intel_display.c 280 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. typedef struct {
  50. int min, max;
  51. } intel_range_t;
  52. typedef struct {
  53. int dot_limit;
  54. int p2_slow, p2_fast;
  55. } intel_p2_t;
  56. #define INTEL_P2_NUM 2
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. /* FDI */
  63. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  64. int
  65. intel_pch_rawclk(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. WARN_ON(!HAS_PCH_SPLIT(dev));
  69. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  70. }
  71. static inline u32 /* units of 100MHz */
  72. intel_fdi_link_freq(struct drm_device *dev)
  73. {
  74. if (IS_GEN5(dev)) {
  75. struct drm_i915_private *dev_priv = dev->dev_private;
  76. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  77. } else
  78. return 27;
  79. }
  80. static const intel_limit_t intel_limits_i8xx_dac = {
  81. .dot = { .min = 25000, .max = 350000 },
  82. .vco = { .min = 930000, .max = 1400000 },
  83. .n = { .min = 3, .max = 16 },
  84. .m = { .min = 96, .max = 140 },
  85. .m1 = { .min = 18, .max = 26 },
  86. .m2 = { .min = 6, .max = 16 },
  87. .p = { .min = 4, .max = 128 },
  88. .p1 = { .min = 2, .max = 33 },
  89. .p2 = { .dot_limit = 165000,
  90. .p2_slow = 4, .p2_fast = 2 },
  91. };
  92. static const intel_limit_t intel_limits_i8xx_dvo = {
  93. .dot = { .min = 25000, .max = 350000 },
  94. .vco = { .min = 930000, .max = 1400000 },
  95. .n = { .min = 3, .max = 16 },
  96. .m = { .min = 96, .max = 140 },
  97. .m1 = { .min = 18, .max = 26 },
  98. .m2 = { .min = 6, .max = 16 },
  99. .p = { .min = 4, .max = 128 },
  100. .p1 = { .min = 2, .max = 33 },
  101. .p2 = { .dot_limit = 165000,
  102. .p2_slow = 4, .p2_fast = 4 },
  103. };
  104. static const intel_limit_t intel_limits_i8xx_lvds = {
  105. .dot = { .min = 25000, .max = 350000 },
  106. .vco = { .min = 930000, .max = 1400000 },
  107. .n = { .min = 3, .max = 16 },
  108. .m = { .min = 96, .max = 140 },
  109. .m1 = { .min = 18, .max = 26 },
  110. .m2 = { .min = 6, .max = 16 },
  111. .p = { .min = 4, .max = 128 },
  112. .p1 = { .min = 1, .max = 6 },
  113. .p2 = { .dot_limit = 165000,
  114. .p2_slow = 14, .p2_fast = 7 },
  115. };
  116. static const intel_limit_t intel_limits_i9xx_sdvo = {
  117. .dot = { .min = 20000, .max = 400000 },
  118. .vco = { .min = 1400000, .max = 2800000 },
  119. .n = { .min = 1, .max = 6 },
  120. .m = { .min = 70, .max = 120 },
  121. .m1 = { .min = 8, .max = 18 },
  122. .m2 = { .min = 3, .max = 7 },
  123. .p = { .min = 5, .max = 80 },
  124. .p1 = { .min = 1, .max = 8 },
  125. .p2 = { .dot_limit = 200000,
  126. .p2_slow = 10, .p2_fast = 5 },
  127. };
  128. static const intel_limit_t intel_limits_i9xx_lvds = {
  129. .dot = { .min = 20000, .max = 400000 },
  130. .vco = { .min = 1400000, .max = 2800000 },
  131. .n = { .min = 1, .max = 6 },
  132. .m = { .min = 70, .max = 120 },
  133. .m1 = { .min = 8, .max = 18 },
  134. .m2 = { .min = 3, .max = 7 },
  135. .p = { .min = 7, .max = 98 },
  136. .p1 = { .min = 1, .max = 8 },
  137. .p2 = { .dot_limit = 112000,
  138. .p2_slow = 14, .p2_fast = 7 },
  139. };
  140. static const intel_limit_t intel_limits_g4x_sdvo = {
  141. .dot = { .min = 25000, .max = 270000 },
  142. .vco = { .min = 1750000, .max = 3500000},
  143. .n = { .min = 1, .max = 4 },
  144. .m = { .min = 104, .max = 138 },
  145. .m1 = { .min = 17, .max = 23 },
  146. .m2 = { .min = 5, .max = 11 },
  147. .p = { .min = 10, .max = 30 },
  148. .p1 = { .min = 1, .max = 3},
  149. .p2 = { .dot_limit = 270000,
  150. .p2_slow = 10,
  151. .p2_fast = 10
  152. },
  153. };
  154. static const intel_limit_t intel_limits_g4x_hdmi = {
  155. .dot = { .min = 22000, .max = 400000 },
  156. .vco = { .min = 1750000, .max = 3500000},
  157. .n = { .min = 1, .max = 4 },
  158. .m = { .min = 104, .max = 138 },
  159. .m1 = { .min = 16, .max = 23 },
  160. .m2 = { .min = 5, .max = 11 },
  161. .p = { .min = 5, .max = 80 },
  162. .p1 = { .min = 1, .max = 8},
  163. .p2 = { .dot_limit = 165000,
  164. .p2_slow = 10, .p2_fast = 5 },
  165. };
  166. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  167. .dot = { .min = 20000, .max = 115000 },
  168. .vco = { .min = 1750000, .max = 3500000 },
  169. .n = { .min = 1, .max = 3 },
  170. .m = { .min = 104, .max = 138 },
  171. .m1 = { .min = 17, .max = 23 },
  172. .m2 = { .min = 5, .max = 11 },
  173. .p = { .min = 28, .max = 112 },
  174. .p1 = { .min = 2, .max = 8 },
  175. .p2 = { .dot_limit = 0,
  176. .p2_slow = 14, .p2_fast = 14
  177. },
  178. };
  179. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  180. .dot = { .min = 80000, .max = 224000 },
  181. .vco = { .min = 1750000, .max = 3500000 },
  182. .n = { .min = 1, .max = 3 },
  183. .m = { .min = 104, .max = 138 },
  184. .m1 = { .min = 17, .max = 23 },
  185. .m2 = { .min = 5, .max = 11 },
  186. .p = { .min = 14, .max = 42 },
  187. .p1 = { .min = 2, .max = 6 },
  188. .p2 = { .dot_limit = 0,
  189. .p2_slow = 7, .p2_fast = 7
  190. },
  191. };
  192. static const intel_limit_t intel_limits_pineview_sdvo = {
  193. .dot = { .min = 20000, .max = 400000},
  194. .vco = { .min = 1700000, .max = 3500000 },
  195. /* Pineview's Ncounter is a ring counter */
  196. .n = { .min = 3, .max = 6 },
  197. .m = { .min = 2, .max = 256 },
  198. /* Pineview only has one combined m divider, which we treat as m2. */
  199. .m1 = { .min = 0, .max = 0 },
  200. .m2 = { .min = 0, .max = 254 },
  201. .p = { .min = 5, .max = 80 },
  202. .p1 = { .min = 1, .max = 8 },
  203. .p2 = { .dot_limit = 200000,
  204. .p2_slow = 10, .p2_fast = 5 },
  205. };
  206. static const intel_limit_t intel_limits_pineview_lvds = {
  207. .dot = { .min = 20000, .max = 400000 },
  208. .vco = { .min = 1700000, .max = 3500000 },
  209. .n = { .min = 3, .max = 6 },
  210. .m = { .min = 2, .max = 256 },
  211. .m1 = { .min = 0, .max = 0 },
  212. .m2 = { .min = 0, .max = 254 },
  213. .p = { .min = 7, .max = 112 },
  214. .p1 = { .min = 1, .max = 8 },
  215. .p2 = { .dot_limit = 112000,
  216. .p2_slow = 14, .p2_fast = 14 },
  217. };
  218. /* Ironlake / Sandybridge
  219. *
  220. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  221. * the range value for them is (actual_value - 2).
  222. */
  223. static const intel_limit_t intel_limits_ironlake_dac = {
  224. .dot = { .min = 25000, .max = 350000 },
  225. .vco = { .min = 1760000, .max = 3510000 },
  226. .n = { .min = 1, .max = 5 },
  227. .m = { .min = 79, .max = 127 },
  228. .m1 = { .min = 12, .max = 22 },
  229. .m2 = { .min = 5, .max = 9 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 225000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. };
  235. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  236. .dot = { .min = 25000, .max = 350000 },
  237. .vco = { .min = 1760000, .max = 3510000 },
  238. .n = { .min = 1, .max = 3 },
  239. .m = { .min = 79, .max = 118 },
  240. .m1 = { .min = 12, .max = 22 },
  241. .m2 = { .min = 5, .max = 9 },
  242. .p = { .min = 28, .max = 112 },
  243. .p1 = { .min = 2, .max = 8 },
  244. .p2 = { .dot_limit = 225000,
  245. .p2_slow = 14, .p2_fast = 14 },
  246. };
  247. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 3 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 14, .max = 56 },
  255. .p1 = { .min = 2, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 7, .p2_fast = 7 },
  258. };
  259. /* LVDS 100mhz refclk limits. */
  260. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 2 },
  264. .m = { .min = 79, .max = 126 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. };
  272. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  273. .dot = { .min = 25000, .max = 350000 },
  274. .vco = { .min = 1760000, .max = 3510000 },
  275. .n = { .min = 1, .max = 3 },
  276. .m = { .min = 79, .max = 126 },
  277. .m1 = { .min = 12, .max = 22 },
  278. .m2 = { .min = 5, .max = 9 },
  279. .p = { .min = 14, .max = 42 },
  280. .p1 = { .min = 2, .max = 6 },
  281. .p2 = { .dot_limit = 225000,
  282. .p2_slow = 7, .p2_fast = 7 },
  283. };
  284. static const intel_limit_t intel_limits_vlv_dac = {
  285. .dot = { .min = 25000, .max = 270000 },
  286. .vco = { .min = 4000000, .max = 6000000 },
  287. .n = { .min = 1, .max = 7 },
  288. .m = { .min = 22, .max = 450 }, /* guess */
  289. .m1 = { .min = 2, .max = 3 },
  290. .m2 = { .min = 11, .max = 156 },
  291. .p = { .min = 10, .max = 30 },
  292. .p1 = { .min = 1, .max = 3 },
  293. .p2 = { .dot_limit = 270000,
  294. .p2_slow = 2, .p2_fast = 20 },
  295. };
  296. static const intel_limit_t intel_limits_vlv_hdmi = {
  297. .dot = { .min = 25000, .max = 270000 },
  298. .vco = { .min = 4000000, .max = 6000000 },
  299. .n = { .min = 1, .max = 7 },
  300. .m = { .min = 60, .max = 300 }, /* guess */
  301. .m1 = { .min = 2, .max = 3 },
  302. .m2 = { .min = 11, .max = 156 },
  303. .p = { .min = 10, .max = 30 },
  304. .p1 = { .min = 2, .max = 3 },
  305. .p2 = { .dot_limit = 270000,
  306. .p2_slow = 2, .p2_fast = 20 },
  307. };
  308. static const intel_limit_t intel_limits_vlv_dp = {
  309. .dot = { .min = 25000, .max = 270000 },
  310. .vco = { .min = 4000000, .max = 6000000 },
  311. .n = { .min = 1, .max = 7 },
  312. .m = { .min = 22, .max = 450 },
  313. .m1 = { .min = 2, .max = 3 },
  314. .m2 = { .min = 11, .max = 156 },
  315. .p = { .min = 10, .max = 30 },
  316. .p1 = { .min = 1, .max = 3 },
  317. .p2 = { .dot_limit = 270000,
  318. .p2_slow = 2, .p2_fast = 20 },
  319. };
  320. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  321. int refclk)
  322. {
  323. struct drm_device *dev = crtc->dev;
  324. const intel_limit_t *limit;
  325. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  326. if (intel_is_dual_link_lvds(dev)) {
  327. if (refclk == 100000)
  328. limit = &intel_limits_ironlake_dual_lvds_100m;
  329. else
  330. limit = &intel_limits_ironlake_dual_lvds;
  331. } else {
  332. if (refclk == 100000)
  333. limit = &intel_limits_ironlake_single_lvds_100m;
  334. else
  335. limit = &intel_limits_ironlake_single_lvds;
  336. }
  337. } else
  338. limit = &intel_limits_ironlake_dac;
  339. return limit;
  340. }
  341. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  342. {
  343. struct drm_device *dev = crtc->dev;
  344. const intel_limit_t *limit;
  345. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  346. if (intel_is_dual_link_lvds(dev))
  347. limit = &intel_limits_g4x_dual_channel_lvds;
  348. else
  349. limit = &intel_limits_g4x_single_channel_lvds;
  350. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  351. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  352. limit = &intel_limits_g4x_hdmi;
  353. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  354. limit = &intel_limits_g4x_sdvo;
  355. } else /* The option is for other outputs */
  356. limit = &intel_limits_i9xx_sdvo;
  357. return limit;
  358. }
  359. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  360. {
  361. struct drm_device *dev = crtc->dev;
  362. const intel_limit_t *limit;
  363. if (HAS_PCH_SPLIT(dev))
  364. limit = intel_ironlake_limit(crtc, refclk);
  365. else if (IS_G4X(dev)) {
  366. limit = intel_g4x_limit(crtc);
  367. } else if (IS_PINEVIEW(dev)) {
  368. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  369. limit = &intel_limits_pineview_lvds;
  370. else
  371. limit = &intel_limits_pineview_sdvo;
  372. } else if (IS_VALLEYVIEW(dev)) {
  373. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  374. limit = &intel_limits_vlv_dac;
  375. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  376. limit = &intel_limits_vlv_hdmi;
  377. else
  378. limit = &intel_limits_vlv_dp;
  379. } else if (!IS_GEN2(dev)) {
  380. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  381. limit = &intel_limits_i9xx_lvds;
  382. else
  383. limit = &intel_limits_i9xx_sdvo;
  384. } else {
  385. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  386. limit = &intel_limits_i8xx_lvds;
  387. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  388. limit = &intel_limits_i8xx_dvo;
  389. else
  390. limit = &intel_limits_i8xx_dac;
  391. }
  392. return limit;
  393. }
  394. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  395. static void pineview_clock(int refclk, intel_clock_t *clock)
  396. {
  397. clock->m = clock->m2 + 2;
  398. clock->p = clock->p1 * clock->p2;
  399. clock->vco = refclk * clock->m / clock->n;
  400. clock->dot = clock->vco / clock->p;
  401. }
  402. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  403. {
  404. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  405. }
  406. static void i9xx_clock(int refclk, intel_clock_t *clock)
  407. {
  408. clock->m = i9xx_dpll_compute_m(clock);
  409. clock->p = clock->p1 * clock->p2;
  410. clock->vco = refclk * clock->m / (clock->n + 2);
  411. clock->dot = clock->vco / clock->p;
  412. }
  413. /**
  414. * Returns whether any output on the specified pipe is of the specified type
  415. */
  416. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  417. {
  418. struct drm_device *dev = crtc->dev;
  419. struct intel_encoder *encoder;
  420. for_each_encoder_on_crtc(dev, crtc, encoder)
  421. if (encoder->type == type)
  422. return true;
  423. return false;
  424. }
  425. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  426. /**
  427. * Returns whether the given set of divisors are valid for a given refclk with
  428. * the given connectors.
  429. */
  430. static bool intel_PLL_is_valid(struct drm_device *dev,
  431. const intel_limit_t *limit,
  432. const intel_clock_t *clock)
  433. {
  434. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  435. INTELPllInvalid("p1 out of range\n");
  436. if (clock->p < limit->p.min || limit->p.max < clock->p)
  437. INTELPllInvalid("p out of range\n");
  438. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  439. INTELPllInvalid("m2 out of range\n");
  440. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  441. INTELPllInvalid("m1 out of range\n");
  442. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  443. INTELPllInvalid("m1 <= m2\n");
  444. if (clock->m < limit->m.min || limit->m.max < clock->m)
  445. INTELPllInvalid("m out of range\n");
  446. if (clock->n < limit->n.min || limit->n.max < clock->n)
  447. INTELPllInvalid("n out of range\n");
  448. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  449. INTELPllInvalid("vco out of range\n");
  450. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  451. * connector, etc., rather than just a single range.
  452. */
  453. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  454. INTELPllInvalid("dot out of range\n");
  455. return true;
  456. }
  457. static bool
  458. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  459. int target, int refclk, intel_clock_t *match_clock,
  460. intel_clock_t *best_clock)
  461. {
  462. struct drm_device *dev = crtc->dev;
  463. intel_clock_t clock;
  464. int err = target;
  465. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  466. /*
  467. * For LVDS just rely on its current settings for dual-channel.
  468. * We haven't figured out how to reliably set up different
  469. * single/dual channel state, if we even can.
  470. */
  471. if (intel_is_dual_link_lvds(dev))
  472. clock.p2 = limit->p2.p2_fast;
  473. else
  474. clock.p2 = limit->p2.p2_slow;
  475. } else {
  476. if (target < limit->p2.dot_limit)
  477. clock.p2 = limit->p2.p2_slow;
  478. else
  479. clock.p2 = limit->p2.p2_fast;
  480. }
  481. memset(best_clock, 0, sizeof(*best_clock));
  482. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  483. clock.m1++) {
  484. for (clock.m2 = limit->m2.min;
  485. clock.m2 <= limit->m2.max; clock.m2++) {
  486. if (clock.m2 >= clock.m1)
  487. break;
  488. for (clock.n = limit->n.min;
  489. clock.n <= limit->n.max; clock.n++) {
  490. for (clock.p1 = limit->p1.min;
  491. clock.p1 <= limit->p1.max; clock.p1++) {
  492. int this_err;
  493. i9xx_clock(refclk, &clock);
  494. if (!intel_PLL_is_valid(dev, limit,
  495. &clock))
  496. continue;
  497. if (match_clock &&
  498. clock.p != match_clock->p)
  499. continue;
  500. this_err = abs(clock.dot - target);
  501. if (this_err < err) {
  502. *best_clock = clock;
  503. err = this_err;
  504. }
  505. }
  506. }
  507. }
  508. }
  509. return (err != target);
  510. }
  511. static bool
  512. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  513. int target, int refclk, intel_clock_t *match_clock,
  514. intel_clock_t *best_clock)
  515. {
  516. struct drm_device *dev = crtc->dev;
  517. intel_clock_t clock;
  518. int err = target;
  519. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  520. /*
  521. * For LVDS just rely on its current settings for dual-channel.
  522. * We haven't figured out how to reliably set up different
  523. * single/dual channel state, if we even can.
  524. */
  525. if (intel_is_dual_link_lvds(dev))
  526. clock.p2 = limit->p2.p2_fast;
  527. else
  528. clock.p2 = limit->p2.p2_slow;
  529. } else {
  530. if (target < limit->p2.dot_limit)
  531. clock.p2 = limit->p2.p2_slow;
  532. else
  533. clock.p2 = limit->p2.p2_fast;
  534. }
  535. memset(best_clock, 0, sizeof(*best_clock));
  536. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  537. clock.m1++) {
  538. for (clock.m2 = limit->m2.min;
  539. clock.m2 <= limit->m2.max; clock.m2++) {
  540. for (clock.n = limit->n.min;
  541. clock.n <= limit->n.max; clock.n++) {
  542. for (clock.p1 = limit->p1.min;
  543. clock.p1 <= limit->p1.max; clock.p1++) {
  544. int this_err;
  545. pineview_clock(refclk, &clock);
  546. if (!intel_PLL_is_valid(dev, limit,
  547. &clock))
  548. continue;
  549. if (match_clock &&
  550. clock.p != match_clock->p)
  551. continue;
  552. this_err = abs(clock.dot - target);
  553. if (this_err < err) {
  554. *best_clock = clock;
  555. err = this_err;
  556. }
  557. }
  558. }
  559. }
  560. }
  561. return (err != target);
  562. }
  563. static bool
  564. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  565. int target, int refclk, intel_clock_t *match_clock,
  566. intel_clock_t *best_clock)
  567. {
  568. struct drm_device *dev = crtc->dev;
  569. intel_clock_t clock;
  570. int max_n;
  571. bool found;
  572. /* approximately equals target * 0.00585 */
  573. int err_most = (target >> 8) + (target >> 9);
  574. found = false;
  575. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  576. if (intel_is_dual_link_lvds(dev))
  577. clock.p2 = limit->p2.p2_fast;
  578. else
  579. clock.p2 = limit->p2.p2_slow;
  580. } else {
  581. if (target < limit->p2.dot_limit)
  582. clock.p2 = limit->p2.p2_slow;
  583. else
  584. clock.p2 = limit->p2.p2_fast;
  585. }
  586. memset(best_clock, 0, sizeof(*best_clock));
  587. max_n = limit->n.max;
  588. /* based on hardware requirement, prefer smaller n to precision */
  589. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  590. /* based on hardware requirement, prefere larger m1,m2 */
  591. for (clock.m1 = limit->m1.max;
  592. clock.m1 >= limit->m1.min; clock.m1--) {
  593. for (clock.m2 = limit->m2.max;
  594. clock.m2 >= limit->m2.min; clock.m2--) {
  595. for (clock.p1 = limit->p1.max;
  596. clock.p1 >= limit->p1.min; clock.p1--) {
  597. int this_err;
  598. i9xx_clock(refclk, &clock);
  599. if (!intel_PLL_is_valid(dev, limit,
  600. &clock))
  601. continue;
  602. this_err = abs(clock.dot - target);
  603. if (this_err < err_most) {
  604. *best_clock = clock;
  605. err_most = this_err;
  606. max_n = clock.n;
  607. found = true;
  608. }
  609. }
  610. }
  611. }
  612. }
  613. return found;
  614. }
  615. static bool
  616. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  617. int target, int refclk, intel_clock_t *match_clock,
  618. intel_clock_t *best_clock)
  619. {
  620. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  621. u32 m, n, fastclk;
  622. u32 updrate, minupdate, fracbits, p;
  623. unsigned long bestppm, ppm, absppm;
  624. int dotclk, flag;
  625. flag = 0;
  626. dotclk = target * 1000;
  627. bestppm = 1000000;
  628. ppm = absppm = 0;
  629. fastclk = dotclk / (2*100);
  630. updrate = 0;
  631. minupdate = 19200;
  632. fracbits = 1;
  633. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  634. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  635. /* based on hardware requirement, prefer smaller n to precision */
  636. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  637. updrate = refclk / n;
  638. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  639. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  640. if (p2 > 10)
  641. p2 = p2 - 1;
  642. p = p1 * p2;
  643. /* based on hardware requirement, prefer bigger m1,m2 values */
  644. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  645. m2 = (((2*(fastclk * p * n / m1 )) +
  646. refclk) / (2*refclk));
  647. m = m1 * m2;
  648. vco = updrate * m;
  649. if (vco >= limit->vco.min && vco < limit->vco.max) {
  650. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  651. absppm = (ppm > 0) ? ppm : (-ppm);
  652. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  653. bestppm = 0;
  654. flag = 1;
  655. }
  656. if (absppm < bestppm - 10) {
  657. bestppm = absppm;
  658. flag = 1;
  659. }
  660. if (flag) {
  661. bestn = n;
  662. bestm1 = m1;
  663. bestm2 = m2;
  664. bestp1 = p1;
  665. bestp2 = p2;
  666. flag = 0;
  667. }
  668. }
  669. }
  670. }
  671. }
  672. }
  673. best_clock->n = bestn;
  674. best_clock->m1 = bestm1;
  675. best_clock->m2 = bestm2;
  676. best_clock->p1 = bestp1;
  677. best_clock->p2 = bestp2;
  678. return true;
  679. }
  680. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  681. enum pipe pipe)
  682. {
  683. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  684. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  685. return intel_crtc->config.cpu_transcoder;
  686. }
  687. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. u32 frame, frame_reg = PIPEFRAME(pipe);
  691. frame = I915_READ(frame_reg);
  692. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  693. DRM_DEBUG_KMS("vblank wait timed out\n");
  694. }
  695. /**
  696. * intel_wait_for_vblank - wait for vblank on a given pipe
  697. * @dev: drm device
  698. * @pipe: pipe to wait for
  699. *
  700. * Wait for vblank to occur on a given pipe. Needed for various bits of
  701. * mode setting code.
  702. */
  703. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  704. {
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. int pipestat_reg = PIPESTAT(pipe);
  707. if (INTEL_INFO(dev)->gen >= 5) {
  708. ironlake_wait_for_vblank(dev, pipe);
  709. return;
  710. }
  711. /* Clear existing vblank status. Note this will clear any other
  712. * sticky status fields as well.
  713. *
  714. * This races with i915_driver_irq_handler() with the result
  715. * that either function could miss a vblank event. Here it is not
  716. * fatal, as we will either wait upon the next vblank interrupt or
  717. * timeout. Generally speaking intel_wait_for_vblank() is only
  718. * called during modeset at which time the GPU should be idle and
  719. * should *not* be performing page flips and thus not waiting on
  720. * vblanks...
  721. * Currently, the result of us stealing a vblank from the irq
  722. * handler is that a single frame will be skipped during swapbuffers.
  723. */
  724. I915_WRITE(pipestat_reg,
  725. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  726. /* Wait for vblank interrupt bit to set */
  727. if (wait_for(I915_READ(pipestat_reg) &
  728. PIPE_VBLANK_INTERRUPT_STATUS,
  729. 50))
  730. DRM_DEBUG_KMS("vblank wait timed out\n");
  731. }
  732. /*
  733. * intel_wait_for_pipe_off - wait for pipe to turn off
  734. * @dev: drm device
  735. * @pipe: pipe to wait for
  736. *
  737. * After disabling a pipe, we can't wait for vblank in the usual way,
  738. * spinning on the vblank interrupt status bit, since we won't actually
  739. * see an interrupt when the pipe is disabled.
  740. *
  741. * On Gen4 and above:
  742. * wait for the pipe register state bit to turn off
  743. *
  744. * Otherwise:
  745. * wait for the display line value to settle (it usually
  746. * ends up stopping at the start of the next frame).
  747. *
  748. */
  749. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  750. {
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  753. pipe);
  754. if (INTEL_INFO(dev)->gen >= 4) {
  755. int reg = PIPECONF(cpu_transcoder);
  756. /* Wait for the Pipe State to go off */
  757. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  758. 100))
  759. WARN(1, "pipe_off wait timed out\n");
  760. } else {
  761. u32 last_line, line_mask;
  762. int reg = PIPEDSL(pipe);
  763. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  764. if (IS_GEN2(dev))
  765. line_mask = DSL_LINEMASK_GEN2;
  766. else
  767. line_mask = DSL_LINEMASK_GEN3;
  768. /* Wait for the display line to settle */
  769. do {
  770. last_line = I915_READ(reg) & line_mask;
  771. mdelay(5);
  772. } while (((I915_READ(reg) & line_mask) != last_line) &&
  773. time_after(timeout, jiffies));
  774. if (time_after(jiffies, timeout))
  775. WARN(1, "pipe_off wait timed out\n");
  776. }
  777. }
  778. /*
  779. * ibx_digital_port_connected - is the specified port connected?
  780. * @dev_priv: i915 private structure
  781. * @port: the port to test
  782. *
  783. * Returns true if @port is connected, false otherwise.
  784. */
  785. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  786. struct intel_digital_port *port)
  787. {
  788. u32 bit;
  789. if (HAS_PCH_IBX(dev_priv->dev)) {
  790. switch(port->port) {
  791. case PORT_B:
  792. bit = SDE_PORTB_HOTPLUG;
  793. break;
  794. case PORT_C:
  795. bit = SDE_PORTC_HOTPLUG;
  796. break;
  797. case PORT_D:
  798. bit = SDE_PORTD_HOTPLUG;
  799. break;
  800. default:
  801. return true;
  802. }
  803. } else {
  804. switch(port->port) {
  805. case PORT_B:
  806. bit = SDE_PORTB_HOTPLUG_CPT;
  807. break;
  808. case PORT_C:
  809. bit = SDE_PORTC_HOTPLUG_CPT;
  810. break;
  811. case PORT_D:
  812. bit = SDE_PORTD_HOTPLUG_CPT;
  813. break;
  814. default:
  815. return true;
  816. }
  817. }
  818. return I915_READ(SDEISR) & bit;
  819. }
  820. static const char *state_string(bool enabled)
  821. {
  822. return enabled ? "on" : "off";
  823. }
  824. /* Only for pre-ILK configs */
  825. void assert_pll(struct drm_i915_private *dev_priv,
  826. enum pipe pipe, bool state)
  827. {
  828. int reg;
  829. u32 val;
  830. bool cur_state;
  831. reg = DPLL(pipe);
  832. val = I915_READ(reg);
  833. cur_state = !!(val & DPLL_VCO_ENABLE);
  834. WARN(cur_state != state,
  835. "PLL state assertion failure (expected %s, current %s)\n",
  836. state_string(state), state_string(cur_state));
  837. }
  838. struct intel_shared_dpll *
  839. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  840. {
  841. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  842. if (crtc->config.shared_dpll < 0)
  843. return NULL;
  844. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  845. }
  846. /* For ILK+ */
  847. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  848. struct intel_shared_dpll *pll,
  849. bool state)
  850. {
  851. bool cur_state;
  852. struct intel_dpll_hw_state hw_state;
  853. if (HAS_PCH_LPT(dev_priv->dev)) {
  854. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  855. return;
  856. }
  857. if (WARN (!pll,
  858. "asserting DPLL %s with no DPLL\n", state_string(state)))
  859. return;
  860. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  861. WARN(cur_state != state,
  862. "%s assertion failure (expected %s, current %s)\n",
  863. pll->name, state_string(state), state_string(cur_state));
  864. }
  865. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  866. enum pipe pipe, bool state)
  867. {
  868. int reg;
  869. u32 val;
  870. bool cur_state;
  871. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  872. pipe);
  873. if (HAS_DDI(dev_priv->dev)) {
  874. /* DDI does not have a specific FDI_TX register */
  875. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  876. val = I915_READ(reg);
  877. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  878. } else {
  879. reg = FDI_TX_CTL(pipe);
  880. val = I915_READ(reg);
  881. cur_state = !!(val & FDI_TX_ENABLE);
  882. }
  883. WARN(cur_state != state,
  884. "FDI TX state assertion failure (expected %s, current %s)\n",
  885. state_string(state), state_string(cur_state));
  886. }
  887. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  888. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  889. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  890. enum pipe pipe, bool state)
  891. {
  892. int reg;
  893. u32 val;
  894. bool cur_state;
  895. reg = FDI_RX_CTL(pipe);
  896. val = I915_READ(reg);
  897. cur_state = !!(val & FDI_RX_ENABLE);
  898. WARN(cur_state != state,
  899. "FDI RX state assertion failure (expected %s, current %s)\n",
  900. state_string(state), state_string(cur_state));
  901. }
  902. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  903. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  904. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  905. enum pipe pipe)
  906. {
  907. int reg;
  908. u32 val;
  909. /* ILK FDI PLL is always enabled */
  910. if (dev_priv->info->gen == 5)
  911. return;
  912. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  913. if (HAS_DDI(dev_priv->dev))
  914. return;
  915. reg = FDI_TX_CTL(pipe);
  916. val = I915_READ(reg);
  917. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  918. }
  919. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  920. enum pipe pipe, bool state)
  921. {
  922. int reg;
  923. u32 val;
  924. bool cur_state;
  925. reg = FDI_RX_CTL(pipe);
  926. val = I915_READ(reg);
  927. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  928. WARN(cur_state != state,
  929. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  930. state_string(state), state_string(cur_state));
  931. }
  932. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  933. enum pipe pipe)
  934. {
  935. int pp_reg, lvds_reg;
  936. u32 val;
  937. enum pipe panel_pipe = PIPE_A;
  938. bool locked = true;
  939. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  940. pp_reg = PCH_PP_CONTROL;
  941. lvds_reg = PCH_LVDS;
  942. } else {
  943. pp_reg = PP_CONTROL;
  944. lvds_reg = LVDS;
  945. }
  946. val = I915_READ(pp_reg);
  947. if (!(val & PANEL_POWER_ON) ||
  948. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  949. locked = false;
  950. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  951. panel_pipe = PIPE_B;
  952. WARN(panel_pipe == pipe && locked,
  953. "panel assertion failure, pipe %c regs locked\n",
  954. pipe_name(pipe));
  955. }
  956. void assert_pipe(struct drm_i915_private *dev_priv,
  957. enum pipe pipe, bool state)
  958. {
  959. int reg;
  960. u32 val;
  961. bool cur_state;
  962. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  963. pipe);
  964. /* if we need the pipe A quirk it must be always on */
  965. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  966. state = true;
  967. if (!intel_display_power_enabled(dev_priv->dev,
  968. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  969. cur_state = false;
  970. } else {
  971. reg = PIPECONF(cpu_transcoder);
  972. val = I915_READ(reg);
  973. cur_state = !!(val & PIPECONF_ENABLE);
  974. }
  975. WARN(cur_state != state,
  976. "pipe %c assertion failure (expected %s, current %s)\n",
  977. pipe_name(pipe), state_string(state), state_string(cur_state));
  978. }
  979. static void assert_plane(struct drm_i915_private *dev_priv,
  980. enum plane plane, bool state)
  981. {
  982. int reg;
  983. u32 val;
  984. bool cur_state;
  985. reg = DSPCNTR(plane);
  986. val = I915_READ(reg);
  987. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  988. WARN(cur_state != state,
  989. "plane %c assertion failure (expected %s, current %s)\n",
  990. plane_name(plane), state_string(state), state_string(cur_state));
  991. }
  992. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  993. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  994. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  995. enum pipe pipe)
  996. {
  997. struct drm_device *dev = dev_priv->dev;
  998. int reg, i;
  999. u32 val;
  1000. int cur_pipe;
  1001. /* Primary planes are fixed to pipes on gen4+ */
  1002. if (INTEL_INFO(dev)->gen >= 4) {
  1003. reg = DSPCNTR(pipe);
  1004. val = I915_READ(reg);
  1005. WARN((val & DISPLAY_PLANE_ENABLE),
  1006. "plane %c assertion failure, should be disabled but not\n",
  1007. plane_name(pipe));
  1008. return;
  1009. }
  1010. /* Need to check both planes against the pipe */
  1011. for_each_pipe(i) {
  1012. reg = DSPCNTR(i);
  1013. val = I915_READ(reg);
  1014. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1015. DISPPLANE_SEL_PIPE_SHIFT;
  1016. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1017. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1018. plane_name(i), pipe_name(pipe));
  1019. }
  1020. }
  1021. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1022. enum pipe pipe)
  1023. {
  1024. struct drm_device *dev = dev_priv->dev;
  1025. int reg, i;
  1026. u32 val;
  1027. if (IS_VALLEYVIEW(dev)) {
  1028. for (i = 0; i < dev_priv->num_plane; i++) {
  1029. reg = SPCNTR(pipe, i);
  1030. val = I915_READ(reg);
  1031. WARN((val & SP_ENABLE),
  1032. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1033. sprite_name(pipe, i), pipe_name(pipe));
  1034. }
  1035. } else if (INTEL_INFO(dev)->gen >= 7) {
  1036. reg = SPRCTL(pipe);
  1037. val = I915_READ(reg);
  1038. WARN((val & SPRITE_ENABLE),
  1039. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1040. plane_name(pipe), pipe_name(pipe));
  1041. } else if (INTEL_INFO(dev)->gen >= 5) {
  1042. reg = DVSCNTR(pipe);
  1043. val = I915_READ(reg);
  1044. WARN((val & DVS_ENABLE),
  1045. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1046. plane_name(pipe), pipe_name(pipe));
  1047. }
  1048. }
  1049. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1050. {
  1051. u32 val;
  1052. bool enabled;
  1053. if (HAS_PCH_LPT(dev_priv->dev)) {
  1054. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1055. return;
  1056. }
  1057. val = I915_READ(PCH_DREF_CONTROL);
  1058. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1059. DREF_SUPERSPREAD_SOURCE_MASK));
  1060. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1061. }
  1062. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1063. enum pipe pipe)
  1064. {
  1065. int reg;
  1066. u32 val;
  1067. bool enabled;
  1068. reg = PCH_TRANSCONF(pipe);
  1069. val = I915_READ(reg);
  1070. enabled = !!(val & TRANS_ENABLE);
  1071. WARN(enabled,
  1072. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1073. pipe_name(pipe));
  1074. }
  1075. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1076. enum pipe pipe, u32 port_sel, u32 val)
  1077. {
  1078. if ((val & DP_PORT_EN) == 0)
  1079. return false;
  1080. if (HAS_PCH_CPT(dev_priv->dev)) {
  1081. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1082. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1083. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1084. return false;
  1085. } else {
  1086. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1087. return false;
  1088. }
  1089. return true;
  1090. }
  1091. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 val)
  1093. {
  1094. if ((val & SDVO_ENABLE) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1098. return false;
  1099. } else {
  1100. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1101. return false;
  1102. }
  1103. return true;
  1104. }
  1105. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1106. enum pipe pipe, u32 val)
  1107. {
  1108. if ((val & LVDS_PORT_EN) == 0)
  1109. return false;
  1110. if (HAS_PCH_CPT(dev_priv->dev)) {
  1111. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1112. return false;
  1113. } else {
  1114. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1115. return false;
  1116. }
  1117. return true;
  1118. }
  1119. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1120. enum pipe pipe, u32 val)
  1121. {
  1122. if ((val & ADPA_DAC_ENABLE) == 0)
  1123. return false;
  1124. if (HAS_PCH_CPT(dev_priv->dev)) {
  1125. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1126. return false;
  1127. } else {
  1128. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1129. return false;
  1130. }
  1131. return true;
  1132. }
  1133. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1134. enum pipe pipe, int reg, u32 port_sel)
  1135. {
  1136. u32 val = I915_READ(reg);
  1137. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1138. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1139. reg, pipe_name(pipe));
  1140. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1141. && (val & DP_PIPEB_SELECT),
  1142. "IBX PCH dp port still using transcoder B\n");
  1143. }
  1144. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1145. enum pipe pipe, int reg)
  1146. {
  1147. u32 val = I915_READ(reg);
  1148. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1149. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1150. reg, pipe_name(pipe));
  1151. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1152. && (val & SDVO_PIPE_B_SELECT),
  1153. "IBX PCH hdmi port still using transcoder B\n");
  1154. }
  1155. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1156. enum pipe pipe)
  1157. {
  1158. int reg;
  1159. u32 val;
  1160. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1161. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1162. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1163. reg = PCH_ADPA;
  1164. val = I915_READ(reg);
  1165. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1166. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1167. pipe_name(pipe));
  1168. reg = PCH_LVDS;
  1169. val = I915_READ(reg);
  1170. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1171. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1172. pipe_name(pipe));
  1173. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1174. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1175. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1176. }
  1177. static void vlv_enable_pll(struct intel_crtc *crtc)
  1178. {
  1179. struct drm_device *dev = crtc->base.dev;
  1180. struct drm_i915_private *dev_priv = dev->dev_private;
  1181. int reg = DPLL(crtc->pipe);
  1182. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1183. assert_pipe_disabled(dev_priv, crtc->pipe);
  1184. /* No really, not for ILK+ */
  1185. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1186. /* PLL is protected by panel, make sure we can write it */
  1187. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1188. assert_panel_unlocked(dev_priv, crtc->pipe);
  1189. I915_WRITE(reg, dpll);
  1190. POSTING_READ(reg);
  1191. udelay(150);
  1192. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1193. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1194. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1195. POSTING_READ(DPLL_MD(crtc->pipe));
  1196. /* We do this three times for luck */
  1197. I915_WRITE(reg, dpll);
  1198. POSTING_READ(reg);
  1199. udelay(150); /* wait for warmup */
  1200. I915_WRITE(reg, dpll);
  1201. POSTING_READ(reg);
  1202. udelay(150); /* wait for warmup */
  1203. I915_WRITE(reg, dpll);
  1204. POSTING_READ(reg);
  1205. udelay(150); /* wait for warmup */
  1206. }
  1207. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1208. {
  1209. struct drm_device *dev = crtc->base.dev;
  1210. struct drm_i915_private *dev_priv = dev->dev_private;
  1211. int reg = DPLL(crtc->pipe);
  1212. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1213. assert_pipe_disabled(dev_priv, crtc->pipe);
  1214. /* No really, not for ILK+ */
  1215. BUG_ON(dev_priv->info->gen >= 5);
  1216. /* PLL is protected by panel, make sure we can write it */
  1217. if (IS_MOBILE(dev) && !IS_I830(dev))
  1218. assert_panel_unlocked(dev_priv, crtc->pipe);
  1219. I915_WRITE(reg, dpll);
  1220. /* Wait for the clocks to stabilize. */
  1221. POSTING_READ(reg);
  1222. udelay(150);
  1223. if (INTEL_INFO(dev)->gen >= 4) {
  1224. I915_WRITE(DPLL_MD(crtc->pipe),
  1225. crtc->config.dpll_hw_state.dpll_md);
  1226. } else {
  1227. /* The pixel multiplier can only be updated once the
  1228. * DPLL is enabled and the clocks are stable.
  1229. *
  1230. * So write it again.
  1231. */
  1232. I915_WRITE(reg, dpll);
  1233. }
  1234. /* We do this three times for luck */
  1235. I915_WRITE(reg, dpll);
  1236. POSTING_READ(reg);
  1237. udelay(150); /* wait for warmup */
  1238. I915_WRITE(reg, dpll);
  1239. POSTING_READ(reg);
  1240. udelay(150); /* wait for warmup */
  1241. I915_WRITE(reg, dpll);
  1242. POSTING_READ(reg);
  1243. udelay(150); /* wait for warmup */
  1244. }
  1245. /**
  1246. * i9xx_disable_pll - disable a PLL
  1247. * @dev_priv: i915 private structure
  1248. * @pipe: pipe PLL to disable
  1249. *
  1250. * Disable the PLL for @pipe, making sure the pipe is off first.
  1251. *
  1252. * Note! This is for pre-ILK only.
  1253. */
  1254. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1255. {
  1256. /* Don't disable pipe A or pipe A PLLs if needed */
  1257. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1258. return;
  1259. /* Make sure the pipe isn't still relying on us */
  1260. assert_pipe_disabled(dev_priv, pipe);
  1261. I915_WRITE(DPLL(pipe), 0);
  1262. POSTING_READ(DPLL(pipe));
  1263. }
  1264. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1265. {
  1266. u32 port_mask;
  1267. if (!port)
  1268. port_mask = DPLL_PORTB_READY_MASK;
  1269. else
  1270. port_mask = DPLL_PORTC_READY_MASK;
  1271. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1272. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1273. 'B' + port, I915_READ(DPLL(0)));
  1274. }
  1275. /**
  1276. * ironlake_enable_shared_dpll - enable PCH PLL
  1277. * @dev_priv: i915 private structure
  1278. * @pipe: pipe PLL to enable
  1279. *
  1280. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1281. * drives the transcoder clock.
  1282. */
  1283. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1284. {
  1285. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1286. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1287. /* PCH PLLs only available on ILK, SNB and IVB */
  1288. BUG_ON(dev_priv->info->gen < 5);
  1289. if (WARN_ON(pll == NULL))
  1290. return;
  1291. if (WARN_ON(pll->refcount == 0))
  1292. return;
  1293. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1294. pll->name, pll->active, pll->on,
  1295. crtc->base.base.id);
  1296. if (pll->active++) {
  1297. WARN_ON(!pll->on);
  1298. assert_shared_dpll_enabled(dev_priv, pll);
  1299. return;
  1300. }
  1301. WARN_ON(pll->on);
  1302. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1303. pll->enable(dev_priv, pll);
  1304. pll->on = true;
  1305. }
  1306. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1307. {
  1308. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1309. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1310. /* PCH only available on ILK+ */
  1311. BUG_ON(dev_priv->info->gen < 5);
  1312. if (WARN_ON(pll == NULL))
  1313. return;
  1314. if (WARN_ON(pll->refcount == 0))
  1315. return;
  1316. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1317. pll->name, pll->active, pll->on,
  1318. crtc->base.base.id);
  1319. if (WARN_ON(pll->active == 0)) {
  1320. assert_shared_dpll_disabled(dev_priv, pll);
  1321. return;
  1322. }
  1323. assert_shared_dpll_enabled(dev_priv, pll);
  1324. WARN_ON(!pll->on);
  1325. if (--pll->active)
  1326. return;
  1327. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1328. pll->disable(dev_priv, pll);
  1329. pll->on = false;
  1330. }
  1331. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1332. enum pipe pipe)
  1333. {
  1334. struct drm_device *dev = dev_priv->dev;
  1335. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1336. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1337. uint32_t reg, val, pipeconf_val;
  1338. /* PCH only available on ILK+ */
  1339. BUG_ON(dev_priv->info->gen < 5);
  1340. /* Make sure PCH DPLL is enabled */
  1341. assert_shared_dpll_enabled(dev_priv,
  1342. intel_crtc_to_shared_dpll(intel_crtc));
  1343. /* FDI must be feeding us bits for PCH ports */
  1344. assert_fdi_tx_enabled(dev_priv, pipe);
  1345. assert_fdi_rx_enabled(dev_priv, pipe);
  1346. if (HAS_PCH_CPT(dev)) {
  1347. /* Workaround: Set the timing override bit before enabling the
  1348. * pch transcoder. */
  1349. reg = TRANS_CHICKEN2(pipe);
  1350. val = I915_READ(reg);
  1351. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1352. I915_WRITE(reg, val);
  1353. }
  1354. reg = PCH_TRANSCONF(pipe);
  1355. val = I915_READ(reg);
  1356. pipeconf_val = I915_READ(PIPECONF(pipe));
  1357. if (HAS_PCH_IBX(dev_priv->dev)) {
  1358. /*
  1359. * make the BPC in transcoder be consistent with
  1360. * that in pipeconf reg.
  1361. */
  1362. val &= ~PIPECONF_BPC_MASK;
  1363. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1364. }
  1365. val &= ~TRANS_INTERLACE_MASK;
  1366. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1367. if (HAS_PCH_IBX(dev_priv->dev) &&
  1368. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1369. val |= TRANS_LEGACY_INTERLACED_ILK;
  1370. else
  1371. val |= TRANS_INTERLACED;
  1372. else
  1373. val |= TRANS_PROGRESSIVE;
  1374. I915_WRITE(reg, val | TRANS_ENABLE);
  1375. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1376. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1377. }
  1378. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1379. enum transcoder cpu_transcoder)
  1380. {
  1381. u32 val, pipeconf_val;
  1382. /* PCH only available on ILK+ */
  1383. BUG_ON(dev_priv->info->gen < 5);
  1384. /* FDI must be feeding us bits for PCH ports */
  1385. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1386. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1387. /* Workaround: set timing override bit. */
  1388. val = I915_READ(_TRANSA_CHICKEN2);
  1389. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1390. I915_WRITE(_TRANSA_CHICKEN2, val);
  1391. val = TRANS_ENABLE;
  1392. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1393. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1394. PIPECONF_INTERLACED_ILK)
  1395. val |= TRANS_INTERLACED;
  1396. else
  1397. val |= TRANS_PROGRESSIVE;
  1398. I915_WRITE(LPT_TRANSCONF, val);
  1399. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1400. DRM_ERROR("Failed to enable PCH transcoder\n");
  1401. }
  1402. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1403. enum pipe pipe)
  1404. {
  1405. struct drm_device *dev = dev_priv->dev;
  1406. uint32_t reg, val;
  1407. /* FDI relies on the transcoder */
  1408. assert_fdi_tx_disabled(dev_priv, pipe);
  1409. assert_fdi_rx_disabled(dev_priv, pipe);
  1410. /* Ports must be off as well */
  1411. assert_pch_ports_disabled(dev_priv, pipe);
  1412. reg = PCH_TRANSCONF(pipe);
  1413. val = I915_READ(reg);
  1414. val &= ~TRANS_ENABLE;
  1415. I915_WRITE(reg, val);
  1416. /* wait for PCH transcoder off, transcoder state */
  1417. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1418. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1419. if (!HAS_PCH_IBX(dev)) {
  1420. /* Workaround: Clear the timing override chicken bit again. */
  1421. reg = TRANS_CHICKEN2(pipe);
  1422. val = I915_READ(reg);
  1423. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1424. I915_WRITE(reg, val);
  1425. }
  1426. }
  1427. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1428. {
  1429. u32 val;
  1430. val = I915_READ(LPT_TRANSCONF);
  1431. val &= ~TRANS_ENABLE;
  1432. I915_WRITE(LPT_TRANSCONF, val);
  1433. /* wait for PCH transcoder off, transcoder state */
  1434. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1435. DRM_ERROR("Failed to disable PCH transcoder\n");
  1436. /* Workaround: clear timing override bit. */
  1437. val = I915_READ(_TRANSA_CHICKEN2);
  1438. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1439. I915_WRITE(_TRANSA_CHICKEN2, val);
  1440. }
  1441. /**
  1442. * intel_enable_pipe - enable a pipe, asserting requirements
  1443. * @dev_priv: i915 private structure
  1444. * @pipe: pipe to enable
  1445. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1446. *
  1447. * Enable @pipe, making sure that various hardware specific requirements
  1448. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1449. *
  1450. * @pipe should be %PIPE_A or %PIPE_B.
  1451. *
  1452. * Will wait until the pipe is actually running (i.e. first vblank) before
  1453. * returning.
  1454. */
  1455. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1456. bool pch_port)
  1457. {
  1458. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1459. pipe);
  1460. enum pipe pch_transcoder;
  1461. int reg;
  1462. u32 val;
  1463. assert_planes_disabled(dev_priv, pipe);
  1464. assert_sprites_disabled(dev_priv, pipe);
  1465. if (HAS_PCH_LPT(dev_priv->dev))
  1466. pch_transcoder = TRANSCODER_A;
  1467. else
  1468. pch_transcoder = pipe;
  1469. /*
  1470. * A pipe without a PLL won't actually be able to drive bits from
  1471. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1472. * need the check.
  1473. */
  1474. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1475. assert_pll_enabled(dev_priv, pipe);
  1476. else {
  1477. if (pch_port) {
  1478. /* if driving the PCH, we need FDI enabled */
  1479. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1480. assert_fdi_tx_pll_enabled(dev_priv,
  1481. (enum pipe) cpu_transcoder);
  1482. }
  1483. /* FIXME: assert CPU port conditions for SNB+ */
  1484. }
  1485. reg = PIPECONF(cpu_transcoder);
  1486. val = I915_READ(reg);
  1487. if (val & PIPECONF_ENABLE)
  1488. return;
  1489. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1490. intel_wait_for_vblank(dev_priv->dev, pipe);
  1491. }
  1492. /**
  1493. * intel_disable_pipe - disable a pipe, asserting requirements
  1494. * @dev_priv: i915 private structure
  1495. * @pipe: pipe to disable
  1496. *
  1497. * Disable @pipe, making sure that various hardware specific requirements
  1498. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1499. *
  1500. * @pipe should be %PIPE_A or %PIPE_B.
  1501. *
  1502. * Will wait until the pipe has shut down before returning.
  1503. */
  1504. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1505. enum pipe pipe)
  1506. {
  1507. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1508. pipe);
  1509. int reg;
  1510. u32 val;
  1511. /*
  1512. * Make sure planes won't keep trying to pump pixels to us,
  1513. * or we might hang the display.
  1514. */
  1515. assert_planes_disabled(dev_priv, pipe);
  1516. assert_sprites_disabled(dev_priv, pipe);
  1517. /* Don't disable pipe A or pipe A PLLs if needed */
  1518. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1519. return;
  1520. reg = PIPECONF(cpu_transcoder);
  1521. val = I915_READ(reg);
  1522. if ((val & PIPECONF_ENABLE) == 0)
  1523. return;
  1524. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1525. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1526. }
  1527. /*
  1528. * Plane regs are double buffered, going from enabled->disabled needs a
  1529. * trigger in order to latch. The display address reg provides this.
  1530. */
  1531. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1532. enum plane plane)
  1533. {
  1534. if (dev_priv->info->gen >= 4)
  1535. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1536. else
  1537. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1538. }
  1539. /**
  1540. * intel_enable_plane - enable a display plane on a given pipe
  1541. * @dev_priv: i915 private structure
  1542. * @plane: plane to enable
  1543. * @pipe: pipe being fed
  1544. *
  1545. * Enable @plane on @pipe, making sure that @pipe is running first.
  1546. */
  1547. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1548. enum plane plane, enum pipe pipe)
  1549. {
  1550. int reg;
  1551. u32 val;
  1552. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1553. assert_pipe_enabled(dev_priv, pipe);
  1554. reg = DSPCNTR(plane);
  1555. val = I915_READ(reg);
  1556. if (val & DISPLAY_PLANE_ENABLE)
  1557. return;
  1558. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1559. intel_flush_display_plane(dev_priv, plane);
  1560. intel_wait_for_vblank(dev_priv->dev, pipe);
  1561. }
  1562. /**
  1563. * intel_disable_plane - disable a display plane
  1564. * @dev_priv: i915 private structure
  1565. * @plane: plane to disable
  1566. * @pipe: pipe consuming the data
  1567. *
  1568. * Disable @plane; should be an independent operation.
  1569. */
  1570. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1571. enum plane plane, enum pipe pipe)
  1572. {
  1573. int reg;
  1574. u32 val;
  1575. reg = DSPCNTR(plane);
  1576. val = I915_READ(reg);
  1577. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1578. return;
  1579. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1580. intel_flush_display_plane(dev_priv, plane);
  1581. intel_wait_for_vblank(dev_priv->dev, pipe);
  1582. }
  1583. static bool need_vtd_wa(struct drm_device *dev)
  1584. {
  1585. #ifdef CONFIG_INTEL_IOMMU
  1586. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1587. return true;
  1588. #endif
  1589. return false;
  1590. }
  1591. int
  1592. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1593. struct drm_i915_gem_object *obj,
  1594. struct intel_ring_buffer *pipelined)
  1595. {
  1596. struct drm_i915_private *dev_priv = dev->dev_private;
  1597. u32 alignment;
  1598. int ret;
  1599. switch (obj->tiling_mode) {
  1600. case I915_TILING_NONE:
  1601. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1602. alignment = 128 * 1024;
  1603. else if (INTEL_INFO(dev)->gen >= 4)
  1604. alignment = 4 * 1024;
  1605. else
  1606. alignment = 64 * 1024;
  1607. break;
  1608. case I915_TILING_X:
  1609. /* pin() will align the object as required by fence */
  1610. alignment = 0;
  1611. break;
  1612. case I915_TILING_Y:
  1613. /* Despite that we check this in framebuffer_init userspace can
  1614. * screw us over and change the tiling after the fact. Only
  1615. * pinned buffers can't change their tiling. */
  1616. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1617. return -EINVAL;
  1618. default:
  1619. BUG();
  1620. }
  1621. /* Note that the w/a also requires 64 PTE of padding following the
  1622. * bo. We currently fill all unused PTE with the shadow page and so
  1623. * we should always have valid PTE following the scanout preventing
  1624. * the VT-d warning.
  1625. */
  1626. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1627. alignment = 256 * 1024;
  1628. dev_priv->mm.interruptible = false;
  1629. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1630. if (ret)
  1631. goto err_interruptible;
  1632. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1633. * fence, whereas 965+ only requires a fence if using
  1634. * framebuffer compression. For simplicity, we always install
  1635. * a fence as the cost is not that onerous.
  1636. */
  1637. ret = i915_gem_object_get_fence(obj);
  1638. if (ret)
  1639. goto err_unpin;
  1640. i915_gem_object_pin_fence(obj);
  1641. dev_priv->mm.interruptible = true;
  1642. return 0;
  1643. err_unpin:
  1644. i915_gem_object_unpin(obj);
  1645. err_interruptible:
  1646. dev_priv->mm.interruptible = true;
  1647. return ret;
  1648. }
  1649. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1650. {
  1651. i915_gem_object_unpin_fence(obj);
  1652. i915_gem_object_unpin(obj);
  1653. }
  1654. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1655. * is assumed to be a power-of-two. */
  1656. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1657. unsigned int tiling_mode,
  1658. unsigned int cpp,
  1659. unsigned int pitch)
  1660. {
  1661. if (tiling_mode != I915_TILING_NONE) {
  1662. unsigned int tile_rows, tiles;
  1663. tile_rows = *y / 8;
  1664. *y %= 8;
  1665. tiles = *x / (512/cpp);
  1666. *x %= 512/cpp;
  1667. return tile_rows * pitch * 8 + tiles * 4096;
  1668. } else {
  1669. unsigned int offset;
  1670. offset = *y * pitch + *x * cpp;
  1671. *y = 0;
  1672. *x = (offset & 4095) / cpp;
  1673. return offset & -4096;
  1674. }
  1675. }
  1676. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1677. int x, int y)
  1678. {
  1679. struct drm_device *dev = crtc->dev;
  1680. struct drm_i915_private *dev_priv = dev->dev_private;
  1681. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1682. struct intel_framebuffer *intel_fb;
  1683. struct drm_i915_gem_object *obj;
  1684. int plane = intel_crtc->plane;
  1685. unsigned long linear_offset;
  1686. u32 dspcntr;
  1687. u32 reg;
  1688. switch (plane) {
  1689. case 0:
  1690. case 1:
  1691. break;
  1692. default:
  1693. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1694. return -EINVAL;
  1695. }
  1696. intel_fb = to_intel_framebuffer(fb);
  1697. obj = intel_fb->obj;
  1698. reg = DSPCNTR(plane);
  1699. dspcntr = I915_READ(reg);
  1700. /* Mask out pixel format bits in case we change it */
  1701. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1702. switch (fb->pixel_format) {
  1703. case DRM_FORMAT_C8:
  1704. dspcntr |= DISPPLANE_8BPP;
  1705. break;
  1706. case DRM_FORMAT_XRGB1555:
  1707. case DRM_FORMAT_ARGB1555:
  1708. dspcntr |= DISPPLANE_BGRX555;
  1709. break;
  1710. case DRM_FORMAT_RGB565:
  1711. dspcntr |= DISPPLANE_BGRX565;
  1712. break;
  1713. case DRM_FORMAT_XRGB8888:
  1714. case DRM_FORMAT_ARGB8888:
  1715. dspcntr |= DISPPLANE_BGRX888;
  1716. break;
  1717. case DRM_FORMAT_XBGR8888:
  1718. case DRM_FORMAT_ABGR8888:
  1719. dspcntr |= DISPPLANE_RGBX888;
  1720. break;
  1721. case DRM_FORMAT_XRGB2101010:
  1722. case DRM_FORMAT_ARGB2101010:
  1723. dspcntr |= DISPPLANE_BGRX101010;
  1724. break;
  1725. case DRM_FORMAT_XBGR2101010:
  1726. case DRM_FORMAT_ABGR2101010:
  1727. dspcntr |= DISPPLANE_RGBX101010;
  1728. break;
  1729. default:
  1730. BUG();
  1731. }
  1732. if (INTEL_INFO(dev)->gen >= 4) {
  1733. if (obj->tiling_mode != I915_TILING_NONE)
  1734. dspcntr |= DISPPLANE_TILED;
  1735. else
  1736. dspcntr &= ~DISPPLANE_TILED;
  1737. }
  1738. if (IS_G4X(dev))
  1739. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1740. I915_WRITE(reg, dspcntr);
  1741. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1742. if (INTEL_INFO(dev)->gen >= 4) {
  1743. intel_crtc->dspaddr_offset =
  1744. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1745. fb->bits_per_pixel / 8,
  1746. fb->pitches[0]);
  1747. linear_offset -= intel_crtc->dspaddr_offset;
  1748. } else {
  1749. intel_crtc->dspaddr_offset = linear_offset;
  1750. }
  1751. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1752. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1753. fb->pitches[0]);
  1754. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1755. if (INTEL_INFO(dev)->gen >= 4) {
  1756. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1757. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1758. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1759. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1760. } else
  1761. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1762. POSTING_READ(reg);
  1763. return 0;
  1764. }
  1765. static int ironlake_update_plane(struct drm_crtc *crtc,
  1766. struct drm_framebuffer *fb, int x, int y)
  1767. {
  1768. struct drm_device *dev = crtc->dev;
  1769. struct drm_i915_private *dev_priv = dev->dev_private;
  1770. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1771. struct intel_framebuffer *intel_fb;
  1772. struct drm_i915_gem_object *obj;
  1773. int plane = intel_crtc->plane;
  1774. unsigned long linear_offset;
  1775. u32 dspcntr;
  1776. u32 reg;
  1777. switch (plane) {
  1778. case 0:
  1779. case 1:
  1780. case 2:
  1781. break;
  1782. default:
  1783. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1784. return -EINVAL;
  1785. }
  1786. intel_fb = to_intel_framebuffer(fb);
  1787. obj = intel_fb->obj;
  1788. reg = DSPCNTR(plane);
  1789. dspcntr = I915_READ(reg);
  1790. /* Mask out pixel format bits in case we change it */
  1791. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1792. switch (fb->pixel_format) {
  1793. case DRM_FORMAT_C8:
  1794. dspcntr |= DISPPLANE_8BPP;
  1795. break;
  1796. case DRM_FORMAT_RGB565:
  1797. dspcntr |= DISPPLANE_BGRX565;
  1798. break;
  1799. case DRM_FORMAT_XRGB8888:
  1800. case DRM_FORMAT_ARGB8888:
  1801. dspcntr |= DISPPLANE_BGRX888;
  1802. break;
  1803. case DRM_FORMAT_XBGR8888:
  1804. case DRM_FORMAT_ABGR8888:
  1805. dspcntr |= DISPPLANE_RGBX888;
  1806. break;
  1807. case DRM_FORMAT_XRGB2101010:
  1808. case DRM_FORMAT_ARGB2101010:
  1809. dspcntr |= DISPPLANE_BGRX101010;
  1810. break;
  1811. case DRM_FORMAT_XBGR2101010:
  1812. case DRM_FORMAT_ABGR2101010:
  1813. dspcntr |= DISPPLANE_RGBX101010;
  1814. break;
  1815. default:
  1816. BUG();
  1817. }
  1818. if (obj->tiling_mode != I915_TILING_NONE)
  1819. dspcntr |= DISPPLANE_TILED;
  1820. else
  1821. dspcntr &= ~DISPPLANE_TILED;
  1822. /* must disable */
  1823. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1824. I915_WRITE(reg, dspcntr);
  1825. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1826. intel_crtc->dspaddr_offset =
  1827. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1828. fb->bits_per_pixel / 8,
  1829. fb->pitches[0]);
  1830. linear_offset -= intel_crtc->dspaddr_offset;
  1831. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1832. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1833. fb->pitches[0]);
  1834. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1835. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1836. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1837. if (IS_HASWELL(dev)) {
  1838. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1839. } else {
  1840. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1841. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1842. }
  1843. POSTING_READ(reg);
  1844. return 0;
  1845. }
  1846. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1847. static int
  1848. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1849. int x, int y, enum mode_set_atomic state)
  1850. {
  1851. struct drm_device *dev = crtc->dev;
  1852. struct drm_i915_private *dev_priv = dev->dev_private;
  1853. if (dev_priv->display.disable_fbc)
  1854. dev_priv->display.disable_fbc(dev);
  1855. intel_increase_pllclock(crtc);
  1856. return dev_priv->display.update_plane(crtc, fb, x, y);
  1857. }
  1858. void intel_display_handle_reset(struct drm_device *dev)
  1859. {
  1860. struct drm_i915_private *dev_priv = dev->dev_private;
  1861. struct drm_crtc *crtc;
  1862. /*
  1863. * Flips in the rings have been nuked by the reset,
  1864. * so complete all pending flips so that user space
  1865. * will get its events and not get stuck.
  1866. *
  1867. * Also update the base address of all primary
  1868. * planes to the the last fb to make sure we're
  1869. * showing the correct fb after a reset.
  1870. *
  1871. * Need to make two loops over the crtcs so that we
  1872. * don't try to grab a crtc mutex before the
  1873. * pending_flip_queue really got woken up.
  1874. */
  1875. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1876. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1877. enum plane plane = intel_crtc->plane;
  1878. intel_prepare_page_flip(dev, plane);
  1879. intel_finish_page_flip_plane(dev, plane);
  1880. }
  1881. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1882. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1883. mutex_lock(&crtc->mutex);
  1884. if (intel_crtc->active)
  1885. dev_priv->display.update_plane(crtc, crtc->fb,
  1886. crtc->x, crtc->y);
  1887. mutex_unlock(&crtc->mutex);
  1888. }
  1889. }
  1890. static int
  1891. intel_finish_fb(struct drm_framebuffer *old_fb)
  1892. {
  1893. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1894. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1895. bool was_interruptible = dev_priv->mm.interruptible;
  1896. int ret;
  1897. /* Big Hammer, we also need to ensure that any pending
  1898. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1899. * current scanout is retired before unpinning the old
  1900. * framebuffer.
  1901. *
  1902. * This should only fail upon a hung GPU, in which case we
  1903. * can safely continue.
  1904. */
  1905. dev_priv->mm.interruptible = false;
  1906. ret = i915_gem_object_finish_gpu(obj);
  1907. dev_priv->mm.interruptible = was_interruptible;
  1908. return ret;
  1909. }
  1910. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1911. {
  1912. struct drm_device *dev = crtc->dev;
  1913. struct drm_i915_master_private *master_priv;
  1914. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1915. if (!dev->primary->master)
  1916. return;
  1917. master_priv = dev->primary->master->driver_priv;
  1918. if (!master_priv->sarea_priv)
  1919. return;
  1920. switch (intel_crtc->pipe) {
  1921. case 0:
  1922. master_priv->sarea_priv->pipeA_x = x;
  1923. master_priv->sarea_priv->pipeA_y = y;
  1924. break;
  1925. case 1:
  1926. master_priv->sarea_priv->pipeB_x = x;
  1927. master_priv->sarea_priv->pipeB_y = y;
  1928. break;
  1929. default:
  1930. break;
  1931. }
  1932. }
  1933. static int
  1934. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1935. struct drm_framebuffer *fb)
  1936. {
  1937. struct drm_device *dev = crtc->dev;
  1938. struct drm_i915_private *dev_priv = dev->dev_private;
  1939. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1940. struct drm_framebuffer *old_fb;
  1941. int ret;
  1942. /* no fb bound */
  1943. if (!fb) {
  1944. DRM_ERROR("No FB bound\n");
  1945. return 0;
  1946. }
  1947. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1948. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1949. plane_name(intel_crtc->plane),
  1950. INTEL_INFO(dev)->num_pipes);
  1951. return -EINVAL;
  1952. }
  1953. mutex_lock(&dev->struct_mutex);
  1954. ret = intel_pin_and_fence_fb_obj(dev,
  1955. to_intel_framebuffer(fb)->obj,
  1956. NULL);
  1957. if (ret != 0) {
  1958. mutex_unlock(&dev->struct_mutex);
  1959. DRM_ERROR("pin & fence failed\n");
  1960. return ret;
  1961. }
  1962. /* Update pipe size and adjust fitter if needed */
  1963. if (i915_fastboot) {
  1964. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1965. ((crtc->mode.hdisplay - 1) << 16) |
  1966. (crtc->mode.vdisplay - 1));
  1967. if (!intel_crtc->config.pch_pfit.size &&
  1968. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1969. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1970. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1971. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1972. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1973. }
  1974. }
  1975. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1976. if (ret) {
  1977. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1978. mutex_unlock(&dev->struct_mutex);
  1979. DRM_ERROR("failed to update base address\n");
  1980. return ret;
  1981. }
  1982. old_fb = crtc->fb;
  1983. crtc->fb = fb;
  1984. crtc->x = x;
  1985. crtc->y = y;
  1986. if (old_fb) {
  1987. if (intel_crtc->active && old_fb != fb)
  1988. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1989. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1990. }
  1991. intel_update_fbc(dev);
  1992. mutex_unlock(&dev->struct_mutex);
  1993. intel_crtc_update_sarea_pos(crtc, x, y);
  1994. return 0;
  1995. }
  1996. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1997. {
  1998. struct drm_device *dev = crtc->dev;
  1999. struct drm_i915_private *dev_priv = dev->dev_private;
  2000. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2001. int pipe = intel_crtc->pipe;
  2002. u32 reg, temp;
  2003. /* enable normal train */
  2004. reg = FDI_TX_CTL(pipe);
  2005. temp = I915_READ(reg);
  2006. if (IS_IVYBRIDGE(dev)) {
  2007. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2008. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2009. } else {
  2010. temp &= ~FDI_LINK_TRAIN_NONE;
  2011. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2012. }
  2013. I915_WRITE(reg, temp);
  2014. reg = FDI_RX_CTL(pipe);
  2015. temp = I915_READ(reg);
  2016. if (HAS_PCH_CPT(dev)) {
  2017. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2018. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2019. } else {
  2020. temp &= ~FDI_LINK_TRAIN_NONE;
  2021. temp |= FDI_LINK_TRAIN_NONE;
  2022. }
  2023. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2024. /* wait one idle pattern time */
  2025. POSTING_READ(reg);
  2026. udelay(1000);
  2027. /* IVB wants error correction enabled */
  2028. if (IS_IVYBRIDGE(dev))
  2029. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2030. FDI_FE_ERRC_ENABLE);
  2031. }
  2032. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2033. {
  2034. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2035. }
  2036. static void ivb_modeset_global_resources(struct drm_device *dev)
  2037. {
  2038. struct drm_i915_private *dev_priv = dev->dev_private;
  2039. struct intel_crtc *pipe_B_crtc =
  2040. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2041. struct intel_crtc *pipe_C_crtc =
  2042. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2043. uint32_t temp;
  2044. /*
  2045. * When everything is off disable fdi C so that we could enable fdi B
  2046. * with all lanes. Note that we don't care about enabled pipes without
  2047. * an enabled pch encoder.
  2048. */
  2049. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2050. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2051. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2052. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2053. temp = I915_READ(SOUTH_CHICKEN1);
  2054. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2055. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2056. I915_WRITE(SOUTH_CHICKEN1, temp);
  2057. }
  2058. }
  2059. /* The FDI link training functions for ILK/Ibexpeak. */
  2060. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2061. {
  2062. struct drm_device *dev = crtc->dev;
  2063. struct drm_i915_private *dev_priv = dev->dev_private;
  2064. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2065. int pipe = intel_crtc->pipe;
  2066. int plane = intel_crtc->plane;
  2067. u32 reg, temp, tries;
  2068. /* FDI needs bits from pipe & plane first */
  2069. assert_pipe_enabled(dev_priv, pipe);
  2070. assert_plane_enabled(dev_priv, plane);
  2071. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2072. for train result */
  2073. reg = FDI_RX_IMR(pipe);
  2074. temp = I915_READ(reg);
  2075. temp &= ~FDI_RX_SYMBOL_LOCK;
  2076. temp &= ~FDI_RX_BIT_LOCK;
  2077. I915_WRITE(reg, temp);
  2078. I915_READ(reg);
  2079. udelay(150);
  2080. /* enable CPU FDI TX and PCH FDI RX */
  2081. reg = FDI_TX_CTL(pipe);
  2082. temp = I915_READ(reg);
  2083. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2084. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2085. temp &= ~FDI_LINK_TRAIN_NONE;
  2086. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2087. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2088. reg = FDI_RX_CTL(pipe);
  2089. temp = I915_READ(reg);
  2090. temp &= ~FDI_LINK_TRAIN_NONE;
  2091. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2092. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2093. POSTING_READ(reg);
  2094. udelay(150);
  2095. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2096. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2097. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2098. FDI_RX_PHASE_SYNC_POINTER_EN);
  2099. reg = FDI_RX_IIR(pipe);
  2100. for (tries = 0; tries < 5; tries++) {
  2101. temp = I915_READ(reg);
  2102. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2103. if ((temp & FDI_RX_BIT_LOCK)) {
  2104. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2105. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2106. break;
  2107. }
  2108. }
  2109. if (tries == 5)
  2110. DRM_ERROR("FDI train 1 fail!\n");
  2111. /* Train 2 */
  2112. reg = FDI_TX_CTL(pipe);
  2113. temp = I915_READ(reg);
  2114. temp &= ~FDI_LINK_TRAIN_NONE;
  2115. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2116. I915_WRITE(reg, temp);
  2117. reg = FDI_RX_CTL(pipe);
  2118. temp = I915_READ(reg);
  2119. temp &= ~FDI_LINK_TRAIN_NONE;
  2120. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2121. I915_WRITE(reg, temp);
  2122. POSTING_READ(reg);
  2123. udelay(150);
  2124. reg = FDI_RX_IIR(pipe);
  2125. for (tries = 0; tries < 5; tries++) {
  2126. temp = I915_READ(reg);
  2127. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2128. if (temp & FDI_RX_SYMBOL_LOCK) {
  2129. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2130. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2131. break;
  2132. }
  2133. }
  2134. if (tries == 5)
  2135. DRM_ERROR("FDI train 2 fail!\n");
  2136. DRM_DEBUG_KMS("FDI train done\n");
  2137. }
  2138. static const int snb_b_fdi_train_param[] = {
  2139. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2140. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2141. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2142. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2143. };
  2144. /* The FDI link training functions for SNB/Cougarpoint. */
  2145. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2146. {
  2147. struct drm_device *dev = crtc->dev;
  2148. struct drm_i915_private *dev_priv = dev->dev_private;
  2149. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2150. int pipe = intel_crtc->pipe;
  2151. u32 reg, temp, i, retry;
  2152. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2153. for train result */
  2154. reg = FDI_RX_IMR(pipe);
  2155. temp = I915_READ(reg);
  2156. temp &= ~FDI_RX_SYMBOL_LOCK;
  2157. temp &= ~FDI_RX_BIT_LOCK;
  2158. I915_WRITE(reg, temp);
  2159. POSTING_READ(reg);
  2160. udelay(150);
  2161. /* enable CPU FDI TX and PCH FDI RX */
  2162. reg = FDI_TX_CTL(pipe);
  2163. temp = I915_READ(reg);
  2164. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2165. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2166. temp &= ~FDI_LINK_TRAIN_NONE;
  2167. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2168. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2169. /* SNB-B */
  2170. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2171. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2172. I915_WRITE(FDI_RX_MISC(pipe),
  2173. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2174. reg = FDI_RX_CTL(pipe);
  2175. temp = I915_READ(reg);
  2176. if (HAS_PCH_CPT(dev)) {
  2177. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2178. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2179. } else {
  2180. temp &= ~FDI_LINK_TRAIN_NONE;
  2181. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2182. }
  2183. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2184. POSTING_READ(reg);
  2185. udelay(150);
  2186. for (i = 0; i < 4; i++) {
  2187. reg = FDI_TX_CTL(pipe);
  2188. temp = I915_READ(reg);
  2189. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2190. temp |= snb_b_fdi_train_param[i];
  2191. I915_WRITE(reg, temp);
  2192. POSTING_READ(reg);
  2193. udelay(500);
  2194. for (retry = 0; retry < 5; retry++) {
  2195. reg = FDI_RX_IIR(pipe);
  2196. temp = I915_READ(reg);
  2197. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2198. if (temp & FDI_RX_BIT_LOCK) {
  2199. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2200. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2201. break;
  2202. }
  2203. udelay(50);
  2204. }
  2205. if (retry < 5)
  2206. break;
  2207. }
  2208. if (i == 4)
  2209. DRM_ERROR("FDI train 1 fail!\n");
  2210. /* Train 2 */
  2211. reg = FDI_TX_CTL(pipe);
  2212. temp = I915_READ(reg);
  2213. temp &= ~FDI_LINK_TRAIN_NONE;
  2214. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2215. if (IS_GEN6(dev)) {
  2216. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2217. /* SNB-B */
  2218. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2219. }
  2220. I915_WRITE(reg, temp);
  2221. reg = FDI_RX_CTL(pipe);
  2222. temp = I915_READ(reg);
  2223. if (HAS_PCH_CPT(dev)) {
  2224. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2225. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2226. } else {
  2227. temp &= ~FDI_LINK_TRAIN_NONE;
  2228. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2229. }
  2230. I915_WRITE(reg, temp);
  2231. POSTING_READ(reg);
  2232. udelay(150);
  2233. for (i = 0; i < 4; i++) {
  2234. reg = FDI_TX_CTL(pipe);
  2235. temp = I915_READ(reg);
  2236. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2237. temp |= snb_b_fdi_train_param[i];
  2238. I915_WRITE(reg, temp);
  2239. POSTING_READ(reg);
  2240. udelay(500);
  2241. for (retry = 0; retry < 5; retry++) {
  2242. reg = FDI_RX_IIR(pipe);
  2243. temp = I915_READ(reg);
  2244. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2245. if (temp & FDI_RX_SYMBOL_LOCK) {
  2246. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2247. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2248. break;
  2249. }
  2250. udelay(50);
  2251. }
  2252. if (retry < 5)
  2253. break;
  2254. }
  2255. if (i == 4)
  2256. DRM_ERROR("FDI train 2 fail!\n");
  2257. DRM_DEBUG_KMS("FDI train done.\n");
  2258. }
  2259. /* Manual link training for Ivy Bridge A0 parts */
  2260. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2261. {
  2262. struct drm_device *dev = crtc->dev;
  2263. struct drm_i915_private *dev_priv = dev->dev_private;
  2264. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2265. int pipe = intel_crtc->pipe;
  2266. u32 reg, temp, i;
  2267. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2268. for train result */
  2269. reg = FDI_RX_IMR(pipe);
  2270. temp = I915_READ(reg);
  2271. temp &= ~FDI_RX_SYMBOL_LOCK;
  2272. temp &= ~FDI_RX_BIT_LOCK;
  2273. I915_WRITE(reg, temp);
  2274. POSTING_READ(reg);
  2275. udelay(150);
  2276. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2277. I915_READ(FDI_RX_IIR(pipe)));
  2278. /* enable CPU FDI TX and PCH FDI RX */
  2279. reg = FDI_TX_CTL(pipe);
  2280. temp = I915_READ(reg);
  2281. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2282. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2283. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2284. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2285. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2286. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2287. temp |= FDI_COMPOSITE_SYNC;
  2288. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2289. I915_WRITE(FDI_RX_MISC(pipe),
  2290. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2291. reg = FDI_RX_CTL(pipe);
  2292. temp = I915_READ(reg);
  2293. temp &= ~FDI_LINK_TRAIN_AUTO;
  2294. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2295. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2296. temp |= FDI_COMPOSITE_SYNC;
  2297. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2298. POSTING_READ(reg);
  2299. udelay(150);
  2300. for (i = 0; i < 4; i++) {
  2301. reg = FDI_TX_CTL(pipe);
  2302. temp = I915_READ(reg);
  2303. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2304. temp |= snb_b_fdi_train_param[i];
  2305. I915_WRITE(reg, temp);
  2306. POSTING_READ(reg);
  2307. udelay(500);
  2308. reg = FDI_RX_IIR(pipe);
  2309. temp = I915_READ(reg);
  2310. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2311. if (temp & FDI_RX_BIT_LOCK ||
  2312. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2313. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2314. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2315. break;
  2316. }
  2317. }
  2318. if (i == 4)
  2319. DRM_ERROR("FDI train 1 fail!\n");
  2320. /* Train 2 */
  2321. reg = FDI_TX_CTL(pipe);
  2322. temp = I915_READ(reg);
  2323. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2324. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2325. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2326. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2327. I915_WRITE(reg, temp);
  2328. reg = FDI_RX_CTL(pipe);
  2329. temp = I915_READ(reg);
  2330. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2331. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2332. I915_WRITE(reg, temp);
  2333. POSTING_READ(reg);
  2334. udelay(150);
  2335. for (i = 0; i < 4; i++) {
  2336. reg = FDI_TX_CTL(pipe);
  2337. temp = I915_READ(reg);
  2338. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2339. temp |= snb_b_fdi_train_param[i];
  2340. I915_WRITE(reg, temp);
  2341. POSTING_READ(reg);
  2342. udelay(500);
  2343. reg = FDI_RX_IIR(pipe);
  2344. temp = I915_READ(reg);
  2345. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2346. if (temp & FDI_RX_SYMBOL_LOCK) {
  2347. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2348. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2349. break;
  2350. }
  2351. }
  2352. if (i == 4)
  2353. DRM_ERROR("FDI train 2 fail!\n");
  2354. DRM_DEBUG_KMS("FDI train done.\n");
  2355. }
  2356. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2357. {
  2358. struct drm_device *dev = intel_crtc->base.dev;
  2359. struct drm_i915_private *dev_priv = dev->dev_private;
  2360. int pipe = intel_crtc->pipe;
  2361. u32 reg, temp;
  2362. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2363. reg = FDI_RX_CTL(pipe);
  2364. temp = I915_READ(reg);
  2365. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2366. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2367. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2368. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2369. POSTING_READ(reg);
  2370. udelay(200);
  2371. /* Switch from Rawclk to PCDclk */
  2372. temp = I915_READ(reg);
  2373. I915_WRITE(reg, temp | FDI_PCDCLK);
  2374. POSTING_READ(reg);
  2375. udelay(200);
  2376. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2377. reg = FDI_TX_CTL(pipe);
  2378. temp = I915_READ(reg);
  2379. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2380. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2381. POSTING_READ(reg);
  2382. udelay(100);
  2383. }
  2384. }
  2385. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2386. {
  2387. struct drm_device *dev = intel_crtc->base.dev;
  2388. struct drm_i915_private *dev_priv = dev->dev_private;
  2389. int pipe = intel_crtc->pipe;
  2390. u32 reg, temp;
  2391. /* Switch from PCDclk to Rawclk */
  2392. reg = FDI_RX_CTL(pipe);
  2393. temp = I915_READ(reg);
  2394. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2395. /* Disable CPU FDI TX PLL */
  2396. reg = FDI_TX_CTL(pipe);
  2397. temp = I915_READ(reg);
  2398. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2399. POSTING_READ(reg);
  2400. udelay(100);
  2401. reg = FDI_RX_CTL(pipe);
  2402. temp = I915_READ(reg);
  2403. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2404. /* Wait for the clocks to turn off. */
  2405. POSTING_READ(reg);
  2406. udelay(100);
  2407. }
  2408. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2409. {
  2410. struct drm_device *dev = crtc->dev;
  2411. struct drm_i915_private *dev_priv = dev->dev_private;
  2412. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2413. int pipe = intel_crtc->pipe;
  2414. u32 reg, temp;
  2415. /* disable CPU FDI tx and PCH FDI rx */
  2416. reg = FDI_TX_CTL(pipe);
  2417. temp = I915_READ(reg);
  2418. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2419. POSTING_READ(reg);
  2420. reg = FDI_RX_CTL(pipe);
  2421. temp = I915_READ(reg);
  2422. temp &= ~(0x7 << 16);
  2423. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2424. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2425. POSTING_READ(reg);
  2426. udelay(100);
  2427. /* Ironlake workaround, disable clock pointer after downing FDI */
  2428. if (HAS_PCH_IBX(dev)) {
  2429. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2430. }
  2431. /* still set train pattern 1 */
  2432. reg = FDI_TX_CTL(pipe);
  2433. temp = I915_READ(reg);
  2434. temp &= ~FDI_LINK_TRAIN_NONE;
  2435. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2436. I915_WRITE(reg, temp);
  2437. reg = FDI_RX_CTL(pipe);
  2438. temp = I915_READ(reg);
  2439. if (HAS_PCH_CPT(dev)) {
  2440. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2441. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2442. } else {
  2443. temp &= ~FDI_LINK_TRAIN_NONE;
  2444. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2445. }
  2446. /* BPC in FDI rx is consistent with that in PIPECONF */
  2447. temp &= ~(0x07 << 16);
  2448. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2449. I915_WRITE(reg, temp);
  2450. POSTING_READ(reg);
  2451. udelay(100);
  2452. }
  2453. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2454. {
  2455. struct drm_device *dev = crtc->dev;
  2456. struct drm_i915_private *dev_priv = dev->dev_private;
  2457. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2458. unsigned long flags;
  2459. bool pending;
  2460. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2461. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2462. return false;
  2463. spin_lock_irqsave(&dev->event_lock, flags);
  2464. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2465. spin_unlock_irqrestore(&dev->event_lock, flags);
  2466. return pending;
  2467. }
  2468. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2469. {
  2470. struct drm_device *dev = crtc->dev;
  2471. struct drm_i915_private *dev_priv = dev->dev_private;
  2472. if (crtc->fb == NULL)
  2473. return;
  2474. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2475. wait_event(dev_priv->pending_flip_queue,
  2476. !intel_crtc_has_pending_flip(crtc));
  2477. mutex_lock(&dev->struct_mutex);
  2478. intel_finish_fb(crtc->fb);
  2479. mutex_unlock(&dev->struct_mutex);
  2480. }
  2481. /* Program iCLKIP clock to the desired frequency */
  2482. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2483. {
  2484. struct drm_device *dev = crtc->dev;
  2485. struct drm_i915_private *dev_priv = dev->dev_private;
  2486. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2487. u32 temp;
  2488. mutex_lock(&dev_priv->dpio_lock);
  2489. /* It is necessary to ungate the pixclk gate prior to programming
  2490. * the divisors, and gate it back when it is done.
  2491. */
  2492. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2493. /* Disable SSCCTL */
  2494. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2495. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2496. SBI_SSCCTL_DISABLE,
  2497. SBI_ICLK);
  2498. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2499. if (crtc->mode.clock == 20000) {
  2500. auxdiv = 1;
  2501. divsel = 0x41;
  2502. phaseinc = 0x20;
  2503. } else {
  2504. /* The iCLK virtual clock root frequency is in MHz,
  2505. * but the crtc->mode.clock in in KHz. To get the divisors,
  2506. * it is necessary to divide one by another, so we
  2507. * convert the virtual clock precision to KHz here for higher
  2508. * precision.
  2509. */
  2510. u32 iclk_virtual_root_freq = 172800 * 1000;
  2511. u32 iclk_pi_range = 64;
  2512. u32 desired_divisor, msb_divisor_value, pi_value;
  2513. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2514. msb_divisor_value = desired_divisor / iclk_pi_range;
  2515. pi_value = desired_divisor % iclk_pi_range;
  2516. auxdiv = 0;
  2517. divsel = msb_divisor_value - 2;
  2518. phaseinc = pi_value;
  2519. }
  2520. /* This should not happen with any sane values */
  2521. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2522. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2523. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2524. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2525. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2526. crtc->mode.clock,
  2527. auxdiv,
  2528. divsel,
  2529. phasedir,
  2530. phaseinc);
  2531. /* Program SSCDIVINTPHASE6 */
  2532. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2533. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2534. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2535. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2536. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2537. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2538. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2539. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2540. /* Program SSCAUXDIV */
  2541. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2542. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2543. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2544. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2545. /* Enable modulator and associated divider */
  2546. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2547. temp &= ~SBI_SSCCTL_DISABLE;
  2548. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2549. /* Wait for initialization time */
  2550. udelay(24);
  2551. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2552. mutex_unlock(&dev_priv->dpio_lock);
  2553. }
  2554. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2555. enum pipe pch_transcoder)
  2556. {
  2557. struct drm_device *dev = crtc->base.dev;
  2558. struct drm_i915_private *dev_priv = dev->dev_private;
  2559. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2560. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2561. I915_READ(HTOTAL(cpu_transcoder)));
  2562. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2563. I915_READ(HBLANK(cpu_transcoder)));
  2564. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2565. I915_READ(HSYNC(cpu_transcoder)));
  2566. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2567. I915_READ(VTOTAL(cpu_transcoder)));
  2568. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2569. I915_READ(VBLANK(cpu_transcoder)));
  2570. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2571. I915_READ(VSYNC(cpu_transcoder)));
  2572. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2573. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2574. }
  2575. /*
  2576. * Enable PCH resources required for PCH ports:
  2577. * - PCH PLLs
  2578. * - FDI training & RX/TX
  2579. * - update transcoder timings
  2580. * - DP transcoding bits
  2581. * - transcoder
  2582. */
  2583. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2584. {
  2585. struct drm_device *dev = crtc->dev;
  2586. struct drm_i915_private *dev_priv = dev->dev_private;
  2587. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2588. int pipe = intel_crtc->pipe;
  2589. u32 reg, temp;
  2590. assert_pch_transcoder_disabled(dev_priv, pipe);
  2591. /* Write the TU size bits before fdi link training, so that error
  2592. * detection works. */
  2593. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2594. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2595. /* For PCH output, training FDI link */
  2596. dev_priv->display.fdi_link_train(crtc);
  2597. /* We need to program the right clock selection before writing the pixel
  2598. * mutliplier into the DPLL. */
  2599. if (HAS_PCH_CPT(dev)) {
  2600. u32 sel;
  2601. temp = I915_READ(PCH_DPLL_SEL);
  2602. temp |= TRANS_DPLL_ENABLE(pipe);
  2603. sel = TRANS_DPLLB_SEL(pipe);
  2604. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2605. temp |= sel;
  2606. else
  2607. temp &= ~sel;
  2608. I915_WRITE(PCH_DPLL_SEL, temp);
  2609. }
  2610. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2611. * transcoder, and we actually should do this to not upset any PCH
  2612. * transcoder that already use the clock when we share it.
  2613. *
  2614. * Note that enable_shared_dpll tries to do the right thing, but
  2615. * get_shared_dpll unconditionally resets the pll - we need that to have
  2616. * the right LVDS enable sequence. */
  2617. ironlake_enable_shared_dpll(intel_crtc);
  2618. /* set transcoder timing, panel must allow it */
  2619. assert_panel_unlocked(dev_priv, pipe);
  2620. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2621. intel_fdi_normal_train(crtc);
  2622. /* For PCH DP, enable TRANS_DP_CTL */
  2623. if (HAS_PCH_CPT(dev) &&
  2624. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2625. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2626. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2627. reg = TRANS_DP_CTL(pipe);
  2628. temp = I915_READ(reg);
  2629. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2630. TRANS_DP_SYNC_MASK |
  2631. TRANS_DP_BPC_MASK);
  2632. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2633. TRANS_DP_ENH_FRAMING);
  2634. temp |= bpc << 9; /* same format but at 11:9 */
  2635. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2636. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2637. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2638. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2639. switch (intel_trans_dp_port_sel(crtc)) {
  2640. case PCH_DP_B:
  2641. temp |= TRANS_DP_PORT_SEL_B;
  2642. break;
  2643. case PCH_DP_C:
  2644. temp |= TRANS_DP_PORT_SEL_C;
  2645. break;
  2646. case PCH_DP_D:
  2647. temp |= TRANS_DP_PORT_SEL_D;
  2648. break;
  2649. default:
  2650. BUG();
  2651. }
  2652. I915_WRITE(reg, temp);
  2653. }
  2654. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2655. }
  2656. static void lpt_pch_enable(struct drm_crtc *crtc)
  2657. {
  2658. struct drm_device *dev = crtc->dev;
  2659. struct drm_i915_private *dev_priv = dev->dev_private;
  2660. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2661. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2662. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2663. lpt_program_iclkip(crtc);
  2664. /* Set transcoder timing. */
  2665. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2666. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2667. }
  2668. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2669. {
  2670. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2671. if (pll == NULL)
  2672. return;
  2673. if (pll->refcount == 0) {
  2674. WARN(1, "bad %s refcount\n", pll->name);
  2675. return;
  2676. }
  2677. if (--pll->refcount == 0) {
  2678. WARN_ON(pll->on);
  2679. WARN_ON(pll->active);
  2680. }
  2681. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2682. }
  2683. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2684. {
  2685. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2686. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2687. enum intel_dpll_id i;
  2688. if (pll) {
  2689. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2690. crtc->base.base.id, pll->name);
  2691. intel_put_shared_dpll(crtc);
  2692. }
  2693. if (HAS_PCH_IBX(dev_priv->dev)) {
  2694. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2695. i = (enum intel_dpll_id) crtc->pipe;
  2696. pll = &dev_priv->shared_dplls[i];
  2697. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2698. crtc->base.base.id, pll->name);
  2699. goto found;
  2700. }
  2701. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2702. pll = &dev_priv->shared_dplls[i];
  2703. /* Only want to check enabled timings first */
  2704. if (pll->refcount == 0)
  2705. continue;
  2706. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2707. sizeof(pll->hw_state)) == 0) {
  2708. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2709. crtc->base.base.id,
  2710. pll->name, pll->refcount, pll->active);
  2711. goto found;
  2712. }
  2713. }
  2714. /* Ok no matching timings, maybe there's a free one? */
  2715. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2716. pll = &dev_priv->shared_dplls[i];
  2717. if (pll->refcount == 0) {
  2718. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2719. crtc->base.base.id, pll->name);
  2720. goto found;
  2721. }
  2722. }
  2723. return NULL;
  2724. found:
  2725. crtc->config.shared_dpll = i;
  2726. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2727. pipe_name(crtc->pipe));
  2728. if (pll->active == 0) {
  2729. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2730. sizeof(pll->hw_state));
  2731. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2732. WARN_ON(pll->on);
  2733. assert_shared_dpll_disabled(dev_priv, pll);
  2734. pll->mode_set(dev_priv, pll);
  2735. }
  2736. pll->refcount++;
  2737. return pll;
  2738. }
  2739. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2740. {
  2741. struct drm_i915_private *dev_priv = dev->dev_private;
  2742. int dslreg = PIPEDSL(pipe);
  2743. u32 temp;
  2744. temp = I915_READ(dslreg);
  2745. udelay(500);
  2746. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2747. if (wait_for(I915_READ(dslreg) != temp, 5))
  2748. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2749. }
  2750. }
  2751. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2752. {
  2753. struct drm_device *dev = crtc->base.dev;
  2754. struct drm_i915_private *dev_priv = dev->dev_private;
  2755. int pipe = crtc->pipe;
  2756. if (crtc->config.pch_pfit.size) {
  2757. /* Force use of hard-coded filter coefficients
  2758. * as some pre-programmed values are broken,
  2759. * e.g. x201.
  2760. */
  2761. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2762. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2763. PF_PIPE_SEL_IVB(pipe));
  2764. else
  2765. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2766. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2767. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2768. }
  2769. }
  2770. static void intel_enable_planes(struct drm_crtc *crtc)
  2771. {
  2772. struct drm_device *dev = crtc->dev;
  2773. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2774. struct intel_plane *intel_plane;
  2775. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2776. if (intel_plane->pipe == pipe)
  2777. intel_plane_restore(&intel_plane->base);
  2778. }
  2779. static void intel_disable_planes(struct drm_crtc *crtc)
  2780. {
  2781. struct drm_device *dev = crtc->dev;
  2782. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2783. struct intel_plane *intel_plane;
  2784. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2785. if (intel_plane->pipe == pipe)
  2786. intel_plane_disable(&intel_plane->base);
  2787. }
  2788. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2789. {
  2790. struct drm_device *dev = crtc->dev;
  2791. struct drm_i915_private *dev_priv = dev->dev_private;
  2792. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2793. struct intel_encoder *encoder;
  2794. int pipe = intel_crtc->pipe;
  2795. int plane = intel_crtc->plane;
  2796. WARN_ON(!crtc->enabled);
  2797. if (intel_crtc->active)
  2798. return;
  2799. intel_crtc->active = true;
  2800. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2801. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2802. intel_update_watermarks(dev);
  2803. for_each_encoder_on_crtc(dev, crtc, encoder)
  2804. if (encoder->pre_enable)
  2805. encoder->pre_enable(encoder);
  2806. if (intel_crtc->config.has_pch_encoder) {
  2807. /* Note: FDI PLL enabling _must_ be done before we enable the
  2808. * cpu pipes, hence this is separate from all the other fdi/pch
  2809. * enabling. */
  2810. ironlake_fdi_pll_enable(intel_crtc);
  2811. } else {
  2812. assert_fdi_tx_disabled(dev_priv, pipe);
  2813. assert_fdi_rx_disabled(dev_priv, pipe);
  2814. }
  2815. ironlake_pfit_enable(intel_crtc);
  2816. /*
  2817. * On ILK+ LUT must be loaded before the pipe is running but with
  2818. * clocks enabled
  2819. */
  2820. intel_crtc_load_lut(crtc);
  2821. intel_enable_pipe(dev_priv, pipe,
  2822. intel_crtc->config.has_pch_encoder);
  2823. intel_enable_plane(dev_priv, plane, pipe);
  2824. intel_enable_planes(crtc);
  2825. intel_crtc_update_cursor(crtc, true);
  2826. if (intel_crtc->config.has_pch_encoder)
  2827. ironlake_pch_enable(crtc);
  2828. mutex_lock(&dev->struct_mutex);
  2829. intel_update_fbc(dev);
  2830. mutex_unlock(&dev->struct_mutex);
  2831. for_each_encoder_on_crtc(dev, crtc, encoder)
  2832. encoder->enable(encoder);
  2833. if (HAS_PCH_CPT(dev))
  2834. cpt_verify_modeset(dev, intel_crtc->pipe);
  2835. /*
  2836. * There seems to be a race in PCH platform hw (at least on some
  2837. * outputs) where an enabled pipe still completes any pageflip right
  2838. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2839. * as the first vblank happend, everything works as expected. Hence just
  2840. * wait for one vblank before returning to avoid strange things
  2841. * happening.
  2842. */
  2843. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2844. }
  2845. /* IPS only exists on ULT machines and is tied to pipe A. */
  2846. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2847. {
  2848. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2849. }
  2850. static void hsw_enable_ips(struct intel_crtc *crtc)
  2851. {
  2852. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2853. if (!crtc->config.ips_enabled)
  2854. return;
  2855. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2856. * We guarantee that the plane is enabled by calling intel_enable_ips
  2857. * only after intel_enable_plane. And intel_enable_plane already waits
  2858. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2859. assert_plane_enabled(dev_priv, crtc->plane);
  2860. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2861. }
  2862. static void hsw_disable_ips(struct intel_crtc *crtc)
  2863. {
  2864. struct drm_device *dev = crtc->base.dev;
  2865. struct drm_i915_private *dev_priv = dev->dev_private;
  2866. if (!crtc->config.ips_enabled)
  2867. return;
  2868. assert_plane_enabled(dev_priv, crtc->plane);
  2869. I915_WRITE(IPS_CTL, 0);
  2870. /* We need to wait for a vblank before we can disable the plane. */
  2871. intel_wait_for_vblank(dev, crtc->pipe);
  2872. }
  2873. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2874. {
  2875. struct drm_device *dev = crtc->dev;
  2876. struct drm_i915_private *dev_priv = dev->dev_private;
  2877. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2878. struct intel_encoder *encoder;
  2879. int pipe = intel_crtc->pipe;
  2880. int plane = intel_crtc->plane;
  2881. WARN_ON(!crtc->enabled);
  2882. if (intel_crtc->active)
  2883. return;
  2884. intel_crtc->active = true;
  2885. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2886. if (intel_crtc->config.has_pch_encoder)
  2887. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2888. intel_update_watermarks(dev);
  2889. if (intel_crtc->config.has_pch_encoder)
  2890. dev_priv->display.fdi_link_train(crtc);
  2891. for_each_encoder_on_crtc(dev, crtc, encoder)
  2892. if (encoder->pre_enable)
  2893. encoder->pre_enable(encoder);
  2894. intel_ddi_enable_pipe_clock(intel_crtc);
  2895. ironlake_pfit_enable(intel_crtc);
  2896. /*
  2897. * On ILK+ LUT must be loaded before the pipe is running but with
  2898. * clocks enabled
  2899. */
  2900. intel_crtc_load_lut(crtc);
  2901. intel_ddi_set_pipe_settings(crtc);
  2902. intel_ddi_enable_transcoder_func(crtc);
  2903. intel_enable_pipe(dev_priv, pipe,
  2904. intel_crtc->config.has_pch_encoder);
  2905. intel_enable_plane(dev_priv, plane, pipe);
  2906. intel_enable_planes(crtc);
  2907. intel_crtc_update_cursor(crtc, true);
  2908. hsw_enable_ips(intel_crtc);
  2909. if (intel_crtc->config.has_pch_encoder)
  2910. lpt_pch_enable(crtc);
  2911. mutex_lock(&dev->struct_mutex);
  2912. intel_update_fbc(dev);
  2913. mutex_unlock(&dev->struct_mutex);
  2914. for_each_encoder_on_crtc(dev, crtc, encoder)
  2915. encoder->enable(encoder);
  2916. /*
  2917. * There seems to be a race in PCH platform hw (at least on some
  2918. * outputs) where an enabled pipe still completes any pageflip right
  2919. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2920. * as the first vblank happend, everything works as expected. Hence just
  2921. * wait for one vblank before returning to avoid strange things
  2922. * happening.
  2923. */
  2924. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2925. }
  2926. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2927. {
  2928. struct drm_device *dev = crtc->base.dev;
  2929. struct drm_i915_private *dev_priv = dev->dev_private;
  2930. int pipe = crtc->pipe;
  2931. /* To avoid upsetting the power well on haswell only disable the pfit if
  2932. * it's in use. The hw state code will make sure we get this right. */
  2933. if (crtc->config.pch_pfit.size) {
  2934. I915_WRITE(PF_CTL(pipe), 0);
  2935. I915_WRITE(PF_WIN_POS(pipe), 0);
  2936. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2937. }
  2938. }
  2939. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2940. {
  2941. struct drm_device *dev = crtc->dev;
  2942. struct drm_i915_private *dev_priv = dev->dev_private;
  2943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2944. struct intel_encoder *encoder;
  2945. int pipe = intel_crtc->pipe;
  2946. int plane = intel_crtc->plane;
  2947. u32 reg, temp;
  2948. if (!intel_crtc->active)
  2949. return;
  2950. for_each_encoder_on_crtc(dev, crtc, encoder)
  2951. encoder->disable(encoder);
  2952. intel_crtc_wait_for_pending_flips(crtc);
  2953. drm_vblank_off(dev, pipe);
  2954. if (dev_priv->fbc.plane == plane)
  2955. intel_disable_fbc(dev);
  2956. intel_crtc_update_cursor(crtc, false);
  2957. intel_disable_planes(crtc);
  2958. intel_disable_plane(dev_priv, plane, pipe);
  2959. if (intel_crtc->config.has_pch_encoder)
  2960. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2961. intel_disable_pipe(dev_priv, pipe);
  2962. ironlake_pfit_disable(intel_crtc);
  2963. for_each_encoder_on_crtc(dev, crtc, encoder)
  2964. if (encoder->post_disable)
  2965. encoder->post_disable(encoder);
  2966. if (intel_crtc->config.has_pch_encoder) {
  2967. ironlake_fdi_disable(crtc);
  2968. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2969. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2970. if (HAS_PCH_CPT(dev)) {
  2971. /* disable TRANS_DP_CTL */
  2972. reg = TRANS_DP_CTL(pipe);
  2973. temp = I915_READ(reg);
  2974. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2975. TRANS_DP_PORT_SEL_MASK);
  2976. temp |= TRANS_DP_PORT_SEL_NONE;
  2977. I915_WRITE(reg, temp);
  2978. /* disable DPLL_SEL */
  2979. temp = I915_READ(PCH_DPLL_SEL);
  2980. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2981. I915_WRITE(PCH_DPLL_SEL, temp);
  2982. }
  2983. /* disable PCH DPLL */
  2984. intel_disable_shared_dpll(intel_crtc);
  2985. ironlake_fdi_pll_disable(intel_crtc);
  2986. }
  2987. intel_crtc->active = false;
  2988. intel_update_watermarks(dev);
  2989. mutex_lock(&dev->struct_mutex);
  2990. intel_update_fbc(dev);
  2991. mutex_unlock(&dev->struct_mutex);
  2992. }
  2993. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2994. {
  2995. struct drm_device *dev = crtc->dev;
  2996. struct drm_i915_private *dev_priv = dev->dev_private;
  2997. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2998. struct intel_encoder *encoder;
  2999. int pipe = intel_crtc->pipe;
  3000. int plane = intel_crtc->plane;
  3001. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3002. if (!intel_crtc->active)
  3003. return;
  3004. for_each_encoder_on_crtc(dev, crtc, encoder)
  3005. encoder->disable(encoder);
  3006. intel_crtc_wait_for_pending_flips(crtc);
  3007. drm_vblank_off(dev, pipe);
  3008. /* FBC must be disabled before disabling the plane on HSW. */
  3009. if (dev_priv->fbc.plane == plane)
  3010. intel_disable_fbc(dev);
  3011. hsw_disable_ips(intel_crtc);
  3012. intel_crtc_update_cursor(crtc, false);
  3013. intel_disable_planes(crtc);
  3014. intel_disable_plane(dev_priv, plane, pipe);
  3015. if (intel_crtc->config.has_pch_encoder)
  3016. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3017. intel_disable_pipe(dev_priv, pipe);
  3018. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3019. ironlake_pfit_disable(intel_crtc);
  3020. intel_ddi_disable_pipe_clock(intel_crtc);
  3021. for_each_encoder_on_crtc(dev, crtc, encoder)
  3022. if (encoder->post_disable)
  3023. encoder->post_disable(encoder);
  3024. if (intel_crtc->config.has_pch_encoder) {
  3025. lpt_disable_pch_transcoder(dev_priv);
  3026. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3027. intel_ddi_fdi_disable(crtc);
  3028. }
  3029. intel_crtc->active = false;
  3030. intel_update_watermarks(dev);
  3031. mutex_lock(&dev->struct_mutex);
  3032. intel_update_fbc(dev);
  3033. mutex_unlock(&dev->struct_mutex);
  3034. }
  3035. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3036. {
  3037. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3038. intel_put_shared_dpll(intel_crtc);
  3039. }
  3040. static void haswell_crtc_off(struct drm_crtc *crtc)
  3041. {
  3042. intel_ddi_put_crtc_pll(crtc);
  3043. }
  3044. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3045. {
  3046. if (!enable && intel_crtc->overlay) {
  3047. struct drm_device *dev = intel_crtc->base.dev;
  3048. struct drm_i915_private *dev_priv = dev->dev_private;
  3049. mutex_lock(&dev->struct_mutex);
  3050. dev_priv->mm.interruptible = false;
  3051. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3052. dev_priv->mm.interruptible = true;
  3053. mutex_unlock(&dev->struct_mutex);
  3054. }
  3055. /* Let userspace switch the overlay on again. In most cases userspace
  3056. * has to recompute where to put it anyway.
  3057. */
  3058. }
  3059. /**
  3060. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3061. * cursor plane briefly if not already running after enabling the display
  3062. * plane.
  3063. * This workaround avoids occasional blank screens when self refresh is
  3064. * enabled.
  3065. */
  3066. static void
  3067. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3068. {
  3069. u32 cntl = I915_READ(CURCNTR(pipe));
  3070. if ((cntl & CURSOR_MODE) == 0) {
  3071. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3072. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3073. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3074. intel_wait_for_vblank(dev_priv->dev, pipe);
  3075. I915_WRITE(CURCNTR(pipe), cntl);
  3076. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3077. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3078. }
  3079. }
  3080. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3081. {
  3082. struct drm_device *dev = crtc->base.dev;
  3083. struct drm_i915_private *dev_priv = dev->dev_private;
  3084. struct intel_crtc_config *pipe_config = &crtc->config;
  3085. if (!crtc->config.gmch_pfit.control)
  3086. return;
  3087. /*
  3088. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3089. * according to register description and PRM.
  3090. */
  3091. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3092. assert_pipe_disabled(dev_priv, crtc->pipe);
  3093. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3094. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3095. /* Border color in case we don't scale up to the full screen. Black by
  3096. * default, change to something else for debugging. */
  3097. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3098. }
  3099. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3100. {
  3101. struct drm_device *dev = crtc->dev;
  3102. struct drm_i915_private *dev_priv = dev->dev_private;
  3103. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3104. struct intel_encoder *encoder;
  3105. int pipe = intel_crtc->pipe;
  3106. int plane = intel_crtc->plane;
  3107. WARN_ON(!crtc->enabled);
  3108. if (intel_crtc->active)
  3109. return;
  3110. intel_crtc->active = true;
  3111. intel_update_watermarks(dev);
  3112. mutex_lock(&dev_priv->dpio_lock);
  3113. for_each_encoder_on_crtc(dev, crtc, encoder)
  3114. if (encoder->pre_pll_enable)
  3115. encoder->pre_pll_enable(encoder);
  3116. vlv_enable_pll(intel_crtc);
  3117. for_each_encoder_on_crtc(dev, crtc, encoder)
  3118. if (encoder->pre_enable)
  3119. encoder->pre_enable(encoder);
  3120. /* VLV wants encoder enabling _before_ the pipe is up. */
  3121. for_each_encoder_on_crtc(dev, crtc, encoder)
  3122. encoder->enable(encoder);
  3123. i9xx_pfit_enable(intel_crtc);
  3124. intel_crtc_load_lut(crtc);
  3125. intel_enable_pipe(dev_priv, pipe, false);
  3126. intel_enable_plane(dev_priv, plane, pipe);
  3127. intel_enable_planes(crtc);
  3128. intel_crtc_update_cursor(crtc, true);
  3129. intel_update_fbc(dev);
  3130. mutex_unlock(&dev_priv->dpio_lock);
  3131. }
  3132. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3133. {
  3134. struct drm_device *dev = crtc->dev;
  3135. struct drm_i915_private *dev_priv = dev->dev_private;
  3136. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3137. struct intel_encoder *encoder;
  3138. int pipe = intel_crtc->pipe;
  3139. int plane = intel_crtc->plane;
  3140. WARN_ON(!crtc->enabled);
  3141. if (intel_crtc->active)
  3142. return;
  3143. intel_crtc->active = true;
  3144. intel_update_watermarks(dev);
  3145. for_each_encoder_on_crtc(dev, crtc, encoder)
  3146. if (encoder->pre_enable)
  3147. encoder->pre_enable(encoder);
  3148. i9xx_enable_pll(intel_crtc);
  3149. i9xx_pfit_enable(intel_crtc);
  3150. intel_crtc_load_lut(crtc);
  3151. intel_enable_pipe(dev_priv, pipe, false);
  3152. intel_enable_plane(dev_priv, plane, pipe);
  3153. intel_enable_planes(crtc);
  3154. /* The fixup needs to happen before cursor is enabled */
  3155. if (IS_G4X(dev))
  3156. g4x_fixup_plane(dev_priv, pipe);
  3157. intel_crtc_update_cursor(crtc, true);
  3158. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3159. intel_crtc_dpms_overlay(intel_crtc, true);
  3160. intel_update_fbc(dev);
  3161. for_each_encoder_on_crtc(dev, crtc, encoder)
  3162. encoder->enable(encoder);
  3163. }
  3164. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3165. {
  3166. struct drm_device *dev = crtc->base.dev;
  3167. struct drm_i915_private *dev_priv = dev->dev_private;
  3168. if (!crtc->config.gmch_pfit.control)
  3169. return;
  3170. assert_pipe_disabled(dev_priv, crtc->pipe);
  3171. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3172. I915_READ(PFIT_CONTROL));
  3173. I915_WRITE(PFIT_CONTROL, 0);
  3174. }
  3175. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3176. {
  3177. struct drm_device *dev = crtc->dev;
  3178. struct drm_i915_private *dev_priv = dev->dev_private;
  3179. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3180. struct intel_encoder *encoder;
  3181. int pipe = intel_crtc->pipe;
  3182. int plane = intel_crtc->plane;
  3183. if (!intel_crtc->active)
  3184. return;
  3185. for_each_encoder_on_crtc(dev, crtc, encoder)
  3186. encoder->disable(encoder);
  3187. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3188. intel_crtc_wait_for_pending_flips(crtc);
  3189. drm_vblank_off(dev, pipe);
  3190. if (dev_priv->fbc.plane == plane)
  3191. intel_disable_fbc(dev);
  3192. intel_crtc_dpms_overlay(intel_crtc, false);
  3193. intel_crtc_update_cursor(crtc, false);
  3194. intel_disable_planes(crtc);
  3195. intel_disable_plane(dev_priv, plane, pipe);
  3196. intel_disable_pipe(dev_priv, pipe);
  3197. i9xx_pfit_disable(intel_crtc);
  3198. for_each_encoder_on_crtc(dev, crtc, encoder)
  3199. if (encoder->post_disable)
  3200. encoder->post_disable(encoder);
  3201. i9xx_disable_pll(dev_priv, pipe);
  3202. intel_crtc->active = false;
  3203. intel_update_fbc(dev);
  3204. intel_update_watermarks(dev);
  3205. }
  3206. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3207. {
  3208. }
  3209. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3210. bool enabled)
  3211. {
  3212. struct drm_device *dev = crtc->dev;
  3213. struct drm_i915_master_private *master_priv;
  3214. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3215. int pipe = intel_crtc->pipe;
  3216. if (!dev->primary->master)
  3217. return;
  3218. master_priv = dev->primary->master->driver_priv;
  3219. if (!master_priv->sarea_priv)
  3220. return;
  3221. switch (pipe) {
  3222. case 0:
  3223. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3224. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3225. break;
  3226. case 1:
  3227. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3228. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3229. break;
  3230. default:
  3231. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3232. break;
  3233. }
  3234. }
  3235. /**
  3236. * Sets the power management mode of the pipe and plane.
  3237. */
  3238. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3239. {
  3240. struct drm_device *dev = crtc->dev;
  3241. struct drm_i915_private *dev_priv = dev->dev_private;
  3242. struct intel_encoder *intel_encoder;
  3243. bool enable = false;
  3244. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3245. enable |= intel_encoder->connectors_active;
  3246. if (enable)
  3247. dev_priv->display.crtc_enable(crtc);
  3248. else
  3249. dev_priv->display.crtc_disable(crtc);
  3250. intel_crtc_update_sarea(crtc, enable);
  3251. }
  3252. static void intel_crtc_disable(struct drm_crtc *crtc)
  3253. {
  3254. struct drm_device *dev = crtc->dev;
  3255. struct drm_connector *connector;
  3256. struct drm_i915_private *dev_priv = dev->dev_private;
  3257. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3258. /* crtc should still be enabled when we disable it. */
  3259. WARN_ON(!crtc->enabled);
  3260. dev_priv->display.crtc_disable(crtc);
  3261. intel_crtc->eld_vld = false;
  3262. intel_crtc_update_sarea(crtc, false);
  3263. dev_priv->display.off(crtc);
  3264. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3265. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3266. if (crtc->fb) {
  3267. mutex_lock(&dev->struct_mutex);
  3268. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3269. mutex_unlock(&dev->struct_mutex);
  3270. crtc->fb = NULL;
  3271. }
  3272. /* Update computed state. */
  3273. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3274. if (!connector->encoder || !connector->encoder->crtc)
  3275. continue;
  3276. if (connector->encoder->crtc != crtc)
  3277. continue;
  3278. connector->dpms = DRM_MODE_DPMS_OFF;
  3279. to_intel_encoder(connector->encoder)->connectors_active = false;
  3280. }
  3281. }
  3282. void intel_modeset_disable(struct drm_device *dev)
  3283. {
  3284. struct drm_crtc *crtc;
  3285. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3286. if (crtc->enabled)
  3287. intel_crtc_disable(crtc);
  3288. }
  3289. }
  3290. void intel_encoder_destroy(struct drm_encoder *encoder)
  3291. {
  3292. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3293. drm_encoder_cleanup(encoder);
  3294. kfree(intel_encoder);
  3295. }
  3296. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3297. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3298. * state of the entire output pipe. */
  3299. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3300. {
  3301. if (mode == DRM_MODE_DPMS_ON) {
  3302. encoder->connectors_active = true;
  3303. intel_crtc_update_dpms(encoder->base.crtc);
  3304. } else {
  3305. encoder->connectors_active = false;
  3306. intel_crtc_update_dpms(encoder->base.crtc);
  3307. }
  3308. }
  3309. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3310. * internal consistency). */
  3311. static void intel_connector_check_state(struct intel_connector *connector)
  3312. {
  3313. if (connector->get_hw_state(connector)) {
  3314. struct intel_encoder *encoder = connector->encoder;
  3315. struct drm_crtc *crtc;
  3316. bool encoder_enabled;
  3317. enum pipe pipe;
  3318. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3319. connector->base.base.id,
  3320. drm_get_connector_name(&connector->base));
  3321. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3322. "wrong connector dpms state\n");
  3323. WARN(connector->base.encoder != &encoder->base,
  3324. "active connector not linked to encoder\n");
  3325. WARN(!encoder->connectors_active,
  3326. "encoder->connectors_active not set\n");
  3327. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3328. WARN(!encoder_enabled, "encoder not enabled\n");
  3329. if (WARN_ON(!encoder->base.crtc))
  3330. return;
  3331. crtc = encoder->base.crtc;
  3332. WARN(!crtc->enabled, "crtc not enabled\n");
  3333. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3334. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3335. "encoder active on the wrong pipe\n");
  3336. }
  3337. }
  3338. /* Even simpler default implementation, if there's really no special case to
  3339. * consider. */
  3340. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3341. {
  3342. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3343. /* All the simple cases only support two dpms states. */
  3344. if (mode != DRM_MODE_DPMS_ON)
  3345. mode = DRM_MODE_DPMS_OFF;
  3346. if (mode == connector->dpms)
  3347. return;
  3348. connector->dpms = mode;
  3349. /* Only need to change hw state when actually enabled */
  3350. if (encoder->base.crtc)
  3351. intel_encoder_dpms(encoder, mode);
  3352. else
  3353. WARN_ON(encoder->connectors_active != false);
  3354. intel_modeset_check_state(connector->dev);
  3355. }
  3356. /* Simple connector->get_hw_state implementation for encoders that support only
  3357. * one connector and no cloning and hence the encoder state determines the state
  3358. * of the connector. */
  3359. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3360. {
  3361. enum pipe pipe = 0;
  3362. struct intel_encoder *encoder = connector->encoder;
  3363. return encoder->get_hw_state(encoder, &pipe);
  3364. }
  3365. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3366. struct intel_crtc_config *pipe_config)
  3367. {
  3368. struct drm_i915_private *dev_priv = dev->dev_private;
  3369. struct intel_crtc *pipe_B_crtc =
  3370. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3371. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3372. pipe_name(pipe), pipe_config->fdi_lanes);
  3373. if (pipe_config->fdi_lanes > 4) {
  3374. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3375. pipe_name(pipe), pipe_config->fdi_lanes);
  3376. return false;
  3377. }
  3378. if (IS_HASWELL(dev)) {
  3379. if (pipe_config->fdi_lanes > 2) {
  3380. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3381. pipe_config->fdi_lanes);
  3382. return false;
  3383. } else {
  3384. return true;
  3385. }
  3386. }
  3387. if (INTEL_INFO(dev)->num_pipes == 2)
  3388. return true;
  3389. /* Ivybridge 3 pipe is really complicated */
  3390. switch (pipe) {
  3391. case PIPE_A:
  3392. return true;
  3393. case PIPE_B:
  3394. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3395. pipe_config->fdi_lanes > 2) {
  3396. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3397. pipe_name(pipe), pipe_config->fdi_lanes);
  3398. return false;
  3399. }
  3400. return true;
  3401. case PIPE_C:
  3402. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3403. pipe_B_crtc->config.fdi_lanes <= 2) {
  3404. if (pipe_config->fdi_lanes > 2) {
  3405. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3406. pipe_name(pipe), pipe_config->fdi_lanes);
  3407. return false;
  3408. }
  3409. } else {
  3410. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3411. return false;
  3412. }
  3413. return true;
  3414. default:
  3415. BUG();
  3416. }
  3417. }
  3418. #define RETRY 1
  3419. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3420. struct intel_crtc_config *pipe_config)
  3421. {
  3422. struct drm_device *dev = intel_crtc->base.dev;
  3423. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3424. int lane, link_bw, fdi_dotclock;
  3425. bool setup_ok, needs_recompute = false;
  3426. retry:
  3427. /* FDI is a binary signal running at ~2.7GHz, encoding
  3428. * each output octet as 10 bits. The actual frequency
  3429. * is stored as a divider into a 100MHz clock, and the
  3430. * mode pixel clock is stored in units of 1KHz.
  3431. * Hence the bw of each lane in terms of the mode signal
  3432. * is:
  3433. */
  3434. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3435. fdi_dotclock = adjusted_mode->clock;
  3436. fdi_dotclock /= pipe_config->pixel_multiplier;
  3437. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3438. pipe_config->pipe_bpp);
  3439. pipe_config->fdi_lanes = lane;
  3440. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3441. link_bw, &pipe_config->fdi_m_n);
  3442. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3443. intel_crtc->pipe, pipe_config);
  3444. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3445. pipe_config->pipe_bpp -= 2*3;
  3446. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3447. pipe_config->pipe_bpp);
  3448. needs_recompute = true;
  3449. pipe_config->bw_constrained = true;
  3450. goto retry;
  3451. }
  3452. if (needs_recompute)
  3453. return RETRY;
  3454. return setup_ok ? 0 : -EINVAL;
  3455. }
  3456. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3457. struct intel_crtc_config *pipe_config)
  3458. {
  3459. pipe_config->ips_enabled = i915_enable_ips &&
  3460. hsw_crtc_supports_ips(crtc) &&
  3461. pipe_config->pipe_bpp == 24;
  3462. }
  3463. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3464. struct intel_crtc_config *pipe_config)
  3465. {
  3466. struct drm_device *dev = crtc->base.dev;
  3467. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3468. if (HAS_PCH_SPLIT(dev)) {
  3469. /* FDI link clock is fixed at 2.7G */
  3470. if (pipe_config->requested_mode.clock * 3
  3471. > IRONLAKE_FDI_FREQ * 4)
  3472. return -EINVAL;
  3473. }
  3474. /* All interlaced capable intel hw wants timings in frames. Note though
  3475. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3476. * timings, so we need to be careful not to clobber these.*/
  3477. if (!pipe_config->timings_set)
  3478. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3479. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3480. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3481. */
  3482. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3483. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3484. return -EINVAL;
  3485. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3486. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3487. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3488. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3489. * for lvds. */
  3490. pipe_config->pipe_bpp = 8*3;
  3491. }
  3492. if (HAS_IPS(dev))
  3493. hsw_compute_ips_config(crtc, pipe_config);
  3494. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3495. * clock survives for now. */
  3496. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3497. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3498. if (pipe_config->has_pch_encoder)
  3499. return ironlake_fdi_compute_config(crtc, pipe_config);
  3500. return 0;
  3501. }
  3502. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3503. {
  3504. return 400000; /* FIXME */
  3505. }
  3506. static int i945_get_display_clock_speed(struct drm_device *dev)
  3507. {
  3508. return 400000;
  3509. }
  3510. static int i915_get_display_clock_speed(struct drm_device *dev)
  3511. {
  3512. return 333000;
  3513. }
  3514. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3515. {
  3516. return 200000;
  3517. }
  3518. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3519. {
  3520. u16 gcfgc = 0;
  3521. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3522. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3523. return 133000;
  3524. else {
  3525. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3526. case GC_DISPLAY_CLOCK_333_MHZ:
  3527. return 333000;
  3528. default:
  3529. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3530. return 190000;
  3531. }
  3532. }
  3533. }
  3534. static int i865_get_display_clock_speed(struct drm_device *dev)
  3535. {
  3536. return 266000;
  3537. }
  3538. static int i855_get_display_clock_speed(struct drm_device *dev)
  3539. {
  3540. u16 hpllcc = 0;
  3541. /* Assume that the hardware is in the high speed state. This
  3542. * should be the default.
  3543. */
  3544. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3545. case GC_CLOCK_133_200:
  3546. case GC_CLOCK_100_200:
  3547. return 200000;
  3548. case GC_CLOCK_166_250:
  3549. return 250000;
  3550. case GC_CLOCK_100_133:
  3551. return 133000;
  3552. }
  3553. /* Shouldn't happen */
  3554. return 0;
  3555. }
  3556. static int i830_get_display_clock_speed(struct drm_device *dev)
  3557. {
  3558. return 133000;
  3559. }
  3560. static void
  3561. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3562. {
  3563. while (*num > DATA_LINK_M_N_MASK ||
  3564. *den > DATA_LINK_M_N_MASK) {
  3565. *num >>= 1;
  3566. *den >>= 1;
  3567. }
  3568. }
  3569. static void compute_m_n(unsigned int m, unsigned int n,
  3570. uint32_t *ret_m, uint32_t *ret_n)
  3571. {
  3572. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3573. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3574. intel_reduce_m_n_ratio(ret_m, ret_n);
  3575. }
  3576. void
  3577. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3578. int pixel_clock, int link_clock,
  3579. struct intel_link_m_n *m_n)
  3580. {
  3581. m_n->tu = 64;
  3582. compute_m_n(bits_per_pixel * pixel_clock,
  3583. link_clock * nlanes * 8,
  3584. &m_n->gmch_m, &m_n->gmch_n);
  3585. compute_m_n(pixel_clock, link_clock,
  3586. &m_n->link_m, &m_n->link_n);
  3587. }
  3588. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3589. {
  3590. if (i915_panel_use_ssc >= 0)
  3591. return i915_panel_use_ssc != 0;
  3592. return dev_priv->vbt.lvds_use_ssc
  3593. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3594. }
  3595. static int vlv_get_refclk(struct drm_crtc *crtc)
  3596. {
  3597. struct drm_device *dev = crtc->dev;
  3598. struct drm_i915_private *dev_priv = dev->dev_private;
  3599. int refclk = 27000; /* for DP & HDMI */
  3600. return 100000; /* only one validated so far */
  3601. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3602. refclk = 96000;
  3603. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3604. if (intel_panel_use_ssc(dev_priv))
  3605. refclk = 100000;
  3606. else
  3607. refclk = 96000;
  3608. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3609. refclk = 100000;
  3610. }
  3611. return refclk;
  3612. }
  3613. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3614. {
  3615. struct drm_device *dev = crtc->dev;
  3616. struct drm_i915_private *dev_priv = dev->dev_private;
  3617. int refclk;
  3618. if (IS_VALLEYVIEW(dev)) {
  3619. refclk = vlv_get_refclk(crtc);
  3620. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3621. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3622. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3623. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3624. refclk / 1000);
  3625. } else if (!IS_GEN2(dev)) {
  3626. refclk = 96000;
  3627. } else {
  3628. refclk = 48000;
  3629. }
  3630. return refclk;
  3631. }
  3632. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3633. {
  3634. return (1 << dpll->n) << 16 | dpll->m2;
  3635. }
  3636. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3637. {
  3638. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3639. }
  3640. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3641. intel_clock_t *reduced_clock)
  3642. {
  3643. struct drm_device *dev = crtc->base.dev;
  3644. struct drm_i915_private *dev_priv = dev->dev_private;
  3645. int pipe = crtc->pipe;
  3646. u32 fp, fp2 = 0;
  3647. if (IS_PINEVIEW(dev)) {
  3648. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3649. if (reduced_clock)
  3650. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3651. } else {
  3652. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3653. if (reduced_clock)
  3654. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3655. }
  3656. I915_WRITE(FP0(pipe), fp);
  3657. crtc->config.dpll_hw_state.fp0 = fp;
  3658. crtc->lowfreq_avail = false;
  3659. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3660. reduced_clock && i915_powersave) {
  3661. I915_WRITE(FP1(pipe), fp2);
  3662. crtc->config.dpll_hw_state.fp1 = fp2;
  3663. crtc->lowfreq_avail = true;
  3664. } else {
  3665. I915_WRITE(FP1(pipe), fp);
  3666. crtc->config.dpll_hw_state.fp1 = fp;
  3667. }
  3668. }
  3669. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3670. {
  3671. u32 reg_val;
  3672. /*
  3673. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3674. * and set it to a reasonable value instead.
  3675. */
  3676. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3677. reg_val &= 0xffffff00;
  3678. reg_val |= 0x00000030;
  3679. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3680. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3681. reg_val &= 0x8cffffff;
  3682. reg_val = 0x8c000000;
  3683. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3684. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3685. reg_val &= 0xffffff00;
  3686. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3687. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3688. reg_val &= 0x00ffffff;
  3689. reg_val |= 0xb0000000;
  3690. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3691. }
  3692. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3693. struct intel_link_m_n *m_n)
  3694. {
  3695. struct drm_device *dev = crtc->base.dev;
  3696. struct drm_i915_private *dev_priv = dev->dev_private;
  3697. int pipe = crtc->pipe;
  3698. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3699. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3700. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3701. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3702. }
  3703. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3704. struct intel_link_m_n *m_n)
  3705. {
  3706. struct drm_device *dev = crtc->base.dev;
  3707. struct drm_i915_private *dev_priv = dev->dev_private;
  3708. int pipe = crtc->pipe;
  3709. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3710. if (INTEL_INFO(dev)->gen >= 5) {
  3711. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3712. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3713. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3714. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3715. } else {
  3716. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3717. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3718. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3719. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3720. }
  3721. }
  3722. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3723. {
  3724. if (crtc->config.has_pch_encoder)
  3725. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3726. else
  3727. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3728. }
  3729. static void vlv_update_pll(struct intel_crtc *crtc)
  3730. {
  3731. struct drm_device *dev = crtc->base.dev;
  3732. struct drm_i915_private *dev_priv = dev->dev_private;
  3733. int pipe = crtc->pipe;
  3734. u32 dpll, mdiv;
  3735. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3736. bool is_hdmi;
  3737. u32 coreclk, reg_val, dpll_md;
  3738. mutex_lock(&dev_priv->dpio_lock);
  3739. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3740. bestn = crtc->config.dpll.n;
  3741. bestm1 = crtc->config.dpll.m1;
  3742. bestm2 = crtc->config.dpll.m2;
  3743. bestp1 = crtc->config.dpll.p1;
  3744. bestp2 = crtc->config.dpll.p2;
  3745. /* See eDP HDMI DPIO driver vbios notes doc */
  3746. /* PLL B needs special handling */
  3747. if (pipe)
  3748. vlv_pllb_recal_opamp(dev_priv);
  3749. /* Set up Tx target for periodic Rcomp update */
  3750. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3751. /* Disable target IRef on PLL */
  3752. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3753. reg_val &= 0x00ffffff;
  3754. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3755. /* Disable fast lock */
  3756. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3757. /* Set idtafcrecal before PLL is enabled */
  3758. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3759. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3760. mdiv |= ((bestn << DPIO_N_SHIFT));
  3761. mdiv |= (1 << DPIO_K_SHIFT);
  3762. /*
  3763. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3764. * but we don't support that).
  3765. * Note: don't use the DAC post divider as it seems unstable.
  3766. */
  3767. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3768. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3769. mdiv |= DPIO_ENABLE_CALIBRATION;
  3770. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3771. /* Set HBR and RBR LPF coefficients */
  3772. if (crtc->config.port_clock == 162000 ||
  3773. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3774. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3775. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3776. 0x009f0003);
  3777. else
  3778. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3779. 0x00d0000f);
  3780. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3781. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3782. /* Use SSC source */
  3783. if (!pipe)
  3784. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3785. 0x0df40000);
  3786. else
  3787. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3788. 0x0df70000);
  3789. } else { /* HDMI or VGA */
  3790. /* Use bend source */
  3791. if (!pipe)
  3792. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3793. 0x0df70000);
  3794. else
  3795. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3796. 0x0df40000);
  3797. }
  3798. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3799. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3800. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3801. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3802. coreclk |= 0x01000000;
  3803. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3804. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3805. /* Enable DPIO clock input */
  3806. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3807. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3808. if (pipe)
  3809. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3810. dpll |= DPLL_VCO_ENABLE;
  3811. crtc->config.dpll_hw_state.dpll = dpll;
  3812. dpll_md = (crtc->config.pixel_multiplier - 1)
  3813. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3814. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3815. if (crtc->config.has_dp_encoder)
  3816. intel_dp_set_m_n(crtc);
  3817. mutex_unlock(&dev_priv->dpio_lock);
  3818. }
  3819. static void i9xx_update_pll(struct intel_crtc *crtc,
  3820. intel_clock_t *reduced_clock,
  3821. int num_connectors)
  3822. {
  3823. struct drm_device *dev = crtc->base.dev;
  3824. struct drm_i915_private *dev_priv = dev->dev_private;
  3825. u32 dpll;
  3826. bool is_sdvo;
  3827. struct dpll *clock = &crtc->config.dpll;
  3828. i9xx_update_pll_dividers(crtc, reduced_clock);
  3829. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3830. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3831. dpll = DPLL_VGA_MODE_DIS;
  3832. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3833. dpll |= DPLLB_MODE_LVDS;
  3834. else
  3835. dpll |= DPLLB_MODE_DAC_SERIAL;
  3836. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3837. dpll |= (crtc->config.pixel_multiplier - 1)
  3838. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3839. }
  3840. if (is_sdvo)
  3841. dpll |= DPLL_SDVO_HIGH_SPEED;
  3842. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3843. dpll |= DPLL_SDVO_HIGH_SPEED;
  3844. /* compute bitmask from p1 value */
  3845. if (IS_PINEVIEW(dev))
  3846. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3847. else {
  3848. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3849. if (IS_G4X(dev) && reduced_clock)
  3850. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3851. }
  3852. switch (clock->p2) {
  3853. case 5:
  3854. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3855. break;
  3856. case 7:
  3857. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3858. break;
  3859. case 10:
  3860. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3861. break;
  3862. case 14:
  3863. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3864. break;
  3865. }
  3866. if (INTEL_INFO(dev)->gen >= 4)
  3867. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3868. if (crtc->config.sdvo_tv_clock)
  3869. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3870. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3871. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3872. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3873. else
  3874. dpll |= PLL_REF_INPUT_DREFCLK;
  3875. dpll |= DPLL_VCO_ENABLE;
  3876. crtc->config.dpll_hw_state.dpll = dpll;
  3877. if (INTEL_INFO(dev)->gen >= 4) {
  3878. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3879. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3880. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3881. }
  3882. if (crtc->config.has_dp_encoder)
  3883. intel_dp_set_m_n(crtc);
  3884. }
  3885. static void i8xx_update_pll(struct intel_crtc *crtc,
  3886. intel_clock_t *reduced_clock,
  3887. int num_connectors)
  3888. {
  3889. struct drm_device *dev = crtc->base.dev;
  3890. struct drm_i915_private *dev_priv = dev->dev_private;
  3891. u32 dpll;
  3892. struct dpll *clock = &crtc->config.dpll;
  3893. i9xx_update_pll_dividers(crtc, reduced_clock);
  3894. dpll = DPLL_VGA_MODE_DIS;
  3895. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3896. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3897. } else {
  3898. if (clock->p1 == 2)
  3899. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3900. else
  3901. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3902. if (clock->p2 == 4)
  3903. dpll |= PLL_P2_DIVIDE_BY_4;
  3904. }
  3905. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3906. dpll |= DPLL_DVO_2X_MODE;
  3907. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3908. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3909. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3910. else
  3911. dpll |= PLL_REF_INPUT_DREFCLK;
  3912. dpll |= DPLL_VCO_ENABLE;
  3913. crtc->config.dpll_hw_state.dpll = dpll;
  3914. }
  3915. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3916. {
  3917. struct drm_device *dev = intel_crtc->base.dev;
  3918. struct drm_i915_private *dev_priv = dev->dev_private;
  3919. enum pipe pipe = intel_crtc->pipe;
  3920. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3921. struct drm_display_mode *adjusted_mode =
  3922. &intel_crtc->config.adjusted_mode;
  3923. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3924. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3925. /* We need to be careful not to changed the adjusted mode, for otherwise
  3926. * the hw state checker will get angry at the mismatch. */
  3927. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3928. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3929. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3930. /* the chip adds 2 halflines automatically */
  3931. crtc_vtotal -= 1;
  3932. crtc_vblank_end -= 1;
  3933. vsyncshift = adjusted_mode->crtc_hsync_start
  3934. - adjusted_mode->crtc_htotal / 2;
  3935. } else {
  3936. vsyncshift = 0;
  3937. }
  3938. if (INTEL_INFO(dev)->gen > 3)
  3939. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3940. I915_WRITE(HTOTAL(cpu_transcoder),
  3941. (adjusted_mode->crtc_hdisplay - 1) |
  3942. ((adjusted_mode->crtc_htotal - 1) << 16));
  3943. I915_WRITE(HBLANK(cpu_transcoder),
  3944. (adjusted_mode->crtc_hblank_start - 1) |
  3945. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3946. I915_WRITE(HSYNC(cpu_transcoder),
  3947. (adjusted_mode->crtc_hsync_start - 1) |
  3948. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3949. I915_WRITE(VTOTAL(cpu_transcoder),
  3950. (adjusted_mode->crtc_vdisplay - 1) |
  3951. ((crtc_vtotal - 1) << 16));
  3952. I915_WRITE(VBLANK(cpu_transcoder),
  3953. (adjusted_mode->crtc_vblank_start - 1) |
  3954. ((crtc_vblank_end - 1) << 16));
  3955. I915_WRITE(VSYNC(cpu_transcoder),
  3956. (adjusted_mode->crtc_vsync_start - 1) |
  3957. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3958. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3959. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3960. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3961. * bits. */
  3962. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3963. (pipe == PIPE_B || pipe == PIPE_C))
  3964. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3965. /* pipesrc controls the size that is scaled from, which should
  3966. * always be the user's requested size.
  3967. */
  3968. I915_WRITE(PIPESRC(pipe),
  3969. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3970. }
  3971. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3972. struct intel_crtc_config *pipe_config)
  3973. {
  3974. struct drm_device *dev = crtc->base.dev;
  3975. struct drm_i915_private *dev_priv = dev->dev_private;
  3976. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3977. uint32_t tmp;
  3978. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3979. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3980. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3981. tmp = I915_READ(HBLANK(cpu_transcoder));
  3982. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3983. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3984. tmp = I915_READ(HSYNC(cpu_transcoder));
  3985. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3986. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3987. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3988. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3989. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3990. tmp = I915_READ(VBLANK(cpu_transcoder));
  3991. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3992. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3993. tmp = I915_READ(VSYNC(cpu_transcoder));
  3994. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  3995. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  3996. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  3997. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  3998. pipe_config->adjusted_mode.crtc_vtotal += 1;
  3999. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4000. }
  4001. tmp = I915_READ(PIPESRC(crtc->pipe));
  4002. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4003. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4004. }
  4005. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4006. struct intel_crtc_config *pipe_config)
  4007. {
  4008. struct drm_crtc *crtc = &intel_crtc->base;
  4009. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4010. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4011. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4012. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4013. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4014. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4015. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4016. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4017. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4018. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4019. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4020. }
  4021. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4022. {
  4023. struct drm_device *dev = intel_crtc->base.dev;
  4024. struct drm_i915_private *dev_priv = dev->dev_private;
  4025. uint32_t pipeconf;
  4026. pipeconf = 0;
  4027. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4028. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4029. * core speed.
  4030. *
  4031. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4032. * pipe == 0 check?
  4033. */
  4034. if (intel_crtc->config.requested_mode.clock >
  4035. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4036. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4037. }
  4038. /* only g4x and later have fancy bpc/dither controls */
  4039. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4040. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4041. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4042. pipeconf |= PIPECONF_DITHER_EN |
  4043. PIPECONF_DITHER_TYPE_SP;
  4044. switch (intel_crtc->config.pipe_bpp) {
  4045. case 18:
  4046. pipeconf |= PIPECONF_6BPC;
  4047. break;
  4048. case 24:
  4049. pipeconf |= PIPECONF_8BPC;
  4050. break;
  4051. case 30:
  4052. pipeconf |= PIPECONF_10BPC;
  4053. break;
  4054. default:
  4055. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4056. BUG();
  4057. }
  4058. }
  4059. if (HAS_PIPE_CXSR(dev)) {
  4060. if (intel_crtc->lowfreq_avail) {
  4061. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4062. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4063. } else {
  4064. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4065. }
  4066. }
  4067. if (!IS_GEN2(dev) &&
  4068. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4069. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4070. else
  4071. pipeconf |= PIPECONF_PROGRESSIVE;
  4072. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4073. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4074. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4075. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4076. }
  4077. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4078. int x, int y,
  4079. struct drm_framebuffer *fb)
  4080. {
  4081. struct drm_device *dev = crtc->dev;
  4082. struct drm_i915_private *dev_priv = dev->dev_private;
  4083. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4084. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4085. int pipe = intel_crtc->pipe;
  4086. int plane = intel_crtc->plane;
  4087. int refclk, num_connectors = 0;
  4088. intel_clock_t clock, reduced_clock;
  4089. u32 dspcntr;
  4090. bool ok, has_reduced_clock = false;
  4091. bool is_lvds = false;
  4092. struct intel_encoder *encoder;
  4093. const intel_limit_t *limit;
  4094. int ret;
  4095. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4096. switch (encoder->type) {
  4097. case INTEL_OUTPUT_LVDS:
  4098. is_lvds = true;
  4099. break;
  4100. }
  4101. num_connectors++;
  4102. }
  4103. refclk = i9xx_get_refclk(crtc, num_connectors);
  4104. /*
  4105. * Returns a set of divisors for the desired target clock with the given
  4106. * refclk, or FALSE. The returned values represent the clock equation:
  4107. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4108. */
  4109. limit = intel_limit(crtc, refclk);
  4110. ok = dev_priv->display.find_dpll(limit, crtc,
  4111. intel_crtc->config.port_clock,
  4112. refclk, NULL, &clock);
  4113. if (!ok && !intel_crtc->config.clock_set) {
  4114. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4115. return -EINVAL;
  4116. }
  4117. /* Ensure that the cursor is valid for the new mode before changing... */
  4118. intel_crtc_update_cursor(crtc, true);
  4119. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4120. /*
  4121. * Ensure we match the reduced clock's P to the target clock.
  4122. * If the clocks don't match, we can't switch the display clock
  4123. * by using the FP0/FP1. In such case we will disable the LVDS
  4124. * downclock feature.
  4125. */
  4126. has_reduced_clock =
  4127. dev_priv->display.find_dpll(limit, crtc,
  4128. dev_priv->lvds_downclock,
  4129. refclk, &clock,
  4130. &reduced_clock);
  4131. }
  4132. /* Compat-code for transition, will disappear. */
  4133. if (!intel_crtc->config.clock_set) {
  4134. intel_crtc->config.dpll.n = clock.n;
  4135. intel_crtc->config.dpll.m1 = clock.m1;
  4136. intel_crtc->config.dpll.m2 = clock.m2;
  4137. intel_crtc->config.dpll.p1 = clock.p1;
  4138. intel_crtc->config.dpll.p2 = clock.p2;
  4139. }
  4140. if (IS_GEN2(dev))
  4141. i8xx_update_pll(intel_crtc,
  4142. has_reduced_clock ? &reduced_clock : NULL,
  4143. num_connectors);
  4144. else if (IS_VALLEYVIEW(dev))
  4145. vlv_update_pll(intel_crtc);
  4146. else
  4147. i9xx_update_pll(intel_crtc,
  4148. has_reduced_clock ? &reduced_clock : NULL,
  4149. num_connectors);
  4150. /* Set up the display plane register */
  4151. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4152. if (!IS_VALLEYVIEW(dev)) {
  4153. if (pipe == 0)
  4154. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4155. else
  4156. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4157. }
  4158. intel_set_pipe_timings(intel_crtc);
  4159. /* pipesrc and dspsize control the size that is scaled from,
  4160. * which should always be the user's requested size.
  4161. */
  4162. I915_WRITE(DSPSIZE(plane),
  4163. ((mode->vdisplay - 1) << 16) |
  4164. (mode->hdisplay - 1));
  4165. I915_WRITE(DSPPOS(plane), 0);
  4166. i9xx_set_pipeconf(intel_crtc);
  4167. I915_WRITE(DSPCNTR(plane), dspcntr);
  4168. POSTING_READ(DSPCNTR(plane));
  4169. ret = intel_pipe_set_base(crtc, x, y, fb);
  4170. intel_update_watermarks(dev);
  4171. return ret;
  4172. }
  4173. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4174. struct intel_crtc_config *pipe_config)
  4175. {
  4176. struct drm_device *dev = crtc->base.dev;
  4177. struct drm_i915_private *dev_priv = dev->dev_private;
  4178. uint32_t tmp;
  4179. tmp = I915_READ(PFIT_CONTROL);
  4180. if (INTEL_INFO(dev)->gen < 4) {
  4181. if (crtc->pipe != PIPE_B)
  4182. return;
  4183. /* gen2/3 store dither state in pfit control, needs to match */
  4184. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4185. } else {
  4186. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4187. return;
  4188. }
  4189. if (!(tmp & PFIT_ENABLE))
  4190. return;
  4191. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4192. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4193. if (INTEL_INFO(dev)->gen < 5)
  4194. pipe_config->gmch_pfit.lvds_border_bits =
  4195. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4196. }
  4197. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4198. struct intel_crtc_config *pipe_config)
  4199. {
  4200. struct drm_device *dev = crtc->base.dev;
  4201. struct drm_i915_private *dev_priv = dev->dev_private;
  4202. uint32_t tmp;
  4203. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4204. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4205. tmp = I915_READ(PIPECONF(crtc->pipe));
  4206. if (!(tmp & PIPECONF_ENABLE))
  4207. return false;
  4208. intel_get_pipe_timings(crtc, pipe_config);
  4209. i9xx_get_pfit_config(crtc, pipe_config);
  4210. if (INTEL_INFO(dev)->gen >= 4) {
  4211. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4212. pipe_config->pixel_multiplier =
  4213. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4214. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4215. pipe_config->dpll_hw_state.dpll_md = tmp;
  4216. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4217. tmp = I915_READ(DPLL(crtc->pipe));
  4218. pipe_config->pixel_multiplier =
  4219. ((tmp & SDVO_MULTIPLIER_MASK)
  4220. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4221. } else {
  4222. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4223. * port and will be fixed up in the encoder->get_config
  4224. * function. */
  4225. pipe_config->pixel_multiplier = 1;
  4226. }
  4227. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4228. if (!IS_VALLEYVIEW(dev)) {
  4229. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4230. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4231. } else {
  4232. /* Mask out read-only status bits. */
  4233. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4234. DPLL_PORTC_READY_MASK |
  4235. DPLL_PORTB_READY_MASK);
  4236. }
  4237. return true;
  4238. }
  4239. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4240. {
  4241. struct drm_i915_private *dev_priv = dev->dev_private;
  4242. struct drm_mode_config *mode_config = &dev->mode_config;
  4243. struct intel_encoder *encoder;
  4244. u32 val, final;
  4245. bool has_lvds = false;
  4246. bool has_cpu_edp = false;
  4247. bool has_panel = false;
  4248. bool has_ck505 = false;
  4249. bool can_ssc = false;
  4250. /* We need to take the global config into account */
  4251. list_for_each_entry(encoder, &mode_config->encoder_list,
  4252. base.head) {
  4253. switch (encoder->type) {
  4254. case INTEL_OUTPUT_LVDS:
  4255. has_panel = true;
  4256. has_lvds = true;
  4257. break;
  4258. case INTEL_OUTPUT_EDP:
  4259. has_panel = true;
  4260. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4261. has_cpu_edp = true;
  4262. break;
  4263. }
  4264. }
  4265. if (HAS_PCH_IBX(dev)) {
  4266. has_ck505 = dev_priv->vbt.display_clock_mode;
  4267. can_ssc = has_ck505;
  4268. } else {
  4269. has_ck505 = false;
  4270. can_ssc = true;
  4271. }
  4272. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4273. has_panel, has_lvds, has_ck505);
  4274. /* Ironlake: try to setup display ref clock before DPLL
  4275. * enabling. This is only under driver's control after
  4276. * PCH B stepping, previous chipset stepping should be
  4277. * ignoring this setting.
  4278. */
  4279. val = I915_READ(PCH_DREF_CONTROL);
  4280. /* As we must carefully and slowly disable/enable each source in turn,
  4281. * compute the final state we want first and check if we need to
  4282. * make any changes at all.
  4283. */
  4284. final = val;
  4285. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4286. if (has_ck505)
  4287. final |= DREF_NONSPREAD_CK505_ENABLE;
  4288. else
  4289. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4290. final &= ~DREF_SSC_SOURCE_MASK;
  4291. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4292. final &= ~DREF_SSC1_ENABLE;
  4293. if (has_panel) {
  4294. final |= DREF_SSC_SOURCE_ENABLE;
  4295. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4296. final |= DREF_SSC1_ENABLE;
  4297. if (has_cpu_edp) {
  4298. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4299. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4300. else
  4301. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4302. } else
  4303. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4304. } else {
  4305. final |= DREF_SSC_SOURCE_DISABLE;
  4306. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4307. }
  4308. if (final == val)
  4309. return;
  4310. /* Always enable nonspread source */
  4311. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4312. if (has_ck505)
  4313. val |= DREF_NONSPREAD_CK505_ENABLE;
  4314. else
  4315. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4316. if (has_panel) {
  4317. val &= ~DREF_SSC_SOURCE_MASK;
  4318. val |= DREF_SSC_SOURCE_ENABLE;
  4319. /* SSC must be turned on before enabling the CPU output */
  4320. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4321. DRM_DEBUG_KMS("Using SSC on panel\n");
  4322. val |= DREF_SSC1_ENABLE;
  4323. } else
  4324. val &= ~DREF_SSC1_ENABLE;
  4325. /* Get SSC going before enabling the outputs */
  4326. I915_WRITE(PCH_DREF_CONTROL, val);
  4327. POSTING_READ(PCH_DREF_CONTROL);
  4328. udelay(200);
  4329. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4330. /* Enable CPU source on CPU attached eDP */
  4331. if (has_cpu_edp) {
  4332. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4333. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4334. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4335. }
  4336. else
  4337. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4338. } else
  4339. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4340. I915_WRITE(PCH_DREF_CONTROL, val);
  4341. POSTING_READ(PCH_DREF_CONTROL);
  4342. udelay(200);
  4343. } else {
  4344. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4345. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4346. /* Turn off CPU output */
  4347. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4348. I915_WRITE(PCH_DREF_CONTROL, val);
  4349. POSTING_READ(PCH_DREF_CONTROL);
  4350. udelay(200);
  4351. /* Turn off the SSC source */
  4352. val &= ~DREF_SSC_SOURCE_MASK;
  4353. val |= DREF_SSC_SOURCE_DISABLE;
  4354. /* Turn off SSC1 */
  4355. val &= ~DREF_SSC1_ENABLE;
  4356. I915_WRITE(PCH_DREF_CONTROL, val);
  4357. POSTING_READ(PCH_DREF_CONTROL);
  4358. udelay(200);
  4359. }
  4360. BUG_ON(val != final);
  4361. }
  4362. /*
  4363. * Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O.
  4364. * WaMPhyProgramming:hsw
  4365. */
  4366. static void lpt_init_pch_refclk(struct drm_device *dev)
  4367. {
  4368. struct drm_i915_private *dev_priv = dev->dev_private;
  4369. struct drm_mode_config *mode_config = &dev->mode_config;
  4370. struct intel_encoder *encoder;
  4371. bool has_vga = false;
  4372. bool is_sdv = false;
  4373. u32 tmp;
  4374. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4375. switch (encoder->type) {
  4376. case INTEL_OUTPUT_ANALOG:
  4377. has_vga = true;
  4378. break;
  4379. }
  4380. }
  4381. if (!has_vga)
  4382. return;
  4383. mutex_lock(&dev_priv->dpio_lock);
  4384. /* XXX: Rip out SDV support once Haswell ships for real. */
  4385. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4386. is_sdv = true;
  4387. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4388. tmp &= ~SBI_SSCCTL_DISABLE;
  4389. tmp |= SBI_SSCCTL_PATHALT;
  4390. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4391. udelay(24);
  4392. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4393. tmp &= ~SBI_SSCCTL_PATHALT;
  4394. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4395. if (!is_sdv) {
  4396. tmp = I915_READ(SOUTH_CHICKEN2);
  4397. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4398. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4399. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4400. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4401. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4402. tmp = I915_READ(SOUTH_CHICKEN2);
  4403. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4404. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4405. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4406. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4407. 100))
  4408. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4409. }
  4410. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4411. tmp &= ~(0xFF << 24);
  4412. tmp |= (0x12 << 24);
  4413. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4414. if (is_sdv) {
  4415. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4416. tmp |= 0x7FFF;
  4417. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4418. }
  4419. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4420. tmp |= (1 << 11);
  4421. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4422. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4423. tmp |= (1 << 11);
  4424. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4425. if (is_sdv) {
  4426. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4427. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4428. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4429. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4430. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4431. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4432. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4433. tmp |= (0x3F << 8);
  4434. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4435. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4436. tmp |= (0x3F << 8);
  4437. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4438. }
  4439. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4440. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4441. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4442. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4443. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4444. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4445. if (!is_sdv) {
  4446. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4447. tmp &= ~(7 << 13);
  4448. tmp |= (5 << 13);
  4449. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4450. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4451. tmp &= ~(7 << 13);
  4452. tmp |= (5 << 13);
  4453. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4454. }
  4455. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4456. tmp &= ~0xFF;
  4457. tmp |= 0x1C;
  4458. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4459. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4460. tmp &= ~0xFF;
  4461. tmp |= 0x1C;
  4462. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4463. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4464. tmp &= ~(0xFF << 16);
  4465. tmp |= (0x1C << 16);
  4466. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4467. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4468. tmp &= ~(0xFF << 16);
  4469. tmp |= (0x1C << 16);
  4470. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4471. if (!is_sdv) {
  4472. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4473. tmp |= (1 << 27);
  4474. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4475. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4476. tmp |= (1 << 27);
  4477. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4478. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4479. tmp &= ~(0xF << 28);
  4480. tmp |= (4 << 28);
  4481. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4482. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4483. tmp &= ~(0xF << 28);
  4484. tmp |= (4 << 28);
  4485. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4486. }
  4487. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4488. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4489. tmp |= SBI_DBUFF0_ENABLE;
  4490. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4491. mutex_unlock(&dev_priv->dpio_lock);
  4492. }
  4493. /*
  4494. * Initialize reference clocks when the driver loads
  4495. */
  4496. void intel_init_pch_refclk(struct drm_device *dev)
  4497. {
  4498. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4499. ironlake_init_pch_refclk(dev);
  4500. else if (HAS_PCH_LPT(dev))
  4501. lpt_init_pch_refclk(dev);
  4502. }
  4503. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4504. {
  4505. struct drm_device *dev = crtc->dev;
  4506. struct drm_i915_private *dev_priv = dev->dev_private;
  4507. struct intel_encoder *encoder;
  4508. int num_connectors = 0;
  4509. bool is_lvds = false;
  4510. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4511. switch (encoder->type) {
  4512. case INTEL_OUTPUT_LVDS:
  4513. is_lvds = true;
  4514. break;
  4515. }
  4516. num_connectors++;
  4517. }
  4518. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4519. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4520. dev_priv->vbt.lvds_ssc_freq);
  4521. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4522. }
  4523. return 120000;
  4524. }
  4525. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4526. {
  4527. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4528. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4529. int pipe = intel_crtc->pipe;
  4530. uint32_t val;
  4531. val = 0;
  4532. switch (intel_crtc->config.pipe_bpp) {
  4533. case 18:
  4534. val |= PIPECONF_6BPC;
  4535. break;
  4536. case 24:
  4537. val |= PIPECONF_8BPC;
  4538. break;
  4539. case 30:
  4540. val |= PIPECONF_10BPC;
  4541. break;
  4542. case 36:
  4543. val |= PIPECONF_12BPC;
  4544. break;
  4545. default:
  4546. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4547. BUG();
  4548. }
  4549. if (intel_crtc->config.dither)
  4550. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4551. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4552. val |= PIPECONF_INTERLACED_ILK;
  4553. else
  4554. val |= PIPECONF_PROGRESSIVE;
  4555. if (intel_crtc->config.limited_color_range)
  4556. val |= PIPECONF_COLOR_RANGE_SELECT;
  4557. I915_WRITE(PIPECONF(pipe), val);
  4558. POSTING_READ(PIPECONF(pipe));
  4559. }
  4560. /*
  4561. * Set up the pipe CSC unit.
  4562. *
  4563. * Currently only full range RGB to limited range RGB conversion
  4564. * is supported, but eventually this should handle various
  4565. * RGB<->YCbCr scenarios as well.
  4566. */
  4567. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4568. {
  4569. struct drm_device *dev = crtc->dev;
  4570. struct drm_i915_private *dev_priv = dev->dev_private;
  4571. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4572. int pipe = intel_crtc->pipe;
  4573. uint16_t coeff = 0x7800; /* 1.0 */
  4574. /*
  4575. * TODO: Check what kind of values actually come out of the pipe
  4576. * with these coeff/postoff values and adjust to get the best
  4577. * accuracy. Perhaps we even need to take the bpc value into
  4578. * consideration.
  4579. */
  4580. if (intel_crtc->config.limited_color_range)
  4581. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4582. /*
  4583. * GY/GU and RY/RU should be the other way around according
  4584. * to BSpec, but reality doesn't agree. Just set them up in
  4585. * a way that results in the correct picture.
  4586. */
  4587. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4588. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4589. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4590. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4591. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4592. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4593. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4594. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4595. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4596. if (INTEL_INFO(dev)->gen > 6) {
  4597. uint16_t postoff = 0;
  4598. if (intel_crtc->config.limited_color_range)
  4599. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4600. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4601. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4602. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4603. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4604. } else {
  4605. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4606. if (intel_crtc->config.limited_color_range)
  4607. mode |= CSC_BLACK_SCREEN_OFFSET;
  4608. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4609. }
  4610. }
  4611. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4612. {
  4613. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4614. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4615. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4616. uint32_t val;
  4617. val = 0;
  4618. if (intel_crtc->config.dither)
  4619. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4620. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4621. val |= PIPECONF_INTERLACED_ILK;
  4622. else
  4623. val |= PIPECONF_PROGRESSIVE;
  4624. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4625. POSTING_READ(PIPECONF(cpu_transcoder));
  4626. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4627. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4628. }
  4629. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4630. intel_clock_t *clock,
  4631. bool *has_reduced_clock,
  4632. intel_clock_t *reduced_clock)
  4633. {
  4634. struct drm_device *dev = crtc->dev;
  4635. struct drm_i915_private *dev_priv = dev->dev_private;
  4636. struct intel_encoder *intel_encoder;
  4637. int refclk;
  4638. const intel_limit_t *limit;
  4639. bool ret, is_lvds = false;
  4640. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4641. switch (intel_encoder->type) {
  4642. case INTEL_OUTPUT_LVDS:
  4643. is_lvds = true;
  4644. break;
  4645. }
  4646. }
  4647. refclk = ironlake_get_refclk(crtc);
  4648. /*
  4649. * Returns a set of divisors for the desired target clock with the given
  4650. * refclk, or FALSE. The returned values represent the clock equation:
  4651. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4652. */
  4653. limit = intel_limit(crtc, refclk);
  4654. ret = dev_priv->display.find_dpll(limit, crtc,
  4655. to_intel_crtc(crtc)->config.port_clock,
  4656. refclk, NULL, clock);
  4657. if (!ret)
  4658. return false;
  4659. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4660. /*
  4661. * Ensure we match the reduced clock's P to the target clock.
  4662. * If the clocks don't match, we can't switch the display clock
  4663. * by using the FP0/FP1. In such case we will disable the LVDS
  4664. * downclock feature.
  4665. */
  4666. *has_reduced_clock =
  4667. dev_priv->display.find_dpll(limit, crtc,
  4668. dev_priv->lvds_downclock,
  4669. refclk, clock,
  4670. reduced_clock);
  4671. }
  4672. return true;
  4673. }
  4674. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4675. {
  4676. struct drm_i915_private *dev_priv = dev->dev_private;
  4677. uint32_t temp;
  4678. temp = I915_READ(SOUTH_CHICKEN1);
  4679. if (temp & FDI_BC_BIFURCATION_SELECT)
  4680. return;
  4681. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4682. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4683. temp |= FDI_BC_BIFURCATION_SELECT;
  4684. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4685. I915_WRITE(SOUTH_CHICKEN1, temp);
  4686. POSTING_READ(SOUTH_CHICKEN1);
  4687. }
  4688. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4689. {
  4690. struct drm_device *dev = intel_crtc->base.dev;
  4691. struct drm_i915_private *dev_priv = dev->dev_private;
  4692. switch (intel_crtc->pipe) {
  4693. case PIPE_A:
  4694. break;
  4695. case PIPE_B:
  4696. if (intel_crtc->config.fdi_lanes > 2)
  4697. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4698. else
  4699. cpt_enable_fdi_bc_bifurcation(dev);
  4700. break;
  4701. case PIPE_C:
  4702. cpt_enable_fdi_bc_bifurcation(dev);
  4703. break;
  4704. default:
  4705. BUG();
  4706. }
  4707. }
  4708. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4709. {
  4710. /*
  4711. * Account for spread spectrum to avoid
  4712. * oversubscribing the link. Max center spread
  4713. * is 2.5%; use 5% for safety's sake.
  4714. */
  4715. u32 bps = target_clock * bpp * 21 / 20;
  4716. return bps / (link_bw * 8) + 1;
  4717. }
  4718. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4719. {
  4720. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4721. }
  4722. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4723. u32 *fp,
  4724. intel_clock_t *reduced_clock, u32 *fp2)
  4725. {
  4726. struct drm_crtc *crtc = &intel_crtc->base;
  4727. struct drm_device *dev = crtc->dev;
  4728. struct drm_i915_private *dev_priv = dev->dev_private;
  4729. struct intel_encoder *intel_encoder;
  4730. uint32_t dpll;
  4731. int factor, num_connectors = 0;
  4732. bool is_lvds = false, is_sdvo = false;
  4733. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4734. switch (intel_encoder->type) {
  4735. case INTEL_OUTPUT_LVDS:
  4736. is_lvds = true;
  4737. break;
  4738. case INTEL_OUTPUT_SDVO:
  4739. case INTEL_OUTPUT_HDMI:
  4740. is_sdvo = true;
  4741. break;
  4742. }
  4743. num_connectors++;
  4744. }
  4745. /* Enable autotuning of the PLL clock (if permissible) */
  4746. factor = 21;
  4747. if (is_lvds) {
  4748. if ((intel_panel_use_ssc(dev_priv) &&
  4749. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4750. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4751. factor = 25;
  4752. } else if (intel_crtc->config.sdvo_tv_clock)
  4753. factor = 20;
  4754. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4755. *fp |= FP_CB_TUNE;
  4756. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4757. *fp2 |= FP_CB_TUNE;
  4758. dpll = 0;
  4759. if (is_lvds)
  4760. dpll |= DPLLB_MODE_LVDS;
  4761. else
  4762. dpll |= DPLLB_MODE_DAC_SERIAL;
  4763. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4764. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4765. if (is_sdvo)
  4766. dpll |= DPLL_SDVO_HIGH_SPEED;
  4767. if (intel_crtc->config.has_dp_encoder)
  4768. dpll |= DPLL_SDVO_HIGH_SPEED;
  4769. /* compute bitmask from p1 value */
  4770. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4771. /* also FPA1 */
  4772. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4773. switch (intel_crtc->config.dpll.p2) {
  4774. case 5:
  4775. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4776. break;
  4777. case 7:
  4778. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4779. break;
  4780. case 10:
  4781. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4782. break;
  4783. case 14:
  4784. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4785. break;
  4786. }
  4787. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4788. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4789. else
  4790. dpll |= PLL_REF_INPUT_DREFCLK;
  4791. return dpll | DPLL_VCO_ENABLE;
  4792. }
  4793. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4794. int x, int y,
  4795. struct drm_framebuffer *fb)
  4796. {
  4797. struct drm_device *dev = crtc->dev;
  4798. struct drm_i915_private *dev_priv = dev->dev_private;
  4799. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4800. int pipe = intel_crtc->pipe;
  4801. int plane = intel_crtc->plane;
  4802. int num_connectors = 0;
  4803. intel_clock_t clock, reduced_clock;
  4804. u32 dpll = 0, fp = 0, fp2 = 0;
  4805. bool ok, has_reduced_clock = false;
  4806. bool is_lvds = false;
  4807. struct intel_encoder *encoder;
  4808. struct intel_shared_dpll *pll;
  4809. int ret;
  4810. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4811. switch (encoder->type) {
  4812. case INTEL_OUTPUT_LVDS:
  4813. is_lvds = true;
  4814. break;
  4815. }
  4816. num_connectors++;
  4817. }
  4818. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4819. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4820. ok = ironlake_compute_clocks(crtc, &clock,
  4821. &has_reduced_clock, &reduced_clock);
  4822. if (!ok && !intel_crtc->config.clock_set) {
  4823. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4824. return -EINVAL;
  4825. }
  4826. /* Compat-code for transition, will disappear. */
  4827. if (!intel_crtc->config.clock_set) {
  4828. intel_crtc->config.dpll.n = clock.n;
  4829. intel_crtc->config.dpll.m1 = clock.m1;
  4830. intel_crtc->config.dpll.m2 = clock.m2;
  4831. intel_crtc->config.dpll.p1 = clock.p1;
  4832. intel_crtc->config.dpll.p2 = clock.p2;
  4833. }
  4834. /* Ensure that the cursor is valid for the new mode before changing... */
  4835. intel_crtc_update_cursor(crtc, true);
  4836. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4837. if (intel_crtc->config.has_pch_encoder) {
  4838. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4839. if (has_reduced_clock)
  4840. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4841. dpll = ironlake_compute_dpll(intel_crtc,
  4842. &fp, &reduced_clock,
  4843. has_reduced_clock ? &fp2 : NULL);
  4844. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4845. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4846. if (has_reduced_clock)
  4847. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4848. else
  4849. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4850. pll = intel_get_shared_dpll(intel_crtc);
  4851. if (pll == NULL) {
  4852. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4853. pipe_name(pipe));
  4854. return -EINVAL;
  4855. }
  4856. } else
  4857. intel_put_shared_dpll(intel_crtc);
  4858. if (intel_crtc->config.has_dp_encoder)
  4859. intel_dp_set_m_n(intel_crtc);
  4860. if (is_lvds && has_reduced_clock && i915_powersave)
  4861. intel_crtc->lowfreq_avail = true;
  4862. else
  4863. intel_crtc->lowfreq_avail = false;
  4864. if (intel_crtc->config.has_pch_encoder) {
  4865. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4866. }
  4867. intel_set_pipe_timings(intel_crtc);
  4868. if (intel_crtc->config.has_pch_encoder) {
  4869. intel_cpu_transcoder_set_m_n(intel_crtc,
  4870. &intel_crtc->config.fdi_m_n);
  4871. }
  4872. if (IS_IVYBRIDGE(dev))
  4873. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4874. ironlake_set_pipeconf(crtc);
  4875. /* Set up the display plane register */
  4876. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4877. POSTING_READ(DSPCNTR(plane));
  4878. ret = intel_pipe_set_base(crtc, x, y, fb);
  4879. intel_update_watermarks(dev);
  4880. return ret;
  4881. }
  4882. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4883. struct intel_crtc_config *pipe_config)
  4884. {
  4885. struct drm_device *dev = crtc->base.dev;
  4886. struct drm_i915_private *dev_priv = dev->dev_private;
  4887. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4888. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4889. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4890. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4891. & ~TU_SIZE_MASK;
  4892. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4893. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4894. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4895. }
  4896. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4897. struct intel_crtc_config *pipe_config)
  4898. {
  4899. struct drm_device *dev = crtc->base.dev;
  4900. struct drm_i915_private *dev_priv = dev->dev_private;
  4901. uint32_t tmp;
  4902. tmp = I915_READ(PF_CTL(crtc->pipe));
  4903. if (tmp & PF_ENABLE) {
  4904. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4905. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4906. /* We currently do not free assignements of panel fitters on
  4907. * ivb/hsw (since we don't use the higher upscaling modes which
  4908. * differentiates them) so just WARN about this case for now. */
  4909. if (IS_GEN7(dev)) {
  4910. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4911. PF_PIPE_SEL_IVB(crtc->pipe));
  4912. }
  4913. }
  4914. }
  4915. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4916. struct intel_crtc_config *pipe_config)
  4917. {
  4918. struct drm_device *dev = crtc->base.dev;
  4919. struct drm_i915_private *dev_priv = dev->dev_private;
  4920. uint32_t tmp;
  4921. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4922. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4923. tmp = I915_READ(PIPECONF(crtc->pipe));
  4924. if (!(tmp & PIPECONF_ENABLE))
  4925. return false;
  4926. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4927. struct intel_shared_dpll *pll;
  4928. pipe_config->has_pch_encoder = true;
  4929. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4930. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4931. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4932. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4933. if (HAS_PCH_IBX(dev_priv->dev)) {
  4934. pipe_config->shared_dpll =
  4935. (enum intel_dpll_id) crtc->pipe;
  4936. } else {
  4937. tmp = I915_READ(PCH_DPLL_SEL);
  4938. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4939. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4940. else
  4941. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4942. }
  4943. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4944. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4945. &pipe_config->dpll_hw_state));
  4946. tmp = pipe_config->dpll_hw_state.dpll;
  4947. pipe_config->pixel_multiplier =
  4948. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  4949. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  4950. } else {
  4951. pipe_config->pixel_multiplier = 1;
  4952. }
  4953. intel_get_pipe_timings(crtc, pipe_config);
  4954. ironlake_get_pfit_config(crtc, pipe_config);
  4955. return true;
  4956. }
  4957. static void haswell_modeset_global_resources(struct drm_device *dev)
  4958. {
  4959. bool enable = false;
  4960. struct intel_crtc *crtc;
  4961. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4962. if (!crtc->base.enabled)
  4963. continue;
  4964. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4965. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4966. enable = true;
  4967. }
  4968. intel_set_power_well(dev, enable);
  4969. }
  4970. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4971. int x, int y,
  4972. struct drm_framebuffer *fb)
  4973. {
  4974. struct drm_device *dev = crtc->dev;
  4975. struct drm_i915_private *dev_priv = dev->dev_private;
  4976. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4977. int plane = intel_crtc->plane;
  4978. int ret;
  4979. if (!intel_ddi_pll_mode_set(crtc))
  4980. return -EINVAL;
  4981. /* Ensure that the cursor is valid for the new mode before changing... */
  4982. intel_crtc_update_cursor(crtc, true);
  4983. if (intel_crtc->config.has_dp_encoder)
  4984. intel_dp_set_m_n(intel_crtc);
  4985. intel_crtc->lowfreq_avail = false;
  4986. intel_set_pipe_timings(intel_crtc);
  4987. if (intel_crtc->config.has_pch_encoder) {
  4988. intel_cpu_transcoder_set_m_n(intel_crtc,
  4989. &intel_crtc->config.fdi_m_n);
  4990. }
  4991. haswell_set_pipeconf(crtc);
  4992. intel_set_pipe_csc(crtc);
  4993. /* Set up the display plane register */
  4994. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4995. POSTING_READ(DSPCNTR(plane));
  4996. ret = intel_pipe_set_base(crtc, x, y, fb);
  4997. intel_update_watermarks(dev);
  4998. return ret;
  4999. }
  5000. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5001. struct intel_crtc_config *pipe_config)
  5002. {
  5003. struct drm_device *dev = crtc->base.dev;
  5004. struct drm_i915_private *dev_priv = dev->dev_private;
  5005. enum intel_display_power_domain pfit_domain;
  5006. uint32_t tmp;
  5007. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5008. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5009. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5010. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5011. enum pipe trans_edp_pipe;
  5012. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5013. default:
  5014. WARN(1, "unknown pipe linked to edp transcoder\n");
  5015. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5016. case TRANS_DDI_EDP_INPUT_A_ON:
  5017. trans_edp_pipe = PIPE_A;
  5018. break;
  5019. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5020. trans_edp_pipe = PIPE_B;
  5021. break;
  5022. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5023. trans_edp_pipe = PIPE_C;
  5024. break;
  5025. }
  5026. if (trans_edp_pipe == crtc->pipe)
  5027. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5028. }
  5029. if (!intel_display_power_enabled(dev,
  5030. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5031. return false;
  5032. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5033. if (!(tmp & PIPECONF_ENABLE))
  5034. return false;
  5035. /*
  5036. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5037. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5038. * the PCH transcoder is on.
  5039. */
  5040. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5041. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5042. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5043. pipe_config->has_pch_encoder = true;
  5044. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5045. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5046. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5047. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5048. }
  5049. intel_get_pipe_timings(crtc, pipe_config);
  5050. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5051. if (intel_display_power_enabled(dev, pfit_domain))
  5052. ironlake_get_pfit_config(crtc, pipe_config);
  5053. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5054. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5055. pipe_config->pixel_multiplier = 1;
  5056. return true;
  5057. }
  5058. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5059. int x, int y,
  5060. struct drm_framebuffer *fb)
  5061. {
  5062. struct drm_device *dev = crtc->dev;
  5063. struct drm_i915_private *dev_priv = dev->dev_private;
  5064. struct drm_encoder_helper_funcs *encoder_funcs;
  5065. struct intel_encoder *encoder;
  5066. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5067. struct drm_display_mode *adjusted_mode =
  5068. &intel_crtc->config.adjusted_mode;
  5069. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5070. int pipe = intel_crtc->pipe;
  5071. int ret;
  5072. drm_vblank_pre_modeset(dev, pipe);
  5073. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5074. drm_vblank_post_modeset(dev, pipe);
  5075. if (ret != 0)
  5076. return ret;
  5077. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5078. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5079. encoder->base.base.id,
  5080. drm_get_encoder_name(&encoder->base),
  5081. mode->base.id, mode->name);
  5082. if (encoder->mode_set) {
  5083. encoder->mode_set(encoder);
  5084. } else {
  5085. encoder_funcs = encoder->base.helper_private;
  5086. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5087. }
  5088. }
  5089. return 0;
  5090. }
  5091. static bool intel_eld_uptodate(struct drm_connector *connector,
  5092. int reg_eldv, uint32_t bits_eldv,
  5093. int reg_elda, uint32_t bits_elda,
  5094. int reg_edid)
  5095. {
  5096. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5097. uint8_t *eld = connector->eld;
  5098. uint32_t i;
  5099. i = I915_READ(reg_eldv);
  5100. i &= bits_eldv;
  5101. if (!eld[0])
  5102. return !i;
  5103. if (!i)
  5104. return false;
  5105. i = I915_READ(reg_elda);
  5106. i &= ~bits_elda;
  5107. I915_WRITE(reg_elda, i);
  5108. for (i = 0; i < eld[2]; i++)
  5109. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5110. return false;
  5111. return true;
  5112. }
  5113. static void g4x_write_eld(struct drm_connector *connector,
  5114. struct drm_crtc *crtc)
  5115. {
  5116. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5117. uint8_t *eld = connector->eld;
  5118. uint32_t eldv;
  5119. uint32_t len;
  5120. uint32_t i;
  5121. i = I915_READ(G4X_AUD_VID_DID);
  5122. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5123. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5124. else
  5125. eldv = G4X_ELDV_DEVCTG;
  5126. if (intel_eld_uptodate(connector,
  5127. G4X_AUD_CNTL_ST, eldv,
  5128. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5129. G4X_HDMIW_HDMIEDID))
  5130. return;
  5131. i = I915_READ(G4X_AUD_CNTL_ST);
  5132. i &= ~(eldv | G4X_ELD_ADDR);
  5133. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5134. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5135. if (!eld[0])
  5136. return;
  5137. len = min_t(uint8_t, eld[2], len);
  5138. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5139. for (i = 0; i < len; i++)
  5140. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5141. i = I915_READ(G4X_AUD_CNTL_ST);
  5142. i |= eldv;
  5143. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5144. }
  5145. static void haswell_write_eld(struct drm_connector *connector,
  5146. struct drm_crtc *crtc)
  5147. {
  5148. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5149. uint8_t *eld = connector->eld;
  5150. struct drm_device *dev = crtc->dev;
  5151. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5152. uint32_t eldv;
  5153. uint32_t i;
  5154. int len;
  5155. int pipe = to_intel_crtc(crtc)->pipe;
  5156. int tmp;
  5157. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5158. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5159. int aud_config = HSW_AUD_CFG(pipe);
  5160. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5161. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5162. /* Audio output enable */
  5163. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5164. tmp = I915_READ(aud_cntrl_st2);
  5165. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5166. I915_WRITE(aud_cntrl_st2, tmp);
  5167. /* Wait for 1 vertical blank */
  5168. intel_wait_for_vblank(dev, pipe);
  5169. /* Set ELD valid state */
  5170. tmp = I915_READ(aud_cntrl_st2);
  5171. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5172. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5173. I915_WRITE(aud_cntrl_st2, tmp);
  5174. tmp = I915_READ(aud_cntrl_st2);
  5175. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5176. /* Enable HDMI mode */
  5177. tmp = I915_READ(aud_config);
  5178. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5179. /* clear N_programing_enable and N_value_index */
  5180. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5181. I915_WRITE(aud_config, tmp);
  5182. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5183. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5184. intel_crtc->eld_vld = true;
  5185. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5186. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5187. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5188. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5189. } else
  5190. I915_WRITE(aud_config, 0);
  5191. if (intel_eld_uptodate(connector,
  5192. aud_cntrl_st2, eldv,
  5193. aud_cntl_st, IBX_ELD_ADDRESS,
  5194. hdmiw_hdmiedid))
  5195. return;
  5196. i = I915_READ(aud_cntrl_st2);
  5197. i &= ~eldv;
  5198. I915_WRITE(aud_cntrl_st2, i);
  5199. if (!eld[0])
  5200. return;
  5201. i = I915_READ(aud_cntl_st);
  5202. i &= ~IBX_ELD_ADDRESS;
  5203. I915_WRITE(aud_cntl_st, i);
  5204. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5205. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5206. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5207. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5208. for (i = 0; i < len; i++)
  5209. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5210. i = I915_READ(aud_cntrl_st2);
  5211. i |= eldv;
  5212. I915_WRITE(aud_cntrl_st2, i);
  5213. }
  5214. static void ironlake_write_eld(struct drm_connector *connector,
  5215. struct drm_crtc *crtc)
  5216. {
  5217. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5218. uint8_t *eld = connector->eld;
  5219. uint32_t eldv;
  5220. uint32_t i;
  5221. int len;
  5222. int hdmiw_hdmiedid;
  5223. int aud_config;
  5224. int aud_cntl_st;
  5225. int aud_cntrl_st2;
  5226. int pipe = to_intel_crtc(crtc)->pipe;
  5227. if (HAS_PCH_IBX(connector->dev)) {
  5228. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5229. aud_config = IBX_AUD_CFG(pipe);
  5230. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5231. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5232. } else {
  5233. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5234. aud_config = CPT_AUD_CFG(pipe);
  5235. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5236. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5237. }
  5238. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5239. i = I915_READ(aud_cntl_st);
  5240. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5241. if (!i) {
  5242. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5243. /* operate blindly on all ports */
  5244. eldv = IBX_ELD_VALIDB;
  5245. eldv |= IBX_ELD_VALIDB << 4;
  5246. eldv |= IBX_ELD_VALIDB << 8;
  5247. } else {
  5248. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5249. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5250. }
  5251. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5252. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5253. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5254. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5255. } else
  5256. I915_WRITE(aud_config, 0);
  5257. if (intel_eld_uptodate(connector,
  5258. aud_cntrl_st2, eldv,
  5259. aud_cntl_st, IBX_ELD_ADDRESS,
  5260. hdmiw_hdmiedid))
  5261. return;
  5262. i = I915_READ(aud_cntrl_st2);
  5263. i &= ~eldv;
  5264. I915_WRITE(aud_cntrl_st2, i);
  5265. if (!eld[0])
  5266. return;
  5267. i = I915_READ(aud_cntl_st);
  5268. i &= ~IBX_ELD_ADDRESS;
  5269. I915_WRITE(aud_cntl_st, i);
  5270. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5271. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5272. for (i = 0; i < len; i++)
  5273. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5274. i = I915_READ(aud_cntrl_st2);
  5275. i |= eldv;
  5276. I915_WRITE(aud_cntrl_st2, i);
  5277. }
  5278. void intel_write_eld(struct drm_encoder *encoder,
  5279. struct drm_display_mode *mode)
  5280. {
  5281. struct drm_crtc *crtc = encoder->crtc;
  5282. struct drm_connector *connector;
  5283. struct drm_device *dev = encoder->dev;
  5284. struct drm_i915_private *dev_priv = dev->dev_private;
  5285. connector = drm_select_eld(encoder, mode);
  5286. if (!connector)
  5287. return;
  5288. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5289. connector->base.id,
  5290. drm_get_connector_name(connector),
  5291. connector->encoder->base.id,
  5292. drm_get_encoder_name(connector->encoder));
  5293. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5294. if (dev_priv->display.write_eld)
  5295. dev_priv->display.write_eld(connector, crtc);
  5296. }
  5297. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5298. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5299. {
  5300. struct drm_device *dev = crtc->dev;
  5301. struct drm_i915_private *dev_priv = dev->dev_private;
  5302. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5303. enum pipe pipe = intel_crtc->pipe;
  5304. int palreg = PALETTE(pipe);
  5305. int i;
  5306. bool reenable_ips = false;
  5307. /* The clocks have to be on to load the palette. */
  5308. if (!crtc->enabled || !intel_crtc->active)
  5309. return;
  5310. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5311. assert_pll_enabled(dev_priv, pipe);
  5312. /* use legacy palette for Ironlake */
  5313. if (HAS_PCH_SPLIT(dev))
  5314. palreg = LGC_PALETTE(pipe);
  5315. /* Workaround : Do not read or write the pipe palette/gamma data while
  5316. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5317. */
  5318. if (intel_crtc->config.ips_enabled &&
  5319. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5320. GAMMA_MODE_MODE_SPLIT)) {
  5321. hsw_disable_ips(intel_crtc);
  5322. reenable_ips = true;
  5323. }
  5324. for (i = 0; i < 256; i++) {
  5325. I915_WRITE(palreg + 4 * i,
  5326. (intel_crtc->lut_r[i] << 16) |
  5327. (intel_crtc->lut_g[i] << 8) |
  5328. intel_crtc->lut_b[i]);
  5329. }
  5330. if (reenable_ips)
  5331. hsw_enable_ips(intel_crtc);
  5332. }
  5333. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5334. {
  5335. struct drm_device *dev = crtc->dev;
  5336. struct drm_i915_private *dev_priv = dev->dev_private;
  5337. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5338. bool visible = base != 0;
  5339. u32 cntl;
  5340. if (intel_crtc->cursor_visible == visible)
  5341. return;
  5342. cntl = I915_READ(_CURACNTR);
  5343. if (visible) {
  5344. /* On these chipsets we can only modify the base whilst
  5345. * the cursor is disabled.
  5346. */
  5347. I915_WRITE(_CURABASE, base);
  5348. cntl &= ~(CURSOR_FORMAT_MASK);
  5349. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5350. cntl |= CURSOR_ENABLE |
  5351. CURSOR_GAMMA_ENABLE |
  5352. CURSOR_FORMAT_ARGB;
  5353. } else
  5354. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5355. I915_WRITE(_CURACNTR, cntl);
  5356. intel_crtc->cursor_visible = visible;
  5357. }
  5358. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5359. {
  5360. struct drm_device *dev = crtc->dev;
  5361. struct drm_i915_private *dev_priv = dev->dev_private;
  5362. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5363. int pipe = intel_crtc->pipe;
  5364. bool visible = base != 0;
  5365. if (intel_crtc->cursor_visible != visible) {
  5366. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5367. if (base) {
  5368. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5369. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5370. cntl |= pipe << 28; /* Connect to correct pipe */
  5371. } else {
  5372. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5373. cntl |= CURSOR_MODE_DISABLE;
  5374. }
  5375. I915_WRITE(CURCNTR(pipe), cntl);
  5376. intel_crtc->cursor_visible = visible;
  5377. }
  5378. /* and commit changes on next vblank */
  5379. I915_WRITE(CURBASE(pipe), base);
  5380. }
  5381. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5382. {
  5383. struct drm_device *dev = crtc->dev;
  5384. struct drm_i915_private *dev_priv = dev->dev_private;
  5385. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5386. int pipe = intel_crtc->pipe;
  5387. bool visible = base != 0;
  5388. if (intel_crtc->cursor_visible != visible) {
  5389. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5390. if (base) {
  5391. cntl &= ~CURSOR_MODE;
  5392. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5393. } else {
  5394. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5395. cntl |= CURSOR_MODE_DISABLE;
  5396. }
  5397. if (IS_HASWELL(dev))
  5398. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5399. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5400. intel_crtc->cursor_visible = visible;
  5401. }
  5402. /* and commit changes on next vblank */
  5403. I915_WRITE(CURBASE_IVB(pipe), base);
  5404. }
  5405. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5406. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5407. bool on)
  5408. {
  5409. struct drm_device *dev = crtc->dev;
  5410. struct drm_i915_private *dev_priv = dev->dev_private;
  5411. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5412. int pipe = intel_crtc->pipe;
  5413. int x = intel_crtc->cursor_x;
  5414. int y = intel_crtc->cursor_y;
  5415. u32 base, pos;
  5416. bool visible;
  5417. pos = 0;
  5418. if (on && crtc->enabled && crtc->fb) {
  5419. base = intel_crtc->cursor_addr;
  5420. if (x > (int) crtc->fb->width)
  5421. base = 0;
  5422. if (y > (int) crtc->fb->height)
  5423. base = 0;
  5424. } else
  5425. base = 0;
  5426. if (x < 0) {
  5427. if (x + intel_crtc->cursor_width < 0)
  5428. base = 0;
  5429. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5430. x = -x;
  5431. }
  5432. pos |= x << CURSOR_X_SHIFT;
  5433. if (y < 0) {
  5434. if (y + intel_crtc->cursor_height < 0)
  5435. base = 0;
  5436. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5437. y = -y;
  5438. }
  5439. pos |= y << CURSOR_Y_SHIFT;
  5440. visible = base != 0;
  5441. if (!visible && !intel_crtc->cursor_visible)
  5442. return;
  5443. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5444. I915_WRITE(CURPOS_IVB(pipe), pos);
  5445. ivb_update_cursor(crtc, base);
  5446. } else {
  5447. I915_WRITE(CURPOS(pipe), pos);
  5448. if (IS_845G(dev) || IS_I865G(dev))
  5449. i845_update_cursor(crtc, base);
  5450. else
  5451. i9xx_update_cursor(crtc, base);
  5452. }
  5453. }
  5454. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5455. struct drm_file *file,
  5456. uint32_t handle,
  5457. uint32_t width, uint32_t height)
  5458. {
  5459. struct drm_device *dev = crtc->dev;
  5460. struct drm_i915_private *dev_priv = dev->dev_private;
  5461. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5462. struct drm_i915_gem_object *obj;
  5463. uint32_t addr;
  5464. int ret;
  5465. /* if we want to turn off the cursor ignore width and height */
  5466. if (!handle) {
  5467. DRM_DEBUG_KMS("cursor off\n");
  5468. addr = 0;
  5469. obj = NULL;
  5470. mutex_lock(&dev->struct_mutex);
  5471. goto finish;
  5472. }
  5473. /* Currently we only support 64x64 cursors */
  5474. if (width != 64 || height != 64) {
  5475. DRM_ERROR("we currently only support 64x64 cursors\n");
  5476. return -EINVAL;
  5477. }
  5478. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5479. if (&obj->base == NULL)
  5480. return -ENOENT;
  5481. if (obj->base.size < width * height * 4) {
  5482. DRM_ERROR("buffer is to small\n");
  5483. ret = -ENOMEM;
  5484. goto fail;
  5485. }
  5486. /* we only need to pin inside GTT if cursor is non-phy */
  5487. mutex_lock(&dev->struct_mutex);
  5488. if (!dev_priv->info->cursor_needs_physical) {
  5489. unsigned alignment;
  5490. if (obj->tiling_mode) {
  5491. DRM_ERROR("cursor cannot be tiled\n");
  5492. ret = -EINVAL;
  5493. goto fail_locked;
  5494. }
  5495. /* Note that the w/a also requires 2 PTE of padding following
  5496. * the bo. We currently fill all unused PTE with the shadow
  5497. * page and so we should always have valid PTE following the
  5498. * cursor preventing the VT-d warning.
  5499. */
  5500. alignment = 0;
  5501. if (need_vtd_wa(dev))
  5502. alignment = 64*1024;
  5503. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5504. if (ret) {
  5505. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5506. goto fail_locked;
  5507. }
  5508. ret = i915_gem_object_put_fence(obj);
  5509. if (ret) {
  5510. DRM_ERROR("failed to release fence for cursor");
  5511. goto fail_unpin;
  5512. }
  5513. addr = i915_gem_obj_ggtt_offset(obj);
  5514. } else {
  5515. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5516. ret = i915_gem_attach_phys_object(dev, obj,
  5517. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5518. align);
  5519. if (ret) {
  5520. DRM_ERROR("failed to attach phys object\n");
  5521. goto fail_locked;
  5522. }
  5523. addr = obj->phys_obj->handle->busaddr;
  5524. }
  5525. if (IS_GEN2(dev))
  5526. I915_WRITE(CURSIZE, (height << 12) | width);
  5527. finish:
  5528. if (intel_crtc->cursor_bo) {
  5529. if (dev_priv->info->cursor_needs_physical) {
  5530. if (intel_crtc->cursor_bo != obj)
  5531. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5532. } else
  5533. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5534. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5535. }
  5536. mutex_unlock(&dev->struct_mutex);
  5537. intel_crtc->cursor_addr = addr;
  5538. intel_crtc->cursor_bo = obj;
  5539. intel_crtc->cursor_width = width;
  5540. intel_crtc->cursor_height = height;
  5541. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5542. return 0;
  5543. fail_unpin:
  5544. i915_gem_object_unpin(obj);
  5545. fail_locked:
  5546. mutex_unlock(&dev->struct_mutex);
  5547. fail:
  5548. drm_gem_object_unreference_unlocked(&obj->base);
  5549. return ret;
  5550. }
  5551. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5552. {
  5553. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5554. intel_crtc->cursor_x = x;
  5555. intel_crtc->cursor_y = y;
  5556. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5557. return 0;
  5558. }
  5559. /** Sets the color ramps on behalf of RandR */
  5560. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5561. u16 blue, int regno)
  5562. {
  5563. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5564. intel_crtc->lut_r[regno] = red >> 8;
  5565. intel_crtc->lut_g[regno] = green >> 8;
  5566. intel_crtc->lut_b[regno] = blue >> 8;
  5567. }
  5568. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5569. u16 *blue, int regno)
  5570. {
  5571. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5572. *red = intel_crtc->lut_r[regno] << 8;
  5573. *green = intel_crtc->lut_g[regno] << 8;
  5574. *blue = intel_crtc->lut_b[regno] << 8;
  5575. }
  5576. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5577. u16 *blue, uint32_t start, uint32_t size)
  5578. {
  5579. int end = (start + size > 256) ? 256 : start + size, i;
  5580. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5581. for (i = start; i < end; i++) {
  5582. intel_crtc->lut_r[i] = red[i] >> 8;
  5583. intel_crtc->lut_g[i] = green[i] >> 8;
  5584. intel_crtc->lut_b[i] = blue[i] >> 8;
  5585. }
  5586. intel_crtc_load_lut(crtc);
  5587. }
  5588. /* VESA 640x480x72Hz mode to set on the pipe */
  5589. static struct drm_display_mode load_detect_mode = {
  5590. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5591. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5592. };
  5593. static struct drm_framebuffer *
  5594. intel_framebuffer_create(struct drm_device *dev,
  5595. struct drm_mode_fb_cmd2 *mode_cmd,
  5596. struct drm_i915_gem_object *obj)
  5597. {
  5598. struct intel_framebuffer *intel_fb;
  5599. int ret;
  5600. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5601. if (!intel_fb) {
  5602. drm_gem_object_unreference_unlocked(&obj->base);
  5603. return ERR_PTR(-ENOMEM);
  5604. }
  5605. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5606. if (ret) {
  5607. drm_gem_object_unreference_unlocked(&obj->base);
  5608. kfree(intel_fb);
  5609. return ERR_PTR(ret);
  5610. }
  5611. return &intel_fb->base;
  5612. }
  5613. static u32
  5614. intel_framebuffer_pitch_for_width(int width, int bpp)
  5615. {
  5616. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5617. return ALIGN(pitch, 64);
  5618. }
  5619. static u32
  5620. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5621. {
  5622. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5623. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5624. }
  5625. static struct drm_framebuffer *
  5626. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5627. struct drm_display_mode *mode,
  5628. int depth, int bpp)
  5629. {
  5630. struct drm_i915_gem_object *obj;
  5631. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5632. obj = i915_gem_alloc_object(dev,
  5633. intel_framebuffer_size_for_mode(mode, bpp));
  5634. if (obj == NULL)
  5635. return ERR_PTR(-ENOMEM);
  5636. mode_cmd.width = mode->hdisplay;
  5637. mode_cmd.height = mode->vdisplay;
  5638. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5639. bpp);
  5640. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5641. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5642. }
  5643. static struct drm_framebuffer *
  5644. mode_fits_in_fbdev(struct drm_device *dev,
  5645. struct drm_display_mode *mode)
  5646. {
  5647. struct drm_i915_private *dev_priv = dev->dev_private;
  5648. struct drm_i915_gem_object *obj;
  5649. struct drm_framebuffer *fb;
  5650. if (dev_priv->fbdev == NULL)
  5651. return NULL;
  5652. obj = dev_priv->fbdev->ifb.obj;
  5653. if (obj == NULL)
  5654. return NULL;
  5655. fb = &dev_priv->fbdev->ifb.base;
  5656. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5657. fb->bits_per_pixel))
  5658. return NULL;
  5659. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5660. return NULL;
  5661. return fb;
  5662. }
  5663. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5664. struct drm_display_mode *mode,
  5665. struct intel_load_detect_pipe *old)
  5666. {
  5667. struct intel_crtc *intel_crtc;
  5668. struct intel_encoder *intel_encoder =
  5669. intel_attached_encoder(connector);
  5670. struct drm_crtc *possible_crtc;
  5671. struct drm_encoder *encoder = &intel_encoder->base;
  5672. struct drm_crtc *crtc = NULL;
  5673. struct drm_device *dev = encoder->dev;
  5674. struct drm_framebuffer *fb;
  5675. int i = -1;
  5676. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5677. connector->base.id, drm_get_connector_name(connector),
  5678. encoder->base.id, drm_get_encoder_name(encoder));
  5679. /*
  5680. * Algorithm gets a little messy:
  5681. *
  5682. * - if the connector already has an assigned crtc, use it (but make
  5683. * sure it's on first)
  5684. *
  5685. * - try to find the first unused crtc that can drive this connector,
  5686. * and use that if we find one
  5687. */
  5688. /* See if we already have a CRTC for this connector */
  5689. if (encoder->crtc) {
  5690. crtc = encoder->crtc;
  5691. mutex_lock(&crtc->mutex);
  5692. old->dpms_mode = connector->dpms;
  5693. old->load_detect_temp = false;
  5694. /* Make sure the crtc and connector are running */
  5695. if (connector->dpms != DRM_MODE_DPMS_ON)
  5696. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5697. return true;
  5698. }
  5699. /* Find an unused one (if possible) */
  5700. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5701. i++;
  5702. if (!(encoder->possible_crtcs & (1 << i)))
  5703. continue;
  5704. if (!possible_crtc->enabled) {
  5705. crtc = possible_crtc;
  5706. break;
  5707. }
  5708. }
  5709. /*
  5710. * If we didn't find an unused CRTC, don't use any.
  5711. */
  5712. if (!crtc) {
  5713. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5714. return false;
  5715. }
  5716. mutex_lock(&crtc->mutex);
  5717. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5718. to_intel_connector(connector)->new_encoder = intel_encoder;
  5719. intel_crtc = to_intel_crtc(crtc);
  5720. old->dpms_mode = connector->dpms;
  5721. old->load_detect_temp = true;
  5722. old->release_fb = NULL;
  5723. if (!mode)
  5724. mode = &load_detect_mode;
  5725. /* We need a framebuffer large enough to accommodate all accesses
  5726. * that the plane may generate whilst we perform load detection.
  5727. * We can not rely on the fbcon either being present (we get called
  5728. * during its initialisation to detect all boot displays, or it may
  5729. * not even exist) or that it is large enough to satisfy the
  5730. * requested mode.
  5731. */
  5732. fb = mode_fits_in_fbdev(dev, mode);
  5733. if (fb == NULL) {
  5734. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5735. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5736. old->release_fb = fb;
  5737. } else
  5738. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5739. if (IS_ERR(fb)) {
  5740. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5741. mutex_unlock(&crtc->mutex);
  5742. return false;
  5743. }
  5744. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5745. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5746. if (old->release_fb)
  5747. old->release_fb->funcs->destroy(old->release_fb);
  5748. mutex_unlock(&crtc->mutex);
  5749. return false;
  5750. }
  5751. /* let the connector get through one full cycle before testing */
  5752. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5753. return true;
  5754. }
  5755. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5756. struct intel_load_detect_pipe *old)
  5757. {
  5758. struct intel_encoder *intel_encoder =
  5759. intel_attached_encoder(connector);
  5760. struct drm_encoder *encoder = &intel_encoder->base;
  5761. struct drm_crtc *crtc = encoder->crtc;
  5762. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5763. connector->base.id, drm_get_connector_name(connector),
  5764. encoder->base.id, drm_get_encoder_name(encoder));
  5765. if (old->load_detect_temp) {
  5766. to_intel_connector(connector)->new_encoder = NULL;
  5767. intel_encoder->new_crtc = NULL;
  5768. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5769. if (old->release_fb) {
  5770. drm_framebuffer_unregister_private(old->release_fb);
  5771. drm_framebuffer_unreference(old->release_fb);
  5772. }
  5773. mutex_unlock(&crtc->mutex);
  5774. return;
  5775. }
  5776. /* Switch crtc and encoder back off if necessary */
  5777. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5778. connector->funcs->dpms(connector, old->dpms_mode);
  5779. mutex_unlock(&crtc->mutex);
  5780. }
  5781. /* Returns the clock of the currently programmed mode of the given pipe. */
  5782. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  5783. struct intel_crtc_config *pipe_config)
  5784. {
  5785. struct drm_device *dev = crtc->base.dev;
  5786. struct drm_i915_private *dev_priv = dev->dev_private;
  5787. int pipe = pipe_config->cpu_transcoder;
  5788. u32 dpll = I915_READ(DPLL(pipe));
  5789. u32 fp;
  5790. intel_clock_t clock;
  5791. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5792. fp = I915_READ(FP0(pipe));
  5793. else
  5794. fp = I915_READ(FP1(pipe));
  5795. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5796. if (IS_PINEVIEW(dev)) {
  5797. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5798. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5799. } else {
  5800. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5801. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5802. }
  5803. if (!IS_GEN2(dev)) {
  5804. if (IS_PINEVIEW(dev))
  5805. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5806. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5807. else
  5808. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5809. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5810. switch (dpll & DPLL_MODE_MASK) {
  5811. case DPLLB_MODE_DAC_SERIAL:
  5812. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5813. 5 : 10;
  5814. break;
  5815. case DPLLB_MODE_LVDS:
  5816. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5817. 7 : 14;
  5818. break;
  5819. default:
  5820. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5821. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5822. pipe_config->adjusted_mode.clock = 0;
  5823. return;
  5824. }
  5825. if (IS_PINEVIEW(dev))
  5826. pineview_clock(96000, &clock);
  5827. else
  5828. i9xx_clock(96000, &clock);
  5829. } else {
  5830. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5831. if (is_lvds) {
  5832. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5833. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5834. clock.p2 = 14;
  5835. if ((dpll & PLL_REF_INPUT_MASK) ==
  5836. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5837. /* XXX: might not be 66MHz */
  5838. i9xx_clock(66000, &clock);
  5839. } else
  5840. i9xx_clock(48000, &clock);
  5841. } else {
  5842. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5843. clock.p1 = 2;
  5844. else {
  5845. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5846. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5847. }
  5848. if (dpll & PLL_P2_DIVIDE_BY_4)
  5849. clock.p2 = 4;
  5850. else
  5851. clock.p2 = 2;
  5852. i9xx_clock(48000, &clock);
  5853. }
  5854. }
  5855. pipe_config->adjusted_mode.clock = clock.dot *
  5856. pipe_config->pixel_multiplier;
  5857. }
  5858. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  5859. struct intel_crtc_config *pipe_config)
  5860. {
  5861. struct drm_device *dev = crtc->base.dev;
  5862. struct drm_i915_private *dev_priv = dev->dev_private;
  5863. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  5864. int link_freq, repeat;
  5865. u64 clock;
  5866. u32 link_m, link_n;
  5867. repeat = pipe_config->pixel_multiplier;
  5868. /*
  5869. * The calculation for the data clock is:
  5870. * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
  5871. * But we want to avoid losing precison if possible, so:
  5872. * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
  5873. *
  5874. * and the link clock is simpler:
  5875. * link_clock = (m * link_clock * repeat) / n
  5876. */
  5877. /*
  5878. * We need to get the FDI or DP link clock here to derive
  5879. * the M/N dividers.
  5880. *
  5881. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  5882. * For DP, it's either 1.62GHz or 2.7GHz.
  5883. * We do our calculations in 10*MHz since we don't need much precison.
  5884. */
  5885. if (pipe_config->has_pch_encoder)
  5886. link_freq = intel_fdi_link_freq(dev) * 10000;
  5887. else
  5888. link_freq = pipe_config->port_clock;
  5889. link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  5890. link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  5891. if (!link_m || !link_n)
  5892. return;
  5893. clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
  5894. do_div(clock, link_n);
  5895. pipe_config->adjusted_mode.clock = clock;
  5896. }
  5897. /** Returns the currently programmed mode of the given pipe. */
  5898. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5899. struct drm_crtc *crtc)
  5900. {
  5901. struct drm_i915_private *dev_priv = dev->dev_private;
  5902. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5903. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5904. struct drm_display_mode *mode;
  5905. struct intel_crtc_config pipe_config;
  5906. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5907. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5908. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5909. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5910. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5911. if (!mode)
  5912. return NULL;
  5913. /*
  5914. * Construct a pipe_config sufficient for getting the clock info
  5915. * back out of crtc_clock_get.
  5916. *
  5917. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  5918. * to use a real value here instead.
  5919. */
  5920. pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  5921. pipe_config.pixel_multiplier = 1;
  5922. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  5923. mode->clock = pipe_config.adjusted_mode.clock;
  5924. mode->hdisplay = (htot & 0xffff) + 1;
  5925. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5926. mode->hsync_start = (hsync & 0xffff) + 1;
  5927. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5928. mode->vdisplay = (vtot & 0xffff) + 1;
  5929. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5930. mode->vsync_start = (vsync & 0xffff) + 1;
  5931. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5932. drm_mode_set_name(mode);
  5933. return mode;
  5934. }
  5935. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5936. {
  5937. struct drm_device *dev = crtc->dev;
  5938. drm_i915_private_t *dev_priv = dev->dev_private;
  5939. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5940. int pipe = intel_crtc->pipe;
  5941. int dpll_reg = DPLL(pipe);
  5942. int dpll;
  5943. if (HAS_PCH_SPLIT(dev))
  5944. return;
  5945. if (!dev_priv->lvds_downclock_avail)
  5946. return;
  5947. dpll = I915_READ(dpll_reg);
  5948. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5949. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5950. assert_panel_unlocked(dev_priv, pipe);
  5951. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5952. I915_WRITE(dpll_reg, dpll);
  5953. intel_wait_for_vblank(dev, pipe);
  5954. dpll = I915_READ(dpll_reg);
  5955. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5956. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5957. }
  5958. }
  5959. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5960. {
  5961. struct drm_device *dev = crtc->dev;
  5962. drm_i915_private_t *dev_priv = dev->dev_private;
  5963. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5964. if (HAS_PCH_SPLIT(dev))
  5965. return;
  5966. if (!dev_priv->lvds_downclock_avail)
  5967. return;
  5968. /*
  5969. * Since this is called by a timer, we should never get here in
  5970. * the manual case.
  5971. */
  5972. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5973. int pipe = intel_crtc->pipe;
  5974. int dpll_reg = DPLL(pipe);
  5975. int dpll;
  5976. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5977. assert_panel_unlocked(dev_priv, pipe);
  5978. dpll = I915_READ(dpll_reg);
  5979. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5980. I915_WRITE(dpll_reg, dpll);
  5981. intel_wait_for_vblank(dev, pipe);
  5982. dpll = I915_READ(dpll_reg);
  5983. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5984. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5985. }
  5986. }
  5987. void intel_mark_busy(struct drm_device *dev)
  5988. {
  5989. i915_update_gfx_val(dev->dev_private);
  5990. }
  5991. void intel_mark_idle(struct drm_device *dev)
  5992. {
  5993. struct drm_crtc *crtc;
  5994. if (!i915_powersave)
  5995. return;
  5996. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5997. if (!crtc->fb)
  5998. continue;
  5999. intel_decrease_pllclock(crtc);
  6000. }
  6001. }
  6002. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6003. struct intel_ring_buffer *ring)
  6004. {
  6005. struct drm_device *dev = obj->base.dev;
  6006. struct drm_crtc *crtc;
  6007. if (!i915_powersave)
  6008. return;
  6009. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6010. if (!crtc->fb)
  6011. continue;
  6012. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6013. continue;
  6014. intel_increase_pllclock(crtc);
  6015. if (ring && intel_fbc_enabled(dev))
  6016. ring->fbc_dirty = true;
  6017. }
  6018. }
  6019. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6020. {
  6021. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6022. struct drm_device *dev = crtc->dev;
  6023. struct intel_unpin_work *work;
  6024. unsigned long flags;
  6025. spin_lock_irqsave(&dev->event_lock, flags);
  6026. work = intel_crtc->unpin_work;
  6027. intel_crtc->unpin_work = NULL;
  6028. spin_unlock_irqrestore(&dev->event_lock, flags);
  6029. if (work) {
  6030. cancel_work_sync(&work->work);
  6031. kfree(work);
  6032. }
  6033. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6034. drm_crtc_cleanup(crtc);
  6035. kfree(intel_crtc);
  6036. }
  6037. static void intel_unpin_work_fn(struct work_struct *__work)
  6038. {
  6039. struct intel_unpin_work *work =
  6040. container_of(__work, struct intel_unpin_work, work);
  6041. struct drm_device *dev = work->crtc->dev;
  6042. mutex_lock(&dev->struct_mutex);
  6043. intel_unpin_fb_obj(work->old_fb_obj);
  6044. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6045. drm_gem_object_unreference(&work->old_fb_obj->base);
  6046. intel_update_fbc(dev);
  6047. mutex_unlock(&dev->struct_mutex);
  6048. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6049. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6050. kfree(work);
  6051. }
  6052. static void do_intel_finish_page_flip(struct drm_device *dev,
  6053. struct drm_crtc *crtc)
  6054. {
  6055. drm_i915_private_t *dev_priv = dev->dev_private;
  6056. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6057. struct intel_unpin_work *work;
  6058. unsigned long flags;
  6059. /* Ignore early vblank irqs */
  6060. if (intel_crtc == NULL)
  6061. return;
  6062. spin_lock_irqsave(&dev->event_lock, flags);
  6063. work = intel_crtc->unpin_work;
  6064. /* Ensure we don't miss a work->pending update ... */
  6065. smp_rmb();
  6066. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6067. spin_unlock_irqrestore(&dev->event_lock, flags);
  6068. return;
  6069. }
  6070. /* and that the unpin work is consistent wrt ->pending. */
  6071. smp_rmb();
  6072. intel_crtc->unpin_work = NULL;
  6073. if (work->event)
  6074. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6075. drm_vblank_put(dev, intel_crtc->pipe);
  6076. spin_unlock_irqrestore(&dev->event_lock, flags);
  6077. wake_up_all(&dev_priv->pending_flip_queue);
  6078. queue_work(dev_priv->wq, &work->work);
  6079. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6080. }
  6081. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6082. {
  6083. drm_i915_private_t *dev_priv = dev->dev_private;
  6084. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6085. do_intel_finish_page_flip(dev, crtc);
  6086. }
  6087. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6088. {
  6089. drm_i915_private_t *dev_priv = dev->dev_private;
  6090. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6091. do_intel_finish_page_flip(dev, crtc);
  6092. }
  6093. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6094. {
  6095. drm_i915_private_t *dev_priv = dev->dev_private;
  6096. struct intel_crtc *intel_crtc =
  6097. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6098. unsigned long flags;
  6099. /* NB: An MMIO update of the plane base pointer will also
  6100. * generate a page-flip completion irq, i.e. every modeset
  6101. * is also accompanied by a spurious intel_prepare_page_flip().
  6102. */
  6103. spin_lock_irqsave(&dev->event_lock, flags);
  6104. if (intel_crtc->unpin_work)
  6105. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6106. spin_unlock_irqrestore(&dev->event_lock, flags);
  6107. }
  6108. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6109. {
  6110. /* Ensure that the work item is consistent when activating it ... */
  6111. smp_wmb();
  6112. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6113. /* and that it is marked active as soon as the irq could fire. */
  6114. smp_wmb();
  6115. }
  6116. static int intel_gen2_queue_flip(struct drm_device *dev,
  6117. struct drm_crtc *crtc,
  6118. struct drm_framebuffer *fb,
  6119. struct drm_i915_gem_object *obj)
  6120. {
  6121. struct drm_i915_private *dev_priv = dev->dev_private;
  6122. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6123. u32 flip_mask;
  6124. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6125. int ret;
  6126. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6127. if (ret)
  6128. goto err;
  6129. ret = intel_ring_begin(ring, 6);
  6130. if (ret)
  6131. goto err_unpin;
  6132. /* Can't queue multiple flips, so wait for the previous
  6133. * one to finish before executing the next.
  6134. */
  6135. if (intel_crtc->plane)
  6136. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6137. else
  6138. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6139. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6140. intel_ring_emit(ring, MI_NOOP);
  6141. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6142. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6143. intel_ring_emit(ring, fb->pitches[0]);
  6144. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6145. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6146. intel_mark_page_flip_active(intel_crtc);
  6147. intel_ring_advance(ring);
  6148. return 0;
  6149. err_unpin:
  6150. intel_unpin_fb_obj(obj);
  6151. err:
  6152. return ret;
  6153. }
  6154. static int intel_gen3_queue_flip(struct drm_device *dev,
  6155. struct drm_crtc *crtc,
  6156. struct drm_framebuffer *fb,
  6157. struct drm_i915_gem_object *obj)
  6158. {
  6159. struct drm_i915_private *dev_priv = dev->dev_private;
  6160. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6161. u32 flip_mask;
  6162. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6163. int ret;
  6164. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6165. if (ret)
  6166. goto err;
  6167. ret = intel_ring_begin(ring, 6);
  6168. if (ret)
  6169. goto err_unpin;
  6170. if (intel_crtc->plane)
  6171. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6172. else
  6173. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6174. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6175. intel_ring_emit(ring, MI_NOOP);
  6176. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6177. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6178. intel_ring_emit(ring, fb->pitches[0]);
  6179. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6180. intel_ring_emit(ring, MI_NOOP);
  6181. intel_mark_page_flip_active(intel_crtc);
  6182. intel_ring_advance(ring);
  6183. return 0;
  6184. err_unpin:
  6185. intel_unpin_fb_obj(obj);
  6186. err:
  6187. return ret;
  6188. }
  6189. static int intel_gen4_queue_flip(struct drm_device *dev,
  6190. struct drm_crtc *crtc,
  6191. struct drm_framebuffer *fb,
  6192. struct drm_i915_gem_object *obj)
  6193. {
  6194. struct drm_i915_private *dev_priv = dev->dev_private;
  6195. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6196. uint32_t pf, pipesrc;
  6197. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6198. int ret;
  6199. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6200. if (ret)
  6201. goto err;
  6202. ret = intel_ring_begin(ring, 4);
  6203. if (ret)
  6204. goto err_unpin;
  6205. /* i965+ uses the linear or tiled offsets from the
  6206. * Display Registers (which do not change across a page-flip)
  6207. * so we need only reprogram the base address.
  6208. */
  6209. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6210. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6211. intel_ring_emit(ring, fb->pitches[0]);
  6212. intel_ring_emit(ring,
  6213. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6214. obj->tiling_mode);
  6215. /* XXX Enabling the panel-fitter across page-flip is so far
  6216. * untested on non-native modes, so ignore it for now.
  6217. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6218. */
  6219. pf = 0;
  6220. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6221. intel_ring_emit(ring, pf | pipesrc);
  6222. intel_mark_page_flip_active(intel_crtc);
  6223. intel_ring_advance(ring);
  6224. return 0;
  6225. err_unpin:
  6226. intel_unpin_fb_obj(obj);
  6227. err:
  6228. return ret;
  6229. }
  6230. static int intel_gen6_queue_flip(struct drm_device *dev,
  6231. struct drm_crtc *crtc,
  6232. struct drm_framebuffer *fb,
  6233. struct drm_i915_gem_object *obj)
  6234. {
  6235. struct drm_i915_private *dev_priv = dev->dev_private;
  6236. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6237. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6238. uint32_t pf, pipesrc;
  6239. int ret;
  6240. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6241. if (ret)
  6242. goto err;
  6243. ret = intel_ring_begin(ring, 4);
  6244. if (ret)
  6245. goto err_unpin;
  6246. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6247. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6248. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6249. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6250. /* Contrary to the suggestions in the documentation,
  6251. * "Enable Panel Fitter" does not seem to be required when page
  6252. * flipping with a non-native mode, and worse causes a normal
  6253. * modeset to fail.
  6254. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6255. */
  6256. pf = 0;
  6257. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6258. intel_ring_emit(ring, pf | pipesrc);
  6259. intel_mark_page_flip_active(intel_crtc);
  6260. intel_ring_advance(ring);
  6261. return 0;
  6262. err_unpin:
  6263. intel_unpin_fb_obj(obj);
  6264. err:
  6265. return ret;
  6266. }
  6267. /*
  6268. * On gen7 we currently use the blit ring because (in early silicon at least)
  6269. * the render ring doesn't give us interrpts for page flip completion, which
  6270. * means clients will hang after the first flip is queued. Fortunately the
  6271. * blit ring generates interrupts properly, so use it instead.
  6272. */
  6273. static int intel_gen7_queue_flip(struct drm_device *dev,
  6274. struct drm_crtc *crtc,
  6275. struct drm_framebuffer *fb,
  6276. struct drm_i915_gem_object *obj)
  6277. {
  6278. struct drm_i915_private *dev_priv = dev->dev_private;
  6279. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6280. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6281. uint32_t plane_bit = 0;
  6282. int ret;
  6283. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6284. if (ret)
  6285. goto err;
  6286. switch(intel_crtc->plane) {
  6287. case PLANE_A:
  6288. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6289. break;
  6290. case PLANE_B:
  6291. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6292. break;
  6293. case PLANE_C:
  6294. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6295. break;
  6296. default:
  6297. WARN_ONCE(1, "unknown plane in flip command\n");
  6298. ret = -ENODEV;
  6299. goto err_unpin;
  6300. }
  6301. ret = intel_ring_begin(ring, 4);
  6302. if (ret)
  6303. goto err_unpin;
  6304. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6305. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6306. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6307. intel_ring_emit(ring, (MI_NOOP));
  6308. intel_mark_page_flip_active(intel_crtc);
  6309. intel_ring_advance(ring);
  6310. return 0;
  6311. err_unpin:
  6312. intel_unpin_fb_obj(obj);
  6313. err:
  6314. return ret;
  6315. }
  6316. static int intel_default_queue_flip(struct drm_device *dev,
  6317. struct drm_crtc *crtc,
  6318. struct drm_framebuffer *fb,
  6319. struct drm_i915_gem_object *obj)
  6320. {
  6321. return -ENODEV;
  6322. }
  6323. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6324. struct drm_framebuffer *fb,
  6325. struct drm_pending_vblank_event *event)
  6326. {
  6327. struct drm_device *dev = crtc->dev;
  6328. struct drm_i915_private *dev_priv = dev->dev_private;
  6329. struct drm_framebuffer *old_fb = crtc->fb;
  6330. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6331. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6332. struct intel_unpin_work *work;
  6333. unsigned long flags;
  6334. int ret;
  6335. /* Can't change pixel format via MI display flips. */
  6336. if (fb->pixel_format != crtc->fb->pixel_format)
  6337. return -EINVAL;
  6338. /*
  6339. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6340. * Note that pitch changes could also affect these register.
  6341. */
  6342. if (INTEL_INFO(dev)->gen > 3 &&
  6343. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6344. fb->pitches[0] != crtc->fb->pitches[0]))
  6345. return -EINVAL;
  6346. work = kzalloc(sizeof *work, GFP_KERNEL);
  6347. if (work == NULL)
  6348. return -ENOMEM;
  6349. work->event = event;
  6350. work->crtc = crtc;
  6351. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6352. INIT_WORK(&work->work, intel_unpin_work_fn);
  6353. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6354. if (ret)
  6355. goto free_work;
  6356. /* We borrow the event spin lock for protecting unpin_work */
  6357. spin_lock_irqsave(&dev->event_lock, flags);
  6358. if (intel_crtc->unpin_work) {
  6359. spin_unlock_irqrestore(&dev->event_lock, flags);
  6360. kfree(work);
  6361. drm_vblank_put(dev, intel_crtc->pipe);
  6362. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6363. return -EBUSY;
  6364. }
  6365. intel_crtc->unpin_work = work;
  6366. spin_unlock_irqrestore(&dev->event_lock, flags);
  6367. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6368. flush_workqueue(dev_priv->wq);
  6369. ret = i915_mutex_lock_interruptible(dev);
  6370. if (ret)
  6371. goto cleanup;
  6372. /* Reference the objects for the scheduled work. */
  6373. drm_gem_object_reference(&work->old_fb_obj->base);
  6374. drm_gem_object_reference(&obj->base);
  6375. crtc->fb = fb;
  6376. work->pending_flip_obj = obj;
  6377. work->enable_stall_check = true;
  6378. atomic_inc(&intel_crtc->unpin_work_count);
  6379. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6380. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6381. if (ret)
  6382. goto cleanup_pending;
  6383. intel_disable_fbc(dev);
  6384. intel_mark_fb_busy(obj, NULL);
  6385. mutex_unlock(&dev->struct_mutex);
  6386. trace_i915_flip_request(intel_crtc->plane, obj);
  6387. return 0;
  6388. cleanup_pending:
  6389. atomic_dec(&intel_crtc->unpin_work_count);
  6390. crtc->fb = old_fb;
  6391. drm_gem_object_unreference(&work->old_fb_obj->base);
  6392. drm_gem_object_unreference(&obj->base);
  6393. mutex_unlock(&dev->struct_mutex);
  6394. cleanup:
  6395. spin_lock_irqsave(&dev->event_lock, flags);
  6396. intel_crtc->unpin_work = NULL;
  6397. spin_unlock_irqrestore(&dev->event_lock, flags);
  6398. drm_vblank_put(dev, intel_crtc->pipe);
  6399. free_work:
  6400. kfree(work);
  6401. return ret;
  6402. }
  6403. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6404. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6405. .load_lut = intel_crtc_load_lut,
  6406. };
  6407. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6408. struct drm_crtc *crtc)
  6409. {
  6410. struct drm_device *dev;
  6411. struct drm_crtc *tmp;
  6412. int crtc_mask = 1;
  6413. WARN(!crtc, "checking null crtc?\n");
  6414. dev = crtc->dev;
  6415. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6416. if (tmp == crtc)
  6417. break;
  6418. crtc_mask <<= 1;
  6419. }
  6420. if (encoder->possible_crtcs & crtc_mask)
  6421. return true;
  6422. return false;
  6423. }
  6424. /**
  6425. * intel_modeset_update_staged_output_state
  6426. *
  6427. * Updates the staged output configuration state, e.g. after we've read out the
  6428. * current hw state.
  6429. */
  6430. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6431. {
  6432. struct intel_encoder *encoder;
  6433. struct intel_connector *connector;
  6434. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6435. base.head) {
  6436. connector->new_encoder =
  6437. to_intel_encoder(connector->base.encoder);
  6438. }
  6439. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6440. base.head) {
  6441. encoder->new_crtc =
  6442. to_intel_crtc(encoder->base.crtc);
  6443. }
  6444. }
  6445. /**
  6446. * intel_modeset_commit_output_state
  6447. *
  6448. * This function copies the stage display pipe configuration to the real one.
  6449. */
  6450. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6451. {
  6452. struct intel_encoder *encoder;
  6453. struct intel_connector *connector;
  6454. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6455. base.head) {
  6456. connector->base.encoder = &connector->new_encoder->base;
  6457. }
  6458. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6459. base.head) {
  6460. encoder->base.crtc = &encoder->new_crtc->base;
  6461. }
  6462. }
  6463. static void
  6464. connected_sink_compute_bpp(struct intel_connector * connector,
  6465. struct intel_crtc_config *pipe_config)
  6466. {
  6467. int bpp = pipe_config->pipe_bpp;
  6468. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6469. connector->base.base.id,
  6470. drm_get_connector_name(&connector->base));
  6471. /* Don't use an invalid EDID bpc value */
  6472. if (connector->base.display_info.bpc &&
  6473. connector->base.display_info.bpc * 3 < bpp) {
  6474. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6475. bpp, connector->base.display_info.bpc*3);
  6476. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6477. }
  6478. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6479. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6480. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6481. bpp);
  6482. pipe_config->pipe_bpp = 24;
  6483. }
  6484. }
  6485. static int
  6486. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6487. struct drm_framebuffer *fb,
  6488. struct intel_crtc_config *pipe_config)
  6489. {
  6490. struct drm_device *dev = crtc->base.dev;
  6491. struct intel_connector *connector;
  6492. int bpp;
  6493. switch (fb->pixel_format) {
  6494. case DRM_FORMAT_C8:
  6495. bpp = 8*3; /* since we go through a colormap */
  6496. break;
  6497. case DRM_FORMAT_XRGB1555:
  6498. case DRM_FORMAT_ARGB1555:
  6499. /* checked in intel_framebuffer_init already */
  6500. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6501. return -EINVAL;
  6502. case DRM_FORMAT_RGB565:
  6503. bpp = 6*3; /* min is 18bpp */
  6504. break;
  6505. case DRM_FORMAT_XBGR8888:
  6506. case DRM_FORMAT_ABGR8888:
  6507. /* checked in intel_framebuffer_init already */
  6508. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6509. return -EINVAL;
  6510. case DRM_FORMAT_XRGB8888:
  6511. case DRM_FORMAT_ARGB8888:
  6512. bpp = 8*3;
  6513. break;
  6514. case DRM_FORMAT_XRGB2101010:
  6515. case DRM_FORMAT_ARGB2101010:
  6516. case DRM_FORMAT_XBGR2101010:
  6517. case DRM_FORMAT_ABGR2101010:
  6518. /* checked in intel_framebuffer_init already */
  6519. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6520. return -EINVAL;
  6521. bpp = 10*3;
  6522. break;
  6523. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6524. default:
  6525. DRM_DEBUG_KMS("unsupported depth\n");
  6526. return -EINVAL;
  6527. }
  6528. pipe_config->pipe_bpp = bpp;
  6529. /* Clamp display bpp to EDID value */
  6530. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6531. base.head) {
  6532. if (!connector->new_encoder ||
  6533. connector->new_encoder->new_crtc != crtc)
  6534. continue;
  6535. connected_sink_compute_bpp(connector, pipe_config);
  6536. }
  6537. return bpp;
  6538. }
  6539. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6540. struct intel_crtc_config *pipe_config,
  6541. const char *context)
  6542. {
  6543. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6544. context, pipe_name(crtc->pipe));
  6545. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6546. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6547. pipe_config->pipe_bpp, pipe_config->dither);
  6548. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6549. pipe_config->has_pch_encoder,
  6550. pipe_config->fdi_lanes,
  6551. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6552. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6553. pipe_config->fdi_m_n.tu);
  6554. DRM_DEBUG_KMS("requested mode:\n");
  6555. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6556. DRM_DEBUG_KMS("adjusted mode:\n");
  6557. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6558. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6559. pipe_config->gmch_pfit.control,
  6560. pipe_config->gmch_pfit.pgm_ratios,
  6561. pipe_config->gmch_pfit.lvds_border_bits);
  6562. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6563. pipe_config->pch_pfit.pos,
  6564. pipe_config->pch_pfit.size);
  6565. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6566. }
  6567. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6568. {
  6569. int num_encoders = 0;
  6570. bool uncloneable_encoders = false;
  6571. struct intel_encoder *encoder;
  6572. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6573. base.head) {
  6574. if (&encoder->new_crtc->base != crtc)
  6575. continue;
  6576. num_encoders++;
  6577. if (!encoder->cloneable)
  6578. uncloneable_encoders = true;
  6579. }
  6580. return !(num_encoders > 1 && uncloneable_encoders);
  6581. }
  6582. static struct intel_crtc_config *
  6583. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6584. struct drm_framebuffer *fb,
  6585. struct drm_display_mode *mode)
  6586. {
  6587. struct drm_device *dev = crtc->dev;
  6588. struct drm_encoder_helper_funcs *encoder_funcs;
  6589. struct intel_encoder *encoder;
  6590. struct intel_crtc_config *pipe_config;
  6591. int plane_bpp, ret = -EINVAL;
  6592. bool retry = true;
  6593. if (!check_encoder_cloning(crtc)) {
  6594. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6595. return ERR_PTR(-EINVAL);
  6596. }
  6597. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6598. if (!pipe_config)
  6599. return ERR_PTR(-ENOMEM);
  6600. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6601. drm_mode_copy(&pipe_config->requested_mode, mode);
  6602. pipe_config->cpu_transcoder =
  6603. (enum transcoder) to_intel_crtc(crtc)->pipe;
  6604. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6605. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6606. * plane pixel format and any sink constraints into account. Returns the
  6607. * source plane bpp so that dithering can be selected on mismatches
  6608. * after encoders and crtc also have had their say. */
  6609. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6610. fb, pipe_config);
  6611. if (plane_bpp < 0)
  6612. goto fail;
  6613. encoder_retry:
  6614. /* Ensure the port clock defaults are reset when retrying. */
  6615. pipe_config->port_clock = 0;
  6616. pipe_config->pixel_multiplier = 1;
  6617. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6618. * adjust it according to limitations or connector properties, and also
  6619. * a chance to reject the mode entirely.
  6620. */
  6621. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6622. base.head) {
  6623. if (&encoder->new_crtc->base != crtc)
  6624. continue;
  6625. if (encoder->compute_config) {
  6626. if (!(encoder->compute_config(encoder, pipe_config))) {
  6627. DRM_DEBUG_KMS("Encoder config failure\n");
  6628. goto fail;
  6629. }
  6630. continue;
  6631. }
  6632. encoder_funcs = encoder->base.helper_private;
  6633. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6634. &pipe_config->requested_mode,
  6635. &pipe_config->adjusted_mode))) {
  6636. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6637. goto fail;
  6638. }
  6639. }
  6640. /* Set default port clock if not overwritten by the encoder. Needs to be
  6641. * done afterwards in case the encoder adjusts the mode. */
  6642. if (!pipe_config->port_clock)
  6643. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6644. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6645. if (ret < 0) {
  6646. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6647. goto fail;
  6648. }
  6649. if (ret == RETRY) {
  6650. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6651. ret = -EINVAL;
  6652. goto fail;
  6653. }
  6654. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6655. retry = false;
  6656. goto encoder_retry;
  6657. }
  6658. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6659. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6660. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6661. return pipe_config;
  6662. fail:
  6663. kfree(pipe_config);
  6664. return ERR_PTR(ret);
  6665. }
  6666. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6667. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6668. static void
  6669. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6670. unsigned *prepare_pipes, unsigned *disable_pipes)
  6671. {
  6672. struct intel_crtc *intel_crtc;
  6673. struct drm_device *dev = crtc->dev;
  6674. struct intel_encoder *encoder;
  6675. struct intel_connector *connector;
  6676. struct drm_crtc *tmp_crtc;
  6677. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6678. /* Check which crtcs have changed outputs connected to them, these need
  6679. * to be part of the prepare_pipes mask. We don't (yet) support global
  6680. * modeset across multiple crtcs, so modeset_pipes will only have one
  6681. * bit set at most. */
  6682. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6683. base.head) {
  6684. if (connector->base.encoder == &connector->new_encoder->base)
  6685. continue;
  6686. if (connector->base.encoder) {
  6687. tmp_crtc = connector->base.encoder->crtc;
  6688. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6689. }
  6690. if (connector->new_encoder)
  6691. *prepare_pipes |=
  6692. 1 << connector->new_encoder->new_crtc->pipe;
  6693. }
  6694. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6695. base.head) {
  6696. if (encoder->base.crtc == &encoder->new_crtc->base)
  6697. continue;
  6698. if (encoder->base.crtc) {
  6699. tmp_crtc = encoder->base.crtc;
  6700. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6701. }
  6702. if (encoder->new_crtc)
  6703. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6704. }
  6705. /* Check for any pipes that will be fully disabled ... */
  6706. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6707. base.head) {
  6708. bool used = false;
  6709. /* Don't try to disable disabled crtcs. */
  6710. if (!intel_crtc->base.enabled)
  6711. continue;
  6712. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6713. base.head) {
  6714. if (encoder->new_crtc == intel_crtc)
  6715. used = true;
  6716. }
  6717. if (!used)
  6718. *disable_pipes |= 1 << intel_crtc->pipe;
  6719. }
  6720. /* set_mode is also used to update properties on life display pipes. */
  6721. intel_crtc = to_intel_crtc(crtc);
  6722. if (crtc->enabled)
  6723. *prepare_pipes |= 1 << intel_crtc->pipe;
  6724. /*
  6725. * For simplicity do a full modeset on any pipe where the output routing
  6726. * changed. We could be more clever, but that would require us to be
  6727. * more careful with calling the relevant encoder->mode_set functions.
  6728. */
  6729. if (*prepare_pipes)
  6730. *modeset_pipes = *prepare_pipes;
  6731. /* ... and mask these out. */
  6732. *modeset_pipes &= ~(*disable_pipes);
  6733. *prepare_pipes &= ~(*disable_pipes);
  6734. /*
  6735. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6736. * obies this rule, but the modeset restore mode of
  6737. * intel_modeset_setup_hw_state does not.
  6738. */
  6739. *modeset_pipes &= 1 << intel_crtc->pipe;
  6740. *prepare_pipes &= 1 << intel_crtc->pipe;
  6741. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6742. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6743. }
  6744. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6745. {
  6746. struct drm_encoder *encoder;
  6747. struct drm_device *dev = crtc->dev;
  6748. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6749. if (encoder->crtc == crtc)
  6750. return true;
  6751. return false;
  6752. }
  6753. static void
  6754. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6755. {
  6756. struct intel_encoder *intel_encoder;
  6757. struct intel_crtc *intel_crtc;
  6758. struct drm_connector *connector;
  6759. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6760. base.head) {
  6761. if (!intel_encoder->base.crtc)
  6762. continue;
  6763. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6764. if (prepare_pipes & (1 << intel_crtc->pipe))
  6765. intel_encoder->connectors_active = false;
  6766. }
  6767. intel_modeset_commit_output_state(dev);
  6768. /* Update computed state. */
  6769. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6770. base.head) {
  6771. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6772. }
  6773. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6774. if (!connector->encoder || !connector->encoder->crtc)
  6775. continue;
  6776. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6777. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6778. struct drm_property *dpms_property =
  6779. dev->mode_config.dpms_property;
  6780. connector->dpms = DRM_MODE_DPMS_ON;
  6781. drm_object_property_set_value(&connector->base,
  6782. dpms_property,
  6783. DRM_MODE_DPMS_ON);
  6784. intel_encoder = to_intel_encoder(connector->encoder);
  6785. intel_encoder->connectors_active = true;
  6786. }
  6787. }
  6788. }
  6789. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  6790. struct intel_crtc_config *new)
  6791. {
  6792. int clock1, clock2, diff;
  6793. clock1 = cur->adjusted_mode.clock;
  6794. clock2 = new->adjusted_mode.clock;
  6795. if (clock1 == clock2)
  6796. return true;
  6797. if (!clock1 || !clock2)
  6798. return false;
  6799. diff = abs(clock1 - clock2);
  6800. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  6801. return true;
  6802. return false;
  6803. }
  6804. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6805. list_for_each_entry((intel_crtc), \
  6806. &(dev)->mode_config.crtc_list, \
  6807. base.head) \
  6808. if (mask & (1 <<(intel_crtc)->pipe))
  6809. static bool
  6810. intel_pipe_config_compare(struct drm_device *dev,
  6811. struct intel_crtc_config *current_config,
  6812. struct intel_crtc_config *pipe_config)
  6813. {
  6814. #define PIPE_CONF_CHECK_X(name) \
  6815. if (current_config->name != pipe_config->name) { \
  6816. DRM_ERROR("mismatch in " #name " " \
  6817. "(expected 0x%08x, found 0x%08x)\n", \
  6818. current_config->name, \
  6819. pipe_config->name); \
  6820. return false; \
  6821. }
  6822. #define PIPE_CONF_CHECK_I(name) \
  6823. if (current_config->name != pipe_config->name) { \
  6824. DRM_ERROR("mismatch in " #name " " \
  6825. "(expected %i, found %i)\n", \
  6826. current_config->name, \
  6827. pipe_config->name); \
  6828. return false; \
  6829. }
  6830. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6831. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6832. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  6833. "(expected %i, found %i)\n", \
  6834. current_config->name & (mask), \
  6835. pipe_config->name & (mask)); \
  6836. return false; \
  6837. }
  6838. #define PIPE_CONF_QUIRK(quirk) \
  6839. ((current_config->quirks | pipe_config->quirks) & (quirk))
  6840. PIPE_CONF_CHECK_I(cpu_transcoder);
  6841. PIPE_CONF_CHECK_I(has_pch_encoder);
  6842. PIPE_CONF_CHECK_I(fdi_lanes);
  6843. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6844. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6845. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6846. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6847. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6848. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6849. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6850. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6851. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6852. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6853. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6854. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6855. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6856. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6857. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6858. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6859. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6860. PIPE_CONF_CHECK_I(pixel_multiplier);
  6861. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6862. DRM_MODE_FLAG_INTERLACE);
  6863. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  6864. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6865. DRM_MODE_FLAG_PHSYNC);
  6866. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6867. DRM_MODE_FLAG_NHSYNC);
  6868. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6869. DRM_MODE_FLAG_PVSYNC);
  6870. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6871. DRM_MODE_FLAG_NVSYNC);
  6872. }
  6873. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6874. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6875. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6876. /* pfit ratios are autocomputed by the hw on gen4+ */
  6877. if (INTEL_INFO(dev)->gen < 4)
  6878. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6879. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6880. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6881. PIPE_CONF_CHECK_I(pch_pfit.size);
  6882. PIPE_CONF_CHECK_I(ips_enabled);
  6883. PIPE_CONF_CHECK_I(shared_dpll);
  6884. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  6885. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  6886. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  6887. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  6888. #undef PIPE_CONF_CHECK_X
  6889. #undef PIPE_CONF_CHECK_I
  6890. #undef PIPE_CONF_CHECK_FLAGS
  6891. #undef PIPE_CONF_QUIRK
  6892. if (!IS_HASWELL(dev)) {
  6893. if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  6894. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  6895. current_config->adjusted_mode.clock,
  6896. pipe_config->adjusted_mode.clock);
  6897. return false;
  6898. }
  6899. }
  6900. return true;
  6901. }
  6902. static void
  6903. check_connector_state(struct drm_device *dev)
  6904. {
  6905. struct intel_connector *connector;
  6906. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6907. base.head) {
  6908. /* This also checks the encoder/connector hw state with the
  6909. * ->get_hw_state callbacks. */
  6910. intel_connector_check_state(connector);
  6911. WARN(&connector->new_encoder->base != connector->base.encoder,
  6912. "connector's staged encoder doesn't match current encoder\n");
  6913. }
  6914. }
  6915. static void
  6916. check_encoder_state(struct drm_device *dev)
  6917. {
  6918. struct intel_encoder *encoder;
  6919. struct intel_connector *connector;
  6920. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6921. base.head) {
  6922. bool enabled = false;
  6923. bool active = false;
  6924. enum pipe pipe, tracked_pipe;
  6925. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6926. encoder->base.base.id,
  6927. drm_get_encoder_name(&encoder->base));
  6928. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6929. "encoder's stage crtc doesn't match current crtc\n");
  6930. WARN(encoder->connectors_active && !encoder->base.crtc,
  6931. "encoder's active_connectors set, but no crtc\n");
  6932. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6933. base.head) {
  6934. if (connector->base.encoder != &encoder->base)
  6935. continue;
  6936. enabled = true;
  6937. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6938. active = true;
  6939. }
  6940. WARN(!!encoder->base.crtc != enabled,
  6941. "encoder's enabled state mismatch "
  6942. "(expected %i, found %i)\n",
  6943. !!encoder->base.crtc, enabled);
  6944. WARN(active && !encoder->base.crtc,
  6945. "active encoder with no crtc\n");
  6946. WARN(encoder->connectors_active != active,
  6947. "encoder's computed active state doesn't match tracked active state "
  6948. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6949. active = encoder->get_hw_state(encoder, &pipe);
  6950. WARN(active != encoder->connectors_active,
  6951. "encoder's hw state doesn't match sw tracking "
  6952. "(expected %i, found %i)\n",
  6953. encoder->connectors_active, active);
  6954. if (!encoder->base.crtc)
  6955. continue;
  6956. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6957. WARN(active && pipe != tracked_pipe,
  6958. "active encoder's pipe doesn't match"
  6959. "(expected %i, found %i)\n",
  6960. tracked_pipe, pipe);
  6961. }
  6962. }
  6963. static void
  6964. check_crtc_state(struct drm_device *dev)
  6965. {
  6966. drm_i915_private_t *dev_priv = dev->dev_private;
  6967. struct intel_crtc *crtc;
  6968. struct intel_encoder *encoder;
  6969. struct intel_crtc_config pipe_config;
  6970. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6971. base.head) {
  6972. bool enabled = false;
  6973. bool active = false;
  6974. memset(&pipe_config, 0, sizeof(pipe_config));
  6975. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6976. crtc->base.base.id);
  6977. WARN(crtc->active && !crtc->base.enabled,
  6978. "active crtc, but not enabled in sw tracking\n");
  6979. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6980. base.head) {
  6981. if (encoder->base.crtc != &crtc->base)
  6982. continue;
  6983. enabled = true;
  6984. if (encoder->connectors_active)
  6985. active = true;
  6986. }
  6987. WARN(active != crtc->active,
  6988. "crtc's computed active state doesn't match tracked active state "
  6989. "(expected %i, found %i)\n", active, crtc->active);
  6990. WARN(enabled != crtc->base.enabled,
  6991. "crtc's computed enabled state doesn't match tracked enabled state "
  6992. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6993. active = dev_priv->display.get_pipe_config(crtc,
  6994. &pipe_config);
  6995. /* hw state is inconsistent with the pipe A quirk */
  6996. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  6997. active = crtc->active;
  6998. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6999. base.head) {
  7000. if (encoder->base.crtc != &crtc->base)
  7001. continue;
  7002. if (encoder->get_config)
  7003. encoder->get_config(encoder, &pipe_config);
  7004. }
  7005. if (dev_priv->display.get_clock)
  7006. dev_priv->display.get_clock(crtc, &pipe_config);
  7007. WARN(crtc->active != active,
  7008. "crtc active state doesn't match with hw state "
  7009. "(expected %i, found %i)\n", crtc->active, active);
  7010. if (active &&
  7011. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7012. WARN(1, "pipe state doesn't match!\n");
  7013. intel_dump_pipe_config(crtc, &pipe_config,
  7014. "[hw state]");
  7015. intel_dump_pipe_config(crtc, &crtc->config,
  7016. "[sw state]");
  7017. }
  7018. }
  7019. }
  7020. static void
  7021. check_shared_dpll_state(struct drm_device *dev)
  7022. {
  7023. drm_i915_private_t *dev_priv = dev->dev_private;
  7024. struct intel_crtc *crtc;
  7025. struct intel_dpll_hw_state dpll_hw_state;
  7026. int i;
  7027. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7028. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7029. int enabled_crtcs = 0, active_crtcs = 0;
  7030. bool active;
  7031. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7032. DRM_DEBUG_KMS("%s\n", pll->name);
  7033. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7034. WARN(pll->active > pll->refcount,
  7035. "more active pll users than references: %i vs %i\n",
  7036. pll->active, pll->refcount);
  7037. WARN(pll->active && !pll->on,
  7038. "pll in active use but not on in sw tracking\n");
  7039. WARN(pll->on != active,
  7040. "pll on state mismatch (expected %i, found %i)\n",
  7041. pll->on, active);
  7042. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7043. base.head) {
  7044. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7045. enabled_crtcs++;
  7046. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7047. active_crtcs++;
  7048. }
  7049. WARN(pll->active != active_crtcs,
  7050. "pll active crtcs mismatch (expected %i, found %i)\n",
  7051. pll->active, active_crtcs);
  7052. WARN(pll->refcount != enabled_crtcs,
  7053. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7054. pll->refcount, enabled_crtcs);
  7055. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7056. sizeof(dpll_hw_state)),
  7057. "pll hw state mismatch\n");
  7058. }
  7059. }
  7060. void
  7061. intel_modeset_check_state(struct drm_device *dev)
  7062. {
  7063. check_connector_state(dev);
  7064. check_encoder_state(dev);
  7065. check_crtc_state(dev);
  7066. check_shared_dpll_state(dev);
  7067. }
  7068. static int __intel_set_mode(struct drm_crtc *crtc,
  7069. struct drm_display_mode *mode,
  7070. int x, int y, struct drm_framebuffer *fb)
  7071. {
  7072. struct drm_device *dev = crtc->dev;
  7073. drm_i915_private_t *dev_priv = dev->dev_private;
  7074. struct drm_display_mode *saved_mode, *saved_hwmode;
  7075. struct intel_crtc_config *pipe_config = NULL;
  7076. struct intel_crtc *intel_crtc;
  7077. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7078. int ret = 0;
  7079. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7080. if (!saved_mode)
  7081. return -ENOMEM;
  7082. saved_hwmode = saved_mode + 1;
  7083. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7084. &prepare_pipes, &disable_pipes);
  7085. *saved_hwmode = crtc->hwmode;
  7086. *saved_mode = crtc->mode;
  7087. /* Hack: Because we don't (yet) support global modeset on multiple
  7088. * crtcs, we don't keep track of the new mode for more than one crtc.
  7089. * Hence simply check whether any bit is set in modeset_pipes in all the
  7090. * pieces of code that are not yet converted to deal with mutliple crtcs
  7091. * changing their mode at the same time. */
  7092. if (modeset_pipes) {
  7093. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7094. if (IS_ERR(pipe_config)) {
  7095. ret = PTR_ERR(pipe_config);
  7096. pipe_config = NULL;
  7097. goto out;
  7098. }
  7099. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7100. "[modeset]");
  7101. }
  7102. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7103. intel_crtc_disable(&intel_crtc->base);
  7104. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7105. if (intel_crtc->base.enabled)
  7106. dev_priv->display.crtc_disable(&intel_crtc->base);
  7107. }
  7108. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7109. * to set it here already despite that we pass it down the callchain.
  7110. */
  7111. if (modeset_pipes) {
  7112. crtc->mode = *mode;
  7113. /* mode_set/enable/disable functions rely on a correct pipe
  7114. * config. */
  7115. to_intel_crtc(crtc)->config = *pipe_config;
  7116. }
  7117. /* Only after disabling all output pipelines that will be changed can we
  7118. * update the the output configuration. */
  7119. intel_modeset_update_state(dev, prepare_pipes);
  7120. if (dev_priv->display.modeset_global_resources)
  7121. dev_priv->display.modeset_global_resources(dev);
  7122. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7123. * on the DPLL.
  7124. */
  7125. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7126. ret = intel_crtc_mode_set(&intel_crtc->base,
  7127. x, y, fb);
  7128. if (ret)
  7129. goto done;
  7130. }
  7131. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7132. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7133. dev_priv->display.crtc_enable(&intel_crtc->base);
  7134. if (modeset_pipes) {
  7135. /* Store real post-adjustment hardware mode. */
  7136. crtc->hwmode = pipe_config->adjusted_mode;
  7137. /* Calculate and store various constants which
  7138. * are later needed by vblank and swap-completion
  7139. * timestamping. They are derived from true hwmode.
  7140. */
  7141. drm_calc_timestamping_constants(crtc);
  7142. }
  7143. /* FIXME: add subpixel order */
  7144. done:
  7145. if (ret && crtc->enabled) {
  7146. crtc->hwmode = *saved_hwmode;
  7147. crtc->mode = *saved_mode;
  7148. }
  7149. out:
  7150. kfree(pipe_config);
  7151. kfree(saved_mode);
  7152. return ret;
  7153. }
  7154. int intel_set_mode(struct drm_crtc *crtc,
  7155. struct drm_display_mode *mode,
  7156. int x, int y, struct drm_framebuffer *fb)
  7157. {
  7158. int ret;
  7159. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7160. if (ret == 0)
  7161. intel_modeset_check_state(crtc->dev);
  7162. return ret;
  7163. }
  7164. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7165. {
  7166. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7167. }
  7168. #undef for_each_intel_crtc_masked
  7169. static void intel_set_config_free(struct intel_set_config *config)
  7170. {
  7171. if (!config)
  7172. return;
  7173. kfree(config->save_connector_encoders);
  7174. kfree(config->save_encoder_crtcs);
  7175. kfree(config);
  7176. }
  7177. static int intel_set_config_save_state(struct drm_device *dev,
  7178. struct intel_set_config *config)
  7179. {
  7180. struct drm_encoder *encoder;
  7181. struct drm_connector *connector;
  7182. int count;
  7183. config->save_encoder_crtcs =
  7184. kcalloc(dev->mode_config.num_encoder,
  7185. sizeof(struct drm_crtc *), GFP_KERNEL);
  7186. if (!config->save_encoder_crtcs)
  7187. return -ENOMEM;
  7188. config->save_connector_encoders =
  7189. kcalloc(dev->mode_config.num_connector,
  7190. sizeof(struct drm_encoder *), GFP_KERNEL);
  7191. if (!config->save_connector_encoders)
  7192. return -ENOMEM;
  7193. /* Copy data. Note that driver private data is not affected.
  7194. * Should anything bad happen only the expected state is
  7195. * restored, not the drivers personal bookkeeping.
  7196. */
  7197. count = 0;
  7198. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7199. config->save_encoder_crtcs[count++] = encoder->crtc;
  7200. }
  7201. count = 0;
  7202. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7203. config->save_connector_encoders[count++] = connector->encoder;
  7204. }
  7205. return 0;
  7206. }
  7207. static void intel_set_config_restore_state(struct drm_device *dev,
  7208. struct intel_set_config *config)
  7209. {
  7210. struct intel_encoder *encoder;
  7211. struct intel_connector *connector;
  7212. int count;
  7213. count = 0;
  7214. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7215. encoder->new_crtc =
  7216. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7217. }
  7218. count = 0;
  7219. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7220. connector->new_encoder =
  7221. to_intel_encoder(config->save_connector_encoders[count++]);
  7222. }
  7223. }
  7224. static bool
  7225. is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
  7226. int num_connectors)
  7227. {
  7228. int i;
  7229. for (i = 0; i < num_connectors; i++)
  7230. if (connectors[i].encoder &&
  7231. connectors[i].encoder->crtc == crtc &&
  7232. connectors[i].dpms != DRM_MODE_DPMS_ON)
  7233. return true;
  7234. return false;
  7235. }
  7236. static void
  7237. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7238. struct intel_set_config *config)
  7239. {
  7240. /* We should be able to check here if the fb has the same properties
  7241. * and then just flip_or_move it */
  7242. if (set->connectors != NULL &&
  7243. is_crtc_connector_off(set->crtc, *set->connectors,
  7244. set->num_connectors)) {
  7245. config->mode_changed = true;
  7246. } else if (set->crtc->fb != set->fb) {
  7247. /* If we have no fb then treat it as a full mode set */
  7248. if (set->crtc->fb == NULL) {
  7249. struct intel_crtc *intel_crtc =
  7250. to_intel_crtc(set->crtc);
  7251. if (intel_crtc->active && i915_fastboot) {
  7252. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7253. config->fb_changed = true;
  7254. } else {
  7255. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7256. config->mode_changed = true;
  7257. }
  7258. } else if (set->fb == NULL) {
  7259. config->mode_changed = true;
  7260. } else if (set->fb->pixel_format !=
  7261. set->crtc->fb->pixel_format) {
  7262. config->mode_changed = true;
  7263. } else {
  7264. config->fb_changed = true;
  7265. }
  7266. }
  7267. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7268. config->fb_changed = true;
  7269. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7270. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7271. drm_mode_debug_printmodeline(&set->crtc->mode);
  7272. drm_mode_debug_printmodeline(set->mode);
  7273. config->mode_changed = true;
  7274. }
  7275. }
  7276. static int
  7277. intel_modeset_stage_output_state(struct drm_device *dev,
  7278. struct drm_mode_set *set,
  7279. struct intel_set_config *config)
  7280. {
  7281. struct drm_crtc *new_crtc;
  7282. struct intel_connector *connector;
  7283. struct intel_encoder *encoder;
  7284. int count, ro;
  7285. /* The upper layers ensure that we either disable a crtc or have a list
  7286. * of connectors. For paranoia, double-check this. */
  7287. WARN_ON(!set->fb && (set->num_connectors != 0));
  7288. WARN_ON(set->fb && (set->num_connectors == 0));
  7289. count = 0;
  7290. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7291. base.head) {
  7292. /* Otherwise traverse passed in connector list and get encoders
  7293. * for them. */
  7294. for (ro = 0; ro < set->num_connectors; ro++) {
  7295. if (set->connectors[ro] == &connector->base) {
  7296. connector->new_encoder = connector->encoder;
  7297. break;
  7298. }
  7299. }
  7300. /* If we disable the crtc, disable all its connectors. Also, if
  7301. * the connector is on the changing crtc but not on the new
  7302. * connector list, disable it. */
  7303. if ((!set->fb || ro == set->num_connectors) &&
  7304. connector->base.encoder &&
  7305. connector->base.encoder->crtc == set->crtc) {
  7306. connector->new_encoder = NULL;
  7307. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7308. connector->base.base.id,
  7309. drm_get_connector_name(&connector->base));
  7310. }
  7311. if (&connector->new_encoder->base != connector->base.encoder) {
  7312. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7313. config->mode_changed = true;
  7314. }
  7315. }
  7316. /* connector->new_encoder is now updated for all connectors. */
  7317. /* Update crtc of enabled connectors. */
  7318. count = 0;
  7319. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7320. base.head) {
  7321. if (!connector->new_encoder)
  7322. continue;
  7323. new_crtc = connector->new_encoder->base.crtc;
  7324. for (ro = 0; ro < set->num_connectors; ro++) {
  7325. if (set->connectors[ro] == &connector->base)
  7326. new_crtc = set->crtc;
  7327. }
  7328. /* Make sure the new CRTC will work with the encoder */
  7329. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7330. new_crtc)) {
  7331. return -EINVAL;
  7332. }
  7333. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7334. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7335. connector->base.base.id,
  7336. drm_get_connector_name(&connector->base),
  7337. new_crtc->base.id);
  7338. }
  7339. /* Check for any encoders that needs to be disabled. */
  7340. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7341. base.head) {
  7342. list_for_each_entry(connector,
  7343. &dev->mode_config.connector_list,
  7344. base.head) {
  7345. if (connector->new_encoder == encoder) {
  7346. WARN_ON(!connector->new_encoder->new_crtc);
  7347. goto next_encoder;
  7348. }
  7349. }
  7350. encoder->new_crtc = NULL;
  7351. next_encoder:
  7352. /* Only now check for crtc changes so we don't miss encoders
  7353. * that will be disabled. */
  7354. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7355. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7356. config->mode_changed = true;
  7357. }
  7358. }
  7359. /* Now we've also updated encoder->new_crtc for all encoders. */
  7360. return 0;
  7361. }
  7362. static int intel_crtc_set_config(struct drm_mode_set *set)
  7363. {
  7364. struct drm_device *dev;
  7365. struct drm_mode_set save_set;
  7366. struct intel_set_config *config;
  7367. int ret;
  7368. BUG_ON(!set);
  7369. BUG_ON(!set->crtc);
  7370. BUG_ON(!set->crtc->helper_private);
  7371. /* Enforce sane interface api - has been abused by the fb helper. */
  7372. BUG_ON(!set->mode && set->fb);
  7373. BUG_ON(set->fb && set->num_connectors == 0);
  7374. if (set->fb) {
  7375. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7376. set->crtc->base.id, set->fb->base.id,
  7377. (int)set->num_connectors, set->x, set->y);
  7378. } else {
  7379. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7380. }
  7381. dev = set->crtc->dev;
  7382. ret = -ENOMEM;
  7383. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7384. if (!config)
  7385. goto out_config;
  7386. ret = intel_set_config_save_state(dev, config);
  7387. if (ret)
  7388. goto out_config;
  7389. save_set.crtc = set->crtc;
  7390. save_set.mode = &set->crtc->mode;
  7391. save_set.x = set->crtc->x;
  7392. save_set.y = set->crtc->y;
  7393. save_set.fb = set->crtc->fb;
  7394. /* Compute whether we need a full modeset, only an fb base update or no
  7395. * change at all. In the future we might also check whether only the
  7396. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7397. * such cases. */
  7398. intel_set_config_compute_mode_changes(set, config);
  7399. ret = intel_modeset_stage_output_state(dev, set, config);
  7400. if (ret)
  7401. goto fail;
  7402. if (config->mode_changed) {
  7403. ret = intel_set_mode(set->crtc, set->mode,
  7404. set->x, set->y, set->fb);
  7405. } else if (config->fb_changed) {
  7406. intel_crtc_wait_for_pending_flips(set->crtc);
  7407. ret = intel_pipe_set_base(set->crtc,
  7408. set->x, set->y, set->fb);
  7409. }
  7410. if (ret) {
  7411. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7412. set->crtc->base.id, ret);
  7413. fail:
  7414. intel_set_config_restore_state(dev, config);
  7415. /* Try to restore the config */
  7416. if (config->mode_changed &&
  7417. intel_set_mode(save_set.crtc, save_set.mode,
  7418. save_set.x, save_set.y, save_set.fb))
  7419. DRM_ERROR("failed to restore config after modeset failure\n");
  7420. }
  7421. out_config:
  7422. intel_set_config_free(config);
  7423. return ret;
  7424. }
  7425. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7426. .cursor_set = intel_crtc_cursor_set,
  7427. .cursor_move = intel_crtc_cursor_move,
  7428. .gamma_set = intel_crtc_gamma_set,
  7429. .set_config = intel_crtc_set_config,
  7430. .destroy = intel_crtc_destroy,
  7431. .page_flip = intel_crtc_page_flip,
  7432. };
  7433. static void intel_cpu_pll_init(struct drm_device *dev)
  7434. {
  7435. if (HAS_DDI(dev))
  7436. intel_ddi_pll_init(dev);
  7437. }
  7438. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7439. struct intel_shared_dpll *pll,
  7440. struct intel_dpll_hw_state *hw_state)
  7441. {
  7442. uint32_t val;
  7443. val = I915_READ(PCH_DPLL(pll->id));
  7444. hw_state->dpll = val;
  7445. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7446. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7447. return val & DPLL_VCO_ENABLE;
  7448. }
  7449. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7450. struct intel_shared_dpll *pll)
  7451. {
  7452. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7453. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7454. }
  7455. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7456. struct intel_shared_dpll *pll)
  7457. {
  7458. /* PCH refclock must be enabled first */
  7459. assert_pch_refclk_enabled(dev_priv);
  7460. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7461. /* Wait for the clocks to stabilize. */
  7462. POSTING_READ(PCH_DPLL(pll->id));
  7463. udelay(150);
  7464. /* The pixel multiplier can only be updated once the
  7465. * DPLL is enabled and the clocks are stable.
  7466. *
  7467. * So write it again.
  7468. */
  7469. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7470. POSTING_READ(PCH_DPLL(pll->id));
  7471. udelay(200);
  7472. }
  7473. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7474. struct intel_shared_dpll *pll)
  7475. {
  7476. struct drm_device *dev = dev_priv->dev;
  7477. struct intel_crtc *crtc;
  7478. /* Make sure no transcoder isn't still depending on us. */
  7479. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7480. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7481. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7482. }
  7483. I915_WRITE(PCH_DPLL(pll->id), 0);
  7484. POSTING_READ(PCH_DPLL(pll->id));
  7485. udelay(200);
  7486. }
  7487. static char *ibx_pch_dpll_names[] = {
  7488. "PCH DPLL A",
  7489. "PCH DPLL B",
  7490. };
  7491. static void ibx_pch_dpll_init(struct drm_device *dev)
  7492. {
  7493. struct drm_i915_private *dev_priv = dev->dev_private;
  7494. int i;
  7495. dev_priv->num_shared_dpll = 2;
  7496. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7497. dev_priv->shared_dplls[i].id = i;
  7498. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7499. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7500. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7501. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7502. dev_priv->shared_dplls[i].get_hw_state =
  7503. ibx_pch_dpll_get_hw_state;
  7504. }
  7505. }
  7506. static void intel_shared_dpll_init(struct drm_device *dev)
  7507. {
  7508. struct drm_i915_private *dev_priv = dev->dev_private;
  7509. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7510. ibx_pch_dpll_init(dev);
  7511. else
  7512. dev_priv->num_shared_dpll = 0;
  7513. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7514. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7515. dev_priv->num_shared_dpll);
  7516. }
  7517. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7518. {
  7519. drm_i915_private_t *dev_priv = dev->dev_private;
  7520. struct intel_crtc *intel_crtc;
  7521. int i;
  7522. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7523. if (intel_crtc == NULL)
  7524. return;
  7525. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7526. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7527. for (i = 0; i < 256; i++) {
  7528. intel_crtc->lut_r[i] = i;
  7529. intel_crtc->lut_g[i] = i;
  7530. intel_crtc->lut_b[i] = i;
  7531. }
  7532. /* Swap pipes & planes for FBC on pre-965 */
  7533. intel_crtc->pipe = pipe;
  7534. intel_crtc->plane = pipe;
  7535. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7536. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7537. intel_crtc->plane = !pipe;
  7538. }
  7539. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7540. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7541. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7542. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7543. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7544. }
  7545. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7546. struct drm_file *file)
  7547. {
  7548. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7549. struct drm_mode_object *drmmode_obj;
  7550. struct intel_crtc *crtc;
  7551. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7552. return -ENODEV;
  7553. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7554. DRM_MODE_OBJECT_CRTC);
  7555. if (!drmmode_obj) {
  7556. DRM_ERROR("no such CRTC id\n");
  7557. return -EINVAL;
  7558. }
  7559. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7560. pipe_from_crtc_id->pipe = crtc->pipe;
  7561. return 0;
  7562. }
  7563. static int intel_encoder_clones(struct intel_encoder *encoder)
  7564. {
  7565. struct drm_device *dev = encoder->base.dev;
  7566. struct intel_encoder *source_encoder;
  7567. int index_mask = 0;
  7568. int entry = 0;
  7569. list_for_each_entry(source_encoder,
  7570. &dev->mode_config.encoder_list, base.head) {
  7571. if (encoder == source_encoder)
  7572. index_mask |= (1 << entry);
  7573. /* Intel hw has only one MUX where enocoders could be cloned. */
  7574. if (encoder->cloneable && source_encoder->cloneable)
  7575. index_mask |= (1 << entry);
  7576. entry++;
  7577. }
  7578. return index_mask;
  7579. }
  7580. static bool has_edp_a(struct drm_device *dev)
  7581. {
  7582. struct drm_i915_private *dev_priv = dev->dev_private;
  7583. if (!IS_MOBILE(dev))
  7584. return false;
  7585. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7586. return false;
  7587. if (IS_GEN5(dev) &&
  7588. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7589. return false;
  7590. return true;
  7591. }
  7592. static void intel_setup_outputs(struct drm_device *dev)
  7593. {
  7594. struct drm_i915_private *dev_priv = dev->dev_private;
  7595. struct intel_encoder *encoder;
  7596. bool dpd_is_edp = false;
  7597. intel_lvds_init(dev);
  7598. if (!IS_ULT(dev))
  7599. intel_crt_init(dev);
  7600. if (HAS_DDI(dev)) {
  7601. int found;
  7602. /* Haswell uses DDI functions to detect digital outputs */
  7603. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7604. /* DDI A only supports eDP */
  7605. if (found)
  7606. intel_ddi_init(dev, PORT_A);
  7607. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7608. * register */
  7609. found = I915_READ(SFUSE_STRAP);
  7610. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7611. intel_ddi_init(dev, PORT_B);
  7612. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7613. intel_ddi_init(dev, PORT_C);
  7614. if (found & SFUSE_STRAP_DDID_DETECTED)
  7615. intel_ddi_init(dev, PORT_D);
  7616. } else if (HAS_PCH_SPLIT(dev)) {
  7617. int found;
  7618. dpd_is_edp = intel_dpd_is_edp(dev);
  7619. if (has_edp_a(dev))
  7620. intel_dp_init(dev, DP_A, PORT_A);
  7621. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7622. /* PCH SDVOB multiplex with HDMIB */
  7623. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7624. if (!found)
  7625. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7626. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7627. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7628. }
  7629. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7630. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7631. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7632. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7633. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7634. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7635. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7636. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7637. } else if (IS_VALLEYVIEW(dev)) {
  7638. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7639. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7640. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7641. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7642. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7643. PORT_B);
  7644. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7645. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7646. }
  7647. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7648. bool found = false;
  7649. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7650. DRM_DEBUG_KMS("probing SDVOB\n");
  7651. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7652. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7653. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7654. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7655. }
  7656. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7657. intel_dp_init(dev, DP_B, PORT_B);
  7658. }
  7659. /* Before G4X SDVOC doesn't have its own detect register */
  7660. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7661. DRM_DEBUG_KMS("probing SDVOC\n");
  7662. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7663. }
  7664. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7665. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7666. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7667. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7668. }
  7669. if (SUPPORTS_INTEGRATED_DP(dev))
  7670. intel_dp_init(dev, DP_C, PORT_C);
  7671. }
  7672. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7673. (I915_READ(DP_D) & DP_DETECTED))
  7674. intel_dp_init(dev, DP_D, PORT_D);
  7675. } else if (IS_GEN2(dev))
  7676. intel_dvo_init(dev);
  7677. if (SUPPORTS_TV(dev))
  7678. intel_tv_init(dev);
  7679. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7680. encoder->base.possible_crtcs = encoder->crtc_mask;
  7681. encoder->base.possible_clones =
  7682. intel_encoder_clones(encoder);
  7683. }
  7684. intel_init_pch_refclk(dev);
  7685. drm_helper_move_panel_connectors_to_head(dev);
  7686. }
  7687. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7688. {
  7689. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7690. drm_framebuffer_cleanup(fb);
  7691. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7692. kfree(intel_fb);
  7693. }
  7694. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7695. struct drm_file *file,
  7696. unsigned int *handle)
  7697. {
  7698. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7699. struct drm_i915_gem_object *obj = intel_fb->obj;
  7700. return drm_gem_handle_create(file, &obj->base, handle);
  7701. }
  7702. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7703. .destroy = intel_user_framebuffer_destroy,
  7704. .create_handle = intel_user_framebuffer_create_handle,
  7705. };
  7706. int intel_framebuffer_init(struct drm_device *dev,
  7707. struct intel_framebuffer *intel_fb,
  7708. struct drm_mode_fb_cmd2 *mode_cmd,
  7709. struct drm_i915_gem_object *obj)
  7710. {
  7711. int pitch_limit;
  7712. int ret;
  7713. if (obj->tiling_mode == I915_TILING_Y) {
  7714. DRM_DEBUG("hardware does not support tiling Y\n");
  7715. return -EINVAL;
  7716. }
  7717. if (mode_cmd->pitches[0] & 63) {
  7718. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7719. mode_cmd->pitches[0]);
  7720. return -EINVAL;
  7721. }
  7722. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  7723. pitch_limit = 32*1024;
  7724. } else if (INTEL_INFO(dev)->gen >= 4) {
  7725. if (obj->tiling_mode)
  7726. pitch_limit = 16*1024;
  7727. else
  7728. pitch_limit = 32*1024;
  7729. } else if (INTEL_INFO(dev)->gen >= 3) {
  7730. if (obj->tiling_mode)
  7731. pitch_limit = 8*1024;
  7732. else
  7733. pitch_limit = 16*1024;
  7734. } else
  7735. /* XXX DSPC is limited to 4k tiled */
  7736. pitch_limit = 8*1024;
  7737. if (mode_cmd->pitches[0] > pitch_limit) {
  7738. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  7739. obj->tiling_mode ? "tiled" : "linear",
  7740. mode_cmd->pitches[0], pitch_limit);
  7741. return -EINVAL;
  7742. }
  7743. if (obj->tiling_mode != I915_TILING_NONE &&
  7744. mode_cmd->pitches[0] != obj->stride) {
  7745. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7746. mode_cmd->pitches[0], obj->stride);
  7747. return -EINVAL;
  7748. }
  7749. /* Reject formats not supported by any plane early. */
  7750. switch (mode_cmd->pixel_format) {
  7751. case DRM_FORMAT_C8:
  7752. case DRM_FORMAT_RGB565:
  7753. case DRM_FORMAT_XRGB8888:
  7754. case DRM_FORMAT_ARGB8888:
  7755. break;
  7756. case DRM_FORMAT_XRGB1555:
  7757. case DRM_FORMAT_ARGB1555:
  7758. if (INTEL_INFO(dev)->gen > 3) {
  7759. DRM_DEBUG("unsupported pixel format: %s\n",
  7760. drm_get_format_name(mode_cmd->pixel_format));
  7761. return -EINVAL;
  7762. }
  7763. break;
  7764. case DRM_FORMAT_XBGR8888:
  7765. case DRM_FORMAT_ABGR8888:
  7766. case DRM_FORMAT_XRGB2101010:
  7767. case DRM_FORMAT_ARGB2101010:
  7768. case DRM_FORMAT_XBGR2101010:
  7769. case DRM_FORMAT_ABGR2101010:
  7770. if (INTEL_INFO(dev)->gen < 4) {
  7771. DRM_DEBUG("unsupported pixel format: %s\n",
  7772. drm_get_format_name(mode_cmd->pixel_format));
  7773. return -EINVAL;
  7774. }
  7775. break;
  7776. case DRM_FORMAT_YUYV:
  7777. case DRM_FORMAT_UYVY:
  7778. case DRM_FORMAT_YVYU:
  7779. case DRM_FORMAT_VYUY:
  7780. if (INTEL_INFO(dev)->gen < 5) {
  7781. DRM_DEBUG("unsupported pixel format: %s\n",
  7782. drm_get_format_name(mode_cmd->pixel_format));
  7783. return -EINVAL;
  7784. }
  7785. break;
  7786. default:
  7787. DRM_DEBUG("unsupported pixel format: %s\n",
  7788. drm_get_format_name(mode_cmd->pixel_format));
  7789. return -EINVAL;
  7790. }
  7791. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7792. if (mode_cmd->offsets[0] != 0)
  7793. return -EINVAL;
  7794. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7795. intel_fb->obj = obj;
  7796. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7797. if (ret) {
  7798. DRM_ERROR("framebuffer init failed %d\n", ret);
  7799. return ret;
  7800. }
  7801. return 0;
  7802. }
  7803. static struct drm_framebuffer *
  7804. intel_user_framebuffer_create(struct drm_device *dev,
  7805. struct drm_file *filp,
  7806. struct drm_mode_fb_cmd2 *mode_cmd)
  7807. {
  7808. struct drm_i915_gem_object *obj;
  7809. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7810. mode_cmd->handles[0]));
  7811. if (&obj->base == NULL)
  7812. return ERR_PTR(-ENOENT);
  7813. return intel_framebuffer_create(dev, mode_cmd, obj);
  7814. }
  7815. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7816. .fb_create = intel_user_framebuffer_create,
  7817. .output_poll_changed = intel_fb_output_poll_changed,
  7818. };
  7819. /* Set up chip specific display functions */
  7820. static void intel_init_display(struct drm_device *dev)
  7821. {
  7822. struct drm_i915_private *dev_priv = dev->dev_private;
  7823. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7824. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7825. else if (IS_VALLEYVIEW(dev))
  7826. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7827. else if (IS_PINEVIEW(dev))
  7828. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7829. else
  7830. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7831. if (HAS_DDI(dev)) {
  7832. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7833. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7834. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7835. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7836. dev_priv->display.off = haswell_crtc_off;
  7837. dev_priv->display.update_plane = ironlake_update_plane;
  7838. } else if (HAS_PCH_SPLIT(dev)) {
  7839. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7840. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  7841. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7842. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7843. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7844. dev_priv->display.off = ironlake_crtc_off;
  7845. dev_priv->display.update_plane = ironlake_update_plane;
  7846. } else if (IS_VALLEYVIEW(dev)) {
  7847. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7848. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  7849. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7850. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7851. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7852. dev_priv->display.off = i9xx_crtc_off;
  7853. dev_priv->display.update_plane = i9xx_update_plane;
  7854. } else {
  7855. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7856. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  7857. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7858. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7859. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7860. dev_priv->display.off = i9xx_crtc_off;
  7861. dev_priv->display.update_plane = i9xx_update_plane;
  7862. }
  7863. /* Returns the core display clock speed */
  7864. if (IS_VALLEYVIEW(dev))
  7865. dev_priv->display.get_display_clock_speed =
  7866. valleyview_get_display_clock_speed;
  7867. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7868. dev_priv->display.get_display_clock_speed =
  7869. i945_get_display_clock_speed;
  7870. else if (IS_I915G(dev))
  7871. dev_priv->display.get_display_clock_speed =
  7872. i915_get_display_clock_speed;
  7873. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7874. dev_priv->display.get_display_clock_speed =
  7875. i9xx_misc_get_display_clock_speed;
  7876. else if (IS_I915GM(dev))
  7877. dev_priv->display.get_display_clock_speed =
  7878. i915gm_get_display_clock_speed;
  7879. else if (IS_I865G(dev))
  7880. dev_priv->display.get_display_clock_speed =
  7881. i865_get_display_clock_speed;
  7882. else if (IS_I85X(dev))
  7883. dev_priv->display.get_display_clock_speed =
  7884. i855_get_display_clock_speed;
  7885. else /* 852, 830 */
  7886. dev_priv->display.get_display_clock_speed =
  7887. i830_get_display_clock_speed;
  7888. if (HAS_PCH_SPLIT(dev)) {
  7889. if (IS_GEN5(dev)) {
  7890. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7891. dev_priv->display.write_eld = ironlake_write_eld;
  7892. } else if (IS_GEN6(dev)) {
  7893. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7894. dev_priv->display.write_eld = ironlake_write_eld;
  7895. } else if (IS_IVYBRIDGE(dev)) {
  7896. /* FIXME: detect B0+ stepping and use auto training */
  7897. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7898. dev_priv->display.write_eld = ironlake_write_eld;
  7899. dev_priv->display.modeset_global_resources =
  7900. ivb_modeset_global_resources;
  7901. } else if (IS_HASWELL(dev)) {
  7902. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7903. dev_priv->display.write_eld = haswell_write_eld;
  7904. dev_priv->display.modeset_global_resources =
  7905. haswell_modeset_global_resources;
  7906. }
  7907. } else if (IS_G4X(dev)) {
  7908. dev_priv->display.write_eld = g4x_write_eld;
  7909. }
  7910. /* Default just returns -ENODEV to indicate unsupported */
  7911. dev_priv->display.queue_flip = intel_default_queue_flip;
  7912. switch (INTEL_INFO(dev)->gen) {
  7913. case 2:
  7914. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7915. break;
  7916. case 3:
  7917. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7918. break;
  7919. case 4:
  7920. case 5:
  7921. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7922. break;
  7923. case 6:
  7924. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7925. break;
  7926. case 7:
  7927. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7928. break;
  7929. }
  7930. }
  7931. /*
  7932. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7933. * resume, or other times. This quirk makes sure that's the case for
  7934. * affected systems.
  7935. */
  7936. static void quirk_pipea_force(struct drm_device *dev)
  7937. {
  7938. struct drm_i915_private *dev_priv = dev->dev_private;
  7939. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7940. DRM_INFO("applying pipe a force quirk\n");
  7941. }
  7942. /*
  7943. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7944. */
  7945. static void quirk_ssc_force_disable(struct drm_device *dev)
  7946. {
  7947. struct drm_i915_private *dev_priv = dev->dev_private;
  7948. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7949. DRM_INFO("applying lvds SSC disable quirk\n");
  7950. }
  7951. /*
  7952. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7953. * brightness value
  7954. */
  7955. static void quirk_invert_brightness(struct drm_device *dev)
  7956. {
  7957. struct drm_i915_private *dev_priv = dev->dev_private;
  7958. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7959. DRM_INFO("applying inverted panel brightness quirk\n");
  7960. }
  7961. struct intel_quirk {
  7962. int device;
  7963. int subsystem_vendor;
  7964. int subsystem_device;
  7965. void (*hook)(struct drm_device *dev);
  7966. };
  7967. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7968. struct intel_dmi_quirk {
  7969. void (*hook)(struct drm_device *dev);
  7970. const struct dmi_system_id (*dmi_id_list)[];
  7971. };
  7972. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7973. {
  7974. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7975. return 1;
  7976. }
  7977. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7978. {
  7979. .dmi_id_list = &(const struct dmi_system_id[]) {
  7980. {
  7981. .callback = intel_dmi_reverse_brightness,
  7982. .ident = "NCR Corporation",
  7983. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7984. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7985. },
  7986. },
  7987. { } /* terminating entry */
  7988. },
  7989. .hook = quirk_invert_brightness,
  7990. },
  7991. };
  7992. static struct intel_quirk intel_quirks[] = {
  7993. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7994. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7995. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7996. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7997. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7998. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7999. /* 830/845 need to leave pipe A & dpll A up */
  8000. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8001. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8002. /* Lenovo U160 cannot use SSC on LVDS */
  8003. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8004. /* Sony Vaio Y cannot use SSC on LVDS */
  8005. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8006. /* Acer Aspire 5734Z must invert backlight brightness */
  8007. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8008. /* Acer/eMachines G725 */
  8009. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8010. /* Acer/eMachines e725 */
  8011. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8012. /* Acer/Packard Bell NCL20 */
  8013. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8014. /* Acer Aspire 4736Z */
  8015. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8016. };
  8017. static void intel_init_quirks(struct drm_device *dev)
  8018. {
  8019. struct pci_dev *d = dev->pdev;
  8020. int i;
  8021. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8022. struct intel_quirk *q = &intel_quirks[i];
  8023. if (d->device == q->device &&
  8024. (d->subsystem_vendor == q->subsystem_vendor ||
  8025. q->subsystem_vendor == PCI_ANY_ID) &&
  8026. (d->subsystem_device == q->subsystem_device ||
  8027. q->subsystem_device == PCI_ANY_ID))
  8028. q->hook(dev);
  8029. }
  8030. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8031. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8032. intel_dmi_quirks[i].hook(dev);
  8033. }
  8034. }
  8035. /* Disable the VGA plane that we never use */
  8036. static void i915_disable_vga(struct drm_device *dev)
  8037. {
  8038. struct drm_i915_private *dev_priv = dev->dev_private;
  8039. u8 sr1;
  8040. u32 vga_reg = i915_vgacntrl_reg(dev);
  8041. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8042. outb(SR01, VGA_SR_INDEX);
  8043. sr1 = inb(VGA_SR_DATA);
  8044. outb(sr1 | 1<<5, VGA_SR_DATA);
  8045. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8046. udelay(300);
  8047. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8048. POSTING_READ(vga_reg);
  8049. }
  8050. void intel_modeset_init_hw(struct drm_device *dev)
  8051. {
  8052. intel_init_power_well(dev);
  8053. intel_prepare_ddi(dev);
  8054. intel_init_clock_gating(dev);
  8055. mutex_lock(&dev->struct_mutex);
  8056. intel_enable_gt_powersave(dev);
  8057. mutex_unlock(&dev->struct_mutex);
  8058. }
  8059. void intel_modeset_suspend_hw(struct drm_device *dev)
  8060. {
  8061. intel_suspend_hw(dev);
  8062. }
  8063. void intel_modeset_init(struct drm_device *dev)
  8064. {
  8065. struct drm_i915_private *dev_priv = dev->dev_private;
  8066. int i, j, ret;
  8067. drm_mode_config_init(dev);
  8068. dev->mode_config.min_width = 0;
  8069. dev->mode_config.min_height = 0;
  8070. dev->mode_config.preferred_depth = 24;
  8071. dev->mode_config.prefer_shadow = 1;
  8072. dev->mode_config.funcs = &intel_mode_funcs;
  8073. intel_init_quirks(dev);
  8074. intel_init_pm(dev);
  8075. if (INTEL_INFO(dev)->num_pipes == 0)
  8076. return;
  8077. intel_init_display(dev);
  8078. if (IS_GEN2(dev)) {
  8079. dev->mode_config.max_width = 2048;
  8080. dev->mode_config.max_height = 2048;
  8081. } else if (IS_GEN3(dev)) {
  8082. dev->mode_config.max_width = 4096;
  8083. dev->mode_config.max_height = 4096;
  8084. } else {
  8085. dev->mode_config.max_width = 8192;
  8086. dev->mode_config.max_height = 8192;
  8087. }
  8088. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8089. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8090. INTEL_INFO(dev)->num_pipes,
  8091. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8092. for_each_pipe(i) {
  8093. intel_crtc_init(dev, i);
  8094. for (j = 0; j < dev_priv->num_plane; j++) {
  8095. ret = intel_plane_init(dev, i, j);
  8096. if (ret)
  8097. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8098. pipe_name(i), sprite_name(i, j), ret);
  8099. }
  8100. }
  8101. intel_cpu_pll_init(dev);
  8102. intel_shared_dpll_init(dev);
  8103. /* Just disable it once at startup */
  8104. i915_disable_vga(dev);
  8105. intel_setup_outputs(dev);
  8106. /* Just in case the BIOS is doing something questionable. */
  8107. intel_disable_fbc(dev);
  8108. }
  8109. static void
  8110. intel_connector_break_all_links(struct intel_connector *connector)
  8111. {
  8112. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8113. connector->base.encoder = NULL;
  8114. connector->encoder->connectors_active = false;
  8115. connector->encoder->base.crtc = NULL;
  8116. }
  8117. static void intel_enable_pipe_a(struct drm_device *dev)
  8118. {
  8119. struct intel_connector *connector;
  8120. struct drm_connector *crt = NULL;
  8121. struct intel_load_detect_pipe load_detect_temp;
  8122. /* We can't just switch on the pipe A, we need to set things up with a
  8123. * proper mode and output configuration. As a gross hack, enable pipe A
  8124. * by enabling the load detect pipe once. */
  8125. list_for_each_entry(connector,
  8126. &dev->mode_config.connector_list,
  8127. base.head) {
  8128. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8129. crt = &connector->base;
  8130. break;
  8131. }
  8132. }
  8133. if (!crt)
  8134. return;
  8135. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8136. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8137. }
  8138. static bool
  8139. intel_check_plane_mapping(struct intel_crtc *crtc)
  8140. {
  8141. struct drm_device *dev = crtc->base.dev;
  8142. struct drm_i915_private *dev_priv = dev->dev_private;
  8143. u32 reg, val;
  8144. if (INTEL_INFO(dev)->num_pipes == 1)
  8145. return true;
  8146. reg = DSPCNTR(!crtc->plane);
  8147. val = I915_READ(reg);
  8148. if ((val & DISPLAY_PLANE_ENABLE) &&
  8149. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8150. return false;
  8151. return true;
  8152. }
  8153. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8154. {
  8155. struct drm_device *dev = crtc->base.dev;
  8156. struct drm_i915_private *dev_priv = dev->dev_private;
  8157. u32 reg;
  8158. /* Clear any frame start delays used for debugging left by the BIOS */
  8159. reg = PIPECONF(crtc->config.cpu_transcoder);
  8160. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8161. /* We need to sanitize the plane -> pipe mapping first because this will
  8162. * disable the crtc (and hence change the state) if it is wrong. Note
  8163. * that gen4+ has a fixed plane -> pipe mapping. */
  8164. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8165. struct intel_connector *connector;
  8166. bool plane;
  8167. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8168. crtc->base.base.id);
  8169. /* Pipe has the wrong plane attached and the plane is active.
  8170. * Temporarily change the plane mapping and disable everything
  8171. * ... */
  8172. plane = crtc->plane;
  8173. crtc->plane = !plane;
  8174. dev_priv->display.crtc_disable(&crtc->base);
  8175. crtc->plane = plane;
  8176. /* ... and break all links. */
  8177. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8178. base.head) {
  8179. if (connector->encoder->base.crtc != &crtc->base)
  8180. continue;
  8181. intel_connector_break_all_links(connector);
  8182. }
  8183. WARN_ON(crtc->active);
  8184. crtc->base.enabled = false;
  8185. }
  8186. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8187. crtc->pipe == PIPE_A && !crtc->active) {
  8188. /* BIOS forgot to enable pipe A, this mostly happens after
  8189. * resume. Force-enable the pipe to fix this, the update_dpms
  8190. * call below we restore the pipe to the right state, but leave
  8191. * the required bits on. */
  8192. intel_enable_pipe_a(dev);
  8193. }
  8194. /* Adjust the state of the output pipe according to whether we
  8195. * have active connectors/encoders. */
  8196. intel_crtc_update_dpms(&crtc->base);
  8197. if (crtc->active != crtc->base.enabled) {
  8198. struct intel_encoder *encoder;
  8199. /* This can happen either due to bugs in the get_hw_state
  8200. * functions or because the pipe is force-enabled due to the
  8201. * pipe A quirk. */
  8202. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8203. crtc->base.base.id,
  8204. crtc->base.enabled ? "enabled" : "disabled",
  8205. crtc->active ? "enabled" : "disabled");
  8206. crtc->base.enabled = crtc->active;
  8207. /* Because we only establish the connector -> encoder ->
  8208. * crtc links if something is active, this means the
  8209. * crtc is now deactivated. Break the links. connector
  8210. * -> encoder links are only establish when things are
  8211. * actually up, hence no need to break them. */
  8212. WARN_ON(crtc->active);
  8213. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8214. WARN_ON(encoder->connectors_active);
  8215. encoder->base.crtc = NULL;
  8216. }
  8217. }
  8218. }
  8219. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8220. {
  8221. struct intel_connector *connector;
  8222. struct drm_device *dev = encoder->base.dev;
  8223. /* We need to check both for a crtc link (meaning that the
  8224. * encoder is active and trying to read from a pipe) and the
  8225. * pipe itself being active. */
  8226. bool has_active_crtc = encoder->base.crtc &&
  8227. to_intel_crtc(encoder->base.crtc)->active;
  8228. if (encoder->connectors_active && !has_active_crtc) {
  8229. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8230. encoder->base.base.id,
  8231. drm_get_encoder_name(&encoder->base));
  8232. /* Connector is active, but has no active pipe. This is
  8233. * fallout from our resume register restoring. Disable
  8234. * the encoder manually again. */
  8235. if (encoder->base.crtc) {
  8236. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8237. encoder->base.base.id,
  8238. drm_get_encoder_name(&encoder->base));
  8239. encoder->disable(encoder);
  8240. }
  8241. /* Inconsistent output/port/pipe state happens presumably due to
  8242. * a bug in one of the get_hw_state functions. Or someplace else
  8243. * in our code, like the register restore mess on resume. Clamp
  8244. * things to off as a safer default. */
  8245. list_for_each_entry(connector,
  8246. &dev->mode_config.connector_list,
  8247. base.head) {
  8248. if (connector->encoder != encoder)
  8249. continue;
  8250. intel_connector_break_all_links(connector);
  8251. }
  8252. }
  8253. /* Enabled encoders without active connectors will be fixed in
  8254. * the crtc fixup. */
  8255. }
  8256. void i915_redisable_vga(struct drm_device *dev)
  8257. {
  8258. struct drm_i915_private *dev_priv = dev->dev_private;
  8259. u32 vga_reg = i915_vgacntrl_reg(dev);
  8260. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8261. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8262. i915_disable_vga(dev);
  8263. }
  8264. }
  8265. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8266. {
  8267. struct drm_i915_private *dev_priv = dev->dev_private;
  8268. enum pipe pipe;
  8269. struct intel_crtc *crtc;
  8270. struct intel_encoder *encoder;
  8271. struct intel_connector *connector;
  8272. int i;
  8273. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8274. base.head) {
  8275. memset(&crtc->config, 0, sizeof(crtc->config));
  8276. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8277. &crtc->config);
  8278. crtc->base.enabled = crtc->active;
  8279. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8280. crtc->base.base.id,
  8281. crtc->active ? "enabled" : "disabled");
  8282. }
  8283. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8284. if (HAS_DDI(dev))
  8285. intel_ddi_setup_hw_pll_state(dev);
  8286. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8287. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8288. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8289. pll->active = 0;
  8290. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8291. base.head) {
  8292. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8293. pll->active++;
  8294. }
  8295. pll->refcount = pll->active;
  8296. DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
  8297. pll->name, pll->refcount);
  8298. }
  8299. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8300. base.head) {
  8301. pipe = 0;
  8302. if (encoder->get_hw_state(encoder, &pipe)) {
  8303. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8304. encoder->base.crtc = &crtc->base;
  8305. if (encoder->get_config)
  8306. encoder->get_config(encoder, &crtc->config);
  8307. } else {
  8308. encoder->base.crtc = NULL;
  8309. }
  8310. encoder->connectors_active = false;
  8311. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8312. encoder->base.base.id,
  8313. drm_get_encoder_name(&encoder->base),
  8314. encoder->base.crtc ? "enabled" : "disabled",
  8315. pipe);
  8316. }
  8317. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8318. base.head) {
  8319. if (!crtc->active)
  8320. continue;
  8321. if (dev_priv->display.get_clock)
  8322. dev_priv->display.get_clock(crtc,
  8323. &crtc->config);
  8324. }
  8325. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8326. base.head) {
  8327. if (connector->get_hw_state(connector)) {
  8328. connector->base.dpms = DRM_MODE_DPMS_ON;
  8329. connector->encoder->connectors_active = true;
  8330. connector->base.encoder = &connector->encoder->base;
  8331. } else {
  8332. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8333. connector->base.encoder = NULL;
  8334. }
  8335. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8336. connector->base.base.id,
  8337. drm_get_connector_name(&connector->base),
  8338. connector->base.encoder ? "enabled" : "disabled");
  8339. }
  8340. }
  8341. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8342. * and i915 state tracking structures. */
  8343. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8344. bool force_restore)
  8345. {
  8346. struct drm_i915_private *dev_priv = dev->dev_private;
  8347. enum pipe pipe;
  8348. struct drm_plane *plane;
  8349. struct intel_crtc *crtc;
  8350. struct intel_encoder *encoder;
  8351. intel_modeset_readout_hw_state(dev);
  8352. /*
  8353. * Now that we have the config, copy it to each CRTC struct
  8354. * Note that this could go away if we move to using crtc_config
  8355. * checking everywhere.
  8356. */
  8357. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8358. base.head) {
  8359. if (crtc->active && i915_fastboot) {
  8360. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8361. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8362. crtc->base.base.id);
  8363. drm_mode_debug_printmodeline(&crtc->base.mode);
  8364. }
  8365. }
  8366. /* HW state is read out, now we need to sanitize this mess. */
  8367. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8368. base.head) {
  8369. intel_sanitize_encoder(encoder);
  8370. }
  8371. for_each_pipe(pipe) {
  8372. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8373. intel_sanitize_crtc(crtc);
  8374. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8375. }
  8376. if (force_restore) {
  8377. /*
  8378. * We need to use raw interfaces for restoring state to avoid
  8379. * checking (bogus) intermediate states.
  8380. */
  8381. for_each_pipe(pipe) {
  8382. struct drm_crtc *crtc =
  8383. dev_priv->pipe_to_crtc_mapping[pipe];
  8384. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8385. crtc->fb);
  8386. }
  8387. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8388. intel_plane_restore(plane);
  8389. i915_redisable_vga(dev);
  8390. } else {
  8391. intel_modeset_update_staged_output_state(dev);
  8392. }
  8393. intel_modeset_check_state(dev);
  8394. drm_mode_config_reset(dev);
  8395. }
  8396. void intel_modeset_gem_init(struct drm_device *dev)
  8397. {
  8398. intel_modeset_init_hw(dev);
  8399. intel_setup_overlay(dev);
  8400. intel_modeset_setup_hw_state(dev, false);
  8401. }
  8402. void intel_modeset_cleanup(struct drm_device *dev)
  8403. {
  8404. struct drm_i915_private *dev_priv = dev->dev_private;
  8405. struct drm_crtc *crtc;
  8406. struct intel_crtc *intel_crtc;
  8407. /*
  8408. * Interrupts and polling as the first thing to avoid creating havoc.
  8409. * Too much stuff here (turning of rps, connectors, ...) would
  8410. * experience fancy races otherwise.
  8411. */
  8412. drm_irq_uninstall(dev);
  8413. cancel_work_sync(&dev_priv->hotplug_work);
  8414. /*
  8415. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8416. * poll handlers. Hence disable polling after hpd handling is shut down.
  8417. */
  8418. drm_kms_helper_poll_fini(dev);
  8419. mutex_lock(&dev->struct_mutex);
  8420. intel_unregister_dsm_handler();
  8421. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8422. /* Skip inactive CRTCs */
  8423. if (!crtc->fb)
  8424. continue;
  8425. intel_crtc = to_intel_crtc(crtc);
  8426. intel_increase_pllclock(crtc);
  8427. }
  8428. intel_disable_fbc(dev);
  8429. intel_disable_gt_powersave(dev);
  8430. ironlake_teardown_rc6(dev);
  8431. mutex_unlock(&dev->struct_mutex);
  8432. /* flush any delayed tasks or pending work */
  8433. flush_scheduled_work();
  8434. /* destroy backlight, if any, before the connectors */
  8435. intel_panel_destroy_backlight(dev);
  8436. drm_mode_config_cleanup(dev);
  8437. intel_cleanup_overlay(dev);
  8438. }
  8439. /*
  8440. * Return which encoder is currently attached for connector.
  8441. */
  8442. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8443. {
  8444. return &intel_attached_encoder(connector)->base;
  8445. }
  8446. void intel_connector_attach_encoder(struct intel_connector *connector,
  8447. struct intel_encoder *encoder)
  8448. {
  8449. connector->encoder = encoder;
  8450. drm_mode_connector_attach_encoder(&connector->base,
  8451. &encoder->base);
  8452. }
  8453. /*
  8454. * set vga decode state - true == enable VGA decode
  8455. */
  8456. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8457. {
  8458. struct drm_i915_private *dev_priv = dev->dev_private;
  8459. u16 gmch_ctrl;
  8460. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8461. if (state)
  8462. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8463. else
  8464. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8465. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8466. return 0;
  8467. }
  8468. struct intel_display_error_state {
  8469. u32 power_well_driver;
  8470. struct intel_cursor_error_state {
  8471. u32 control;
  8472. u32 position;
  8473. u32 base;
  8474. u32 size;
  8475. } cursor[I915_MAX_PIPES];
  8476. struct intel_pipe_error_state {
  8477. enum transcoder cpu_transcoder;
  8478. u32 conf;
  8479. u32 source;
  8480. u32 htotal;
  8481. u32 hblank;
  8482. u32 hsync;
  8483. u32 vtotal;
  8484. u32 vblank;
  8485. u32 vsync;
  8486. } pipe[I915_MAX_PIPES];
  8487. struct intel_plane_error_state {
  8488. u32 control;
  8489. u32 stride;
  8490. u32 size;
  8491. u32 pos;
  8492. u32 addr;
  8493. u32 surface;
  8494. u32 tile_offset;
  8495. } plane[I915_MAX_PIPES];
  8496. };
  8497. struct intel_display_error_state *
  8498. intel_display_capture_error_state(struct drm_device *dev)
  8499. {
  8500. drm_i915_private_t *dev_priv = dev->dev_private;
  8501. struct intel_display_error_state *error;
  8502. enum transcoder cpu_transcoder;
  8503. int i;
  8504. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8505. if (error == NULL)
  8506. return NULL;
  8507. if (HAS_POWER_WELL(dev))
  8508. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8509. for_each_pipe(i) {
  8510. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8511. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8512. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8513. error->cursor[i].control = I915_READ(CURCNTR(i));
  8514. error->cursor[i].position = I915_READ(CURPOS(i));
  8515. error->cursor[i].base = I915_READ(CURBASE(i));
  8516. } else {
  8517. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8518. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8519. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8520. }
  8521. error->plane[i].control = I915_READ(DSPCNTR(i));
  8522. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8523. if (INTEL_INFO(dev)->gen <= 3) {
  8524. error->plane[i].size = I915_READ(DSPSIZE(i));
  8525. error->plane[i].pos = I915_READ(DSPPOS(i));
  8526. }
  8527. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8528. error->plane[i].addr = I915_READ(DSPADDR(i));
  8529. if (INTEL_INFO(dev)->gen >= 4) {
  8530. error->plane[i].surface = I915_READ(DSPSURF(i));
  8531. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8532. }
  8533. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8534. error->pipe[i].source = I915_READ(PIPESRC(i));
  8535. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8536. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8537. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8538. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8539. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8540. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8541. }
  8542. /* In the code above we read the registers without checking if the power
  8543. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8544. * prevent the next I915_WRITE from detecting it and printing an error
  8545. * message. */
  8546. if (HAS_POWER_WELL(dev))
  8547. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8548. return error;
  8549. }
  8550. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8551. void
  8552. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8553. struct drm_device *dev,
  8554. struct intel_display_error_state *error)
  8555. {
  8556. int i;
  8557. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8558. if (HAS_POWER_WELL(dev))
  8559. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8560. error->power_well_driver);
  8561. for_each_pipe(i) {
  8562. err_printf(m, "Pipe [%d]:\n", i);
  8563. err_printf(m, " CPU transcoder: %c\n",
  8564. transcoder_name(error->pipe[i].cpu_transcoder));
  8565. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8566. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8567. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8568. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8569. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8570. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8571. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8572. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8573. err_printf(m, "Plane [%d]:\n", i);
  8574. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8575. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8576. if (INTEL_INFO(dev)->gen <= 3) {
  8577. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8578. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8579. }
  8580. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8581. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8582. if (INTEL_INFO(dev)->gen >= 4) {
  8583. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8584. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8585. }
  8586. err_printf(m, "Cursor [%d]:\n", i);
  8587. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8588. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8589. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8590. }
  8591. }