rt2400pci.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2400pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2400pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2400pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2400pci_read_csr,
  174. .write = rt2400pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2400pci_bbp_read,
  186. .write = rt2400pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2400pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2400PCI_RFKILL
  199. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2400pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2400PCI_RFKILL */
  208. #ifdef CONFIG_RT2400PCI_LEDS
  209. static void rt2400pci_led_brightness(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. unsigned int activity =
  216. led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
  217. u32 reg;
  218. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  219. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
  220. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  221. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
  222. }
  223. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  224. }
  225. #else
  226. #define rt2400pci_led_brightness NULL
  227. #endif /* CONFIG_RT2400PCI_LEDS */
  228. /*
  229. * Configuration handlers.
  230. */
  231. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  232. struct rt2x00_intf *intf,
  233. struct rt2x00intf_conf *conf,
  234. const unsigned int flags)
  235. {
  236. unsigned int bcn_preload;
  237. u32 reg;
  238. if (flags & CONFIG_UPDATE_TYPE) {
  239. /*
  240. * Enable beacon config
  241. */
  242. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  243. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  244. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  245. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  246. /*
  247. * Enable synchronisation.
  248. */
  249. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  250. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  251. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  252. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  253. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  254. }
  255. if (flags & CONFIG_UPDATE_MAC)
  256. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  257. conf->mac, sizeof(conf->mac));
  258. if (flags & CONFIG_UPDATE_BSSID)
  259. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  260. conf->bssid, sizeof(conf->bssid));
  261. }
  262. static int rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  263. struct rt2x00lib_erp *erp)
  264. {
  265. int preamble_mask;
  266. u32 reg;
  267. /*
  268. * When short preamble is enabled, we should set bit 0x08
  269. */
  270. preamble_mask = erp->short_preamble << 3;
  271. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  272. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  273. erp->ack_timeout);
  274. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  275. erp->ack_consume_time);
  276. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  277. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  278. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  279. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  280. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  281. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  282. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  283. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  284. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  285. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  286. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  287. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  288. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  289. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  290. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  291. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  292. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  293. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  294. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  295. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  296. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  297. return 0;
  298. }
  299. static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  300. const int basic_rate_mask)
  301. {
  302. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  303. }
  304. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  305. struct rf_channel *rf)
  306. {
  307. /*
  308. * Switch on tuning bits.
  309. */
  310. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  311. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  312. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  313. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  314. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  315. /*
  316. * RF2420 chipset don't need any additional actions.
  317. */
  318. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  319. return;
  320. /*
  321. * For the RT2421 chipsets we need to write an invalid
  322. * reference clock rate to activate auto_tune.
  323. * After that we set the value back to the correct channel.
  324. */
  325. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  326. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  327. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  328. msleep(1);
  329. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  330. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  331. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  332. msleep(1);
  333. /*
  334. * Switch off tuning bits.
  335. */
  336. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  337. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  338. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  339. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  340. /*
  341. * Clear false CRC during channel switch.
  342. */
  343. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  344. }
  345. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  346. {
  347. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  348. }
  349. static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  350. struct antenna_setup *ant)
  351. {
  352. u8 r1;
  353. u8 r4;
  354. /*
  355. * We should never come here because rt2x00lib is supposed
  356. * to catch this and send us the correct antenna explicitely.
  357. */
  358. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  359. ant->tx == ANTENNA_SW_DIVERSITY);
  360. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  361. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  362. /*
  363. * Configure the TX antenna.
  364. */
  365. switch (ant->tx) {
  366. case ANTENNA_HW_DIVERSITY:
  367. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  368. break;
  369. case ANTENNA_A:
  370. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  371. break;
  372. case ANTENNA_B:
  373. default:
  374. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  375. break;
  376. }
  377. /*
  378. * Configure the RX antenna.
  379. */
  380. switch (ant->rx) {
  381. case ANTENNA_HW_DIVERSITY:
  382. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  383. break;
  384. case ANTENNA_A:
  385. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  386. break;
  387. case ANTENNA_B:
  388. default:
  389. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  390. break;
  391. }
  392. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  393. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  394. }
  395. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  396. struct rt2x00lib_conf *libconf)
  397. {
  398. u32 reg;
  399. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  400. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  401. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  402. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  403. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  404. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  405. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  406. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  407. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  408. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  409. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  410. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  411. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  412. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  413. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  414. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  415. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  416. libconf->conf->beacon_int * 16);
  417. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  418. libconf->conf->beacon_int * 16);
  419. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  420. }
  421. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  422. struct rt2x00lib_conf *libconf,
  423. const unsigned int flags)
  424. {
  425. if (flags & CONFIG_UPDATE_PHYMODE)
  426. rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
  427. if (flags & CONFIG_UPDATE_CHANNEL)
  428. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  429. if (flags & CONFIG_UPDATE_TXPOWER)
  430. rt2400pci_config_txpower(rt2x00dev,
  431. libconf->conf->power_level);
  432. if (flags & CONFIG_UPDATE_ANTENNA)
  433. rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
  434. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  435. rt2400pci_config_duration(rt2x00dev, libconf);
  436. }
  437. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  438. const int cw_min, const int cw_max)
  439. {
  440. u32 reg;
  441. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  442. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  443. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  444. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  445. }
  446. /*
  447. * Link tuning
  448. */
  449. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  450. struct link_qual *qual)
  451. {
  452. u32 reg;
  453. u8 bbp;
  454. /*
  455. * Update FCS error count from register.
  456. */
  457. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  458. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  459. /*
  460. * Update False CCA count from register.
  461. */
  462. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  463. qual->false_cca = bbp;
  464. }
  465. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  466. {
  467. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  468. rt2x00dev->link.vgc_level = 0x08;
  469. }
  470. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  471. {
  472. u8 reg;
  473. /*
  474. * The link tuner should not run longer then 60 seconds,
  475. * and should run once every 2 seconds.
  476. */
  477. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  478. return;
  479. /*
  480. * Base r13 link tuning on the false cca count.
  481. */
  482. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  483. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  484. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  485. rt2x00dev->link.vgc_level = reg;
  486. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  487. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  488. rt2x00dev->link.vgc_level = reg;
  489. }
  490. }
  491. /*
  492. * Initialization functions.
  493. */
  494. static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  495. struct queue_entry *entry)
  496. {
  497. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  498. u32 word;
  499. rt2x00_desc_read(priv_rx->desc, 2, &word);
  500. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
  501. entry->queue->data_size);
  502. rt2x00_desc_write(priv_rx->desc, 2, word);
  503. rt2x00_desc_read(priv_rx->desc, 1, &word);
  504. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
  505. rt2x00_desc_write(priv_rx->desc, 1, word);
  506. rt2x00_desc_read(priv_rx->desc, 0, &word);
  507. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  508. rt2x00_desc_write(priv_rx->desc, 0, word);
  509. }
  510. static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  511. struct queue_entry *entry)
  512. {
  513. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  514. u32 word;
  515. rt2x00_desc_read(priv_tx->desc, 1, &word);
  516. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
  517. rt2x00_desc_write(priv_tx->desc, 1, word);
  518. rt2x00_desc_read(priv_tx->desc, 2, &word);
  519. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
  520. entry->queue->data_size);
  521. rt2x00_desc_write(priv_tx->desc, 2, word);
  522. rt2x00_desc_read(priv_tx->desc, 0, &word);
  523. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  524. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  525. rt2x00_desc_write(priv_tx->desc, 0, word);
  526. }
  527. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  528. {
  529. struct queue_entry_priv_pci_rx *priv_rx;
  530. struct queue_entry_priv_pci_tx *priv_tx;
  531. u32 reg;
  532. /*
  533. * Initialize registers.
  534. */
  535. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  536. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  537. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  538. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  539. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  540. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  541. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  542. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  543. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  544. priv_tx->desc_dma);
  545. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  546. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  547. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  548. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  549. priv_tx->desc_dma);
  550. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  551. priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
  552. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  553. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  554. priv_tx->desc_dma);
  555. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  556. priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
  557. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  558. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  559. priv_tx->desc_dma);
  560. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  561. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  562. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  563. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  564. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  565. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  566. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  567. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
  568. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  569. return 0;
  570. }
  571. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  572. {
  573. u32 reg;
  574. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  575. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  576. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  577. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  578. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  579. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  580. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  581. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  582. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  583. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  584. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  585. (rt2x00dev->rx->data_size / 128));
  586. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  587. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  588. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  589. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  590. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  591. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  592. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  593. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  594. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  595. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  596. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  597. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  598. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  599. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  600. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  601. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  602. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  603. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  604. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  605. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  606. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  607. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  608. return -EBUSY;
  609. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  610. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  611. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  612. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  613. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  614. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  615. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  616. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  617. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  618. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  619. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  620. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  621. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  622. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  623. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  624. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  625. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  626. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  627. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  628. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  629. /*
  630. * We must clear the FCS and FIFO error count.
  631. * These registers are cleared on read,
  632. * so we may pass a useless variable to store the value.
  633. */
  634. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  635. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  636. return 0;
  637. }
  638. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  639. {
  640. unsigned int i;
  641. u16 eeprom;
  642. u8 reg_id;
  643. u8 value;
  644. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  645. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  646. if ((value != 0xff) && (value != 0x00))
  647. goto continue_csr_init;
  648. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  649. udelay(REGISTER_BUSY_DELAY);
  650. }
  651. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  652. return -EACCES;
  653. continue_csr_init:
  654. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  655. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  656. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  657. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  658. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  659. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  660. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  661. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  662. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  663. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  664. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  665. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  666. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  667. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  668. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  669. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  670. if (eeprom != 0xffff && eeprom != 0x0000) {
  671. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  672. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  673. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  674. }
  675. }
  676. return 0;
  677. }
  678. /*
  679. * Device state switch handlers.
  680. */
  681. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  682. enum dev_state state)
  683. {
  684. u32 reg;
  685. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  686. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  687. state == STATE_RADIO_RX_OFF);
  688. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  689. }
  690. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  691. enum dev_state state)
  692. {
  693. int mask = (state == STATE_RADIO_IRQ_OFF);
  694. u32 reg;
  695. /*
  696. * When interrupts are being enabled, the interrupt registers
  697. * should clear the register to assure a clean state.
  698. */
  699. if (state == STATE_RADIO_IRQ_ON) {
  700. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  701. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  702. }
  703. /*
  704. * Only toggle the interrupts bits we are going to use.
  705. * Non-checked interrupt bits are disabled by default.
  706. */
  707. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  708. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  709. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  710. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  711. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  712. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  713. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  714. }
  715. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  716. {
  717. /*
  718. * Initialize all registers.
  719. */
  720. if (rt2400pci_init_queues(rt2x00dev) ||
  721. rt2400pci_init_registers(rt2x00dev) ||
  722. rt2400pci_init_bbp(rt2x00dev)) {
  723. ERROR(rt2x00dev, "Register initialization failed.\n");
  724. return -EIO;
  725. }
  726. /*
  727. * Enable interrupts.
  728. */
  729. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  730. return 0;
  731. }
  732. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  733. {
  734. u32 reg;
  735. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  736. /*
  737. * Disable synchronisation.
  738. */
  739. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  740. /*
  741. * Cancel RX and TX.
  742. */
  743. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  744. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  745. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  746. /*
  747. * Disable interrupts.
  748. */
  749. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  750. }
  751. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  752. enum dev_state state)
  753. {
  754. u32 reg;
  755. unsigned int i;
  756. char put_to_sleep;
  757. char bbp_state;
  758. char rf_state;
  759. put_to_sleep = (state != STATE_AWAKE);
  760. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  761. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  762. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  763. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  764. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  765. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  766. /*
  767. * Device is not guaranteed to be in the requested state yet.
  768. * We must wait until the register indicates that the
  769. * device has entered the correct state.
  770. */
  771. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  772. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  773. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  774. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  775. if (bbp_state == state && rf_state == state)
  776. return 0;
  777. msleep(10);
  778. }
  779. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  780. "current device state: bbp %d and rf %d.\n",
  781. state, bbp_state, rf_state);
  782. return -EBUSY;
  783. }
  784. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  785. enum dev_state state)
  786. {
  787. int retval = 0;
  788. switch (state) {
  789. case STATE_RADIO_ON:
  790. retval = rt2400pci_enable_radio(rt2x00dev);
  791. break;
  792. case STATE_RADIO_OFF:
  793. rt2400pci_disable_radio(rt2x00dev);
  794. break;
  795. case STATE_RADIO_RX_ON:
  796. case STATE_RADIO_RX_ON_LINK:
  797. rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  798. break;
  799. case STATE_RADIO_RX_OFF:
  800. case STATE_RADIO_RX_OFF_LINK:
  801. rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  802. break;
  803. case STATE_DEEP_SLEEP:
  804. case STATE_SLEEP:
  805. case STATE_STANDBY:
  806. case STATE_AWAKE:
  807. retval = rt2400pci_set_state(rt2x00dev, state);
  808. break;
  809. default:
  810. retval = -ENOTSUPP;
  811. break;
  812. }
  813. return retval;
  814. }
  815. /*
  816. * TX descriptor initialization
  817. */
  818. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  819. struct sk_buff *skb,
  820. struct txentry_desc *txdesc,
  821. struct ieee80211_tx_control *control)
  822. {
  823. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  824. __le32 *txd = skbdesc->desc;
  825. u32 word;
  826. /*
  827. * Start writing the descriptor words.
  828. */
  829. rt2x00_desc_read(txd, 2, &word);
  830. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
  831. rt2x00_desc_write(txd, 2, word);
  832. rt2x00_desc_read(txd, 3, &word);
  833. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  834. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  835. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  836. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  837. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  838. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  839. rt2x00_desc_write(txd, 3, word);
  840. rt2x00_desc_read(txd, 4, &word);
  841. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  842. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  843. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  844. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  845. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  846. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  847. rt2x00_desc_write(txd, 4, word);
  848. rt2x00_desc_read(txd, 0, &word);
  849. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  850. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  851. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  852. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  853. rt2x00_set_field32(&word, TXD_W0_ACK,
  854. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  855. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  856. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  857. rt2x00_set_field32(&word, TXD_W0_RTS,
  858. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  859. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  860. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  861. !!(control->flags &
  862. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  863. rt2x00_desc_write(txd, 0, word);
  864. }
  865. /*
  866. * TX data initialization
  867. */
  868. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  869. const unsigned int queue)
  870. {
  871. u32 reg;
  872. if (queue == RT2X00_BCN_QUEUE_BEACON) {
  873. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  874. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  875. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  876. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  877. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  878. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  879. }
  880. return;
  881. }
  882. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  883. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
  884. (queue == IEEE80211_TX_QUEUE_DATA0));
  885. rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
  886. (queue == IEEE80211_TX_QUEUE_DATA1));
  887. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
  888. (queue == RT2X00_BCN_QUEUE_ATIM));
  889. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  890. }
  891. /*
  892. * RX control handlers
  893. */
  894. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  895. struct rxdone_entry_desc *rxdesc)
  896. {
  897. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  898. u32 word0;
  899. u32 word2;
  900. u32 word3;
  901. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  902. rt2x00_desc_read(priv_rx->desc, 2, &word2);
  903. rt2x00_desc_read(priv_rx->desc, 3, &word3);
  904. rxdesc->flags = 0;
  905. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  906. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  907. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  908. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  909. /*
  910. * Obtain the status about this packet.
  911. * The signal is the PLCP value, and needs to be stripped
  912. * of the preamble bit (0x08).
  913. */
  914. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  915. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  916. entry->queue->rt2x00dev->rssi_offset;
  917. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  918. rxdesc->dev_flags = RXDONE_SIGNAL_PLCP;
  919. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  920. rxdesc->dev_flags |= RXDONE_MY_BSS;
  921. }
  922. /*
  923. * Interrupt functions.
  924. */
  925. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  926. const enum ieee80211_tx_queue queue_idx)
  927. {
  928. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  929. struct queue_entry_priv_pci_tx *priv_tx;
  930. struct queue_entry *entry;
  931. struct txdone_entry_desc txdesc;
  932. u32 word;
  933. while (!rt2x00queue_empty(queue)) {
  934. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  935. priv_tx = entry->priv_data;
  936. rt2x00_desc_read(priv_tx->desc, 0, &word);
  937. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  938. !rt2x00_get_field32(word, TXD_W0_VALID))
  939. break;
  940. /*
  941. * Obtain the status about this packet.
  942. */
  943. txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
  944. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  945. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  946. }
  947. }
  948. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  949. {
  950. struct rt2x00_dev *rt2x00dev = dev_instance;
  951. u32 reg;
  952. /*
  953. * Get the interrupt sources & saved to local variable.
  954. * Write register value back to clear pending interrupts.
  955. */
  956. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  957. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  958. if (!reg)
  959. return IRQ_NONE;
  960. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  961. return IRQ_HANDLED;
  962. /*
  963. * Handle interrupts, walk through all bits
  964. * and run the tasks, the bits are checked in order of
  965. * priority.
  966. */
  967. /*
  968. * 1 - Beacon timer expired interrupt.
  969. */
  970. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  971. rt2x00lib_beacondone(rt2x00dev);
  972. /*
  973. * 2 - Rx ring done interrupt.
  974. */
  975. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  976. rt2x00pci_rxdone(rt2x00dev);
  977. /*
  978. * 3 - Atim ring transmit done interrupt.
  979. */
  980. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  981. rt2400pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
  982. /*
  983. * 4 - Priority ring transmit done interrupt.
  984. */
  985. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  986. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  987. /*
  988. * 5 - Tx ring transmit done interrupt.
  989. */
  990. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  991. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  992. return IRQ_HANDLED;
  993. }
  994. /*
  995. * Device probe functions.
  996. */
  997. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  998. {
  999. struct eeprom_93cx6 eeprom;
  1000. u32 reg;
  1001. u16 word;
  1002. u8 *mac;
  1003. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1004. eeprom.data = rt2x00dev;
  1005. eeprom.register_read = rt2400pci_eepromregister_read;
  1006. eeprom.register_write = rt2400pci_eepromregister_write;
  1007. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1008. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1009. eeprom.reg_data_in = 0;
  1010. eeprom.reg_data_out = 0;
  1011. eeprom.reg_data_clock = 0;
  1012. eeprom.reg_chip_select = 0;
  1013. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1014. EEPROM_SIZE / sizeof(u16));
  1015. /*
  1016. * Start validation of the data that has been read.
  1017. */
  1018. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1019. if (!is_valid_ether_addr(mac)) {
  1020. DECLARE_MAC_BUF(macbuf);
  1021. random_ether_addr(mac);
  1022. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1023. }
  1024. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1025. if (word == 0xffff) {
  1026. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1027. return -EINVAL;
  1028. }
  1029. return 0;
  1030. }
  1031. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1032. {
  1033. u32 reg;
  1034. u16 value;
  1035. u16 eeprom;
  1036. /*
  1037. * Read EEPROM word for configuration.
  1038. */
  1039. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1040. /*
  1041. * Identify RF chipset.
  1042. */
  1043. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1044. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1045. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1046. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1047. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1048. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1049. return -ENODEV;
  1050. }
  1051. /*
  1052. * Identify default antenna configuration.
  1053. */
  1054. rt2x00dev->default_ant.tx =
  1055. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1056. rt2x00dev->default_ant.rx =
  1057. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1058. /*
  1059. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1060. * I am not 100% sure about this, but the legacy drivers do not
  1061. * indicate antenna swapping in software is required when
  1062. * diversity is enabled.
  1063. */
  1064. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1065. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1066. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1067. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1068. /*
  1069. * Store led mode, for correct led behaviour.
  1070. */
  1071. #ifdef CONFIG_RT2400PCI_LEDS
  1072. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1073. switch (value) {
  1074. case LED_MODE_ASUS:
  1075. case LED_MODE_ALPHA:
  1076. case LED_MODE_DEFAULT:
  1077. rt2x00dev->led_flags = LED_SUPPORT_RADIO;
  1078. break;
  1079. case LED_MODE_TXRX_ACTIVITY:
  1080. rt2x00dev->led_flags =
  1081. LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
  1082. break;
  1083. case LED_MODE_SIGNAL_STRENGTH:
  1084. rt2x00dev->led_flags = LED_SUPPORT_RADIO;
  1085. break;
  1086. }
  1087. #endif /* CONFIG_RT2400PCI_LEDS */
  1088. /*
  1089. * Detect if this device has an hardware controlled radio.
  1090. */
  1091. #ifdef CONFIG_RT2400PCI_RFKILL
  1092. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1093. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1094. #endif /* CONFIG_RT2400PCI_RFKILL */
  1095. /*
  1096. * Check if the BBP tuning should be enabled.
  1097. */
  1098. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1099. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1100. return 0;
  1101. }
  1102. /*
  1103. * RF value list for RF2420 & RF2421
  1104. * Supports: 2.4 GHz
  1105. */
  1106. static const struct rf_channel rf_vals_bg[] = {
  1107. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1108. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1109. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1110. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1111. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1112. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1113. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1114. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1115. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1116. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1117. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1118. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1119. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1120. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1121. };
  1122. static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1123. {
  1124. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1125. u8 *txpower;
  1126. unsigned int i;
  1127. /*
  1128. * Initialize all hw fields.
  1129. */
  1130. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1131. rt2x00dev->hw->extra_tx_headroom = 0;
  1132. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1133. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1134. rt2x00dev->hw->queues = 2;
  1135. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1136. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1137. rt2x00_eeprom_addr(rt2x00dev,
  1138. EEPROM_MAC_ADDR_0));
  1139. /*
  1140. * Convert tx_power array in eeprom.
  1141. */
  1142. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1143. for (i = 0; i < 14; i++)
  1144. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1145. /*
  1146. * Initialize hw_mode information.
  1147. */
  1148. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1149. spec->supported_rates = SUPPORT_RATE_CCK;
  1150. spec->tx_power_a = NULL;
  1151. spec->tx_power_bg = txpower;
  1152. spec->tx_power_default = DEFAULT_TXPOWER;
  1153. spec->num_channels = ARRAY_SIZE(rf_vals_bg);
  1154. spec->channels = rf_vals_bg;
  1155. }
  1156. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1157. {
  1158. int retval;
  1159. /*
  1160. * Allocate eeprom data.
  1161. */
  1162. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1163. if (retval)
  1164. return retval;
  1165. retval = rt2400pci_init_eeprom(rt2x00dev);
  1166. if (retval)
  1167. return retval;
  1168. /*
  1169. * Initialize hw specifications.
  1170. */
  1171. rt2400pci_probe_hw_mode(rt2x00dev);
  1172. /*
  1173. * This device requires the atim queue
  1174. */
  1175. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1176. /*
  1177. * Set the rssi offset.
  1178. */
  1179. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1180. return 0;
  1181. }
  1182. /*
  1183. * IEEE80211 stack callback functions.
  1184. */
  1185. static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
  1186. unsigned int changed_flags,
  1187. unsigned int *total_flags,
  1188. int mc_count,
  1189. struct dev_addr_list *mc_list)
  1190. {
  1191. struct rt2x00_dev *rt2x00dev = hw->priv;
  1192. u32 reg;
  1193. /*
  1194. * Mask off any flags we are going to ignore from
  1195. * the total_flags field.
  1196. */
  1197. *total_flags &=
  1198. FIF_ALLMULTI |
  1199. FIF_FCSFAIL |
  1200. FIF_PLCPFAIL |
  1201. FIF_CONTROL |
  1202. FIF_OTHER_BSS |
  1203. FIF_PROMISC_IN_BSS;
  1204. /*
  1205. * Apply some rules to the filters:
  1206. * - Some filters imply different filters to be set.
  1207. * - Some things we can't filter out at all.
  1208. */
  1209. *total_flags |= FIF_ALLMULTI;
  1210. if (*total_flags & FIF_OTHER_BSS ||
  1211. *total_flags & FIF_PROMISC_IN_BSS)
  1212. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1213. /*
  1214. * Check if there is any work left for us.
  1215. */
  1216. if (rt2x00dev->packet_filter == *total_flags)
  1217. return;
  1218. rt2x00dev->packet_filter = *total_flags;
  1219. /*
  1220. * Start configuration steps.
  1221. * Note that the version error will always be dropped
  1222. * since there is no filter for it at this time.
  1223. */
  1224. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1225. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1226. !(*total_flags & FIF_FCSFAIL));
  1227. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1228. !(*total_flags & FIF_PLCPFAIL));
  1229. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1230. !(*total_flags & FIF_CONTROL));
  1231. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1232. !(*total_flags & FIF_PROMISC_IN_BSS));
  1233. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1234. !(*total_flags & FIF_PROMISC_IN_BSS));
  1235. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1236. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1237. }
  1238. static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
  1239. u32 short_retry, u32 long_retry)
  1240. {
  1241. struct rt2x00_dev *rt2x00dev = hw->priv;
  1242. u32 reg;
  1243. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1244. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1245. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1246. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1247. return 0;
  1248. }
  1249. static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
  1250. int queue,
  1251. const struct ieee80211_tx_queue_params *params)
  1252. {
  1253. struct rt2x00_dev *rt2x00dev = hw->priv;
  1254. /*
  1255. * We don't support variating cw_min and cw_max variables
  1256. * per queue. So by default we only configure the TX queue,
  1257. * and ignore all other configurations.
  1258. */
  1259. if (queue != IEEE80211_TX_QUEUE_DATA0)
  1260. return -EINVAL;
  1261. if (rt2x00mac_conf_tx(hw, queue, params))
  1262. return -EINVAL;
  1263. /*
  1264. * Write configuration to register.
  1265. */
  1266. rt2400pci_config_cw(rt2x00dev,
  1267. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1268. return 0;
  1269. }
  1270. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1271. {
  1272. struct rt2x00_dev *rt2x00dev = hw->priv;
  1273. u64 tsf;
  1274. u32 reg;
  1275. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1276. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1277. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1278. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1279. return tsf;
  1280. }
  1281. static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  1282. struct ieee80211_tx_control *control)
  1283. {
  1284. struct rt2x00_dev *rt2x00dev = hw->priv;
  1285. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1286. struct queue_entry_priv_pci_tx *priv_tx;
  1287. struct skb_frame_desc *skbdesc;
  1288. u32 reg;
  1289. if (unlikely(!intf->beacon))
  1290. return -ENOBUFS;
  1291. priv_tx = intf->beacon->priv_data;
  1292. /*
  1293. * Fill in skb descriptor
  1294. */
  1295. skbdesc = get_skb_frame_desc(skb);
  1296. memset(skbdesc, 0, sizeof(*skbdesc));
  1297. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  1298. skbdesc->data = skb->data;
  1299. skbdesc->data_len = skb->len;
  1300. skbdesc->desc = priv_tx->desc;
  1301. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1302. skbdesc->entry = intf->beacon;
  1303. /*
  1304. * Disable beaconing while we are reloading the beacon data,
  1305. * otherwise we might be sending out invalid data.
  1306. */
  1307. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1308. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1309. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1310. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1311. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1312. /*
  1313. * mac80211 doesn't provide the control->queue variable
  1314. * for beacons. Set our own queue identification so
  1315. * it can be used during descriptor initialization.
  1316. */
  1317. control->queue = RT2X00_BCN_QUEUE_BEACON;
  1318. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1319. /*
  1320. * Enable beacon generation.
  1321. * Write entire beacon with descriptor to register,
  1322. * and kick the beacon generator.
  1323. */
  1324. memcpy(priv_tx->data, skb->data, skb->len);
  1325. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
  1326. return 0;
  1327. }
  1328. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1329. {
  1330. struct rt2x00_dev *rt2x00dev = hw->priv;
  1331. u32 reg;
  1332. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1333. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1334. }
  1335. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1336. .tx = rt2x00mac_tx,
  1337. .start = rt2x00mac_start,
  1338. .stop = rt2x00mac_stop,
  1339. .add_interface = rt2x00mac_add_interface,
  1340. .remove_interface = rt2x00mac_remove_interface,
  1341. .config = rt2x00mac_config,
  1342. .config_interface = rt2x00mac_config_interface,
  1343. .configure_filter = rt2400pci_configure_filter,
  1344. .get_stats = rt2x00mac_get_stats,
  1345. .set_retry_limit = rt2400pci_set_retry_limit,
  1346. .bss_info_changed = rt2x00mac_bss_info_changed,
  1347. .conf_tx = rt2400pci_conf_tx,
  1348. .get_tx_stats = rt2x00mac_get_tx_stats,
  1349. .get_tsf = rt2400pci_get_tsf,
  1350. .beacon_update = rt2400pci_beacon_update,
  1351. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1352. };
  1353. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1354. .irq_handler = rt2400pci_interrupt,
  1355. .probe_hw = rt2400pci_probe_hw,
  1356. .initialize = rt2x00pci_initialize,
  1357. .uninitialize = rt2x00pci_uninitialize,
  1358. .init_rxentry = rt2400pci_init_rxentry,
  1359. .init_txentry = rt2400pci_init_txentry,
  1360. .set_device_state = rt2400pci_set_device_state,
  1361. .rfkill_poll = rt2400pci_rfkill_poll,
  1362. .link_stats = rt2400pci_link_stats,
  1363. .reset_tuner = rt2400pci_reset_tuner,
  1364. .link_tuner = rt2400pci_link_tuner,
  1365. .led_brightness = rt2400pci_led_brightness,
  1366. .write_tx_desc = rt2400pci_write_tx_desc,
  1367. .write_tx_data = rt2x00pci_write_tx_data,
  1368. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1369. .fill_rxdone = rt2400pci_fill_rxdone,
  1370. .config_intf = rt2400pci_config_intf,
  1371. .config_erp = rt2400pci_config_erp,
  1372. .config = rt2400pci_config,
  1373. };
  1374. static const struct data_queue_desc rt2400pci_queue_rx = {
  1375. .entry_num = RX_ENTRIES,
  1376. .data_size = DATA_FRAME_SIZE,
  1377. .desc_size = RXD_DESC_SIZE,
  1378. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  1379. };
  1380. static const struct data_queue_desc rt2400pci_queue_tx = {
  1381. .entry_num = TX_ENTRIES,
  1382. .data_size = DATA_FRAME_SIZE,
  1383. .desc_size = TXD_DESC_SIZE,
  1384. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1385. };
  1386. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1387. .entry_num = BEACON_ENTRIES,
  1388. .data_size = MGMT_FRAME_SIZE,
  1389. .desc_size = TXD_DESC_SIZE,
  1390. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1391. };
  1392. static const struct data_queue_desc rt2400pci_queue_atim = {
  1393. .entry_num = ATIM_ENTRIES,
  1394. .data_size = DATA_FRAME_SIZE,
  1395. .desc_size = TXD_DESC_SIZE,
  1396. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1397. };
  1398. static const struct rt2x00_ops rt2400pci_ops = {
  1399. .name = KBUILD_MODNAME,
  1400. .max_sta_intf = 1,
  1401. .max_ap_intf = 1,
  1402. .eeprom_size = EEPROM_SIZE,
  1403. .rf_size = RF_SIZE,
  1404. .rx = &rt2400pci_queue_rx,
  1405. .tx = &rt2400pci_queue_tx,
  1406. .bcn = &rt2400pci_queue_bcn,
  1407. .atim = &rt2400pci_queue_atim,
  1408. .lib = &rt2400pci_rt2x00_ops,
  1409. .hw = &rt2400pci_mac80211_ops,
  1410. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1411. .debugfs = &rt2400pci_rt2x00debug,
  1412. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1413. };
  1414. /*
  1415. * RT2400pci module information.
  1416. */
  1417. static struct pci_device_id rt2400pci_device_table[] = {
  1418. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1419. { 0, }
  1420. };
  1421. MODULE_AUTHOR(DRV_PROJECT);
  1422. MODULE_VERSION(DRV_VERSION);
  1423. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1424. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1425. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1426. MODULE_LICENSE("GPL");
  1427. static struct pci_driver rt2400pci_driver = {
  1428. .name = KBUILD_MODNAME,
  1429. .id_table = rt2400pci_device_table,
  1430. .probe = rt2x00pci_probe,
  1431. .remove = __devexit_p(rt2x00pci_remove),
  1432. .suspend = rt2x00pci_suspend,
  1433. .resume = rt2x00pci_resume,
  1434. };
  1435. static int __init rt2400pci_init(void)
  1436. {
  1437. return pci_register_driver(&rt2400pci_driver);
  1438. }
  1439. static void __exit rt2400pci_exit(void)
  1440. {
  1441. pci_unregister_driver(&rt2400pci_driver);
  1442. }
  1443. module_init(rt2400pci_init);
  1444. module_exit(rt2400pci_exit);