slub.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. #include "internal.h"
  35. /*
  36. * Lock order:
  37. * 1. slab_mutex (Global Mutex)
  38. * 2. node->list_lock
  39. * 3. slab_lock(page) (Only on some arches and for debugging)
  40. *
  41. * slab_mutex
  42. *
  43. * The role of the slab_mutex is to protect the list of all the slabs
  44. * and to synchronize major metadata changes to slab cache structures.
  45. *
  46. * The slab_lock is only used for debugging and on arches that do not
  47. * have the ability to do a cmpxchg_double. It only protects the second
  48. * double word in the page struct. Meaning
  49. * A. page->freelist -> List of object free in a page
  50. * B. page->counters -> Counters of objects
  51. * C. page->frozen -> frozen state
  52. *
  53. * If a slab is frozen then it is exempt from list management. It is not
  54. * on any list. The processor that froze the slab is the one who can
  55. * perform list operations on the page. Other processors may put objects
  56. * onto the freelist but the processor that froze the slab is the only
  57. * one that can retrieve the objects from the page's freelist.
  58. *
  59. * The list_lock protects the partial and full list on each node and
  60. * the partial slab counter. If taken then no new slabs may be added or
  61. * removed from the lists nor make the number of partial slabs be modified.
  62. * (Note that the total number of slabs is an atomic value that may be
  63. * modified without taking the list lock).
  64. *
  65. * The list_lock is a centralized lock and thus we avoid taking it as
  66. * much as possible. As long as SLUB does not have to handle partial
  67. * slabs, operations can continue without any centralized lock. F.e.
  68. * allocating a long series of objects that fill up slabs does not require
  69. * the list lock.
  70. * Interrupts are disabled during allocation and deallocation in order to
  71. * make the slab allocator safe to use in the context of an irq. In addition
  72. * interrupts are disabled to ensure that the processor does not change
  73. * while handling per_cpu slabs, due to kernel preemption.
  74. *
  75. * SLUB assigns one slab for allocation to each processor.
  76. * Allocations only occur from these slabs called cpu slabs.
  77. *
  78. * Slabs with free elements are kept on a partial list and during regular
  79. * operations no list for full slabs is used. If an object in a full slab is
  80. * freed then the slab will show up again on the partial lists.
  81. * We track full slabs for debugging purposes though because otherwise we
  82. * cannot scan all objects.
  83. *
  84. * Slabs are freed when they become empty. Teardown and setup is
  85. * minimal so we rely on the page allocators per cpu caches for
  86. * fast frees and allocs.
  87. *
  88. * Overloading of page flags that are otherwise used for LRU management.
  89. *
  90. * PageActive The slab is frozen and exempt from list processing.
  91. * This means that the slab is dedicated to a purpose
  92. * such as satisfying allocations for a specific
  93. * processor. Objects may be freed in the slab while
  94. * it is frozen but slab_free will then skip the usual
  95. * list operations. It is up to the processor holding
  96. * the slab to integrate the slab into the slab lists
  97. * when the slab is no longer needed.
  98. *
  99. * One use of this flag is to mark slabs that are
  100. * used for allocations. Then such a slab becomes a cpu
  101. * slab. The cpu slab may be equipped with an additional
  102. * freelist that allows lockless access to
  103. * free objects in addition to the regular freelist
  104. * that requires the slab lock.
  105. *
  106. * PageError Slab requires special handling due to debug
  107. * options set. This moves slab handling out of
  108. * the fast path and disables lockless freelists.
  109. */
  110. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  111. SLAB_TRACE | SLAB_DEBUG_FREE)
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. /*
  121. * Issues still to be resolved:
  122. *
  123. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  124. *
  125. * - Variable sizing of the per node arrays
  126. */
  127. /* Enable to test recovery from slab corruption on boot */
  128. #undef SLUB_RESILIENCY_TEST
  129. /* Enable to log cmpxchg failures */
  130. #undef SLUB_DEBUG_CMPXCHG
  131. /*
  132. * Mininum number of partial slabs. These will be left on the partial
  133. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  134. */
  135. #define MIN_PARTIAL 5
  136. /*
  137. * Maximum number of desirable partial slabs.
  138. * The existence of more partial slabs makes kmem_cache_shrink
  139. * sort the partial list by the number of objects in the.
  140. */
  141. #define MAX_PARTIAL 10
  142. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  143. SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Debugging flags that require metadata to be stored in the slab. These get
  146. * disabled when slub_debug=O is used and a cache's min order increases with
  147. * metadata.
  148. */
  149. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  150. /*
  151. * Set of flags that will prevent slab merging
  152. */
  153. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  154. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  155. SLAB_FAILSLAB)
  156. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  157. SLAB_CACHE_DMA | SLAB_NOTRACK)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. static int kmem_size = sizeof(struct kmem_cache);
  165. #ifdef CONFIG_SMP
  166. static struct notifier_block slab_notifier;
  167. #endif
  168. /*
  169. * Tracking user of a slab.
  170. */
  171. #define TRACK_ADDRS_COUNT 16
  172. struct track {
  173. unsigned long addr; /* Called from address */
  174. #ifdef CONFIG_STACKTRACE
  175. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  176. #endif
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SYSFS
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s->name);
  193. kfree(s);
  194. }
  195. #endif
  196. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  197. {
  198. #ifdef CONFIG_SLUB_STATS
  199. __this_cpu_inc(s->cpu_slab->stat[si]);
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  206. {
  207. return s->node[node];
  208. }
  209. /* Verify that a pointer has an address that is valid within a slab page */
  210. static inline int check_valid_pointer(struct kmem_cache *s,
  211. struct page *page, const void *object)
  212. {
  213. void *base;
  214. if (!object)
  215. return 1;
  216. base = page_address(page);
  217. if (object < base || object >= base + page->objects * s->size ||
  218. (object - base) % s->size) {
  219. return 0;
  220. }
  221. return 1;
  222. }
  223. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  224. {
  225. return *(void **)(object + s->offset);
  226. }
  227. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  228. {
  229. prefetch(object + s->offset);
  230. }
  231. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  232. {
  233. void *p;
  234. #ifdef CONFIG_DEBUG_PAGEALLOC
  235. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  236. #else
  237. p = get_freepointer(s, object);
  238. #endif
  239. return p;
  240. }
  241. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  242. {
  243. *(void **)(object + s->offset) = fp;
  244. }
  245. /* Loop over all objects in a slab */
  246. #define for_each_object(__p, __s, __addr, __objects) \
  247. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  248. __p += (__s)->size)
  249. /* Determine object index from a given position */
  250. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  251. {
  252. return (p - addr) / s->size;
  253. }
  254. static inline size_t slab_ksize(const struct kmem_cache *s)
  255. {
  256. #ifdef CONFIG_SLUB_DEBUG
  257. /*
  258. * Debugging requires use of the padding between object
  259. * and whatever may come after it.
  260. */
  261. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  262. return s->object_size;
  263. #endif
  264. /*
  265. * If we have the need to store the freelist pointer
  266. * back there or track user information then we can
  267. * only use the space before that information.
  268. */
  269. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  270. return s->inuse;
  271. /*
  272. * Else we can use all the padding etc for the allocation
  273. */
  274. return s->size;
  275. }
  276. static inline int order_objects(int order, unsigned long size, int reserved)
  277. {
  278. return ((PAGE_SIZE << order) - reserved) / size;
  279. }
  280. static inline struct kmem_cache_order_objects oo_make(int order,
  281. unsigned long size, int reserved)
  282. {
  283. struct kmem_cache_order_objects x = {
  284. (order << OO_SHIFT) + order_objects(order, size, reserved)
  285. };
  286. return x;
  287. }
  288. static inline int oo_order(struct kmem_cache_order_objects x)
  289. {
  290. return x.x >> OO_SHIFT;
  291. }
  292. static inline int oo_objects(struct kmem_cache_order_objects x)
  293. {
  294. return x.x & OO_MASK;
  295. }
  296. /*
  297. * Per slab locking using the pagelock
  298. */
  299. static __always_inline void slab_lock(struct page *page)
  300. {
  301. bit_spin_lock(PG_locked, &page->flags);
  302. }
  303. static __always_inline void slab_unlock(struct page *page)
  304. {
  305. __bit_spin_unlock(PG_locked, &page->flags);
  306. }
  307. /* Interrupts must be disabled (for the fallback code to work right) */
  308. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  309. void *freelist_old, unsigned long counters_old,
  310. void *freelist_new, unsigned long counters_new,
  311. const char *n)
  312. {
  313. VM_BUG_ON(!irqs_disabled());
  314. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  315. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  316. if (s->flags & __CMPXCHG_DOUBLE) {
  317. if (cmpxchg_double(&page->freelist, &page->counters,
  318. freelist_old, counters_old,
  319. freelist_new, counters_new))
  320. return 1;
  321. } else
  322. #endif
  323. {
  324. slab_lock(page);
  325. if (page->freelist == freelist_old && page->counters == counters_old) {
  326. page->freelist = freelist_new;
  327. page->counters = counters_new;
  328. slab_unlock(page);
  329. return 1;
  330. }
  331. slab_unlock(page);
  332. }
  333. cpu_relax();
  334. stat(s, CMPXCHG_DOUBLE_FAIL);
  335. #ifdef SLUB_DEBUG_CMPXCHG
  336. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  337. #endif
  338. return 0;
  339. }
  340. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  341. void *freelist_old, unsigned long counters_old,
  342. void *freelist_new, unsigned long counters_new,
  343. const char *n)
  344. {
  345. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  346. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  347. if (s->flags & __CMPXCHG_DOUBLE) {
  348. if (cmpxchg_double(&page->freelist, &page->counters,
  349. freelist_old, counters_old,
  350. freelist_new, counters_new))
  351. return 1;
  352. } else
  353. #endif
  354. {
  355. unsigned long flags;
  356. local_irq_save(flags);
  357. slab_lock(page);
  358. if (page->freelist == freelist_old && page->counters == counters_old) {
  359. page->freelist = freelist_new;
  360. page->counters = counters_new;
  361. slab_unlock(page);
  362. local_irq_restore(flags);
  363. return 1;
  364. }
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. }
  368. cpu_relax();
  369. stat(s, CMPXCHG_DOUBLE_FAIL);
  370. #ifdef SLUB_DEBUG_CMPXCHG
  371. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  372. #endif
  373. return 0;
  374. }
  375. #ifdef CONFIG_SLUB_DEBUG
  376. /*
  377. * Determine a map of object in use on a page.
  378. *
  379. * Node listlock must be held to guarantee that the page does
  380. * not vanish from under us.
  381. */
  382. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  383. {
  384. void *p;
  385. void *addr = page_address(page);
  386. for (p = page->freelist; p; p = get_freepointer(s, p))
  387. set_bit(slab_index(p, s, addr), map);
  388. }
  389. /*
  390. * Debug settings:
  391. */
  392. #ifdef CONFIG_SLUB_DEBUG_ON
  393. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  394. #else
  395. static int slub_debug;
  396. #endif
  397. static char *slub_debug_slabs;
  398. static int disable_higher_order_debug;
  399. /*
  400. * Object debugging
  401. */
  402. static void print_section(char *text, u8 *addr, unsigned int length)
  403. {
  404. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  405. length, 1);
  406. }
  407. static struct track *get_track(struct kmem_cache *s, void *object,
  408. enum track_item alloc)
  409. {
  410. struct track *p;
  411. if (s->offset)
  412. p = object + s->offset + sizeof(void *);
  413. else
  414. p = object + s->inuse;
  415. return p + alloc;
  416. }
  417. static void set_track(struct kmem_cache *s, void *object,
  418. enum track_item alloc, unsigned long addr)
  419. {
  420. struct track *p = get_track(s, object, alloc);
  421. if (addr) {
  422. #ifdef CONFIG_STACKTRACE
  423. struct stack_trace trace;
  424. int i;
  425. trace.nr_entries = 0;
  426. trace.max_entries = TRACK_ADDRS_COUNT;
  427. trace.entries = p->addrs;
  428. trace.skip = 3;
  429. save_stack_trace(&trace);
  430. /* See rant in lockdep.c */
  431. if (trace.nr_entries != 0 &&
  432. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  433. trace.nr_entries--;
  434. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  435. p->addrs[i] = 0;
  436. #endif
  437. p->addr = addr;
  438. p->cpu = smp_processor_id();
  439. p->pid = current->pid;
  440. p->when = jiffies;
  441. } else
  442. memset(p, 0, sizeof(struct track));
  443. }
  444. static void init_tracking(struct kmem_cache *s, void *object)
  445. {
  446. if (!(s->flags & SLAB_STORE_USER))
  447. return;
  448. set_track(s, object, TRACK_FREE, 0UL);
  449. set_track(s, object, TRACK_ALLOC, 0UL);
  450. }
  451. static void print_track(const char *s, struct track *t)
  452. {
  453. if (!t->addr)
  454. return;
  455. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  456. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  457. #ifdef CONFIG_STACKTRACE
  458. {
  459. int i;
  460. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  461. if (t->addrs[i])
  462. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  463. else
  464. break;
  465. }
  466. #endif
  467. }
  468. static void print_tracking(struct kmem_cache *s, void *object)
  469. {
  470. if (!(s->flags & SLAB_STORE_USER))
  471. return;
  472. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  473. print_track("Freed", get_track(s, object, TRACK_FREE));
  474. }
  475. static void print_page_info(struct page *page)
  476. {
  477. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  478. page, page->objects, page->inuse, page->freelist, page->flags);
  479. }
  480. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  481. {
  482. va_list args;
  483. char buf[100];
  484. va_start(args, fmt);
  485. vsnprintf(buf, sizeof(buf), fmt, args);
  486. va_end(args);
  487. printk(KERN_ERR "========================================"
  488. "=====================================\n");
  489. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  490. printk(KERN_ERR "----------------------------------------"
  491. "-------------------------------------\n\n");
  492. }
  493. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  494. {
  495. va_list args;
  496. char buf[100];
  497. va_start(args, fmt);
  498. vsnprintf(buf, sizeof(buf), fmt, args);
  499. va_end(args);
  500. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  501. }
  502. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  503. {
  504. unsigned int off; /* Offset of last byte */
  505. u8 *addr = page_address(page);
  506. print_tracking(s, p);
  507. print_page_info(page);
  508. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  509. p, p - addr, get_freepointer(s, p));
  510. if (p > addr + 16)
  511. print_section("Bytes b4 ", p - 16, 16);
  512. print_section("Object ", p, min_t(unsigned long, s->object_size,
  513. PAGE_SIZE));
  514. if (s->flags & SLAB_RED_ZONE)
  515. print_section("Redzone ", p + s->object_size,
  516. s->inuse - s->object_size);
  517. if (s->offset)
  518. off = s->offset + sizeof(void *);
  519. else
  520. off = s->inuse;
  521. if (s->flags & SLAB_STORE_USER)
  522. off += 2 * sizeof(struct track);
  523. if (off != s->size)
  524. /* Beginning of the filler is the free pointer */
  525. print_section("Padding ", p + off, s->size - off);
  526. dump_stack();
  527. }
  528. static void object_err(struct kmem_cache *s, struct page *page,
  529. u8 *object, char *reason)
  530. {
  531. slab_bug(s, "%s", reason);
  532. print_trailer(s, page, object);
  533. }
  534. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  535. {
  536. va_list args;
  537. char buf[100];
  538. va_start(args, fmt);
  539. vsnprintf(buf, sizeof(buf), fmt, args);
  540. va_end(args);
  541. slab_bug(s, "%s", buf);
  542. print_page_info(page);
  543. dump_stack();
  544. }
  545. static void init_object(struct kmem_cache *s, void *object, u8 val)
  546. {
  547. u8 *p = object;
  548. if (s->flags & __OBJECT_POISON) {
  549. memset(p, POISON_FREE, s->object_size - 1);
  550. p[s->object_size - 1] = POISON_END;
  551. }
  552. if (s->flags & SLAB_RED_ZONE)
  553. memset(p + s->object_size, val, s->inuse - s->object_size);
  554. }
  555. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  556. void *from, void *to)
  557. {
  558. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  559. memset(from, data, to - from);
  560. }
  561. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  562. u8 *object, char *what,
  563. u8 *start, unsigned int value, unsigned int bytes)
  564. {
  565. u8 *fault;
  566. u8 *end;
  567. fault = memchr_inv(start, value, bytes);
  568. if (!fault)
  569. return 1;
  570. end = start + bytes;
  571. while (end > fault && end[-1] == value)
  572. end--;
  573. slab_bug(s, "%s overwritten", what);
  574. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  575. fault, end - 1, fault[0], value);
  576. print_trailer(s, page, object);
  577. restore_bytes(s, what, value, fault, end);
  578. return 0;
  579. }
  580. /*
  581. * Object layout:
  582. *
  583. * object address
  584. * Bytes of the object to be managed.
  585. * If the freepointer may overlay the object then the free
  586. * pointer is the first word of the object.
  587. *
  588. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  589. * 0xa5 (POISON_END)
  590. *
  591. * object + s->object_size
  592. * Padding to reach word boundary. This is also used for Redzoning.
  593. * Padding is extended by another word if Redzoning is enabled and
  594. * object_size == inuse.
  595. *
  596. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  597. * 0xcc (RED_ACTIVE) for objects in use.
  598. *
  599. * object + s->inuse
  600. * Meta data starts here.
  601. *
  602. * A. Free pointer (if we cannot overwrite object on free)
  603. * B. Tracking data for SLAB_STORE_USER
  604. * C. Padding to reach required alignment boundary or at mininum
  605. * one word if debugging is on to be able to detect writes
  606. * before the word boundary.
  607. *
  608. * Padding is done using 0x5a (POISON_INUSE)
  609. *
  610. * object + s->size
  611. * Nothing is used beyond s->size.
  612. *
  613. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  614. * ignored. And therefore no slab options that rely on these boundaries
  615. * may be used with merged slabcaches.
  616. */
  617. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  618. {
  619. unsigned long off = s->inuse; /* The end of info */
  620. if (s->offset)
  621. /* Freepointer is placed after the object. */
  622. off += sizeof(void *);
  623. if (s->flags & SLAB_STORE_USER)
  624. /* We also have user information there */
  625. off += 2 * sizeof(struct track);
  626. if (s->size == off)
  627. return 1;
  628. return check_bytes_and_report(s, page, p, "Object padding",
  629. p + off, POISON_INUSE, s->size - off);
  630. }
  631. /* Check the pad bytes at the end of a slab page */
  632. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  633. {
  634. u8 *start;
  635. u8 *fault;
  636. u8 *end;
  637. int length;
  638. int remainder;
  639. if (!(s->flags & SLAB_POISON))
  640. return 1;
  641. start = page_address(page);
  642. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  643. end = start + length;
  644. remainder = length % s->size;
  645. if (!remainder)
  646. return 1;
  647. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  648. if (!fault)
  649. return 1;
  650. while (end > fault && end[-1] == POISON_INUSE)
  651. end--;
  652. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  653. print_section("Padding ", end - remainder, remainder);
  654. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  655. return 0;
  656. }
  657. static int check_object(struct kmem_cache *s, struct page *page,
  658. void *object, u8 val)
  659. {
  660. u8 *p = object;
  661. u8 *endobject = object + s->object_size;
  662. if (s->flags & SLAB_RED_ZONE) {
  663. if (!check_bytes_and_report(s, page, object, "Redzone",
  664. endobject, val, s->inuse - s->object_size))
  665. return 0;
  666. } else {
  667. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  668. check_bytes_and_report(s, page, p, "Alignment padding",
  669. endobject, POISON_INUSE, s->inuse - s->object_size);
  670. }
  671. }
  672. if (s->flags & SLAB_POISON) {
  673. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  674. (!check_bytes_and_report(s, page, p, "Poison", p,
  675. POISON_FREE, s->object_size - 1) ||
  676. !check_bytes_and_report(s, page, p, "Poison",
  677. p + s->object_size - 1, POISON_END, 1)))
  678. return 0;
  679. /*
  680. * check_pad_bytes cleans up on its own.
  681. */
  682. check_pad_bytes(s, page, p);
  683. }
  684. if (!s->offset && val == SLUB_RED_ACTIVE)
  685. /*
  686. * Object and freepointer overlap. Cannot check
  687. * freepointer while object is allocated.
  688. */
  689. return 1;
  690. /* Check free pointer validity */
  691. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  692. object_err(s, page, p, "Freepointer corrupt");
  693. /*
  694. * No choice but to zap it and thus lose the remainder
  695. * of the free objects in this slab. May cause
  696. * another error because the object count is now wrong.
  697. */
  698. set_freepointer(s, p, NULL);
  699. return 0;
  700. }
  701. return 1;
  702. }
  703. static int check_slab(struct kmem_cache *s, struct page *page)
  704. {
  705. int maxobj;
  706. VM_BUG_ON(!irqs_disabled());
  707. if (!PageSlab(page)) {
  708. slab_err(s, page, "Not a valid slab page");
  709. return 0;
  710. }
  711. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  712. if (page->objects > maxobj) {
  713. slab_err(s, page, "objects %u > max %u",
  714. s->name, page->objects, maxobj);
  715. return 0;
  716. }
  717. if (page->inuse > page->objects) {
  718. slab_err(s, page, "inuse %u > max %u",
  719. s->name, page->inuse, page->objects);
  720. return 0;
  721. }
  722. /* Slab_pad_check fixes things up after itself */
  723. slab_pad_check(s, page);
  724. return 1;
  725. }
  726. /*
  727. * Determine if a certain object on a page is on the freelist. Must hold the
  728. * slab lock to guarantee that the chains are in a consistent state.
  729. */
  730. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  731. {
  732. int nr = 0;
  733. void *fp;
  734. void *object = NULL;
  735. unsigned long max_objects;
  736. fp = page->freelist;
  737. while (fp && nr <= page->objects) {
  738. if (fp == search)
  739. return 1;
  740. if (!check_valid_pointer(s, page, fp)) {
  741. if (object) {
  742. object_err(s, page, object,
  743. "Freechain corrupt");
  744. set_freepointer(s, object, NULL);
  745. break;
  746. } else {
  747. slab_err(s, page, "Freepointer corrupt");
  748. page->freelist = NULL;
  749. page->inuse = page->objects;
  750. slab_fix(s, "Freelist cleared");
  751. return 0;
  752. }
  753. break;
  754. }
  755. object = fp;
  756. fp = get_freepointer(s, object);
  757. nr++;
  758. }
  759. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  760. if (max_objects > MAX_OBJS_PER_PAGE)
  761. max_objects = MAX_OBJS_PER_PAGE;
  762. if (page->objects != max_objects) {
  763. slab_err(s, page, "Wrong number of objects. Found %d but "
  764. "should be %d", page->objects, max_objects);
  765. page->objects = max_objects;
  766. slab_fix(s, "Number of objects adjusted.");
  767. }
  768. if (page->inuse != page->objects - nr) {
  769. slab_err(s, page, "Wrong object count. Counter is %d but "
  770. "counted were %d", page->inuse, page->objects - nr);
  771. page->inuse = page->objects - nr;
  772. slab_fix(s, "Object count adjusted.");
  773. }
  774. return search == NULL;
  775. }
  776. static void trace(struct kmem_cache *s, struct page *page, void *object,
  777. int alloc)
  778. {
  779. if (s->flags & SLAB_TRACE) {
  780. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  781. s->name,
  782. alloc ? "alloc" : "free",
  783. object, page->inuse,
  784. page->freelist);
  785. if (!alloc)
  786. print_section("Object ", (void *)object, s->object_size);
  787. dump_stack();
  788. }
  789. }
  790. /*
  791. * Hooks for other subsystems that check memory allocations. In a typical
  792. * production configuration these hooks all should produce no code at all.
  793. */
  794. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  795. {
  796. flags &= gfp_allowed_mask;
  797. lockdep_trace_alloc(flags);
  798. might_sleep_if(flags & __GFP_WAIT);
  799. return should_failslab(s->object_size, flags, s->flags);
  800. }
  801. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  802. {
  803. flags &= gfp_allowed_mask;
  804. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  805. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  806. }
  807. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  808. {
  809. kmemleak_free_recursive(x, s->flags);
  810. /*
  811. * Trouble is that we may no longer disable interupts in the fast path
  812. * So in order to make the debug calls that expect irqs to be
  813. * disabled we need to disable interrupts temporarily.
  814. */
  815. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  816. {
  817. unsigned long flags;
  818. local_irq_save(flags);
  819. kmemcheck_slab_free(s, x, s->object_size);
  820. debug_check_no_locks_freed(x, s->object_size);
  821. local_irq_restore(flags);
  822. }
  823. #endif
  824. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  825. debug_check_no_obj_freed(x, s->object_size);
  826. }
  827. /*
  828. * Tracking of fully allocated slabs for debugging purposes.
  829. *
  830. * list_lock must be held.
  831. */
  832. static void add_full(struct kmem_cache *s,
  833. struct kmem_cache_node *n, struct page *page)
  834. {
  835. if (!(s->flags & SLAB_STORE_USER))
  836. return;
  837. list_add(&page->lru, &n->full);
  838. }
  839. /*
  840. * list_lock must be held.
  841. */
  842. static void remove_full(struct kmem_cache *s, struct page *page)
  843. {
  844. if (!(s->flags & SLAB_STORE_USER))
  845. return;
  846. list_del(&page->lru);
  847. }
  848. /* Tracking of the number of slabs for debugging purposes */
  849. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  850. {
  851. struct kmem_cache_node *n = get_node(s, node);
  852. return atomic_long_read(&n->nr_slabs);
  853. }
  854. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  855. {
  856. return atomic_long_read(&n->nr_slabs);
  857. }
  858. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  859. {
  860. struct kmem_cache_node *n = get_node(s, node);
  861. /*
  862. * May be called early in order to allocate a slab for the
  863. * kmem_cache_node structure. Solve the chicken-egg
  864. * dilemma by deferring the increment of the count during
  865. * bootstrap (see early_kmem_cache_node_alloc).
  866. */
  867. if (n) {
  868. atomic_long_inc(&n->nr_slabs);
  869. atomic_long_add(objects, &n->total_objects);
  870. }
  871. }
  872. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  873. {
  874. struct kmem_cache_node *n = get_node(s, node);
  875. atomic_long_dec(&n->nr_slabs);
  876. atomic_long_sub(objects, &n->total_objects);
  877. }
  878. /* Object debug checks for alloc/free paths */
  879. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  880. void *object)
  881. {
  882. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  883. return;
  884. init_object(s, object, SLUB_RED_INACTIVE);
  885. init_tracking(s, object);
  886. }
  887. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  888. void *object, unsigned long addr)
  889. {
  890. if (!check_slab(s, page))
  891. goto bad;
  892. if (!check_valid_pointer(s, page, object)) {
  893. object_err(s, page, object, "Freelist Pointer check fails");
  894. goto bad;
  895. }
  896. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  897. goto bad;
  898. /* Success perform special debug activities for allocs */
  899. if (s->flags & SLAB_STORE_USER)
  900. set_track(s, object, TRACK_ALLOC, addr);
  901. trace(s, page, object, 1);
  902. init_object(s, object, SLUB_RED_ACTIVE);
  903. return 1;
  904. bad:
  905. if (PageSlab(page)) {
  906. /*
  907. * If this is a slab page then lets do the best we can
  908. * to avoid issues in the future. Marking all objects
  909. * as used avoids touching the remaining objects.
  910. */
  911. slab_fix(s, "Marking all objects used");
  912. page->inuse = page->objects;
  913. page->freelist = NULL;
  914. }
  915. return 0;
  916. }
  917. static noinline struct kmem_cache_node *free_debug_processing(
  918. struct kmem_cache *s, struct page *page, void *object,
  919. unsigned long addr, unsigned long *flags)
  920. {
  921. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  922. spin_lock_irqsave(&n->list_lock, *flags);
  923. slab_lock(page);
  924. if (!check_slab(s, page))
  925. goto fail;
  926. if (!check_valid_pointer(s, page, object)) {
  927. slab_err(s, page, "Invalid object pointer 0x%p", object);
  928. goto fail;
  929. }
  930. if (on_freelist(s, page, object)) {
  931. object_err(s, page, object, "Object already free");
  932. goto fail;
  933. }
  934. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  935. goto out;
  936. if (unlikely(s != page->slab)) {
  937. if (!PageSlab(page)) {
  938. slab_err(s, page, "Attempt to free object(0x%p) "
  939. "outside of slab", object);
  940. } else if (!page->slab) {
  941. printk(KERN_ERR
  942. "SLUB <none>: no slab for object 0x%p.\n",
  943. object);
  944. dump_stack();
  945. } else
  946. object_err(s, page, object,
  947. "page slab pointer corrupt.");
  948. goto fail;
  949. }
  950. if (s->flags & SLAB_STORE_USER)
  951. set_track(s, object, TRACK_FREE, addr);
  952. trace(s, page, object, 0);
  953. init_object(s, object, SLUB_RED_INACTIVE);
  954. out:
  955. slab_unlock(page);
  956. /*
  957. * Keep node_lock to preserve integrity
  958. * until the object is actually freed
  959. */
  960. return n;
  961. fail:
  962. slab_unlock(page);
  963. spin_unlock_irqrestore(&n->list_lock, *flags);
  964. slab_fix(s, "Object at 0x%p not freed", object);
  965. return NULL;
  966. }
  967. static int __init setup_slub_debug(char *str)
  968. {
  969. slub_debug = DEBUG_DEFAULT_FLAGS;
  970. if (*str++ != '=' || !*str)
  971. /*
  972. * No options specified. Switch on full debugging.
  973. */
  974. goto out;
  975. if (*str == ',')
  976. /*
  977. * No options but restriction on slabs. This means full
  978. * debugging for slabs matching a pattern.
  979. */
  980. goto check_slabs;
  981. if (tolower(*str) == 'o') {
  982. /*
  983. * Avoid enabling debugging on caches if its minimum order
  984. * would increase as a result.
  985. */
  986. disable_higher_order_debug = 1;
  987. goto out;
  988. }
  989. slub_debug = 0;
  990. if (*str == '-')
  991. /*
  992. * Switch off all debugging measures.
  993. */
  994. goto out;
  995. /*
  996. * Determine which debug features should be switched on
  997. */
  998. for (; *str && *str != ','; str++) {
  999. switch (tolower(*str)) {
  1000. case 'f':
  1001. slub_debug |= SLAB_DEBUG_FREE;
  1002. break;
  1003. case 'z':
  1004. slub_debug |= SLAB_RED_ZONE;
  1005. break;
  1006. case 'p':
  1007. slub_debug |= SLAB_POISON;
  1008. break;
  1009. case 'u':
  1010. slub_debug |= SLAB_STORE_USER;
  1011. break;
  1012. case 't':
  1013. slub_debug |= SLAB_TRACE;
  1014. break;
  1015. case 'a':
  1016. slub_debug |= SLAB_FAILSLAB;
  1017. break;
  1018. default:
  1019. printk(KERN_ERR "slub_debug option '%c' "
  1020. "unknown. skipped\n", *str);
  1021. }
  1022. }
  1023. check_slabs:
  1024. if (*str == ',')
  1025. slub_debug_slabs = str + 1;
  1026. out:
  1027. return 1;
  1028. }
  1029. __setup("slub_debug", setup_slub_debug);
  1030. static unsigned long kmem_cache_flags(unsigned long object_size,
  1031. unsigned long flags, const char *name,
  1032. void (*ctor)(void *))
  1033. {
  1034. /*
  1035. * Enable debugging if selected on the kernel commandline.
  1036. */
  1037. if (slub_debug && (!slub_debug_slabs ||
  1038. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1039. flags |= slub_debug;
  1040. return flags;
  1041. }
  1042. #else
  1043. static inline void setup_object_debug(struct kmem_cache *s,
  1044. struct page *page, void *object) {}
  1045. static inline int alloc_debug_processing(struct kmem_cache *s,
  1046. struct page *page, void *object, unsigned long addr) { return 0; }
  1047. static inline struct kmem_cache_node *free_debug_processing(
  1048. struct kmem_cache *s, struct page *page, void *object,
  1049. unsigned long addr, unsigned long *flags) { return NULL; }
  1050. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1051. { return 1; }
  1052. static inline int check_object(struct kmem_cache *s, struct page *page,
  1053. void *object, u8 val) { return 1; }
  1054. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1055. struct page *page) {}
  1056. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1057. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1058. unsigned long flags, const char *name,
  1059. void (*ctor)(void *))
  1060. {
  1061. return flags;
  1062. }
  1063. #define slub_debug 0
  1064. #define disable_higher_order_debug 0
  1065. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1066. { return 0; }
  1067. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1068. { return 0; }
  1069. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1070. int objects) {}
  1071. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1072. int objects) {}
  1073. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1074. { return 0; }
  1075. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1076. void *object) {}
  1077. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1078. #endif /* CONFIG_SLUB_DEBUG */
  1079. /*
  1080. * Slab allocation and freeing
  1081. */
  1082. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1083. struct kmem_cache_order_objects oo)
  1084. {
  1085. int order = oo_order(oo);
  1086. flags |= __GFP_NOTRACK;
  1087. if (node == NUMA_NO_NODE)
  1088. return alloc_pages(flags, order);
  1089. else
  1090. return alloc_pages_exact_node(node, flags, order);
  1091. }
  1092. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1093. {
  1094. struct page *page;
  1095. struct kmem_cache_order_objects oo = s->oo;
  1096. gfp_t alloc_gfp;
  1097. flags &= gfp_allowed_mask;
  1098. if (flags & __GFP_WAIT)
  1099. local_irq_enable();
  1100. flags |= s->allocflags;
  1101. /*
  1102. * Let the initial higher-order allocation fail under memory pressure
  1103. * so we fall-back to the minimum order allocation.
  1104. */
  1105. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1106. page = alloc_slab_page(alloc_gfp, node, oo);
  1107. if (unlikely(!page)) {
  1108. oo = s->min;
  1109. /*
  1110. * Allocation may have failed due to fragmentation.
  1111. * Try a lower order alloc if possible
  1112. */
  1113. page = alloc_slab_page(flags, node, oo);
  1114. if (page)
  1115. stat(s, ORDER_FALLBACK);
  1116. }
  1117. if (kmemcheck_enabled && page
  1118. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1119. int pages = 1 << oo_order(oo);
  1120. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1121. /*
  1122. * Objects from caches that have a constructor don't get
  1123. * cleared when they're allocated, so we need to do it here.
  1124. */
  1125. if (s->ctor)
  1126. kmemcheck_mark_uninitialized_pages(page, pages);
  1127. else
  1128. kmemcheck_mark_unallocated_pages(page, pages);
  1129. }
  1130. if (flags & __GFP_WAIT)
  1131. local_irq_disable();
  1132. if (!page)
  1133. return NULL;
  1134. page->objects = oo_objects(oo);
  1135. mod_zone_page_state(page_zone(page),
  1136. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1137. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1138. 1 << oo_order(oo));
  1139. return page;
  1140. }
  1141. static void setup_object(struct kmem_cache *s, struct page *page,
  1142. void *object)
  1143. {
  1144. setup_object_debug(s, page, object);
  1145. if (unlikely(s->ctor))
  1146. s->ctor(object);
  1147. }
  1148. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1149. {
  1150. struct page *page;
  1151. void *start;
  1152. void *last;
  1153. void *p;
  1154. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1155. page = allocate_slab(s,
  1156. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1157. if (!page)
  1158. goto out;
  1159. inc_slabs_node(s, page_to_nid(page), page->objects);
  1160. page->slab = s;
  1161. __SetPageSlab(page);
  1162. if (page->pfmemalloc)
  1163. SetPageSlabPfmemalloc(page);
  1164. start = page_address(page);
  1165. if (unlikely(s->flags & SLAB_POISON))
  1166. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1167. last = start;
  1168. for_each_object(p, s, start, page->objects) {
  1169. setup_object(s, page, last);
  1170. set_freepointer(s, last, p);
  1171. last = p;
  1172. }
  1173. setup_object(s, page, last);
  1174. set_freepointer(s, last, NULL);
  1175. page->freelist = start;
  1176. page->inuse = page->objects;
  1177. page->frozen = 1;
  1178. out:
  1179. return page;
  1180. }
  1181. static void __free_slab(struct kmem_cache *s, struct page *page)
  1182. {
  1183. int order = compound_order(page);
  1184. int pages = 1 << order;
  1185. if (kmem_cache_debug(s)) {
  1186. void *p;
  1187. slab_pad_check(s, page);
  1188. for_each_object(p, s, page_address(page),
  1189. page->objects)
  1190. check_object(s, page, p, SLUB_RED_INACTIVE);
  1191. }
  1192. kmemcheck_free_shadow(page, compound_order(page));
  1193. mod_zone_page_state(page_zone(page),
  1194. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1195. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1196. -pages);
  1197. __ClearPageSlabPfmemalloc(page);
  1198. __ClearPageSlab(page);
  1199. reset_page_mapcount(page);
  1200. if (current->reclaim_state)
  1201. current->reclaim_state->reclaimed_slab += pages;
  1202. __free_pages(page, order);
  1203. }
  1204. #define need_reserve_slab_rcu \
  1205. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1206. static void rcu_free_slab(struct rcu_head *h)
  1207. {
  1208. struct page *page;
  1209. if (need_reserve_slab_rcu)
  1210. page = virt_to_head_page(h);
  1211. else
  1212. page = container_of((struct list_head *)h, struct page, lru);
  1213. __free_slab(page->slab, page);
  1214. }
  1215. static void free_slab(struct kmem_cache *s, struct page *page)
  1216. {
  1217. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1218. struct rcu_head *head;
  1219. if (need_reserve_slab_rcu) {
  1220. int order = compound_order(page);
  1221. int offset = (PAGE_SIZE << order) - s->reserved;
  1222. VM_BUG_ON(s->reserved != sizeof(*head));
  1223. head = page_address(page) + offset;
  1224. } else {
  1225. /*
  1226. * RCU free overloads the RCU head over the LRU
  1227. */
  1228. head = (void *)&page->lru;
  1229. }
  1230. call_rcu(head, rcu_free_slab);
  1231. } else
  1232. __free_slab(s, page);
  1233. }
  1234. static void discard_slab(struct kmem_cache *s, struct page *page)
  1235. {
  1236. dec_slabs_node(s, page_to_nid(page), page->objects);
  1237. free_slab(s, page);
  1238. }
  1239. /*
  1240. * Management of partially allocated slabs.
  1241. *
  1242. * list_lock must be held.
  1243. */
  1244. static inline void add_partial(struct kmem_cache_node *n,
  1245. struct page *page, int tail)
  1246. {
  1247. n->nr_partial++;
  1248. if (tail == DEACTIVATE_TO_TAIL)
  1249. list_add_tail(&page->lru, &n->partial);
  1250. else
  1251. list_add(&page->lru, &n->partial);
  1252. }
  1253. /*
  1254. * list_lock must be held.
  1255. */
  1256. static inline void remove_partial(struct kmem_cache_node *n,
  1257. struct page *page)
  1258. {
  1259. list_del(&page->lru);
  1260. n->nr_partial--;
  1261. }
  1262. /*
  1263. * Remove slab from the partial list, freeze it and
  1264. * return the pointer to the freelist.
  1265. *
  1266. * Returns a list of objects or NULL if it fails.
  1267. *
  1268. * Must hold list_lock since we modify the partial list.
  1269. */
  1270. static inline void *acquire_slab(struct kmem_cache *s,
  1271. struct kmem_cache_node *n, struct page *page,
  1272. int mode)
  1273. {
  1274. void *freelist;
  1275. unsigned long counters;
  1276. struct page new;
  1277. /*
  1278. * Zap the freelist and set the frozen bit.
  1279. * The old freelist is the list of objects for the
  1280. * per cpu allocation list.
  1281. */
  1282. freelist = page->freelist;
  1283. counters = page->counters;
  1284. new.counters = counters;
  1285. if (mode) {
  1286. new.inuse = page->objects;
  1287. new.freelist = NULL;
  1288. } else {
  1289. new.freelist = freelist;
  1290. }
  1291. VM_BUG_ON(new.frozen);
  1292. new.frozen = 1;
  1293. if (!__cmpxchg_double_slab(s, page,
  1294. freelist, counters,
  1295. new.freelist, new.counters,
  1296. "acquire_slab"))
  1297. return NULL;
  1298. remove_partial(n, page);
  1299. WARN_ON(!freelist);
  1300. return freelist;
  1301. }
  1302. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1303. /*
  1304. * Try to allocate a partial slab from a specific node.
  1305. */
  1306. static void *get_partial_node(struct kmem_cache *s,
  1307. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1308. {
  1309. struct page *page, *page2;
  1310. void *object = NULL;
  1311. /*
  1312. * Racy check. If we mistakenly see no partial slabs then we
  1313. * just allocate an empty slab. If we mistakenly try to get a
  1314. * partial slab and there is none available then get_partials()
  1315. * will return NULL.
  1316. */
  1317. if (!n || !n->nr_partial)
  1318. return NULL;
  1319. spin_lock(&n->list_lock);
  1320. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1321. void *t = acquire_slab(s, n, page, object == NULL);
  1322. int available;
  1323. if (!t)
  1324. break;
  1325. if (!object) {
  1326. c->page = page;
  1327. stat(s, ALLOC_FROM_PARTIAL);
  1328. object = t;
  1329. available = page->objects - page->inuse;
  1330. } else {
  1331. available = put_cpu_partial(s, page, 0);
  1332. stat(s, CPU_PARTIAL_NODE);
  1333. }
  1334. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1335. break;
  1336. }
  1337. spin_unlock(&n->list_lock);
  1338. return object;
  1339. }
  1340. /*
  1341. * Get a page from somewhere. Search in increasing NUMA distances.
  1342. */
  1343. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1344. struct kmem_cache_cpu *c)
  1345. {
  1346. #ifdef CONFIG_NUMA
  1347. struct zonelist *zonelist;
  1348. struct zoneref *z;
  1349. struct zone *zone;
  1350. enum zone_type high_zoneidx = gfp_zone(flags);
  1351. void *object;
  1352. unsigned int cpuset_mems_cookie;
  1353. /*
  1354. * The defrag ratio allows a configuration of the tradeoffs between
  1355. * inter node defragmentation and node local allocations. A lower
  1356. * defrag_ratio increases the tendency to do local allocations
  1357. * instead of attempting to obtain partial slabs from other nodes.
  1358. *
  1359. * If the defrag_ratio is set to 0 then kmalloc() always
  1360. * returns node local objects. If the ratio is higher then kmalloc()
  1361. * may return off node objects because partial slabs are obtained
  1362. * from other nodes and filled up.
  1363. *
  1364. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1365. * defrag_ratio = 1000) then every (well almost) allocation will
  1366. * first attempt to defrag slab caches on other nodes. This means
  1367. * scanning over all nodes to look for partial slabs which may be
  1368. * expensive if we do it every time we are trying to find a slab
  1369. * with available objects.
  1370. */
  1371. if (!s->remote_node_defrag_ratio ||
  1372. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1373. return NULL;
  1374. do {
  1375. cpuset_mems_cookie = get_mems_allowed();
  1376. zonelist = node_zonelist(slab_node(), flags);
  1377. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1378. struct kmem_cache_node *n;
  1379. n = get_node(s, zone_to_nid(zone));
  1380. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1381. n->nr_partial > s->min_partial) {
  1382. object = get_partial_node(s, n, c);
  1383. if (object) {
  1384. /*
  1385. * Return the object even if
  1386. * put_mems_allowed indicated that
  1387. * the cpuset mems_allowed was
  1388. * updated in parallel. It's a
  1389. * harmless race between the alloc
  1390. * and the cpuset update.
  1391. */
  1392. put_mems_allowed(cpuset_mems_cookie);
  1393. return object;
  1394. }
  1395. }
  1396. }
  1397. } while (!put_mems_allowed(cpuset_mems_cookie));
  1398. #endif
  1399. return NULL;
  1400. }
  1401. /*
  1402. * Get a partial page, lock it and return it.
  1403. */
  1404. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1405. struct kmem_cache_cpu *c)
  1406. {
  1407. void *object;
  1408. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1409. object = get_partial_node(s, get_node(s, searchnode), c);
  1410. if (object || node != NUMA_NO_NODE)
  1411. return object;
  1412. return get_any_partial(s, flags, c);
  1413. }
  1414. #ifdef CONFIG_PREEMPT
  1415. /*
  1416. * Calculate the next globally unique transaction for disambiguiation
  1417. * during cmpxchg. The transactions start with the cpu number and are then
  1418. * incremented by CONFIG_NR_CPUS.
  1419. */
  1420. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1421. #else
  1422. /*
  1423. * No preemption supported therefore also no need to check for
  1424. * different cpus.
  1425. */
  1426. #define TID_STEP 1
  1427. #endif
  1428. static inline unsigned long next_tid(unsigned long tid)
  1429. {
  1430. return tid + TID_STEP;
  1431. }
  1432. static inline unsigned int tid_to_cpu(unsigned long tid)
  1433. {
  1434. return tid % TID_STEP;
  1435. }
  1436. static inline unsigned long tid_to_event(unsigned long tid)
  1437. {
  1438. return tid / TID_STEP;
  1439. }
  1440. static inline unsigned int init_tid(int cpu)
  1441. {
  1442. return cpu;
  1443. }
  1444. static inline void note_cmpxchg_failure(const char *n,
  1445. const struct kmem_cache *s, unsigned long tid)
  1446. {
  1447. #ifdef SLUB_DEBUG_CMPXCHG
  1448. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1449. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1450. #ifdef CONFIG_PREEMPT
  1451. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1452. printk("due to cpu change %d -> %d\n",
  1453. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1454. else
  1455. #endif
  1456. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1457. printk("due to cpu running other code. Event %ld->%ld\n",
  1458. tid_to_event(tid), tid_to_event(actual_tid));
  1459. else
  1460. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1461. actual_tid, tid, next_tid(tid));
  1462. #endif
  1463. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1464. }
  1465. void init_kmem_cache_cpus(struct kmem_cache *s)
  1466. {
  1467. int cpu;
  1468. for_each_possible_cpu(cpu)
  1469. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1470. }
  1471. /*
  1472. * Remove the cpu slab
  1473. */
  1474. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1475. {
  1476. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1477. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1478. int lock = 0;
  1479. enum slab_modes l = M_NONE, m = M_NONE;
  1480. void *nextfree;
  1481. int tail = DEACTIVATE_TO_HEAD;
  1482. struct page new;
  1483. struct page old;
  1484. if (page->freelist) {
  1485. stat(s, DEACTIVATE_REMOTE_FREES);
  1486. tail = DEACTIVATE_TO_TAIL;
  1487. }
  1488. /*
  1489. * Stage one: Free all available per cpu objects back
  1490. * to the page freelist while it is still frozen. Leave the
  1491. * last one.
  1492. *
  1493. * There is no need to take the list->lock because the page
  1494. * is still frozen.
  1495. */
  1496. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1497. void *prior;
  1498. unsigned long counters;
  1499. do {
  1500. prior = page->freelist;
  1501. counters = page->counters;
  1502. set_freepointer(s, freelist, prior);
  1503. new.counters = counters;
  1504. new.inuse--;
  1505. VM_BUG_ON(!new.frozen);
  1506. } while (!__cmpxchg_double_slab(s, page,
  1507. prior, counters,
  1508. freelist, new.counters,
  1509. "drain percpu freelist"));
  1510. freelist = nextfree;
  1511. }
  1512. /*
  1513. * Stage two: Ensure that the page is unfrozen while the
  1514. * list presence reflects the actual number of objects
  1515. * during unfreeze.
  1516. *
  1517. * We setup the list membership and then perform a cmpxchg
  1518. * with the count. If there is a mismatch then the page
  1519. * is not unfrozen but the page is on the wrong list.
  1520. *
  1521. * Then we restart the process which may have to remove
  1522. * the page from the list that we just put it on again
  1523. * because the number of objects in the slab may have
  1524. * changed.
  1525. */
  1526. redo:
  1527. old.freelist = page->freelist;
  1528. old.counters = page->counters;
  1529. VM_BUG_ON(!old.frozen);
  1530. /* Determine target state of the slab */
  1531. new.counters = old.counters;
  1532. if (freelist) {
  1533. new.inuse--;
  1534. set_freepointer(s, freelist, old.freelist);
  1535. new.freelist = freelist;
  1536. } else
  1537. new.freelist = old.freelist;
  1538. new.frozen = 0;
  1539. if (!new.inuse && n->nr_partial > s->min_partial)
  1540. m = M_FREE;
  1541. else if (new.freelist) {
  1542. m = M_PARTIAL;
  1543. if (!lock) {
  1544. lock = 1;
  1545. /*
  1546. * Taking the spinlock removes the possiblity
  1547. * that acquire_slab() will see a slab page that
  1548. * is frozen
  1549. */
  1550. spin_lock(&n->list_lock);
  1551. }
  1552. } else {
  1553. m = M_FULL;
  1554. if (kmem_cache_debug(s) && !lock) {
  1555. lock = 1;
  1556. /*
  1557. * This also ensures that the scanning of full
  1558. * slabs from diagnostic functions will not see
  1559. * any frozen slabs.
  1560. */
  1561. spin_lock(&n->list_lock);
  1562. }
  1563. }
  1564. if (l != m) {
  1565. if (l == M_PARTIAL)
  1566. remove_partial(n, page);
  1567. else if (l == M_FULL)
  1568. remove_full(s, page);
  1569. if (m == M_PARTIAL) {
  1570. add_partial(n, page, tail);
  1571. stat(s, tail);
  1572. } else if (m == M_FULL) {
  1573. stat(s, DEACTIVATE_FULL);
  1574. add_full(s, n, page);
  1575. }
  1576. }
  1577. l = m;
  1578. if (!__cmpxchg_double_slab(s, page,
  1579. old.freelist, old.counters,
  1580. new.freelist, new.counters,
  1581. "unfreezing slab"))
  1582. goto redo;
  1583. if (lock)
  1584. spin_unlock(&n->list_lock);
  1585. if (m == M_FREE) {
  1586. stat(s, DEACTIVATE_EMPTY);
  1587. discard_slab(s, page);
  1588. stat(s, FREE_SLAB);
  1589. }
  1590. }
  1591. /*
  1592. * Unfreeze all the cpu partial slabs.
  1593. *
  1594. * This function must be called with interrupt disabled.
  1595. */
  1596. static void unfreeze_partials(struct kmem_cache *s)
  1597. {
  1598. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1599. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1600. struct page *page, *discard_page = NULL;
  1601. while ((page = c->partial)) {
  1602. struct page new;
  1603. struct page old;
  1604. c->partial = page->next;
  1605. n2 = get_node(s, page_to_nid(page));
  1606. if (n != n2) {
  1607. if (n)
  1608. spin_unlock(&n->list_lock);
  1609. n = n2;
  1610. spin_lock(&n->list_lock);
  1611. }
  1612. do {
  1613. old.freelist = page->freelist;
  1614. old.counters = page->counters;
  1615. VM_BUG_ON(!old.frozen);
  1616. new.counters = old.counters;
  1617. new.freelist = old.freelist;
  1618. new.frozen = 0;
  1619. } while (!__cmpxchg_double_slab(s, page,
  1620. old.freelist, old.counters,
  1621. new.freelist, new.counters,
  1622. "unfreezing slab"));
  1623. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1624. page->next = discard_page;
  1625. discard_page = page;
  1626. } else {
  1627. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1628. stat(s, FREE_ADD_PARTIAL);
  1629. }
  1630. }
  1631. if (n)
  1632. spin_unlock(&n->list_lock);
  1633. while (discard_page) {
  1634. page = discard_page;
  1635. discard_page = discard_page->next;
  1636. stat(s, DEACTIVATE_EMPTY);
  1637. discard_slab(s, page);
  1638. stat(s, FREE_SLAB);
  1639. }
  1640. }
  1641. /*
  1642. * Put a page that was just frozen (in __slab_free) into a partial page
  1643. * slot if available. This is done without interrupts disabled and without
  1644. * preemption disabled. The cmpxchg is racy and may put the partial page
  1645. * onto a random cpus partial slot.
  1646. *
  1647. * If we did not find a slot then simply move all the partials to the
  1648. * per node partial list.
  1649. */
  1650. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1651. {
  1652. struct page *oldpage;
  1653. int pages;
  1654. int pobjects;
  1655. do {
  1656. pages = 0;
  1657. pobjects = 0;
  1658. oldpage = this_cpu_read(s->cpu_slab->partial);
  1659. if (oldpage) {
  1660. pobjects = oldpage->pobjects;
  1661. pages = oldpage->pages;
  1662. if (drain && pobjects > s->cpu_partial) {
  1663. unsigned long flags;
  1664. /*
  1665. * partial array is full. Move the existing
  1666. * set to the per node partial list.
  1667. */
  1668. local_irq_save(flags);
  1669. unfreeze_partials(s);
  1670. local_irq_restore(flags);
  1671. pobjects = 0;
  1672. pages = 0;
  1673. stat(s, CPU_PARTIAL_DRAIN);
  1674. }
  1675. }
  1676. pages++;
  1677. pobjects += page->objects - page->inuse;
  1678. page->pages = pages;
  1679. page->pobjects = pobjects;
  1680. page->next = oldpage;
  1681. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1682. return pobjects;
  1683. }
  1684. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1685. {
  1686. stat(s, CPUSLAB_FLUSH);
  1687. deactivate_slab(s, c->page, c->freelist);
  1688. c->tid = next_tid(c->tid);
  1689. c->page = NULL;
  1690. c->freelist = NULL;
  1691. }
  1692. /*
  1693. * Flush cpu slab.
  1694. *
  1695. * Called from IPI handler with interrupts disabled.
  1696. */
  1697. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1698. {
  1699. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1700. if (likely(c)) {
  1701. if (c->page)
  1702. flush_slab(s, c);
  1703. unfreeze_partials(s);
  1704. }
  1705. }
  1706. static void flush_cpu_slab(void *d)
  1707. {
  1708. struct kmem_cache *s = d;
  1709. __flush_cpu_slab(s, smp_processor_id());
  1710. }
  1711. static bool has_cpu_slab(int cpu, void *info)
  1712. {
  1713. struct kmem_cache *s = info;
  1714. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1715. return c->page || c->partial;
  1716. }
  1717. static void flush_all(struct kmem_cache *s)
  1718. {
  1719. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1720. }
  1721. /*
  1722. * Check if the objects in a per cpu structure fit numa
  1723. * locality expectations.
  1724. */
  1725. static inline int node_match(struct page *page, int node)
  1726. {
  1727. #ifdef CONFIG_NUMA
  1728. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1729. return 0;
  1730. #endif
  1731. return 1;
  1732. }
  1733. static int count_free(struct page *page)
  1734. {
  1735. return page->objects - page->inuse;
  1736. }
  1737. static unsigned long count_partial(struct kmem_cache_node *n,
  1738. int (*get_count)(struct page *))
  1739. {
  1740. unsigned long flags;
  1741. unsigned long x = 0;
  1742. struct page *page;
  1743. spin_lock_irqsave(&n->list_lock, flags);
  1744. list_for_each_entry(page, &n->partial, lru)
  1745. x += get_count(page);
  1746. spin_unlock_irqrestore(&n->list_lock, flags);
  1747. return x;
  1748. }
  1749. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1750. {
  1751. #ifdef CONFIG_SLUB_DEBUG
  1752. return atomic_long_read(&n->total_objects);
  1753. #else
  1754. return 0;
  1755. #endif
  1756. }
  1757. static noinline void
  1758. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1759. {
  1760. int node;
  1761. printk(KERN_WARNING
  1762. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1763. nid, gfpflags);
  1764. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1765. "default order: %d, min order: %d\n", s->name, s->object_size,
  1766. s->size, oo_order(s->oo), oo_order(s->min));
  1767. if (oo_order(s->min) > get_order(s->object_size))
  1768. printk(KERN_WARNING " %s debugging increased min order, use "
  1769. "slub_debug=O to disable.\n", s->name);
  1770. for_each_online_node(node) {
  1771. struct kmem_cache_node *n = get_node(s, node);
  1772. unsigned long nr_slabs;
  1773. unsigned long nr_objs;
  1774. unsigned long nr_free;
  1775. if (!n)
  1776. continue;
  1777. nr_free = count_partial(n, count_free);
  1778. nr_slabs = node_nr_slabs(n);
  1779. nr_objs = node_nr_objs(n);
  1780. printk(KERN_WARNING
  1781. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1782. node, nr_slabs, nr_objs, nr_free);
  1783. }
  1784. }
  1785. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1786. int node, struct kmem_cache_cpu **pc)
  1787. {
  1788. void *freelist;
  1789. struct kmem_cache_cpu *c = *pc;
  1790. struct page *page;
  1791. freelist = get_partial(s, flags, node, c);
  1792. if (freelist)
  1793. return freelist;
  1794. page = new_slab(s, flags, node);
  1795. if (page) {
  1796. c = __this_cpu_ptr(s->cpu_slab);
  1797. if (c->page)
  1798. flush_slab(s, c);
  1799. /*
  1800. * No other reference to the page yet so we can
  1801. * muck around with it freely without cmpxchg
  1802. */
  1803. freelist = page->freelist;
  1804. page->freelist = NULL;
  1805. stat(s, ALLOC_SLAB);
  1806. c->page = page;
  1807. *pc = c;
  1808. } else
  1809. freelist = NULL;
  1810. return freelist;
  1811. }
  1812. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1813. {
  1814. if (unlikely(PageSlabPfmemalloc(page)))
  1815. return gfp_pfmemalloc_allowed(gfpflags);
  1816. return true;
  1817. }
  1818. /*
  1819. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1820. * or deactivate the page.
  1821. *
  1822. * The page is still frozen if the return value is not NULL.
  1823. *
  1824. * If this function returns NULL then the page has been unfrozen.
  1825. *
  1826. * This function must be called with interrupt disabled.
  1827. */
  1828. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1829. {
  1830. struct page new;
  1831. unsigned long counters;
  1832. void *freelist;
  1833. do {
  1834. freelist = page->freelist;
  1835. counters = page->counters;
  1836. new.counters = counters;
  1837. VM_BUG_ON(!new.frozen);
  1838. new.inuse = page->objects;
  1839. new.frozen = freelist != NULL;
  1840. } while (!__cmpxchg_double_slab(s, page,
  1841. freelist, counters,
  1842. NULL, new.counters,
  1843. "get_freelist"));
  1844. return freelist;
  1845. }
  1846. /*
  1847. * Slow path. The lockless freelist is empty or we need to perform
  1848. * debugging duties.
  1849. *
  1850. * Processing is still very fast if new objects have been freed to the
  1851. * regular freelist. In that case we simply take over the regular freelist
  1852. * as the lockless freelist and zap the regular freelist.
  1853. *
  1854. * If that is not working then we fall back to the partial lists. We take the
  1855. * first element of the freelist as the object to allocate now and move the
  1856. * rest of the freelist to the lockless freelist.
  1857. *
  1858. * And if we were unable to get a new slab from the partial slab lists then
  1859. * we need to allocate a new slab. This is the slowest path since it involves
  1860. * a call to the page allocator and the setup of a new slab.
  1861. */
  1862. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1863. unsigned long addr, struct kmem_cache_cpu *c)
  1864. {
  1865. void *freelist;
  1866. struct page *page;
  1867. unsigned long flags;
  1868. local_irq_save(flags);
  1869. #ifdef CONFIG_PREEMPT
  1870. /*
  1871. * We may have been preempted and rescheduled on a different
  1872. * cpu before disabling interrupts. Need to reload cpu area
  1873. * pointer.
  1874. */
  1875. c = this_cpu_ptr(s->cpu_slab);
  1876. #endif
  1877. page = c->page;
  1878. if (!page)
  1879. goto new_slab;
  1880. redo:
  1881. if (unlikely(!node_match(page, node))) {
  1882. stat(s, ALLOC_NODE_MISMATCH);
  1883. deactivate_slab(s, page, c->freelist);
  1884. c->page = NULL;
  1885. c->freelist = NULL;
  1886. goto new_slab;
  1887. }
  1888. /*
  1889. * By rights, we should be searching for a slab page that was
  1890. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1891. * information when the page leaves the per-cpu allocator
  1892. */
  1893. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1894. deactivate_slab(s, page, c->freelist);
  1895. c->page = NULL;
  1896. c->freelist = NULL;
  1897. goto new_slab;
  1898. }
  1899. /* must check again c->freelist in case of cpu migration or IRQ */
  1900. freelist = c->freelist;
  1901. if (freelist)
  1902. goto load_freelist;
  1903. stat(s, ALLOC_SLOWPATH);
  1904. freelist = get_freelist(s, page);
  1905. if (!freelist) {
  1906. c->page = NULL;
  1907. stat(s, DEACTIVATE_BYPASS);
  1908. goto new_slab;
  1909. }
  1910. stat(s, ALLOC_REFILL);
  1911. load_freelist:
  1912. /*
  1913. * freelist is pointing to the list of objects to be used.
  1914. * page is pointing to the page from which the objects are obtained.
  1915. * That page must be frozen for per cpu allocations to work.
  1916. */
  1917. VM_BUG_ON(!c->page->frozen);
  1918. c->freelist = get_freepointer(s, freelist);
  1919. c->tid = next_tid(c->tid);
  1920. local_irq_restore(flags);
  1921. return freelist;
  1922. new_slab:
  1923. if (c->partial) {
  1924. page = c->page = c->partial;
  1925. c->partial = page->next;
  1926. stat(s, CPU_PARTIAL_ALLOC);
  1927. c->freelist = NULL;
  1928. goto redo;
  1929. }
  1930. freelist = new_slab_objects(s, gfpflags, node, &c);
  1931. if (unlikely(!freelist)) {
  1932. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1933. slab_out_of_memory(s, gfpflags, node);
  1934. local_irq_restore(flags);
  1935. return NULL;
  1936. }
  1937. page = c->page;
  1938. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1939. goto load_freelist;
  1940. /* Only entered in the debug case */
  1941. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1942. goto new_slab; /* Slab failed checks. Next slab needed */
  1943. deactivate_slab(s, page, get_freepointer(s, freelist));
  1944. c->page = NULL;
  1945. c->freelist = NULL;
  1946. local_irq_restore(flags);
  1947. return freelist;
  1948. }
  1949. /*
  1950. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1951. * have the fastpath folded into their functions. So no function call
  1952. * overhead for requests that can be satisfied on the fastpath.
  1953. *
  1954. * The fastpath works by first checking if the lockless freelist can be used.
  1955. * If not then __slab_alloc is called for slow processing.
  1956. *
  1957. * Otherwise we can simply pick the next object from the lockless free list.
  1958. */
  1959. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1960. gfp_t gfpflags, int node, unsigned long addr)
  1961. {
  1962. void **object;
  1963. struct kmem_cache_cpu *c;
  1964. struct page *page;
  1965. unsigned long tid;
  1966. if (slab_pre_alloc_hook(s, gfpflags))
  1967. return NULL;
  1968. redo:
  1969. /*
  1970. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1971. * enabled. We may switch back and forth between cpus while
  1972. * reading from one cpu area. That does not matter as long
  1973. * as we end up on the original cpu again when doing the cmpxchg.
  1974. */
  1975. c = __this_cpu_ptr(s->cpu_slab);
  1976. /*
  1977. * The transaction ids are globally unique per cpu and per operation on
  1978. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1979. * occurs on the right processor and that there was no operation on the
  1980. * linked list in between.
  1981. */
  1982. tid = c->tid;
  1983. barrier();
  1984. object = c->freelist;
  1985. page = c->page;
  1986. if (unlikely(!object || !node_match(page, node)))
  1987. object = __slab_alloc(s, gfpflags, node, addr, c);
  1988. else {
  1989. void *next_object = get_freepointer_safe(s, object);
  1990. /*
  1991. * The cmpxchg will only match if there was no additional
  1992. * operation and if we are on the right processor.
  1993. *
  1994. * The cmpxchg does the following atomically (without lock semantics!)
  1995. * 1. Relocate first pointer to the current per cpu area.
  1996. * 2. Verify that tid and freelist have not been changed
  1997. * 3. If they were not changed replace tid and freelist
  1998. *
  1999. * Since this is without lock semantics the protection is only against
  2000. * code executing on this cpu *not* from access by other cpus.
  2001. */
  2002. if (unlikely(!this_cpu_cmpxchg_double(
  2003. s->cpu_slab->freelist, s->cpu_slab->tid,
  2004. object, tid,
  2005. next_object, next_tid(tid)))) {
  2006. note_cmpxchg_failure("slab_alloc", s, tid);
  2007. goto redo;
  2008. }
  2009. prefetch_freepointer(s, next_object);
  2010. stat(s, ALLOC_FASTPATH);
  2011. }
  2012. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2013. memset(object, 0, s->object_size);
  2014. slab_post_alloc_hook(s, gfpflags, object);
  2015. return object;
  2016. }
  2017. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2018. {
  2019. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2020. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2021. return ret;
  2022. }
  2023. EXPORT_SYMBOL(kmem_cache_alloc);
  2024. #ifdef CONFIG_TRACING
  2025. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2026. {
  2027. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2028. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2029. return ret;
  2030. }
  2031. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2032. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2033. {
  2034. void *ret = kmalloc_order(size, flags, order);
  2035. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2036. return ret;
  2037. }
  2038. EXPORT_SYMBOL(kmalloc_order_trace);
  2039. #endif
  2040. #ifdef CONFIG_NUMA
  2041. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2042. {
  2043. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2044. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2045. s->object_size, s->size, gfpflags, node);
  2046. return ret;
  2047. }
  2048. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2049. #ifdef CONFIG_TRACING
  2050. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2051. gfp_t gfpflags,
  2052. int node, size_t size)
  2053. {
  2054. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2055. trace_kmalloc_node(_RET_IP_, ret,
  2056. size, s->size, gfpflags, node);
  2057. return ret;
  2058. }
  2059. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2060. #endif
  2061. #endif
  2062. /*
  2063. * Slow patch handling. This may still be called frequently since objects
  2064. * have a longer lifetime than the cpu slabs in most processing loads.
  2065. *
  2066. * So we still attempt to reduce cache line usage. Just take the slab
  2067. * lock and free the item. If there is no additional partial page
  2068. * handling required then we can return immediately.
  2069. */
  2070. static void __slab_free(struct kmem_cache *s, struct page *page,
  2071. void *x, unsigned long addr)
  2072. {
  2073. void *prior;
  2074. void **object = (void *)x;
  2075. int was_frozen;
  2076. int inuse;
  2077. struct page new;
  2078. unsigned long counters;
  2079. struct kmem_cache_node *n = NULL;
  2080. unsigned long uninitialized_var(flags);
  2081. stat(s, FREE_SLOWPATH);
  2082. if (kmem_cache_debug(s) &&
  2083. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2084. return;
  2085. do {
  2086. prior = page->freelist;
  2087. counters = page->counters;
  2088. set_freepointer(s, object, prior);
  2089. new.counters = counters;
  2090. was_frozen = new.frozen;
  2091. new.inuse--;
  2092. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2093. if (!kmem_cache_debug(s) && !prior)
  2094. /*
  2095. * Slab was on no list before and will be partially empty
  2096. * We can defer the list move and instead freeze it.
  2097. */
  2098. new.frozen = 1;
  2099. else { /* Needs to be taken off a list */
  2100. n = get_node(s, page_to_nid(page));
  2101. /*
  2102. * Speculatively acquire the list_lock.
  2103. * If the cmpxchg does not succeed then we may
  2104. * drop the list_lock without any processing.
  2105. *
  2106. * Otherwise the list_lock will synchronize with
  2107. * other processors updating the list of slabs.
  2108. */
  2109. spin_lock_irqsave(&n->list_lock, flags);
  2110. }
  2111. }
  2112. inuse = new.inuse;
  2113. } while (!cmpxchg_double_slab(s, page,
  2114. prior, counters,
  2115. object, new.counters,
  2116. "__slab_free"));
  2117. if (likely(!n)) {
  2118. /*
  2119. * If we just froze the page then put it onto the
  2120. * per cpu partial list.
  2121. */
  2122. if (new.frozen && !was_frozen) {
  2123. put_cpu_partial(s, page, 1);
  2124. stat(s, CPU_PARTIAL_FREE);
  2125. }
  2126. /*
  2127. * The list lock was not taken therefore no list
  2128. * activity can be necessary.
  2129. */
  2130. if (was_frozen)
  2131. stat(s, FREE_FROZEN);
  2132. return;
  2133. }
  2134. /*
  2135. * was_frozen may have been set after we acquired the list_lock in
  2136. * an earlier loop. So we need to check it here again.
  2137. */
  2138. if (was_frozen)
  2139. stat(s, FREE_FROZEN);
  2140. else {
  2141. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2142. goto slab_empty;
  2143. /*
  2144. * Objects left in the slab. If it was not on the partial list before
  2145. * then add it.
  2146. */
  2147. if (unlikely(!prior)) {
  2148. remove_full(s, page);
  2149. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2150. stat(s, FREE_ADD_PARTIAL);
  2151. }
  2152. }
  2153. spin_unlock_irqrestore(&n->list_lock, flags);
  2154. return;
  2155. slab_empty:
  2156. if (prior) {
  2157. /*
  2158. * Slab on the partial list.
  2159. */
  2160. remove_partial(n, page);
  2161. stat(s, FREE_REMOVE_PARTIAL);
  2162. } else
  2163. /* Slab must be on the full list */
  2164. remove_full(s, page);
  2165. spin_unlock_irqrestore(&n->list_lock, flags);
  2166. stat(s, FREE_SLAB);
  2167. discard_slab(s, page);
  2168. }
  2169. /*
  2170. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2171. * can perform fastpath freeing without additional function calls.
  2172. *
  2173. * The fastpath is only possible if we are freeing to the current cpu slab
  2174. * of this processor. This typically the case if we have just allocated
  2175. * the item before.
  2176. *
  2177. * If fastpath is not possible then fall back to __slab_free where we deal
  2178. * with all sorts of special processing.
  2179. */
  2180. static __always_inline void slab_free(struct kmem_cache *s,
  2181. struct page *page, void *x, unsigned long addr)
  2182. {
  2183. void **object = (void *)x;
  2184. struct kmem_cache_cpu *c;
  2185. unsigned long tid;
  2186. slab_free_hook(s, x);
  2187. redo:
  2188. /*
  2189. * Determine the currently cpus per cpu slab.
  2190. * The cpu may change afterward. However that does not matter since
  2191. * data is retrieved via this pointer. If we are on the same cpu
  2192. * during the cmpxchg then the free will succedd.
  2193. */
  2194. c = __this_cpu_ptr(s->cpu_slab);
  2195. tid = c->tid;
  2196. barrier();
  2197. if (likely(page == c->page)) {
  2198. set_freepointer(s, object, c->freelist);
  2199. if (unlikely(!this_cpu_cmpxchg_double(
  2200. s->cpu_slab->freelist, s->cpu_slab->tid,
  2201. c->freelist, tid,
  2202. object, next_tid(tid)))) {
  2203. note_cmpxchg_failure("slab_free", s, tid);
  2204. goto redo;
  2205. }
  2206. stat(s, FREE_FASTPATH);
  2207. } else
  2208. __slab_free(s, page, x, addr);
  2209. }
  2210. void kmem_cache_free(struct kmem_cache *s, void *x)
  2211. {
  2212. struct page *page;
  2213. page = virt_to_head_page(x);
  2214. slab_free(s, page, x, _RET_IP_);
  2215. trace_kmem_cache_free(_RET_IP_, x);
  2216. }
  2217. EXPORT_SYMBOL(kmem_cache_free);
  2218. /*
  2219. * Object placement in a slab is made very easy because we always start at
  2220. * offset 0. If we tune the size of the object to the alignment then we can
  2221. * get the required alignment by putting one properly sized object after
  2222. * another.
  2223. *
  2224. * Notice that the allocation order determines the sizes of the per cpu
  2225. * caches. Each processor has always one slab available for allocations.
  2226. * Increasing the allocation order reduces the number of times that slabs
  2227. * must be moved on and off the partial lists and is therefore a factor in
  2228. * locking overhead.
  2229. */
  2230. /*
  2231. * Mininum / Maximum order of slab pages. This influences locking overhead
  2232. * and slab fragmentation. A higher order reduces the number of partial slabs
  2233. * and increases the number of allocations possible without having to
  2234. * take the list_lock.
  2235. */
  2236. static int slub_min_order;
  2237. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2238. static int slub_min_objects;
  2239. /*
  2240. * Merge control. If this is set then no merging of slab caches will occur.
  2241. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2242. */
  2243. static int slub_nomerge;
  2244. /*
  2245. * Calculate the order of allocation given an slab object size.
  2246. *
  2247. * The order of allocation has significant impact on performance and other
  2248. * system components. Generally order 0 allocations should be preferred since
  2249. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2250. * be problematic to put into order 0 slabs because there may be too much
  2251. * unused space left. We go to a higher order if more than 1/16th of the slab
  2252. * would be wasted.
  2253. *
  2254. * In order to reach satisfactory performance we must ensure that a minimum
  2255. * number of objects is in one slab. Otherwise we may generate too much
  2256. * activity on the partial lists which requires taking the list_lock. This is
  2257. * less a concern for large slabs though which are rarely used.
  2258. *
  2259. * slub_max_order specifies the order where we begin to stop considering the
  2260. * number of objects in a slab as critical. If we reach slub_max_order then
  2261. * we try to keep the page order as low as possible. So we accept more waste
  2262. * of space in favor of a small page order.
  2263. *
  2264. * Higher order allocations also allow the placement of more objects in a
  2265. * slab and thereby reduce object handling overhead. If the user has
  2266. * requested a higher mininum order then we start with that one instead of
  2267. * the smallest order which will fit the object.
  2268. */
  2269. static inline int slab_order(int size, int min_objects,
  2270. int max_order, int fract_leftover, int reserved)
  2271. {
  2272. int order;
  2273. int rem;
  2274. int min_order = slub_min_order;
  2275. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2276. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2277. for (order = max(min_order,
  2278. fls(min_objects * size - 1) - PAGE_SHIFT);
  2279. order <= max_order; order++) {
  2280. unsigned long slab_size = PAGE_SIZE << order;
  2281. if (slab_size < min_objects * size + reserved)
  2282. continue;
  2283. rem = (slab_size - reserved) % size;
  2284. if (rem <= slab_size / fract_leftover)
  2285. break;
  2286. }
  2287. return order;
  2288. }
  2289. static inline int calculate_order(int size, int reserved)
  2290. {
  2291. int order;
  2292. int min_objects;
  2293. int fraction;
  2294. int max_objects;
  2295. /*
  2296. * Attempt to find best configuration for a slab. This
  2297. * works by first attempting to generate a layout with
  2298. * the best configuration and backing off gradually.
  2299. *
  2300. * First we reduce the acceptable waste in a slab. Then
  2301. * we reduce the minimum objects required in a slab.
  2302. */
  2303. min_objects = slub_min_objects;
  2304. if (!min_objects)
  2305. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2306. max_objects = order_objects(slub_max_order, size, reserved);
  2307. min_objects = min(min_objects, max_objects);
  2308. while (min_objects > 1) {
  2309. fraction = 16;
  2310. while (fraction >= 4) {
  2311. order = slab_order(size, min_objects,
  2312. slub_max_order, fraction, reserved);
  2313. if (order <= slub_max_order)
  2314. return order;
  2315. fraction /= 2;
  2316. }
  2317. min_objects--;
  2318. }
  2319. /*
  2320. * We were unable to place multiple objects in a slab. Now
  2321. * lets see if we can place a single object there.
  2322. */
  2323. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2324. if (order <= slub_max_order)
  2325. return order;
  2326. /*
  2327. * Doh this slab cannot be placed using slub_max_order.
  2328. */
  2329. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2330. if (order < MAX_ORDER)
  2331. return order;
  2332. return -ENOSYS;
  2333. }
  2334. /*
  2335. * Figure out what the alignment of the objects will be.
  2336. */
  2337. static unsigned long calculate_alignment(unsigned long flags,
  2338. unsigned long align, unsigned long size)
  2339. {
  2340. /*
  2341. * If the user wants hardware cache aligned objects then follow that
  2342. * suggestion if the object is sufficiently large.
  2343. *
  2344. * The hardware cache alignment cannot override the specified
  2345. * alignment though. If that is greater then use it.
  2346. */
  2347. if (flags & SLAB_HWCACHE_ALIGN) {
  2348. unsigned long ralign = cache_line_size();
  2349. while (size <= ralign / 2)
  2350. ralign /= 2;
  2351. align = max(align, ralign);
  2352. }
  2353. if (align < ARCH_SLAB_MINALIGN)
  2354. align = ARCH_SLAB_MINALIGN;
  2355. return ALIGN(align, sizeof(void *));
  2356. }
  2357. static void
  2358. init_kmem_cache_node(struct kmem_cache_node *n)
  2359. {
  2360. n->nr_partial = 0;
  2361. spin_lock_init(&n->list_lock);
  2362. INIT_LIST_HEAD(&n->partial);
  2363. #ifdef CONFIG_SLUB_DEBUG
  2364. atomic_long_set(&n->nr_slabs, 0);
  2365. atomic_long_set(&n->total_objects, 0);
  2366. INIT_LIST_HEAD(&n->full);
  2367. #endif
  2368. }
  2369. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2370. {
  2371. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2372. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2373. /*
  2374. * Must align to double word boundary for the double cmpxchg
  2375. * instructions to work; see __pcpu_double_call_return_bool().
  2376. */
  2377. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2378. 2 * sizeof(void *));
  2379. if (!s->cpu_slab)
  2380. return 0;
  2381. init_kmem_cache_cpus(s);
  2382. return 1;
  2383. }
  2384. static struct kmem_cache *kmem_cache_node;
  2385. /*
  2386. * No kmalloc_node yet so do it by hand. We know that this is the first
  2387. * slab on the node for this slabcache. There are no concurrent accesses
  2388. * possible.
  2389. *
  2390. * Note that this function only works on the kmalloc_node_cache
  2391. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2392. * memory on a fresh node that has no slab structures yet.
  2393. */
  2394. static void early_kmem_cache_node_alloc(int node)
  2395. {
  2396. struct page *page;
  2397. struct kmem_cache_node *n;
  2398. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2399. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2400. BUG_ON(!page);
  2401. if (page_to_nid(page) != node) {
  2402. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2403. "node %d\n", node);
  2404. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2405. "in order to be able to continue\n");
  2406. }
  2407. n = page->freelist;
  2408. BUG_ON(!n);
  2409. page->freelist = get_freepointer(kmem_cache_node, n);
  2410. page->inuse = 1;
  2411. page->frozen = 0;
  2412. kmem_cache_node->node[node] = n;
  2413. #ifdef CONFIG_SLUB_DEBUG
  2414. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2415. init_tracking(kmem_cache_node, n);
  2416. #endif
  2417. init_kmem_cache_node(n);
  2418. inc_slabs_node(kmem_cache_node, node, page->objects);
  2419. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2420. }
  2421. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2422. {
  2423. int node;
  2424. for_each_node_state(node, N_NORMAL_MEMORY) {
  2425. struct kmem_cache_node *n = s->node[node];
  2426. if (n)
  2427. kmem_cache_free(kmem_cache_node, n);
  2428. s->node[node] = NULL;
  2429. }
  2430. }
  2431. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2432. {
  2433. int node;
  2434. for_each_node_state(node, N_NORMAL_MEMORY) {
  2435. struct kmem_cache_node *n;
  2436. if (slab_state == DOWN) {
  2437. early_kmem_cache_node_alloc(node);
  2438. continue;
  2439. }
  2440. n = kmem_cache_alloc_node(kmem_cache_node,
  2441. GFP_KERNEL, node);
  2442. if (!n) {
  2443. free_kmem_cache_nodes(s);
  2444. return 0;
  2445. }
  2446. s->node[node] = n;
  2447. init_kmem_cache_node(n);
  2448. }
  2449. return 1;
  2450. }
  2451. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2452. {
  2453. if (min < MIN_PARTIAL)
  2454. min = MIN_PARTIAL;
  2455. else if (min > MAX_PARTIAL)
  2456. min = MAX_PARTIAL;
  2457. s->min_partial = min;
  2458. }
  2459. /*
  2460. * calculate_sizes() determines the order and the distribution of data within
  2461. * a slab object.
  2462. */
  2463. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2464. {
  2465. unsigned long flags = s->flags;
  2466. unsigned long size = s->object_size;
  2467. unsigned long align = s->align;
  2468. int order;
  2469. /*
  2470. * Round up object size to the next word boundary. We can only
  2471. * place the free pointer at word boundaries and this determines
  2472. * the possible location of the free pointer.
  2473. */
  2474. size = ALIGN(size, sizeof(void *));
  2475. #ifdef CONFIG_SLUB_DEBUG
  2476. /*
  2477. * Determine if we can poison the object itself. If the user of
  2478. * the slab may touch the object after free or before allocation
  2479. * then we should never poison the object itself.
  2480. */
  2481. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2482. !s->ctor)
  2483. s->flags |= __OBJECT_POISON;
  2484. else
  2485. s->flags &= ~__OBJECT_POISON;
  2486. /*
  2487. * If we are Redzoning then check if there is some space between the
  2488. * end of the object and the free pointer. If not then add an
  2489. * additional word to have some bytes to store Redzone information.
  2490. */
  2491. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2492. size += sizeof(void *);
  2493. #endif
  2494. /*
  2495. * With that we have determined the number of bytes in actual use
  2496. * by the object. This is the potential offset to the free pointer.
  2497. */
  2498. s->inuse = size;
  2499. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2500. s->ctor)) {
  2501. /*
  2502. * Relocate free pointer after the object if it is not
  2503. * permitted to overwrite the first word of the object on
  2504. * kmem_cache_free.
  2505. *
  2506. * This is the case if we do RCU, have a constructor or
  2507. * destructor or are poisoning the objects.
  2508. */
  2509. s->offset = size;
  2510. size += sizeof(void *);
  2511. }
  2512. #ifdef CONFIG_SLUB_DEBUG
  2513. if (flags & SLAB_STORE_USER)
  2514. /*
  2515. * Need to store information about allocs and frees after
  2516. * the object.
  2517. */
  2518. size += 2 * sizeof(struct track);
  2519. if (flags & SLAB_RED_ZONE)
  2520. /*
  2521. * Add some empty padding so that we can catch
  2522. * overwrites from earlier objects rather than let
  2523. * tracking information or the free pointer be
  2524. * corrupted if a user writes before the start
  2525. * of the object.
  2526. */
  2527. size += sizeof(void *);
  2528. #endif
  2529. /*
  2530. * Determine the alignment based on various parameters that the
  2531. * user specified and the dynamic determination of cache line size
  2532. * on bootup.
  2533. */
  2534. align = calculate_alignment(flags, align, s->object_size);
  2535. s->align = align;
  2536. /*
  2537. * SLUB stores one object immediately after another beginning from
  2538. * offset 0. In order to align the objects we have to simply size
  2539. * each object to conform to the alignment.
  2540. */
  2541. size = ALIGN(size, align);
  2542. s->size = size;
  2543. if (forced_order >= 0)
  2544. order = forced_order;
  2545. else
  2546. order = calculate_order(size, s->reserved);
  2547. if (order < 0)
  2548. return 0;
  2549. s->allocflags = 0;
  2550. if (order)
  2551. s->allocflags |= __GFP_COMP;
  2552. if (s->flags & SLAB_CACHE_DMA)
  2553. s->allocflags |= SLUB_DMA;
  2554. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2555. s->allocflags |= __GFP_RECLAIMABLE;
  2556. /*
  2557. * Determine the number of objects per slab
  2558. */
  2559. s->oo = oo_make(order, size, s->reserved);
  2560. s->min = oo_make(get_order(size), size, s->reserved);
  2561. if (oo_objects(s->oo) > oo_objects(s->max))
  2562. s->max = s->oo;
  2563. return !!oo_objects(s->oo);
  2564. }
  2565. static int kmem_cache_open(struct kmem_cache *s,
  2566. const char *name, size_t size,
  2567. size_t align, unsigned long flags,
  2568. void (*ctor)(void *))
  2569. {
  2570. memset(s, 0, kmem_size);
  2571. s->name = name;
  2572. s->ctor = ctor;
  2573. s->object_size = size;
  2574. s->align = align;
  2575. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2576. s->reserved = 0;
  2577. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2578. s->reserved = sizeof(struct rcu_head);
  2579. if (!calculate_sizes(s, -1))
  2580. goto error;
  2581. if (disable_higher_order_debug) {
  2582. /*
  2583. * Disable debugging flags that store metadata if the min slab
  2584. * order increased.
  2585. */
  2586. if (get_order(s->size) > get_order(s->object_size)) {
  2587. s->flags &= ~DEBUG_METADATA_FLAGS;
  2588. s->offset = 0;
  2589. if (!calculate_sizes(s, -1))
  2590. goto error;
  2591. }
  2592. }
  2593. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2594. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2595. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2596. /* Enable fast mode */
  2597. s->flags |= __CMPXCHG_DOUBLE;
  2598. #endif
  2599. /*
  2600. * The larger the object size is, the more pages we want on the partial
  2601. * list to avoid pounding the page allocator excessively.
  2602. */
  2603. set_min_partial(s, ilog2(s->size) / 2);
  2604. /*
  2605. * cpu_partial determined the maximum number of objects kept in the
  2606. * per cpu partial lists of a processor.
  2607. *
  2608. * Per cpu partial lists mainly contain slabs that just have one
  2609. * object freed. If they are used for allocation then they can be
  2610. * filled up again with minimal effort. The slab will never hit the
  2611. * per node partial lists and therefore no locking will be required.
  2612. *
  2613. * This setting also determines
  2614. *
  2615. * A) The number of objects from per cpu partial slabs dumped to the
  2616. * per node list when we reach the limit.
  2617. * B) The number of objects in cpu partial slabs to extract from the
  2618. * per node list when we run out of per cpu objects. We only fetch 50%
  2619. * to keep some capacity around for frees.
  2620. */
  2621. if (kmem_cache_debug(s))
  2622. s->cpu_partial = 0;
  2623. else if (s->size >= PAGE_SIZE)
  2624. s->cpu_partial = 2;
  2625. else if (s->size >= 1024)
  2626. s->cpu_partial = 6;
  2627. else if (s->size >= 256)
  2628. s->cpu_partial = 13;
  2629. else
  2630. s->cpu_partial = 30;
  2631. s->refcount = 1;
  2632. #ifdef CONFIG_NUMA
  2633. s->remote_node_defrag_ratio = 1000;
  2634. #endif
  2635. if (!init_kmem_cache_nodes(s))
  2636. goto error;
  2637. if (alloc_kmem_cache_cpus(s))
  2638. return 1;
  2639. free_kmem_cache_nodes(s);
  2640. error:
  2641. if (flags & SLAB_PANIC)
  2642. panic("Cannot create slab %s size=%lu realsize=%u "
  2643. "order=%u offset=%u flags=%lx\n",
  2644. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2645. s->offset, flags);
  2646. return 0;
  2647. }
  2648. /*
  2649. * Determine the size of a slab object
  2650. */
  2651. unsigned int kmem_cache_size(struct kmem_cache *s)
  2652. {
  2653. return s->object_size;
  2654. }
  2655. EXPORT_SYMBOL(kmem_cache_size);
  2656. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2657. const char *text)
  2658. {
  2659. #ifdef CONFIG_SLUB_DEBUG
  2660. void *addr = page_address(page);
  2661. void *p;
  2662. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2663. sizeof(long), GFP_ATOMIC);
  2664. if (!map)
  2665. return;
  2666. slab_err(s, page, "%s", text);
  2667. slab_lock(page);
  2668. get_map(s, page, map);
  2669. for_each_object(p, s, addr, page->objects) {
  2670. if (!test_bit(slab_index(p, s, addr), map)) {
  2671. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2672. p, p - addr);
  2673. print_tracking(s, p);
  2674. }
  2675. }
  2676. slab_unlock(page);
  2677. kfree(map);
  2678. #endif
  2679. }
  2680. /*
  2681. * Attempt to free all partial slabs on a node.
  2682. * This is called from kmem_cache_close(). We must be the last thread
  2683. * using the cache and therefore we do not need to lock anymore.
  2684. */
  2685. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2686. {
  2687. struct page *page, *h;
  2688. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2689. if (!page->inuse) {
  2690. remove_partial(n, page);
  2691. discard_slab(s, page);
  2692. } else {
  2693. list_slab_objects(s, page,
  2694. "Objects remaining on kmem_cache_close()");
  2695. }
  2696. }
  2697. }
  2698. /*
  2699. * Release all resources used by a slab cache.
  2700. */
  2701. static inline int kmem_cache_close(struct kmem_cache *s)
  2702. {
  2703. int node;
  2704. flush_all(s);
  2705. free_percpu(s->cpu_slab);
  2706. /* Attempt to free all objects */
  2707. for_each_node_state(node, N_NORMAL_MEMORY) {
  2708. struct kmem_cache_node *n = get_node(s, node);
  2709. free_partial(s, n);
  2710. if (n->nr_partial || slabs_node(s, node))
  2711. return 1;
  2712. }
  2713. free_kmem_cache_nodes(s);
  2714. return 0;
  2715. }
  2716. /*
  2717. * Close a cache and release the kmem_cache structure
  2718. * (must be used for caches created using kmem_cache_create)
  2719. */
  2720. void kmem_cache_destroy(struct kmem_cache *s)
  2721. {
  2722. mutex_lock(&slab_mutex);
  2723. s->refcount--;
  2724. if (!s->refcount) {
  2725. list_del(&s->list);
  2726. mutex_unlock(&slab_mutex);
  2727. if (kmem_cache_close(s)) {
  2728. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2729. "still has objects.\n", s->name, __func__);
  2730. dump_stack();
  2731. }
  2732. if (s->flags & SLAB_DESTROY_BY_RCU)
  2733. rcu_barrier();
  2734. sysfs_slab_remove(s);
  2735. } else
  2736. mutex_unlock(&slab_mutex);
  2737. }
  2738. EXPORT_SYMBOL(kmem_cache_destroy);
  2739. /********************************************************************
  2740. * Kmalloc subsystem
  2741. *******************************************************************/
  2742. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2743. EXPORT_SYMBOL(kmalloc_caches);
  2744. static struct kmem_cache *kmem_cache;
  2745. #ifdef CONFIG_ZONE_DMA
  2746. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2747. #endif
  2748. static int __init setup_slub_min_order(char *str)
  2749. {
  2750. get_option(&str, &slub_min_order);
  2751. return 1;
  2752. }
  2753. __setup("slub_min_order=", setup_slub_min_order);
  2754. static int __init setup_slub_max_order(char *str)
  2755. {
  2756. get_option(&str, &slub_max_order);
  2757. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2758. return 1;
  2759. }
  2760. __setup("slub_max_order=", setup_slub_max_order);
  2761. static int __init setup_slub_min_objects(char *str)
  2762. {
  2763. get_option(&str, &slub_min_objects);
  2764. return 1;
  2765. }
  2766. __setup("slub_min_objects=", setup_slub_min_objects);
  2767. static int __init setup_slub_nomerge(char *str)
  2768. {
  2769. slub_nomerge = 1;
  2770. return 1;
  2771. }
  2772. __setup("slub_nomerge", setup_slub_nomerge);
  2773. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2774. int size, unsigned int flags)
  2775. {
  2776. struct kmem_cache *s;
  2777. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2778. /*
  2779. * This function is called with IRQs disabled during early-boot on
  2780. * single CPU so there's no need to take slab_mutex here.
  2781. */
  2782. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2783. flags, NULL))
  2784. goto panic;
  2785. list_add(&s->list, &slab_caches);
  2786. return s;
  2787. panic:
  2788. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2789. return NULL;
  2790. }
  2791. /*
  2792. * Conversion table for small slabs sizes / 8 to the index in the
  2793. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2794. * of two cache sizes there. The size of larger slabs can be determined using
  2795. * fls.
  2796. */
  2797. static s8 size_index[24] = {
  2798. 3, /* 8 */
  2799. 4, /* 16 */
  2800. 5, /* 24 */
  2801. 5, /* 32 */
  2802. 6, /* 40 */
  2803. 6, /* 48 */
  2804. 6, /* 56 */
  2805. 6, /* 64 */
  2806. 1, /* 72 */
  2807. 1, /* 80 */
  2808. 1, /* 88 */
  2809. 1, /* 96 */
  2810. 7, /* 104 */
  2811. 7, /* 112 */
  2812. 7, /* 120 */
  2813. 7, /* 128 */
  2814. 2, /* 136 */
  2815. 2, /* 144 */
  2816. 2, /* 152 */
  2817. 2, /* 160 */
  2818. 2, /* 168 */
  2819. 2, /* 176 */
  2820. 2, /* 184 */
  2821. 2 /* 192 */
  2822. };
  2823. static inline int size_index_elem(size_t bytes)
  2824. {
  2825. return (bytes - 1) / 8;
  2826. }
  2827. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2828. {
  2829. int index;
  2830. if (size <= 192) {
  2831. if (!size)
  2832. return ZERO_SIZE_PTR;
  2833. index = size_index[size_index_elem(size)];
  2834. } else
  2835. index = fls(size - 1);
  2836. #ifdef CONFIG_ZONE_DMA
  2837. if (unlikely((flags & SLUB_DMA)))
  2838. return kmalloc_dma_caches[index];
  2839. #endif
  2840. return kmalloc_caches[index];
  2841. }
  2842. void *__kmalloc(size_t size, gfp_t flags)
  2843. {
  2844. struct kmem_cache *s;
  2845. void *ret;
  2846. if (unlikely(size > SLUB_MAX_SIZE))
  2847. return kmalloc_large(size, flags);
  2848. s = get_slab(size, flags);
  2849. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2850. return s;
  2851. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2852. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2853. return ret;
  2854. }
  2855. EXPORT_SYMBOL(__kmalloc);
  2856. #ifdef CONFIG_NUMA
  2857. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2858. {
  2859. struct page *page;
  2860. void *ptr = NULL;
  2861. flags |= __GFP_COMP | __GFP_NOTRACK;
  2862. page = alloc_pages_node(node, flags, get_order(size));
  2863. if (page)
  2864. ptr = page_address(page);
  2865. kmemleak_alloc(ptr, size, 1, flags);
  2866. return ptr;
  2867. }
  2868. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2869. {
  2870. struct kmem_cache *s;
  2871. void *ret;
  2872. if (unlikely(size > SLUB_MAX_SIZE)) {
  2873. ret = kmalloc_large_node(size, flags, node);
  2874. trace_kmalloc_node(_RET_IP_, ret,
  2875. size, PAGE_SIZE << get_order(size),
  2876. flags, node);
  2877. return ret;
  2878. }
  2879. s = get_slab(size, flags);
  2880. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2881. return s;
  2882. ret = slab_alloc(s, flags, node, _RET_IP_);
  2883. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2884. return ret;
  2885. }
  2886. EXPORT_SYMBOL(__kmalloc_node);
  2887. #endif
  2888. size_t ksize(const void *object)
  2889. {
  2890. struct page *page;
  2891. if (unlikely(object == ZERO_SIZE_PTR))
  2892. return 0;
  2893. page = virt_to_head_page(object);
  2894. if (unlikely(!PageSlab(page))) {
  2895. WARN_ON(!PageCompound(page));
  2896. return PAGE_SIZE << compound_order(page);
  2897. }
  2898. return slab_ksize(page->slab);
  2899. }
  2900. EXPORT_SYMBOL(ksize);
  2901. #ifdef CONFIG_SLUB_DEBUG
  2902. bool verify_mem_not_deleted(const void *x)
  2903. {
  2904. struct page *page;
  2905. void *object = (void *)x;
  2906. unsigned long flags;
  2907. bool rv;
  2908. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2909. return false;
  2910. local_irq_save(flags);
  2911. page = virt_to_head_page(x);
  2912. if (unlikely(!PageSlab(page))) {
  2913. /* maybe it was from stack? */
  2914. rv = true;
  2915. goto out_unlock;
  2916. }
  2917. slab_lock(page);
  2918. if (on_freelist(page->slab, page, object)) {
  2919. object_err(page->slab, page, object, "Object is on free-list");
  2920. rv = false;
  2921. } else {
  2922. rv = true;
  2923. }
  2924. slab_unlock(page);
  2925. out_unlock:
  2926. local_irq_restore(flags);
  2927. return rv;
  2928. }
  2929. EXPORT_SYMBOL(verify_mem_not_deleted);
  2930. #endif
  2931. void kfree(const void *x)
  2932. {
  2933. struct page *page;
  2934. void *object = (void *)x;
  2935. trace_kfree(_RET_IP_, x);
  2936. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2937. return;
  2938. page = virt_to_head_page(x);
  2939. if (unlikely(!PageSlab(page))) {
  2940. BUG_ON(!PageCompound(page));
  2941. kmemleak_free(x);
  2942. __free_pages(page, compound_order(page));
  2943. return;
  2944. }
  2945. slab_free(page->slab, page, object, _RET_IP_);
  2946. }
  2947. EXPORT_SYMBOL(kfree);
  2948. /*
  2949. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2950. * the remaining slabs by the number of items in use. The slabs with the
  2951. * most items in use come first. New allocations will then fill those up
  2952. * and thus they can be removed from the partial lists.
  2953. *
  2954. * The slabs with the least items are placed last. This results in them
  2955. * being allocated from last increasing the chance that the last objects
  2956. * are freed in them.
  2957. */
  2958. int kmem_cache_shrink(struct kmem_cache *s)
  2959. {
  2960. int node;
  2961. int i;
  2962. struct kmem_cache_node *n;
  2963. struct page *page;
  2964. struct page *t;
  2965. int objects = oo_objects(s->max);
  2966. struct list_head *slabs_by_inuse =
  2967. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2968. unsigned long flags;
  2969. if (!slabs_by_inuse)
  2970. return -ENOMEM;
  2971. flush_all(s);
  2972. for_each_node_state(node, N_NORMAL_MEMORY) {
  2973. n = get_node(s, node);
  2974. if (!n->nr_partial)
  2975. continue;
  2976. for (i = 0; i < objects; i++)
  2977. INIT_LIST_HEAD(slabs_by_inuse + i);
  2978. spin_lock_irqsave(&n->list_lock, flags);
  2979. /*
  2980. * Build lists indexed by the items in use in each slab.
  2981. *
  2982. * Note that concurrent frees may occur while we hold the
  2983. * list_lock. page->inuse here is the upper limit.
  2984. */
  2985. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2986. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2987. if (!page->inuse)
  2988. n->nr_partial--;
  2989. }
  2990. /*
  2991. * Rebuild the partial list with the slabs filled up most
  2992. * first and the least used slabs at the end.
  2993. */
  2994. for (i = objects - 1; i > 0; i--)
  2995. list_splice(slabs_by_inuse + i, n->partial.prev);
  2996. spin_unlock_irqrestore(&n->list_lock, flags);
  2997. /* Release empty slabs */
  2998. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2999. discard_slab(s, page);
  3000. }
  3001. kfree(slabs_by_inuse);
  3002. return 0;
  3003. }
  3004. EXPORT_SYMBOL(kmem_cache_shrink);
  3005. #if defined(CONFIG_MEMORY_HOTPLUG)
  3006. static int slab_mem_going_offline_callback(void *arg)
  3007. {
  3008. struct kmem_cache *s;
  3009. mutex_lock(&slab_mutex);
  3010. list_for_each_entry(s, &slab_caches, list)
  3011. kmem_cache_shrink(s);
  3012. mutex_unlock(&slab_mutex);
  3013. return 0;
  3014. }
  3015. static void slab_mem_offline_callback(void *arg)
  3016. {
  3017. struct kmem_cache_node *n;
  3018. struct kmem_cache *s;
  3019. struct memory_notify *marg = arg;
  3020. int offline_node;
  3021. offline_node = marg->status_change_nid;
  3022. /*
  3023. * If the node still has available memory. we need kmem_cache_node
  3024. * for it yet.
  3025. */
  3026. if (offline_node < 0)
  3027. return;
  3028. mutex_lock(&slab_mutex);
  3029. list_for_each_entry(s, &slab_caches, list) {
  3030. n = get_node(s, offline_node);
  3031. if (n) {
  3032. /*
  3033. * if n->nr_slabs > 0, slabs still exist on the node
  3034. * that is going down. We were unable to free them,
  3035. * and offline_pages() function shouldn't call this
  3036. * callback. So, we must fail.
  3037. */
  3038. BUG_ON(slabs_node(s, offline_node));
  3039. s->node[offline_node] = NULL;
  3040. kmem_cache_free(kmem_cache_node, n);
  3041. }
  3042. }
  3043. mutex_unlock(&slab_mutex);
  3044. }
  3045. static int slab_mem_going_online_callback(void *arg)
  3046. {
  3047. struct kmem_cache_node *n;
  3048. struct kmem_cache *s;
  3049. struct memory_notify *marg = arg;
  3050. int nid = marg->status_change_nid;
  3051. int ret = 0;
  3052. /*
  3053. * If the node's memory is already available, then kmem_cache_node is
  3054. * already created. Nothing to do.
  3055. */
  3056. if (nid < 0)
  3057. return 0;
  3058. /*
  3059. * We are bringing a node online. No memory is available yet. We must
  3060. * allocate a kmem_cache_node structure in order to bring the node
  3061. * online.
  3062. */
  3063. mutex_lock(&slab_mutex);
  3064. list_for_each_entry(s, &slab_caches, list) {
  3065. /*
  3066. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3067. * since memory is not yet available from the node that
  3068. * is brought up.
  3069. */
  3070. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3071. if (!n) {
  3072. ret = -ENOMEM;
  3073. goto out;
  3074. }
  3075. init_kmem_cache_node(n);
  3076. s->node[nid] = n;
  3077. }
  3078. out:
  3079. mutex_unlock(&slab_mutex);
  3080. return ret;
  3081. }
  3082. static int slab_memory_callback(struct notifier_block *self,
  3083. unsigned long action, void *arg)
  3084. {
  3085. int ret = 0;
  3086. switch (action) {
  3087. case MEM_GOING_ONLINE:
  3088. ret = slab_mem_going_online_callback(arg);
  3089. break;
  3090. case MEM_GOING_OFFLINE:
  3091. ret = slab_mem_going_offline_callback(arg);
  3092. break;
  3093. case MEM_OFFLINE:
  3094. case MEM_CANCEL_ONLINE:
  3095. slab_mem_offline_callback(arg);
  3096. break;
  3097. case MEM_ONLINE:
  3098. case MEM_CANCEL_OFFLINE:
  3099. break;
  3100. }
  3101. if (ret)
  3102. ret = notifier_from_errno(ret);
  3103. else
  3104. ret = NOTIFY_OK;
  3105. return ret;
  3106. }
  3107. #endif /* CONFIG_MEMORY_HOTPLUG */
  3108. /********************************************************************
  3109. * Basic setup of slabs
  3110. *******************************************************************/
  3111. /*
  3112. * Used for early kmem_cache structures that were allocated using
  3113. * the page allocator
  3114. */
  3115. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3116. {
  3117. int node;
  3118. list_add(&s->list, &slab_caches);
  3119. s->refcount = -1;
  3120. for_each_node_state(node, N_NORMAL_MEMORY) {
  3121. struct kmem_cache_node *n = get_node(s, node);
  3122. struct page *p;
  3123. if (n) {
  3124. list_for_each_entry(p, &n->partial, lru)
  3125. p->slab = s;
  3126. #ifdef CONFIG_SLUB_DEBUG
  3127. list_for_each_entry(p, &n->full, lru)
  3128. p->slab = s;
  3129. #endif
  3130. }
  3131. }
  3132. }
  3133. void __init kmem_cache_init(void)
  3134. {
  3135. int i;
  3136. int caches = 0;
  3137. struct kmem_cache *temp_kmem_cache;
  3138. int order;
  3139. struct kmem_cache *temp_kmem_cache_node;
  3140. unsigned long kmalloc_size;
  3141. if (debug_guardpage_minorder())
  3142. slub_max_order = 0;
  3143. kmem_size = offsetof(struct kmem_cache, node) +
  3144. nr_node_ids * sizeof(struct kmem_cache_node *);
  3145. /* Allocate two kmem_caches from the page allocator */
  3146. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3147. order = get_order(2 * kmalloc_size);
  3148. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3149. /*
  3150. * Must first have the slab cache available for the allocations of the
  3151. * struct kmem_cache_node's. There is special bootstrap code in
  3152. * kmem_cache_open for slab_state == DOWN.
  3153. */
  3154. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3155. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3156. sizeof(struct kmem_cache_node),
  3157. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3158. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3159. /* Able to allocate the per node structures */
  3160. slab_state = PARTIAL;
  3161. temp_kmem_cache = kmem_cache;
  3162. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3163. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3164. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3165. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3166. /*
  3167. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3168. * kmem_cache_node is separately allocated so no need to
  3169. * update any list pointers.
  3170. */
  3171. temp_kmem_cache_node = kmem_cache_node;
  3172. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3173. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3174. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3175. caches++;
  3176. kmem_cache_bootstrap_fixup(kmem_cache);
  3177. caches++;
  3178. /* Free temporary boot structure */
  3179. free_pages((unsigned long)temp_kmem_cache, order);
  3180. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3181. /*
  3182. * Patch up the size_index table if we have strange large alignment
  3183. * requirements for the kmalloc array. This is only the case for
  3184. * MIPS it seems. The standard arches will not generate any code here.
  3185. *
  3186. * Largest permitted alignment is 256 bytes due to the way we
  3187. * handle the index determination for the smaller caches.
  3188. *
  3189. * Make sure that nothing crazy happens if someone starts tinkering
  3190. * around with ARCH_KMALLOC_MINALIGN
  3191. */
  3192. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3193. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3194. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3195. int elem = size_index_elem(i);
  3196. if (elem >= ARRAY_SIZE(size_index))
  3197. break;
  3198. size_index[elem] = KMALLOC_SHIFT_LOW;
  3199. }
  3200. if (KMALLOC_MIN_SIZE == 64) {
  3201. /*
  3202. * The 96 byte size cache is not used if the alignment
  3203. * is 64 byte.
  3204. */
  3205. for (i = 64 + 8; i <= 96; i += 8)
  3206. size_index[size_index_elem(i)] = 7;
  3207. } else if (KMALLOC_MIN_SIZE == 128) {
  3208. /*
  3209. * The 192 byte sized cache is not used if the alignment
  3210. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3211. * instead.
  3212. */
  3213. for (i = 128 + 8; i <= 192; i += 8)
  3214. size_index[size_index_elem(i)] = 8;
  3215. }
  3216. /* Caches that are not of the two-to-the-power-of size */
  3217. if (KMALLOC_MIN_SIZE <= 32) {
  3218. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3219. caches++;
  3220. }
  3221. if (KMALLOC_MIN_SIZE <= 64) {
  3222. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3223. caches++;
  3224. }
  3225. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3226. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3227. caches++;
  3228. }
  3229. slab_state = UP;
  3230. /* Provide the correct kmalloc names now that the caches are up */
  3231. if (KMALLOC_MIN_SIZE <= 32) {
  3232. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3233. BUG_ON(!kmalloc_caches[1]->name);
  3234. }
  3235. if (KMALLOC_MIN_SIZE <= 64) {
  3236. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3237. BUG_ON(!kmalloc_caches[2]->name);
  3238. }
  3239. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3240. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3241. BUG_ON(!s);
  3242. kmalloc_caches[i]->name = s;
  3243. }
  3244. #ifdef CONFIG_SMP
  3245. register_cpu_notifier(&slab_notifier);
  3246. #endif
  3247. #ifdef CONFIG_ZONE_DMA
  3248. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3249. struct kmem_cache *s = kmalloc_caches[i];
  3250. if (s && s->size) {
  3251. char *name = kasprintf(GFP_NOWAIT,
  3252. "dma-kmalloc-%d", s->object_size);
  3253. BUG_ON(!name);
  3254. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3255. s->object_size, SLAB_CACHE_DMA);
  3256. }
  3257. }
  3258. #endif
  3259. printk(KERN_INFO
  3260. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3261. " CPUs=%d, Nodes=%d\n",
  3262. caches, cache_line_size(),
  3263. slub_min_order, slub_max_order, slub_min_objects,
  3264. nr_cpu_ids, nr_node_ids);
  3265. }
  3266. void __init kmem_cache_init_late(void)
  3267. {
  3268. }
  3269. /*
  3270. * Find a mergeable slab cache
  3271. */
  3272. static int slab_unmergeable(struct kmem_cache *s)
  3273. {
  3274. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3275. return 1;
  3276. if (s->ctor)
  3277. return 1;
  3278. /*
  3279. * We may have set a slab to be unmergeable during bootstrap.
  3280. */
  3281. if (s->refcount < 0)
  3282. return 1;
  3283. return 0;
  3284. }
  3285. static struct kmem_cache *find_mergeable(size_t size,
  3286. size_t align, unsigned long flags, const char *name,
  3287. void (*ctor)(void *))
  3288. {
  3289. struct kmem_cache *s;
  3290. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3291. return NULL;
  3292. if (ctor)
  3293. return NULL;
  3294. size = ALIGN(size, sizeof(void *));
  3295. align = calculate_alignment(flags, align, size);
  3296. size = ALIGN(size, align);
  3297. flags = kmem_cache_flags(size, flags, name, NULL);
  3298. list_for_each_entry(s, &slab_caches, list) {
  3299. if (slab_unmergeable(s))
  3300. continue;
  3301. if (size > s->size)
  3302. continue;
  3303. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3304. continue;
  3305. /*
  3306. * Check if alignment is compatible.
  3307. * Courtesy of Adrian Drzewiecki
  3308. */
  3309. if ((s->size & ~(align - 1)) != s->size)
  3310. continue;
  3311. if (s->size - size >= sizeof(void *))
  3312. continue;
  3313. return s;
  3314. }
  3315. return NULL;
  3316. }
  3317. struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
  3318. size_t align, unsigned long flags, void (*ctor)(void *))
  3319. {
  3320. struct kmem_cache *s;
  3321. char *n;
  3322. s = find_mergeable(size, align, flags, name, ctor);
  3323. if (s) {
  3324. s->refcount++;
  3325. /*
  3326. * Adjust the object sizes so that we clear
  3327. * the complete object on kzalloc.
  3328. */
  3329. s->object_size = max(s->object_size, (int)size);
  3330. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3331. if (sysfs_slab_alias(s, name)) {
  3332. s->refcount--;
  3333. return NULL;
  3334. }
  3335. return s;
  3336. }
  3337. n = kstrdup(name, GFP_KERNEL);
  3338. if (!n)
  3339. return NULL;
  3340. s = kmalloc(kmem_size, GFP_KERNEL);
  3341. if (s) {
  3342. if (kmem_cache_open(s, n,
  3343. size, align, flags, ctor)) {
  3344. int r;
  3345. list_add(&s->list, &slab_caches);
  3346. mutex_unlock(&slab_mutex);
  3347. r = sysfs_slab_add(s);
  3348. mutex_lock(&slab_mutex);
  3349. if (!r)
  3350. return s;
  3351. list_del(&s->list);
  3352. kmem_cache_close(s);
  3353. }
  3354. kfree(s);
  3355. }
  3356. kfree(n);
  3357. return NULL;
  3358. }
  3359. #ifdef CONFIG_SMP
  3360. /*
  3361. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3362. * necessary.
  3363. */
  3364. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3365. unsigned long action, void *hcpu)
  3366. {
  3367. long cpu = (long)hcpu;
  3368. struct kmem_cache *s;
  3369. unsigned long flags;
  3370. switch (action) {
  3371. case CPU_UP_CANCELED:
  3372. case CPU_UP_CANCELED_FROZEN:
  3373. case CPU_DEAD:
  3374. case CPU_DEAD_FROZEN:
  3375. mutex_lock(&slab_mutex);
  3376. list_for_each_entry(s, &slab_caches, list) {
  3377. local_irq_save(flags);
  3378. __flush_cpu_slab(s, cpu);
  3379. local_irq_restore(flags);
  3380. }
  3381. mutex_unlock(&slab_mutex);
  3382. break;
  3383. default:
  3384. break;
  3385. }
  3386. return NOTIFY_OK;
  3387. }
  3388. static struct notifier_block __cpuinitdata slab_notifier = {
  3389. .notifier_call = slab_cpuup_callback
  3390. };
  3391. #endif
  3392. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3393. {
  3394. struct kmem_cache *s;
  3395. void *ret;
  3396. if (unlikely(size > SLUB_MAX_SIZE))
  3397. return kmalloc_large(size, gfpflags);
  3398. s = get_slab(size, gfpflags);
  3399. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3400. return s;
  3401. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3402. /* Honor the call site pointer we received. */
  3403. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3404. return ret;
  3405. }
  3406. #ifdef CONFIG_NUMA
  3407. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3408. int node, unsigned long caller)
  3409. {
  3410. struct kmem_cache *s;
  3411. void *ret;
  3412. if (unlikely(size > SLUB_MAX_SIZE)) {
  3413. ret = kmalloc_large_node(size, gfpflags, node);
  3414. trace_kmalloc_node(caller, ret,
  3415. size, PAGE_SIZE << get_order(size),
  3416. gfpflags, node);
  3417. return ret;
  3418. }
  3419. s = get_slab(size, gfpflags);
  3420. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3421. return s;
  3422. ret = slab_alloc(s, gfpflags, node, caller);
  3423. /* Honor the call site pointer we received. */
  3424. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3425. return ret;
  3426. }
  3427. #endif
  3428. #ifdef CONFIG_SYSFS
  3429. static int count_inuse(struct page *page)
  3430. {
  3431. return page->inuse;
  3432. }
  3433. static int count_total(struct page *page)
  3434. {
  3435. return page->objects;
  3436. }
  3437. #endif
  3438. #ifdef CONFIG_SLUB_DEBUG
  3439. static int validate_slab(struct kmem_cache *s, struct page *page,
  3440. unsigned long *map)
  3441. {
  3442. void *p;
  3443. void *addr = page_address(page);
  3444. if (!check_slab(s, page) ||
  3445. !on_freelist(s, page, NULL))
  3446. return 0;
  3447. /* Now we know that a valid freelist exists */
  3448. bitmap_zero(map, page->objects);
  3449. get_map(s, page, map);
  3450. for_each_object(p, s, addr, page->objects) {
  3451. if (test_bit(slab_index(p, s, addr), map))
  3452. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3453. return 0;
  3454. }
  3455. for_each_object(p, s, addr, page->objects)
  3456. if (!test_bit(slab_index(p, s, addr), map))
  3457. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3458. return 0;
  3459. return 1;
  3460. }
  3461. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3462. unsigned long *map)
  3463. {
  3464. slab_lock(page);
  3465. validate_slab(s, page, map);
  3466. slab_unlock(page);
  3467. }
  3468. static int validate_slab_node(struct kmem_cache *s,
  3469. struct kmem_cache_node *n, unsigned long *map)
  3470. {
  3471. unsigned long count = 0;
  3472. struct page *page;
  3473. unsigned long flags;
  3474. spin_lock_irqsave(&n->list_lock, flags);
  3475. list_for_each_entry(page, &n->partial, lru) {
  3476. validate_slab_slab(s, page, map);
  3477. count++;
  3478. }
  3479. if (count != n->nr_partial)
  3480. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3481. "counter=%ld\n", s->name, count, n->nr_partial);
  3482. if (!(s->flags & SLAB_STORE_USER))
  3483. goto out;
  3484. list_for_each_entry(page, &n->full, lru) {
  3485. validate_slab_slab(s, page, map);
  3486. count++;
  3487. }
  3488. if (count != atomic_long_read(&n->nr_slabs))
  3489. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3490. "counter=%ld\n", s->name, count,
  3491. atomic_long_read(&n->nr_slabs));
  3492. out:
  3493. spin_unlock_irqrestore(&n->list_lock, flags);
  3494. return count;
  3495. }
  3496. static long validate_slab_cache(struct kmem_cache *s)
  3497. {
  3498. int node;
  3499. unsigned long count = 0;
  3500. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3501. sizeof(unsigned long), GFP_KERNEL);
  3502. if (!map)
  3503. return -ENOMEM;
  3504. flush_all(s);
  3505. for_each_node_state(node, N_NORMAL_MEMORY) {
  3506. struct kmem_cache_node *n = get_node(s, node);
  3507. count += validate_slab_node(s, n, map);
  3508. }
  3509. kfree(map);
  3510. return count;
  3511. }
  3512. /*
  3513. * Generate lists of code addresses where slabcache objects are allocated
  3514. * and freed.
  3515. */
  3516. struct location {
  3517. unsigned long count;
  3518. unsigned long addr;
  3519. long long sum_time;
  3520. long min_time;
  3521. long max_time;
  3522. long min_pid;
  3523. long max_pid;
  3524. DECLARE_BITMAP(cpus, NR_CPUS);
  3525. nodemask_t nodes;
  3526. };
  3527. struct loc_track {
  3528. unsigned long max;
  3529. unsigned long count;
  3530. struct location *loc;
  3531. };
  3532. static void free_loc_track(struct loc_track *t)
  3533. {
  3534. if (t->max)
  3535. free_pages((unsigned long)t->loc,
  3536. get_order(sizeof(struct location) * t->max));
  3537. }
  3538. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3539. {
  3540. struct location *l;
  3541. int order;
  3542. order = get_order(sizeof(struct location) * max);
  3543. l = (void *)__get_free_pages(flags, order);
  3544. if (!l)
  3545. return 0;
  3546. if (t->count) {
  3547. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3548. free_loc_track(t);
  3549. }
  3550. t->max = max;
  3551. t->loc = l;
  3552. return 1;
  3553. }
  3554. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3555. const struct track *track)
  3556. {
  3557. long start, end, pos;
  3558. struct location *l;
  3559. unsigned long caddr;
  3560. unsigned long age = jiffies - track->when;
  3561. start = -1;
  3562. end = t->count;
  3563. for ( ; ; ) {
  3564. pos = start + (end - start + 1) / 2;
  3565. /*
  3566. * There is nothing at "end". If we end up there
  3567. * we need to add something to before end.
  3568. */
  3569. if (pos == end)
  3570. break;
  3571. caddr = t->loc[pos].addr;
  3572. if (track->addr == caddr) {
  3573. l = &t->loc[pos];
  3574. l->count++;
  3575. if (track->when) {
  3576. l->sum_time += age;
  3577. if (age < l->min_time)
  3578. l->min_time = age;
  3579. if (age > l->max_time)
  3580. l->max_time = age;
  3581. if (track->pid < l->min_pid)
  3582. l->min_pid = track->pid;
  3583. if (track->pid > l->max_pid)
  3584. l->max_pid = track->pid;
  3585. cpumask_set_cpu(track->cpu,
  3586. to_cpumask(l->cpus));
  3587. }
  3588. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3589. return 1;
  3590. }
  3591. if (track->addr < caddr)
  3592. end = pos;
  3593. else
  3594. start = pos;
  3595. }
  3596. /*
  3597. * Not found. Insert new tracking element.
  3598. */
  3599. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3600. return 0;
  3601. l = t->loc + pos;
  3602. if (pos < t->count)
  3603. memmove(l + 1, l,
  3604. (t->count - pos) * sizeof(struct location));
  3605. t->count++;
  3606. l->count = 1;
  3607. l->addr = track->addr;
  3608. l->sum_time = age;
  3609. l->min_time = age;
  3610. l->max_time = age;
  3611. l->min_pid = track->pid;
  3612. l->max_pid = track->pid;
  3613. cpumask_clear(to_cpumask(l->cpus));
  3614. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3615. nodes_clear(l->nodes);
  3616. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3617. return 1;
  3618. }
  3619. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3620. struct page *page, enum track_item alloc,
  3621. unsigned long *map)
  3622. {
  3623. void *addr = page_address(page);
  3624. void *p;
  3625. bitmap_zero(map, page->objects);
  3626. get_map(s, page, map);
  3627. for_each_object(p, s, addr, page->objects)
  3628. if (!test_bit(slab_index(p, s, addr), map))
  3629. add_location(t, s, get_track(s, p, alloc));
  3630. }
  3631. static int list_locations(struct kmem_cache *s, char *buf,
  3632. enum track_item alloc)
  3633. {
  3634. int len = 0;
  3635. unsigned long i;
  3636. struct loc_track t = { 0, 0, NULL };
  3637. int node;
  3638. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3639. sizeof(unsigned long), GFP_KERNEL);
  3640. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3641. GFP_TEMPORARY)) {
  3642. kfree(map);
  3643. return sprintf(buf, "Out of memory\n");
  3644. }
  3645. /* Push back cpu slabs */
  3646. flush_all(s);
  3647. for_each_node_state(node, N_NORMAL_MEMORY) {
  3648. struct kmem_cache_node *n = get_node(s, node);
  3649. unsigned long flags;
  3650. struct page *page;
  3651. if (!atomic_long_read(&n->nr_slabs))
  3652. continue;
  3653. spin_lock_irqsave(&n->list_lock, flags);
  3654. list_for_each_entry(page, &n->partial, lru)
  3655. process_slab(&t, s, page, alloc, map);
  3656. list_for_each_entry(page, &n->full, lru)
  3657. process_slab(&t, s, page, alloc, map);
  3658. spin_unlock_irqrestore(&n->list_lock, flags);
  3659. }
  3660. for (i = 0; i < t.count; i++) {
  3661. struct location *l = &t.loc[i];
  3662. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3663. break;
  3664. len += sprintf(buf + len, "%7ld ", l->count);
  3665. if (l->addr)
  3666. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3667. else
  3668. len += sprintf(buf + len, "<not-available>");
  3669. if (l->sum_time != l->min_time) {
  3670. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3671. l->min_time,
  3672. (long)div_u64(l->sum_time, l->count),
  3673. l->max_time);
  3674. } else
  3675. len += sprintf(buf + len, " age=%ld",
  3676. l->min_time);
  3677. if (l->min_pid != l->max_pid)
  3678. len += sprintf(buf + len, " pid=%ld-%ld",
  3679. l->min_pid, l->max_pid);
  3680. else
  3681. len += sprintf(buf + len, " pid=%ld",
  3682. l->min_pid);
  3683. if (num_online_cpus() > 1 &&
  3684. !cpumask_empty(to_cpumask(l->cpus)) &&
  3685. len < PAGE_SIZE - 60) {
  3686. len += sprintf(buf + len, " cpus=");
  3687. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3688. to_cpumask(l->cpus));
  3689. }
  3690. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3691. len < PAGE_SIZE - 60) {
  3692. len += sprintf(buf + len, " nodes=");
  3693. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3694. l->nodes);
  3695. }
  3696. len += sprintf(buf + len, "\n");
  3697. }
  3698. free_loc_track(&t);
  3699. kfree(map);
  3700. if (!t.count)
  3701. len += sprintf(buf, "No data\n");
  3702. return len;
  3703. }
  3704. #endif
  3705. #ifdef SLUB_RESILIENCY_TEST
  3706. static void resiliency_test(void)
  3707. {
  3708. u8 *p;
  3709. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3710. printk(KERN_ERR "SLUB resiliency testing\n");
  3711. printk(KERN_ERR "-----------------------\n");
  3712. printk(KERN_ERR "A. Corruption after allocation\n");
  3713. p = kzalloc(16, GFP_KERNEL);
  3714. p[16] = 0x12;
  3715. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3716. " 0x12->0x%p\n\n", p + 16);
  3717. validate_slab_cache(kmalloc_caches[4]);
  3718. /* Hmmm... The next two are dangerous */
  3719. p = kzalloc(32, GFP_KERNEL);
  3720. p[32 + sizeof(void *)] = 0x34;
  3721. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3722. " 0x34 -> -0x%p\n", p);
  3723. printk(KERN_ERR
  3724. "If allocated object is overwritten then not detectable\n\n");
  3725. validate_slab_cache(kmalloc_caches[5]);
  3726. p = kzalloc(64, GFP_KERNEL);
  3727. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3728. *p = 0x56;
  3729. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3730. p);
  3731. printk(KERN_ERR
  3732. "If allocated object is overwritten then not detectable\n\n");
  3733. validate_slab_cache(kmalloc_caches[6]);
  3734. printk(KERN_ERR "\nB. Corruption after free\n");
  3735. p = kzalloc(128, GFP_KERNEL);
  3736. kfree(p);
  3737. *p = 0x78;
  3738. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3739. validate_slab_cache(kmalloc_caches[7]);
  3740. p = kzalloc(256, GFP_KERNEL);
  3741. kfree(p);
  3742. p[50] = 0x9a;
  3743. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3744. p);
  3745. validate_slab_cache(kmalloc_caches[8]);
  3746. p = kzalloc(512, GFP_KERNEL);
  3747. kfree(p);
  3748. p[512] = 0xab;
  3749. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3750. validate_slab_cache(kmalloc_caches[9]);
  3751. }
  3752. #else
  3753. #ifdef CONFIG_SYSFS
  3754. static void resiliency_test(void) {};
  3755. #endif
  3756. #endif
  3757. #ifdef CONFIG_SYSFS
  3758. enum slab_stat_type {
  3759. SL_ALL, /* All slabs */
  3760. SL_PARTIAL, /* Only partially allocated slabs */
  3761. SL_CPU, /* Only slabs used for cpu caches */
  3762. SL_OBJECTS, /* Determine allocated objects not slabs */
  3763. SL_TOTAL /* Determine object capacity not slabs */
  3764. };
  3765. #define SO_ALL (1 << SL_ALL)
  3766. #define SO_PARTIAL (1 << SL_PARTIAL)
  3767. #define SO_CPU (1 << SL_CPU)
  3768. #define SO_OBJECTS (1 << SL_OBJECTS)
  3769. #define SO_TOTAL (1 << SL_TOTAL)
  3770. static ssize_t show_slab_objects(struct kmem_cache *s,
  3771. char *buf, unsigned long flags)
  3772. {
  3773. unsigned long total = 0;
  3774. int node;
  3775. int x;
  3776. unsigned long *nodes;
  3777. unsigned long *per_cpu;
  3778. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3779. if (!nodes)
  3780. return -ENOMEM;
  3781. per_cpu = nodes + nr_node_ids;
  3782. if (flags & SO_CPU) {
  3783. int cpu;
  3784. for_each_possible_cpu(cpu) {
  3785. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3786. int node;
  3787. struct page *page;
  3788. page = ACCESS_ONCE(c->page);
  3789. if (!page)
  3790. continue;
  3791. node = page_to_nid(page);
  3792. if (flags & SO_TOTAL)
  3793. x = page->objects;
  3794. else if (flags & SO_OBJECTS)
  3795. x = page->inuse;
  3796. else
  3797. x = 1;
  3798. total += x;
  3799. nodes[node] += x;
  3800. page = ACCESS_ONCE(c->partial);
  3801. if (page) {
  3802. x = page->pobjects;
  3803. total += x;
  3804. nodes[node] += x;
  3805. }
  3806. per_cpu[node]++;
  3807. }
  3808. }
  3809. lock_memory_hotplug();
  3810. #ifdef CONFIG_SLUB_DEBUG
  3811. if (flags & SO_ALL) {
  3812. for_each_node_state(node, N_NORMAL_MEMORY) {
  3813. struct kmem_cache_node *n = get_node(s, node);
  3814. if (flags & SO_TOTAL)
  3815. x = atomic_long_read(&n->total_objects);
  3816. else if (flags & SO_OBJECTS)
  3817. x = atomic_long_read(&n->total_objects) -
  3818. count_partial(n, count_free);
  3819. else
  3820. x = atomic_long_read(&n->nr_slabs);
  3821. total += x;
  3822. nodes[node] += x;
  3823. }
  3824. } else
  3825. #endif
  3826. if (flags & SO_PARTIAL) {
  3827. for_each_node_state(node, N_NORMAL_MEMORY) {
  3828. struct kmem_cache_node *n = get_node(s, node);
  3829. if (flags & SO_TOTAL)
  3830. x = count_partial(n, count_total);
  3831. else if (flags & SO_OBJECTS)
  3832. x = count_partial(n, count_inuse);
  3833. else
  3834. x = n->nr_partial;
  3835. total += x;
  3836. nodes[node] += x;
  3837. }
  3838. }
  3839. x = sprintf(buf, "%lu", total);
  3840. #ifdef CONFIG_NUMA
  3841. for_each_node_state(node, N_NORMAL_MEMORY)
  3842. if (nodes[node])
  3843. x += sprintf(buf + x, " N%d=%lu",
  3844. node, nodes[node]);
  3845. #endif
  3846. unlock_memory_hotplug();
  3847. kfree(nodes);
  3848. return x + sprintf(buf + x, "\n");
  3849. }
  3850. #ifdef CONFIG_SLUB_DEBUG
  3851. static int any_slab_objects(struct kmem_cache *s)
  3852. {
  3853. int node;
  3854. for_each_online_node(node) {
  3855. struct kmem_cache_node *n = get_node(s, node);
  3856. if (!n)
  3857. continue;
  3858. if (atomic_long_read(&n->total_objects))
  3859. return 1;
  3860. }
  3861. return 0;
  3862. }
  3863. #endif
  3864. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3865. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3866. struct slab_attribute {
  3867. struct attribute attr;
  3868. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3869. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3870. };
  3871. #define SLAB_ATTR_RO(_name) \
  3872. static struct slab_attribute _name##_attr = \
  3873. __ATTR(_name, 0400, _name##_show, NULL)
  3874. #define SLAB_ATTR(_name) \
  3875. static struct slab_attribute _name##_attr = \
  3876. __ATTR(_name, 0600, _name##_show, _name##_store)
  3877. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3878. {
  3879. return sprintf(buf, "%d\n", s->size);
  3880. }
  3881. SLAB_ATTR_RO(slab_size);
  3882. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3883. {
  3884. return sprintf(buf, "%d\n", s->align);
  3885. }
  3886. SLAB_ATTR_RO(align);
  3887. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3888. {
  3889. return sprintf(buf, "%d\n", s->object_size);
  3890. }
  3891. SLAB_ATTR_RO(object_size);
  3892. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3893. {
  3894. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3895. }
  3896. SLAB_ATTR_RO(objs_per_slab);
  3897. static ssize_t order_store(struct kmem_cache *s,
  3898. const char *buf, size_t length)
  3899. {
  3900. unsigned long order;
  3901. int err;
  3902. err = strict_strtoul(buf, 10, &order);
  3903. if (err)
  3904. return err;
  3905. if (order > slub_max_order || order < slub_min_order)
  3906. return -EINVAL;
  3907. calculate_sizes(s, order);
  3908. return length;
  3909. }
  3910. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3911. {
  3912. return sprintf(buf, "%d\n", oo_order(s->oo));
  3913. }
  3914. SLAB_ATTR(order);
  3915. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3916. {
  3917. return sprintf(buf, "%lu\n", s->min_partial);
  3918. }
  3919. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3920. size_t length)
  3921. {
  3922. unsigned long min;
  3923. int err;
  3924. err = strict_strtoul(buf, 10, &min);
  3925. if (err)
  3926. return err;
  3927. set_min_partial(s, min);
  3928. return length;
  3929. }
  3930. SLAB_ATTR(min_partial);
  3931. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3932. {
  3933. return sprintf(buf, "%u\n", s->cpu_partial);
  3934. }
  3935. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3936. size_t length)
  3937. {
  3938. unsigned long objects;
  3939. int err;
  3940. err = strict_strtoul(buf, 10, &objects);
  3941. if (err)
  3942. return err;
  3943. if (objects && kmem_cache_debug(s))
  3944. return -EINVAL;
  3945. s->cpu_partial = objects;
  3946. flush_all(s);
  3947. return length;
  3948. }
  3949. SLAB_ATTR(cpu_partial);
  3950. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3951. {
  3952. if (!s->ctor)
  3953. return 0;
  3954. return sprintf(buf, "%pS\n", s->ctor);
  3955. }
  3956. SLAB_ATTR_RO(ctor);
  3957. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3958. {
  3959. return sprintf(buf, "%d\n", s->refcount - 1);
  3960. }
  3961. SLAB_ATTR_RO(aliases);
  3962. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3963. {
  3964. return show_slab_objects(s, buf, SO_PARTIAL);
  3965. }
  3966. SLAB_ATTR_RO(partial);
  3967. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3968. {
  3969. return show_slab_objects(s, buf, SO_CPU);
  3970. }
  3971. SLAB_ATTR_RO(cpu_slabs);
  3972. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3973. {
  3974. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3975. }
  3976. SLAB_ATTR_RO(objects);
  3977. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3978. {
  3979. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3980. }
  3981. SLAB_ATTR_RO(objects_partial);
  3982. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3983. {
  3984. int objects = 0;
  3985. int pages = 0;
  3986. int cpu;
  3987. int len;
  3988. for_each_online_cpu(cpu) {
  3989. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3990. if (page) {
  3991. pages += page->pages;
  3992. objects += page->pobjects;
  3993. }
  3994. }
  3995. len = sprintf(buf, "%d(%d)", objects, pages);
  3996. #ifdef CONFIG_SMP
  3997. for_each_online_cpu(cpu) {
  3998. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3999. if (page && len < PAGE_SIZE - 20)
  4000. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  4001. page->pobjects, page->pages);
  4002. }
  4003. #endif
  4004. return len + sprintf(buf + len, "\n");
  4005. }
  4006. SLAB_ATTR_RO(slabs_cpu_partial);
  4007. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  4008. {
  4009. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  4010. }
  4011. static ssize_t reclaim_account_store(struct kmem_cache *s,
  4012. const char *buf, size_t length)
  4013. {
  4014. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  4015. if (buf[0] == '1')
  4016. s->flags |= SLAB_RECLAIM_ACCOUNT;
  4017. return length;
  4018. }
  4019. SLAB_ATTR(reclaim_account);
  4020. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  4021. {
  4022. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4023. }
  4024. SLAB_ATTR_RO(hwcache_align);
  4025. #ifdef CONFIG_ZONE_DMA
  4026. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4027. {
  4028. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4029. }
  4030. SLAB_ATTR_RO(cache_dma);
  4031. #endif
  4032. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4033. {
  4034. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4035. }
  4036. SLAB_ATTR_RO(destroy_by_rcu);
  4037. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4038. {
  4039. return sprintf(buf, "%d\n", s->reserved);
  4040. }
  4041. SLAB_ATTR_RO(reserved);
  4042. #ifdef CONFIG_SLUB_DEBUG
  4043. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4044. {
  4045. return show_slab_objects(s, buf, SO_ALL);
  4046. }
  4047. SLAB_ATTR_RO(slabs);
  4048. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4049. {
  4050. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4051. }
  4052. SLAB_ATTR_RO(total_objects);
  4053. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4054. {
  4055. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4056. }
  4057. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4058. const char *buf, size_t length)
  4059. {
  4060. s->flags &= ~SLAB_DEBUG_FREE;
  4061. if (buf[0] == '1') {
  4062. s->flags &= ~__CMPXCHG_DOUBLE;
  4063. s->flags |= SLAB_DEBUG_FREE;
  4064. }
  4065. return length;
  4066. }
  4067. SLAB_ATTR(sanity_checks);
  4068. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4069. {
  4070. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4071. }
  4072. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4073. size_t length)
  4074. {
  4075. s->flags &= ~SLAB_TRACE;
  4076. if (buf[0] == '1') {
  4077. s->flags &= ~__CMPXCHG_DOUBLE;
  4078. s->flags |= SLAB_TRACE;
  4079. }
  4080. return length;
  4081. }
  4082. SLAB_ATTR(trace);
  4083. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4084. {
  4085. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4086. }
  4087. static ssize_t red_zone_store(struct kmem_cache *s,
  4088. const char *buf, size_t length)
  4089. {
  4090. if (any_slab_objects(s))
  4091. return -EBUSY;
  4092. s->flags &= ~SLAB_RED_ZONE;
  4093. if (buf[0] == '1') {
  4094. s->flags &= ~__CMPXCHG_DOUBLE;
  4095. s->flags |= SLAB_RED_ZONE;
  4096. }
  4097. calculate_sizes(s, -1);
  4098. return length;
  4099. }
  4100. SLAB_ATTR(red_zone);
  4101. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4102. {
  4103. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4104. }
  4105. static ssize_t poison_store(struct kmem_cache *s,
  4106. const char *buf, size_t length)
  4107. {
  4108. if (any_slab_objects(s))
  4109. return -EBUSY;
  4110. s->flags &= ~SLAB_POISON;
  4111. if (buf[0] == '1') {
  4112. s->flags &= ~__CMPXCHG_DOUBLE;
  4113. s->flags |= SLAB_POISON;
  4114. }
  4115. calculate_sizes(s, -1);
  4116. return length;
  4117. }
  4118. SLAB_ATTR(poison);
  4119. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4120. {
  4121. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4122. }
  4123. static ssize_t store_user_store(struct kmem_cache *s,
  4124. const char *buf, size_t length)
  4125. {
  4126. if (any_slab_objects(s))
  4127. return -EBUSY;
  4128. s->flags &= ~SLAB_STORE_USER;
  4129. if (buf[0] == '1') {
  4130. s->flags &= ~__CMPXCHG_DOUBLE;
  4131. s->flags |= SLAB_STORE_USER;
  4132. }
  4133. calculate_sizes(s, -1);
  4134. return length;
  4135. }
  4136. SLAB_ATTR(store_user);
  4137. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4138. {
  4139. return 0;
  4140. }
  4141. static ssize_t validate_store(struct kmem_cache *s,
  4142. const char *buf, size_t length)
  4143. {
  4144. int ret = -EINVAL;
  4145. if (buf[0] == '1') {
  4146. ret = validate_slab_cache(s);
  4147. if (ret >= 0)
  4148. ret = length;
  4149. }
  4150. return ret;
  4151. }
  4152. SLAB_ATTR(validate);
  4153. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4154. {
  4155. if (!(s->flags & SLAB_STORE_USER))
  4156. return -ENOSYS;
  4157. return list_locations(s, buf, TRACK_ALLOC);
  4158. }
  4159. SLAB_ATTR_RO(alloc_calls);
  4160. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4161. {
  4162. if (!(s->flags & SLAB_STORE_USER))
  4163. return -ENOSYS;
  4164. return list_locations(s, buf, TRACK_FREE);
  4165. }
  4166. SLAB_ATTR_RO(free_calls);
  4167. #endif /* CONFIG_SLUB_DEBUG */
  4168. #ifdef CONFIG_FAILSLAB
  4169. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4170. {
  4171. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4172. }
  4173. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4174. size_t length)
  4175. {
  4176. s->flags &= ~SLAB_FAILSLAB;
  4177. if (buf[0] == '1')
  4178. s->flags |= SLAB_FAILSLAB;
  4179. return length;
  4180. }
  4181. SLAB_ATTR(failslab);
  4182. #endif
  4183. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4184. {
  4185. return 0;
  4186. }
  4187. static ssize_t shrink_store(struct kmem_cache *s,
  4188. const char *buf, size_t length)
  4189. {
  4190. if (buf[0] == '1') {
  4191. int rc = kmem_cache_shrink(s);
  4192. if (rc)
  4193. return rc;
  4194. } else
  4195. return -EINVAL;
  4196. return length;
  4197. }
  4198. SLAB_ATTR(shrink);
  4199. #ifdef CONFIG_NUMA
  4200. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4201. {
  4202. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4203. }
  4204. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4205. const char *buf, size_t length)
  4206. {
  4207. unsigned long ratio;
  4208. int err;
  4209. err = strict_strtoul(buf, 10, &ratio);
  4210. if (err)
  4211. return err;
  4212. if (ratio <= 100)
  4213. s->remote_node_defrag_ratio = ratio * 10;
  4214. return length;
  4215. }
  4216. SLAB_ATTR(remote_node_defrag_ratio);
  4217. #endif
  4218. #ifdef CONFIG_SLUB_STATS
  4219. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4220. {
  4221. unsigned long sum = 0;
  4222. int cpu;
  4223. int len;
  4224. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4225. if (!data)
  4226. return -ENOMEM;
  4227. for_each_online_cpu(cpu) {
  4228. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4229. data[cpu] = x;
  4230. sum += x;
  4231. }
  4232. len = sprintf(buf, "%lu", sum);
  4233. #ifdef CONFIG_SMP
  4234. for_each_online_cpu(cpu) {
  4235. if (data[cpu] && len < PAGE_SIZE - 20)
  4236. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4237. }
  4238. #endif
  4239. kfree(data);
  4240. return len + sprintf(buf + len, "\n");
  4241. }
  4242. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4243. {
  4244. int cpu;
  4245. for_each_online_cpu(cpu)
  4246. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4247. }
  4248. #define STAT_ATTR(si, text) \
  4249. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4250. { \
  4251. return show_stat(s, buf, si); \
  4252. } \
  4253. static ssize_t text##_store(struct kmem_cache *s, \
  4254. const char *buf, size_t length) \
  4255. { \
  4256. if (buf[0] != '0') \
  4257. return -EINVAL; \
  4258. clear_stat(s, si); \
  4259. return length; \
  4260. } \
  4261. SLAB_ATTR(text); \
  4262. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4263. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4264. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4265. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4266. STAT_ATTR(FREE_FROZEN, free_frozen);
  4267. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4268. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4269. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4270. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4271. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4272. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4273. STAT_ATTR(FREE_SLAB, free_slab);
  4274. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4275. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4276. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4277. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4278. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4279. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4280. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4281. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4282. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4283. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4284. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4285. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4286. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4287. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4288. #endif
  4289. static struct attribute *slab_attrs[] = {
  4290. &slab_size_attr.attr,
  4291. &object_size_attr.attr,
  4292. &objs_per_slab_attr.attr,
  4293. &order_attr.attr,
  4294. &min_partial_attr.attr,
  4295. &cpu_partial_attr.attr,
  4296. &objects_attr.attr,
  4297. &objects_partial_attr.attr,
  4298. &partial_attr.attr,
  4299. &cpu_slabs_attr.attr,
  4300. &ctor_attr.attr,
  4301. &aliases_attr.attr,
  4302. &align_attr.attr,
  4303. &hwcache_align_attr.attr,
  4304. &reclaim_account_attr.attr,
  4305. &destroy_by_rcu_attr.attr,
  4306. &shrink_attr.attr,
  4307. &reserved_attr.attr,
  4308. &slabs_cpu_partial_attr.attr,
  4309. #ifdef CONFIG_SLUB_DEBUG
  4310. &total_objects_attr.attr,
  4311. &slabs_attr.attr,
  4312. &sanity_checks_attr.attr,
  4313. &trace_attr.attr,
  4314. &red_zone_attr.attr,
  4315. &poison_attr.attr,
  4316. &store_user_attr.attr,
  4317. &validate_attr.attr,
  4318. &alloc_calls_attr.attr,
  4319. &free_calls_attr.attr,
  4320. #endif
  4321. #ifdef CONFIG_ZONE_DMA
  4322. &cache_dma_attr.attr,
  4323. #endif
  4324. #ifdef CONFIG_NUMA
  4325. &remote_node_defrag_ratio_attr.attr,
  4326. #endif
  4327. #ifdef CONFIG_SLUB_STATS
  4328. &alloc_fastpath_attr.attr,
  4329. &alloc_slowpath_attr.attr,
  4330. &free_fastpath_attr.attr,
  4331. &free_slowpath_attr.attr,
  4332. &free_frozen_attr.attr,
  4333. &free_add_partial_attr.attr,
  4334. &free_remove_partial_attr.attr,
  4335. &alloc_from_partial_attr.attr,
  4336. &alloc_slab_attr.attr,
  4337. &alloc_refill_attr.attr,
  4338. &alloc_node_mismatch_attr.attr,
  4339. &free_slab_attr.attr,
  4340. &cpuslab_flush_attr.attr,
  4341. &deactivate_full_attr.attr,
  4342. &deactivate_empty_attr.attr,
  4343. &deactivate_to_head_attr.attr,
  4344. &deactivate_to_tail_attr.attr,
  4345. &deactivate_remote_frees_attr.attr,
  4346. &deactivate_bypass_attr.attr,
  4347. &order_fallback_attr.attr,
  4348. &cmpxchg_double_fail_attr.attr,
  4349. &cmpxchg_double_cpu_fail_attr.attr,
  4350. &cpu_partial_alloc_attr.attr,
  4351. &cpu_partial_free_attr.attr,
  4352. &cpu_partial_node_attr.attr,
  4353. &cpu_partial_drain_attr.attr,
  4354. #endif
  4355. #ifdef CONFIG_FAILSLAB
  4356. &failslab_attr.attr,
  4357. #endif
  4358. NULL
  4359. };
  4360. static struct attribute_group slab_attr_group = {
  4361. .attrs = slab_attrs,
  4362. };
  4363. static ssize_t slab_attr_show(struct kobject *kobj,
  4364. struct attribute *attr,
  4365. char *buf)
  4366. {
  4367. struct slab_attribute *attribute;
  4368. struct kmem_cache *s;
  4369. int err;
  4370. attribute = to_slab_attr(attr);
  4371. s = to_slab(kobj);
  4372. if (!attribute->show)
  4373. return -EIO;
  4374. err = attribute->show(s, buf);
  4375. return err;
  4376. }
  4377. static ssize_t slab_attr_store(struct kobject *kobj,
  4378. struct attribute *attr,
  4379. const char *buf, size_t len)
  4380. {
  4381. struct slab_attribute *attribute;
  4382. struct kmem_cache *s;
  4383. int err;
  4384. attribute = to_slab_attr(attr);
  4385. s = to_slab(kobj);
  4386. if (!attribute->store)
  4387. return -EIO;
  4388. err = attribute->store(s, buf, len);
  4389. return err;
  4390. }
  4391. static void kmem_cache_release(struct kobject *kobj)
  4392. {
  4393. struct kmem_cache *s = to_slab(kobj);
  4394. kfree(s->name);
  4395. kfree(s);
  4396. }
  4397. static const struct sysfs_ops slab_sysfs_ops = {
  4398. .show = slab_attr_show,
  4399. .store = slab_attr_store,
  4400. };
  4401. static struct kobj_type slab_ktype = {
  4402. .sysfs_ops = &slab_sysfs_ops,
  4403. .release = kmem_cache_release
  4404. };
  4405. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4406. {
  4407. struct kobj_type *ktype = get_ktype(kobj);
  4408. if (ktype == &slab_ktype)
  4409. return 1;
  4410. return 0;
  4411. }
  4412. static const struct kset_uevent_ops slab_uevent_ops = {
  4413. .filter = uevent_filter,
  4414. };
  4415. static struct kset *slab_kset;
  4416. #define ID_STR_LENGTH 64
  4417. /* Create a unique string id for a slab cache:
  4418. *
  4419. * Format :[flags-]size
  4420. */
  4421. static char *create_unique_id(struct kmem_cache *s)
  4422. {
  4423. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4424. char *p = name;
  4425. BUG_ON(!name);
  4426. *p++ = ':';
  4427. /*
  4428. * First flags affecting slabcache operations. We will only
  4429. * get here for aliasable slabs so we do not need to support
  4430. * too many flags. The flags here must cover all flags that
  4431. * are matched during merging to guarantee that the id is
  4432. * unique.
  4433. */
  4434. if (s->flags & SLAB_CACHE_DMA)
  4435. *p++ = 'd';
  4436. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4437. *p++ = 'a';
  4438. if (s->flags & SLAB_DEBUG_FREE)
  4439. *p++ = 'F';
  4440. if (!(s->flags & SLAB_NOTRACK))
  4441. *p++ = 't';
  4442. if (p != name + 1)
  4443. *p++ = '-';
  4444. p += sprintf(p, "%07d", s->size);
  4445. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4446. return name;
  4447. }
  4448. static int sysfs_slab_add(struct kmem_cache *s)
  4449. {
  4450. int err;
  4451. const char *name;
  4452. int unmergeable;
  4453. if (slab_state < FULL)
  4454. /* Defer until later */
  4455. return 0;
  4456. unmergeable = slab_unmergeable(s);
  4457. if (unmergeable) {
  4458. /*
  4459. * Slabcache can never be merged so we can use the name proper.
  4460. * This is typically the case for debug situations. In that
  4461. * case we can catch duplicate names easily.
  4462. */
  4463. sysfs_remove_link(&slab_kset->kobj, s->name);
  4464. name = s->name;
  4465. } else {
  4466. /*
  4467. * Create a unique name for the slab as a target
  4468. * for the symlinks.
  4469. */
  4470. name = create_unique_id(s);
  4471. }
  4472. s->kobj.kset = slab_kset;
  4473. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4474. if (err) {
  4475. kobject_put(&s->kobj);
  4476. return err;
  4477. }
  4478. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4479. if (err) {
  4480. kobject_del(&s->kobj);
  4481. kobject_put(&s->kobj);
  4482. return err;
  4483. }
  4484. kobject_uevent(&s->kobj, KOBJ_ADD);
  4485. if (!unmergeable) {
  4486. /* Setup first alias */
  4487. sysfs_slab_alias(s, s->name);
  4488. kfree(name);
  4489. }
  4490. return 0;
  4491. }
  4492. static void sysfs_slab_remove(struct kmem_cache *s)
  4493. {
  4494. if (slab_state < FULL)
  4495. /*
  4496. * Sysfs has not been setup yet so no need to remove the
  4497. * cache from sysfs.
  4498. */
  4499. return;
  4500. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4501. kobject_del(&s->kobj);
  4502. kobject_put(&s->kobj);
  4503. }
  4504. /*
  4505. * Need to buffer aliases during bootup until sysfs becomes
  4506. * available lest we lose that information.
  4507. */
  4508. struct saved_alias {
  4509. struct kmem_cache *s;
  4510. const char *name;
  4511. struct saved_alias *next;
  4512. };
  4513. static struct saved_alias *alias_list;
  4514. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4515. {
  4516. struct saved_alias *al;
  4517. if (slab_state == FULL) {
  4518. /*
  4519. * If we have a leftover link then remove it.
  4520. */
  4521. sysfs_remove_link(&slab_kset->kobj, name);
  4522. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4523. }
  4524. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4525. if (!al)
  4526. return -ENOMEM;
  4527. al->s = s;
  4528. al->name = name;
  4529. al->next = alias_list;
  4530. alias_list = al;
  4531. return 0;
  4532. }
  4533. static int __init slab_sysfs_init(void)
  4534. {
  4535. struct kmem_cache *s;
  4536. int err;
  4537. mutex_lock(&slab_mutex);
  4538. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4539. if (!slab_kset) {
  4540. mutex_unlock(&slab_mutex);
  4541. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4542. return -ENOSYS;
  4543. }
  4544. slab_state = FULL;
  4545. list_for_each_entry(s, &slab_caches, list) {
  4546. err = sysfs_slab_add(s);
  4547. if (err)
  4548. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4549. " to sysfs\n", s->name);
  4550. }
  4551. while (alias_list) {
  4552. struct saved_alias *al = alias_list;
  4553. alias_list = alias_list->next;
  4554. err = sysfs_slab_alias(al->s, al->name);
  4555. if (err)
  4556. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4557. " %s to sysfs\n", al->name);
  4558. kfree(al);
  4559. }
  4560. mutex_unlock(&slab_mutex);
  4561. resiliency_test();
  4562. return 0;
  4563. }
  4564. __initcall(slab_sysfs_init);
  4565. #endif /* CONFIG_SYSFS */
  4566. /*
  4567. * The /proc/slabinfo ABI
  4568. */
  4569. #ifdef CONFIG_SLABINFO
  4570. static void print_slabinfo_header(struct seq_file *m)
  4571. {
  4572. seq_puts(m, "slabinfo - version: 2.1\n");
  4573. seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
  4574. "<objperslab> <pagesperslab>");
  4575. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4576. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4577. seq_putc(m, '\n');
  4578. }
  4579. static void *s_start(struct seq_file *m, loff_t *pos)
  4580. {
  4581. loff_t n = *pos;
  4582. mutex_lock(&slab_mutex);
  4583. if (!n)
  4584. print_slabinfo_header(m);
  4585. return seq_list_start(&slab_caches, *pos);
  4586. }
  4587. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4588. {
  4589. return seq_list_next(p, &slab_caches, pos);
  4590. }
  4591. static void s_stop(struct seq_file *m, void *p)
  4592. {
  4593. mutex_unlock(&slab_mutex);
  4594. }
  4595. static int s_show(struct seq_file *m, void *p)
  4596. {
  4597. unsigned long nr_partials = 0;
  4598. unsigned long nr_slabs = 0;
  4599. unsigned long nr_inuse = 0;
  4600. unsigned long nr_objs = 0;
  4601. unsigned long nr_free = 0;
  4602. struct kmem_cache *s;
  4603. int node;
  4604. s = list_entry(p, struct kmem_cache, list);
  4605. for_each_online_node(node) {
  4606. struct kmem_cache_node *n = get_node(s, node);
  4607. if (!n)
  4608. continue;
  4609. nr_partials += n->nr_partial;
  4610. nr_slabs += atomic_long_read(&n->nr_slabs);
  4611. nr_objs += atomic_long_read(&n->total_objects);
  4612. nr_free += count_partial(n, count_free);
  4613. }
  4614. nr_inuse = nr_objs - nr_free;
  4615. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4616. nr_objs, s->size, oo_objects(s->oo),
  4617. (1 << oo_order(s->oo)));
  4618. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4619. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4620. 0UL);
  4621. seq_putc(m, '\n');
  4622. return 0;
  4623. }
  4624. static const struct seq_operations slabinfo_op = {
  4625. .start = s_start,
  4626. .next = s_next,
  4627. .stop = s_stop,
  4628. .show = s_show,
  4629. };
  4630. static int slabinfo_open(struct inode *inode, struct file *file)
  4631. {
  4632. return seq_open(file, &slabinfo_op);
  4633. }
  4634. static const struct file_operations proc_slabinfo_operations = {
  4635. .open = slabinfo_open,
  4636. .read = seq_read,
  4637. .llseek = seq_lseek,
  4638. .release = seq_release,
  4639. };
  4640. static int __init slab_proc_init(void)
  4641. {
  4642. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4643. return 0;
  4644. }
  4645. module_init(slab_proc_init);
  4646. #endif /* CONFIG_SLABINFO */