. * Check if there is any work left for us.
  1988. */
  1989. if (rt2x00dev->packet_filter == *total_flags)
  1990. return;
  1991. rt2x00dev->packet_filter = *total_flags;
  1992. /*
  1993. * Start configuration steps.
  1994. * Note that the version error will always be dropped
  1995. * and broadcast frames will always be accepted since
  1996. * there is no filter for it at this time.
  1997. */
  1998. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  1999. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
  2000. !(*total_flags & FIF_FCSFAIL));
  2001. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
  2002. !(*total_flags & FIF_PLCPFAIL));
  2003. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
  2004. !(*total_flags & FIF_CONTROL));
  2005. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
  2006. !(*total_flags & FIF_PROMISC_IN_BSS));
  2007. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
  2008. !(*total_flags & FIF_PROMISC_IN_BSS));
  2009. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
  2010. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
  2011. !(*total_flags & FIF_ALLMULTI));
  2012. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
  2013. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
  2014. !(*total_flags & FIF_CONTROL));
  2015. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  2016. }
  2017. static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
  2018. u32 short_retry, u32 long_retry)
  2019. {
  2020. struct rt2x00_dev *rt2x00dev = hw->priv;
  2021. u32 reg;
  2022. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  2023. rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
  2024. rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
  2025. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  2026. return 0;
  2027. }
  2028. static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
  2029. {
  2030. struct rt2x00_dev *rt2x00dev = hw->priv;
  2031. u64 tsf;
  2032. u32 reg;
  2033. rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
  2034. tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
  2035. rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
  2036. tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
  2037. return tsf;
  2038. }
  2039. static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  2040. struct ieee80211_tx_control *control)
  2041. {
  2042. struct rt2x00_dev *rt2x00dev = hw->priv;
  2043. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  2044. struct skb_frame_desc *skbdesc;
  2045. unsigned int beacon_base;
  2046. u32 reg;
  2047. if (unlikely(!intf->beacon))
  2048. return -ENOBUFS;
  2049. /*
  2050. * We need to append the descriptor in front of the
  2051. * beacon frame.
  2052. */
  2053. if (skb_headroom(skb) < intf->beacon->queue->desc_size) {
  2054. if (pskb_expand_head(skb, intf->beacon->queue->desc_size,
  2055. 0, GFP_ATOMIC)) {
  2056. dev_kfree_skb(skb);
  2057. return -ENOMEM;
  2058. }
  2059. }
  2060. /*
  2061. * Add the descriptor in front of the skb.
  2062. */
  2063. skb_push(skb, intf->beacon->queue->desc_size);
  2064. memset(skb->data, 0, intf->beacon->queue->desc_size);
  2065. /*
  2066. * Fill in skb descriptor
  2067. */
  2068. skbdesc = get_skb_frame_desc(skb);
  2069. memset(skbdesc, 0, sizeof(*skbdesc));
  2070. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  2071. skbdesc->data = skb->data + intf->beacon->queue->desc_size;
  2072. skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
  2073. skbdesc->desc = skb->data;
  2074. skbdesc->desc_len = intf->beacon->queue->desc_size;
  2075. skbdesc->entry = intf->beacon;
  2076. /*
  2077. * Disable beaconing while we are reloading the beacon data,
  2078. * otherwise we might be sending out invalid data.
  2079. */
  2080. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  2081. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
  2082. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
  2083. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  2084. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  2085. /*
  2086. * mac80211 doesn't provide the control->queue variable
  2087. * for beacons. Set our own queue identification so
  2088. * it can be used during descriptor initialization.
  2089. */
  2090. control->queue = RT2X00_BCN_QUEUE_BEACON;
  2091. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  2092. /*
  2093. * Write entire beacon with descriptor to register,
  2094. * and kick the beacon generator.
  2095. */
  2096. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  2097. rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
  2098. skb->data, skb->len);
  2099. rt61pci_kick_tx_queue(rt2x00dev, control->queue);
  2100. return 0;
  2101. }
  2102. static const struct ieee80211_ops rt61pci_mac80211_ops = {
  2103. .tx = rt2x00mac_tx,
  2104. .start = rt2x00mac_start,
  2105. .stop = rt2x00mac_stop,
  2106. .add_interface = rt2x00mac_add_interface,
  2107. .remove_interface = rt2x00mac_remove_interface,
  2108. .config = rt2x00mac_config,
  2109. .config_interface = rt2x00mac_config_interface,
  2110. .configure_filter = rt61pci_configure_filter,
  2111. .get_stats = rt2x00mac_get_stats,
  2112. .set_retry_limit = rt61pci_set_retry_limit,
  2113. .bss_info_changed = rt2x00mac_bss_info_changed,
  2114. .conf_tx = rt2x00mac_conf_tx,
  2115. .get_tx_stats = rt2x00mac_get_tx_stats,
  2116. .get_tsf = rt61pci_get_tsf,
  2117. .beacon_update = rt61pci_beacon_update,
  2118. };
  2119. static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
  2120. .irq_handler = rt61pci_interrupt,
  2121. .probe_hw = rt61pci_probe_hw,
  2122. .get_firmware_name = rt61pci_get_firmware_name,
  2123. .get_firmware_crc = rt61pci_get_firmware_crc,
  2124. .load_firmware = rt61pci_load_firmware,
  2125. .initialize = rt2x00pci_initialize,
  2126. .uninitialize = rt2x00pci_uninitialize,
  2127. .init_rxentry = rt61pci_init_rxentry,
  2128. .init_txentry = rt61pci_init_txentry,
  2129. .set_device_state = rt61pci_set_device_state,
  2130. .rfkill_poll = rt61pci_rfkill_poll,
  2131. .link_stats = rt61pci_link_stats,
  2132. .reset_tuner = rt61pci_reset_tuner,
  2133. .link_tuner = rt61pci_link_tuner,
  2134. .led_brightness = rt61pci_led_brightness,
  2135. .write_tx_desc = rt61pci_write_tx_desc,
  2136. .write_tx_data = rt2x00pci_write_tx_data,
  2137. .kick_tx_queue = rt61pci_kick_tx_queue,
  2138. .fill_rxdone = rt61pci_fill_rxdone,
  2139. .config_intf = rt61pci_config_intf,
  2140. .config_erp = rt61pci_config_erp,
  2141. .config = rt61pci_config,
  2142. };
  2143. static const struct data_queue_desc rt61pci_queue_rx = {
  2144. .entry_num = RX_ENTRIES,
  2145. .data_size = DATA_FRAME_SIZE,
  2146. .desc_size = RXD_DESC_SIZE,
  2147. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  2148. };
  2149. static const struct data_queue_desc rt61pci_queue_tx = {
  2150. .entry_num = TX_ENTRIES,
  2151. .data_size = DATA_FRAME_SIZE,
  2152. .desc_size = TXD_DESC_SIZE,
  2153. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  2154. };
  2155. static const struct data_queue_desc rt61pci_queue_bcn = {
  2156. .entry_num = 4 * BEACON_ENTRIES,
  2157. .data_size = MGMT_FRAME_SIZE,
  2158. .desc_size = TXINFO_SIZE,
  2159. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  2160. };
  2161. static const struct rt2x00_ops rt61pci_ops = {
  2162. .name = KBUILD_MODNAME,
  2163. .max_sta_intf = 1,
  2164. .max_ap_intf = 4,
  2165. .eeprom_size = EEPROM_SIZE,
  2166. .rf_size = RF_SIZE,
  2167. .rx = &rt61pci_queue_rx,
  2168. .tx = &rt61pci_queue_tx,
  2169. .bcn = &rt61pci_queue_bcn,
  2170. .lib = &rt61pci_rt2x00_ops,
  2171. .hw = &rt61pci_mac80211_ops,
  2172. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  2173. .debugfs = &rt61pci_rt2x00debug,
  2174. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  2175. };
  2176. /*
  2177. * RT61pci module information.
  2178. */
  2179. static struct pci_device_id rt61pci_device_table[] = {
  2180. /* RT2561s */
  2181. { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
  2182. /* RT2561 v2 */
  2183. { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
  2184. /* RT2661 */
  2185. { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
  2186. { 0, }
  2187. };
  2188. MODULE_AUTHOR(DRV_PROJECT);
  2189. MODULE_VERSION(DRV_VERSION);
  2190. MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
  2191. MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
  2192. "PCI & PCMCIA chipset based cards");
  2193. MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
  2194. MODULE_FIRMWARE(FIRMWARE_RT2561);
  2195. MODULE_FIRMWARE(FIRMWARE_RT2561s);
  2196. MODULE_FIRMWARE(FIRMWARE_RT2661);
  2197. MODULE_LICENSE("GPL");
  2198. static struct pci_driver rt61pci_driver = {
  2199. .name = KBUILD_MODNAME,
  2200. .id_table = rt61pci_device_table,
  2201. .probe = rt2x00pci_probe,
  2202. .remove = __devexit_p(rt2x00pci_remove),
  2203. .suspend = rt2x00pci_suspend,
  2204. .resume = rt2x00pci_resume,
  2205. };
  2206. static int __init rt61pci_init(void)
  2207. {
  2208. return pci_register_driver(&rt61pci_driver);
  2209. }
  2210. static void __exit rt61pci_exit(void)
  2211. {
  2212. pci_unregister_driver(&rt61pci_driver);
  2213. }
  2214. module_init(rt61pci_init);
  2215. module_exit(rt61pci_exit);