core.c 180 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_rt_policy(p))
  752. prio = MAX_RT_PRIO-1 - p->rt_priority;
  753. else
  754. prio = __normal_prio(p);
  755. return prio;
  756. }
  757. /*
  758. * Calculate the current priority, i.e. the priority
  759. * taken into account by the scheduler. This value might
  760. * be boosted by RT tasks, or might be boosted by
  761. * interactivity modifiers. Will be RT if the task got
  762. * RT-boosted. If not then it returns p->normal_prio.
  763. */
  764. static int effective_prio(struct task_struct *p)
  765. {
  766. p->normal_prio = normal_prio(p);
  767. /*
  768. * If we are RT tasks or we were boosted to RT priority,
  769. * keep the priority unchanged. Otherwise, update priority
  770. * to the normal priority:
  771. */
  772. if (!rt_prio(p->prio))
  773. return p->normal_prio;
  774. return p->prio;
  775. }
  776. /**
  777. * task_curr - is this task currently executing on a CPU?
  778. * @p: the task in question.
  779. *
  780. * Return: 1 if the task is currently executing. 0 otherwise.
  781. */
  782. inline int task_curr(const struct task_struct *p)
  783. {
  784. return cpu_curr(task_cpu(p)) == p;
  785. }
  786. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  787. const struct sched_class *prev_class,
  788. int oldprio)
  789. {
  790. if (prev_class != p->sched_class) {
  791. if (prev_class->switched_from)
  792. prev_class->switched_from(rq, p);
  793. p->sched_class->switched_to(rq, p);
  794. } else if (oldprio != p->prio)
  795. p->sched_class->prio_changed(rq, p, oldprio);
  796. }
  797. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  798. {
  799. const struct sched_class *class;
  800. if (p->sched_class == rq->curr->sched_class) {
  801. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  802. } else {
  803. for_each_class(class) {
  804. if (class == rq->curr->sched_class)
  805. break;
  806. if (class == p->sched_class) {
  807. resched_task(rq->curr);
  808. break;
  809. }
  810. }
  811. }
  812. /*
  813. * A queue event has occurred, and we're going to schedule. In
  814. * this case, we can save a useless back to back clock update.
  815. */
  816. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  817. rq->skip_clock_update = 1;
  818. }
  819. #ifdef CONFIG_SMP
  820. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  821. {
  822. #ifdef CONFIG_SCHED_DEBUG
  823. /*
  824. * We should never call set_task_cpu() on a blocked task,
  825. * ttwu() will sort out the placement.
  826. */
  827. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  828. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  829. #ifdef CONFIG_LOCKDEP
  830. /*
  831. * The caller should hold either p->pi_lock or rq->lock, when changing
  832. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  833. *
  834. * sched_move_task() holds both and thus holding either pins the cgroup,
  835. * see task_group().
  836. *
  837. * Furthermore, all task_rq users should acquire both locks, see
  838. * task_rq_lock().
  839. */
  840. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  841. lockdep_is_held(&task_rq(p)->lock)));
  842. #endif
  843. #endif
  844. trace_sched_migrate_task(p, new_cpu);
  845. if (task_cpu(p) != new_cpu) {
  846. if (p->sched_class->migrate_task_rq)
  847. p->sched_class->migrate_task_rq(p, new_cpu);
  848. p->se.nr_migrations++;
  849. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  850. }
  851. __set_task_cpu(p, new_cpu);
  852. }
  853. struct migration_arg {
  854. struct task_struct *task;
  855. int dest_cpu;
  856. };
  857. static int migration_cpu_stop(void *data);
  858. /*
  859. * wait_task_inactive - wait for a thread to unschedule.
  860. *
  861. * If @match_state is nonzero, it's the @p->state value just checked and
  862. * not expected to change. If it changes, i.e. @p might have woken up,
  863. * then return zero. When we succeed in waiting for @p to be off its CPU,
  864. * we return a positive number (its total switch count). If a second call
  865. * a short while later returns the same number, the caller can be sure that
  866. * @p has remained unscheduled the whole time.
  867. *
  868. * The caller must ensure that the task *will* unschedule sometime soon,
  869. * else this function might spin for a *long* time. This function can't
  870. * be called with interrupts off, or it may introduce deadlock with
  871. * smp_call_function() if an IPI is sent by the same process we are
  872. * waiting to become inactive.
  873. */
  874. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  875. {
  876. unsigned long flags;
  877. int running, on_rq;
  878. unsigned long ncsw;
  879. struct rq *rq;
  880. for (;;) {
  881. /*
  882. * We do the initial early heuristics without holding
  883. * any task-queue locks at all. We'll only try to get
  884. * the runqueue lock when things look like they will
  885. * work out!
  886. */
  887. rq = task_rq(p);
  888. /*
  889. * If the task is actively running on another CPU
  890. * still, just relax and busy-wait without holding
  891. * any locks.
  892. *
  893. * NOTE! Since we don't hold any locks, it's not
  894. * even sure that "rq" stays as the right runqueue!
  895. * But we don't care, since "task_running()" will
  896. * return false if the runqueue has changed and p
  897. * is actually now running somewhere else!
  898. */
  899. while (task_running(rq, p)) {
  900. if (match_state && unlikely(p->state != match_state))
  901. return 0;
  902. cpu_relax();
  903. }
  904. /*
  905. * Ok, time to look more closely! We need the rq
  906. * lock now, to be *sure*. If we're wrong, we'll
  907. * just go back and repeat.
  908. */
  909. rq = task_rq_lock(p, &flags);
  910. trace_sched_wait_task(p);
  911. running = task_running(rq, p);
  912. on_rq = p->on_rq;
  913. ncsw = 0;
  914. if (!match_state || p->state == match_state)
  915. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  916. task_rq_unlock(rq, p, &flags);
  917. /*
  918. * If it changed from the expected state, bail out now.
  919. */
  920. if (unlikely(!ncsw))
  921. break;
  922. /*
  923. * Was it really running after all now that we
  924. * checked with the proper locks actually held?
  925. *
  926. * Oops. Go back and try again..
  927. */
  928. if (unlikely(running)) {
  929. cpu_relax();
  930. continue;
  931. }
  932. /*
  933. * It's not enough that it's not actively running,
  934. * it must be off the runqueue _entirely_, and not
  935. * preempted!
  936. *
  937. * So if it was still runnable (but just not actively
  938. * running right now), it's preempted, and we should
  939. * yield - it could be a while.
  940. */
  941. if (unlikely(on_rq)) {
  942. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  943. set_current_state(TASK_UNINTERRUPTIBLE);
  944. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  945. continue;
  946. }
  947. /*
  948. * Ahh, all good. It wasn't running, and it wasn't
  949. * runnable, which means that it will never become
  950. * running in the future either. We're all done!
  951. */
  952. break;
  953. }
  954. return ncsw;
  955. }
  956. /***
  957. * kick_process - kick a running thread to enter/exit the kernel
  958. * @p: the to-be-kicked thread
  959. *
  960. * Cause a process which is running on another CPU to enter
  961. * kernel-mode, without any delay. (to get signals handled.)
  962. *
  963. * NOTE: this function doesn't have to take the runqueue lock,
  964. * because all it wants to ensure is that the remote task enters
  965. * the kernel. If the IPI races and the task has been migrated
  966. * to another CPU then no harm is done and the purpose has been
  967. * achieved as well.
  968. */
  969. void kick_process(struct task_struct *p)
  970. {
  971. int cpu;
  972. preempt_disable();
  973. cpu = task_cpu(p);
  974. if ((cpu != smp_processor_id()) && task_curr(p))
  975. smp_send_reschedule(cpu);
  976. preempt_enable();
  977. }
  978. EXPORT_SYMBOL_GPL(kick_process);
  979. #endif /* CONFIG_SMP */
  980. #ifdef CONFIG_SMP
  981. /*
  982. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  983. */
  984. static int select_fallback_rq(int cpu, struct task_struct *p)
  985. {
  986. int nid = cpu_to_node(cpu);
  987. const struct cpumask *nodemask = NULL;
  988. enum { cpuset, possible, fail } state = cpuset;
  989. int dest_cpu;
  990. /*
  991. * If the node that the cpu is on has been offlined, cpu_to_node()
  992. * will return -1. There is no cpu on the node, and we should
  993. * select the cpu on the other node.
  994. */
  995. if (nid != -1) {
  996. nodemask = cpumask_of_node(nid);
  997. /* Look for allowed, online CPU in same node. */
  998. for_each_cpu(dest_cpu, nodemask) {
  999. if (!cpu_online(dest_cpu))
  1000. continue;
  1001. if (!cpu_active(dest_cpu))
  1002. continue;
  1003. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1004. return dest_cpu;
  1005. }
  1006. }
  1007. for (;;) {
  1008. /* Any allowed, online CPU? */
  1009. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1010. if (!cpu_online(dest_cpu))
  1011. continue;
  1012. if (!cpu_active(dest_cpu))
  1013. continue;
  1014. goto out;
  1015. }
  1016. switch (state) {
  1017. case cpuset:
  1018. /* No more Mr. Nice Guy. */
  1019. cpuset_cpus_allowed_fallback(p);
  1020. state = possible;
  1021. break;
  1022. case possible:
  1023. do_set_cpus_allowed(p, cpu_possible_mask);
  1024. state = fail;
  1025. break;
  1026. case fail:
  1027. BUG();
  1028. break;
  1029. }
  1030. }
  1031. out:
  1032. if (state != cpuset) {
  1033. /*
  1034. * Don't tell them about moving exiting tasks or
  1035. * kernel threads (both mm NULL), since they never
  1036. * leave kernel.
  1037. */
  1038. if (p->mm && printk_ratelimit()) {
  1039. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1040. task_pid_nr(p), p->comm, cpu);
  1041. }
  1042. }
  1043. return dest_cpu;
  1044. }
  1045. /*
  1046. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1047. */
  1048. static inline
  1049. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1050. {
  1051. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1052. /*
  1053. * In order not to call set_task_cpu() on a blocking task we need
  1054. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1055. * cpu.
  1056. *
  1057. * Since this is common to all placement strategies, this lives here.
  1058. *
  1059. * [ this allows ->select_task() to simply return task_cpu(p) and
  1060. * not worry about this generic constraint ]
  1061. */
  1062. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1063. !cpu_online(cpu)))
  1064. cpu = select_fallback_rq(task_cpu(p), p);
  1065. return cpu;
  1066. }
  1067. static void update_avg(u64 *avg, u64 sample)
  1068. {
  1069. s64 diff = sample - *avg;
  1070. *avg += diff >> 3;
  1071. }
  1072. #endif
  1073. static void
  1074. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1075. {
  1076. #ifdef CONFIG_SCHEDSTATS
  1077. struct rq *rq = this_rq();
  1078. #ifdef CONFIG_SMP
  1079. int this_cpu = smp_processor_id();
  1080. if (cpu == this_cpu) {
  1081. schedstat_inc(rq, ttwu_local);
  1082. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1083. } else {
  1084. struct sched_domain *sd;
  1085. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1086. rcu_read_lock();
  1087. for_each_domain(this_cpu, sd) {
  1088. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1089. schedstat_inc(sd, ttwu_wake_remote);
  1090. break;
  1091. }
  1092. }
  1093. rcu_read_unlock();
  1094. }
  1095. if (wake_flags & WF_MIGRATED)
  1096. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1097. #endif /* CONFIG_SMP */
  1098. schedstat_inc(rq, ttwu_count);
  1099. schedstat_inc(p, se.statistics.nr_wakeups);
  1100. if (wake_flags & WF_SYNC)
  1101. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1102. #endif /* CONFIG_SCHEDSTATS */
  1103. }
  1104. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1105. {
  1106. activate_task(rq, p, en_flags);
  1107. p->on_rq = 1;
  1108. /* if a worker is waking up, notify workqueue */
  1109. if (p->flags & PF_WQ_WORKER)
  1110. wq_worker_waking_up(p, cpu_of(rq));
  1111. }
  1112. /*
  1113. * Mark the task runnable and perform wakeup-preemption.
  1114. */
  1115. static void
  1116. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1117. {
  1118. check_preempt_curr(rq, p, wake_flags);
  1119. trace_sched_wakeup(p, true);
  1120. p->state = TASK_RUNNING;
  1121. #ifdef CONFIG_SMP
  1122. if (p->sched_class->task_woken)
  1123. p->sched_class->task_woken(rq, p);
  1124. if (rq->idle_stamp) {
  1125. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1126. u64 max = 2*rq->max_idle_balance_cost;
  1127. update_avg(&rq->avg_idle, delta);
  1128. if (rq->avg_idle > max)
  1129. rq->avg_idle = max;
  1130. rq->idle_stamp = 0;
  1131. }
  1132. #endif
  1133. }
  1134. static void
  1135. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1136. {
  1137. #ifdef CONFIG_SMP
  1138. if (p->sched_contributes_to_load)
  1139. rq->nr_uninterruptible--;
  1140. #endif
  1141. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1142. ttwu_do_wakeup(rq, p, wake_flags);
  1143. }
  1144. /*
  1145. * Called in case the task @p isn't fully descheduled from its runqueue,
  1146. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1147. * since all we need to do is flip p->state to TASK_RUNNING, since
  1148. * the task is still ->on_rq.
  1149. */
  1150. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1151. {
  1152. struct rq *rq;
  1153. int ret = 0;
  1154. rq = __task_rq_lock(p);
  1155. if (p->on_rq) {
  1156. /* check_preempt_curr() may use rq clock */
  1157. update_rq_clock(rq);
  1158. ttwu_do_wakeup(rq, p, wake_flags);
  1159. ret = 1;
  1160. }
  1161. __task_rq_unlock(rq);
  1162. return ret;
  1163. }
  1164. #ifdef CONFIG_SMP
  1165. static void sched_ttwu_pending(void)
  1166. {
  1167. struct rq *rq = this_rq();
  1168. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1169. struct task_struct *p;
  1170. raw_spin_lock(&rq->lock);
  1171. while (llist) {
  1172. p = llist_entry(llist, struct task_struct, wake_entry);
  1173. llist = llist_next(llist);
  1174. ttwu_do_activate(rq, p, 0);
  1175. }
  1176. raw_spin_unlock(&rq->lock);
  1177. }
  1178. void scheduler_ipi(void)
  1179. {
  1180. /*
  1181. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1182. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1183. * this IPI.
  1184. */
  1185. if (tif_need_resched())
  1186. set_preempt_need_resched();
  1187. if (llist_empty(&this_rq()->wake_list)
  1188. && !tick_nohz_full_cpu(smp_processor_id())
  1189. && !got_nohz_idle_kick())
  1190. return;
  1191. /*
  1192. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1193. * traditionally all their work was done from the interrupt return
  1194. * path. Now that we actually do some work, we need to make sure
  1195. * we do call them.
  1196. *
  1197. * Some archs already do call them, luckily irq_enter/exit nest
  1198. * properly.
  1199. *
  1200. * Arguably we should visit all archs and update all handlers,
  1201. * however a fair share of IPIs are still resched only so this would
  1202. * somewhat pessimize the simple resched case.
  1203. */
  1204. irq_enter();
  1205. tick_nohz_full_check();
  1206. sched_ttwu_pending();
  1207. /*
  1208. * Check if someone kicked us for doing the nohz idle load balance.
  1209. */
  1210. if (unlikely(got_nohz_idle_kick())) {
  1211. this_rq()->idle_balance = 1;
  1212. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1213. }
  1214. irq_exit();
  1215. }
  1216. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1217. {
  1218. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1219. smp_send_reschedule(cpu);
  1220. }
  1221. bool cpus_share_cache(int this_cpu, int that_cpu)
  1222. {
  1223. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1224. }
  1225. #endif /* CONFIG_SMP */
  1226. static void ttwu_queue(struct task_struct *p, int cpu)
  1227. {
  1228. struct rq *rq = cpu_rq(cpu);
  1229. #if defined(CONFIG_SMP)
  1230. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1231. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1232. ttwu_queue_remote(p, cpu);
  1233. return;
  1234. }
  1235. #endif
  1236. raw_spin_lock(&rq->lock);
  1237. ttwu_do_activate(rq, p, 0);
  1238. raw_spin_unlock(&rq->lock);
  1239. }
  1240. /**
  1241. * try_to_wake_up - wake up a thread
  1242. * @p: the thread to be awakened
  1243. * @state: the mask of task states that can be woken
  1244. * @wake_flags: wake modifier flags (WF_*)
  1245. *
  1246. * Put it on the run-queue if it's not already there. The "current"
  1247. * thread is always on the run-queue (except when the actual
  1248. * re-schedule is in progress), and as such you're allowed to do
  1249. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1250. * runnable without the overhead of this.
  1251. *
  1252. * Return: %true if @p was woken up, %false if it was already running.
  1253. * or @state didn't match @p's state.
  1254. */
  1255. static int
  1256. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1257. {
  1258. unsigned long flags;
  1259. int cpu, success = 0;
  1260. /*
  1261. * If we are going to wake up a thread waiting for CONDITION we
  1262. * need to ensure that CONDITION=1 done by the caller can not be
  1263. * reordered with p->state check below. This pairs with mb() in
  1264. * set_current_state() the waiting thread does.
  1265. */
  1266. smp_mb__before_spinlock();
  1267. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1268. if (!(p->state & state))
  1269. goto out;
  1270. success = 1; /* we're going to change ->state */
  1271. cpu = task_cpu(p);
  1272. if (p->on_rq && ttwu_remote(p, wake_flags))
  1273. goto stat;
  1274. #ifdef CONFIG_SMP
  1275. /*
  1276. * If the owning (remote) cpu is still in the middle of schedule() with
  1277. * this task as prev, wait until its done referencing the task.
  1278. */
  1279. while (p->on_cpu)
  1280. cpu_relax();
  1281. /*
  1282. * Pairs with the smp_wmb() in finish_lock_switch().
  1283. */
  1284. smp_rmb();
  1285. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1286. p->state = TASK_WAKING;
  1287. if (p->sched_class->task_waking)
  1288. p->sched_class->task_waking(p);
  1289. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1290. if (task_cpu(p) != cpu) {
  1291. wake_flags |= WF_MIGRATED;
  1292. set_task_cpu(p, cpu);
  1293. }
  1294. #endif /* CONFIG_SMP */
  1295. ttwu_queue(p, cpu);
  1296. stat:
  1297. ttwu_stat(p, cpu, wake_flags);
  1298. out:
  1299. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1300. return success;
  1301. }
  1302. /**
  1303. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1304. * @p: the thread to be awakened
  1305. *
  1306. * Put @p on the run-queue if it's not already there. The caller must
  1307. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1308. * the current task.
  1309. */
  1310. static void try_to_wake_up_local(struct task_struct *p)
  1311. {
  1312. struct rq *rq = task_rq(p);
  1313. if (WARN_ON_ONCE(rq != this_rq()) ||
  1314. WARN_ON_ONCE(p == current))
  1315. return;
  1316. lockdep_assert_held(&rq->lock);
  1317. if (!raw_spin_trylock(&p->pi_lock)) {
  1318. raw_spin_unlock(&rq->lock);
  1319. raw_spin_lock(&p->pi_lock);
  1320. raw_spin_lock(&rq->lock);
  1321. }
  1322. if (!(p->state & TASK_NORMAL))
  1323. goto out;
  1324. if (!p->on_rq)
  1325. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1326. ttwu_do_wakeup(rq, p, 0);
  1327. ttwu_stat(p, smp_processor_id(), 0);
  1328. out:
  1329. raw_spin_unlock(&p->pi_lock);
  1330. }
  1331. /**
  1332. * wake_up_process - Wake up a specific process
  1333. * @p: The process to be woken up.
  1334. *
  1335. * Attempt to wake up the nominated process and move it to the set of runnable
  1336. * processes.
  1337. *
  1338. * Return: 1 if the process was woken up, 0 if it was already running.
  1339. *
  1340. * It may be assumed that this function implies a write memory barrier before
  1341. * changing the task state if and only if any tasks are woken up.
  1342. */
  1343. int wake_up_process(struct task_struct *p)
  1344. {
  1345. WARN_ON(task_is_stopped_or_traced(p));
  1346. return try_to_wake_up(p, TASK_NORMAL, 0);
  1347. }
  1348. EXPORT_SYMBOL(wake_up_process);
  1349. int wake_up_state(struct task_struct *p, unsigned int state)
  1350. {
  1351. return try_to_wake_up(p, state, 0);
  1352. }
  1353. /*
  1354. * Perform scheduler related setup for a newly forked process p.
  1355. * p is forked by current.
  1356. *
  1357. * __sched_fork() is basic setup used by init_idle() too:
  1358. */
  1359. static void __sched_fork(struct task_struct *p)
  1360. {
  1361. p->on_rq = 0;
  1362. p->se.on_rq = 0;
  1363. p->se.exec_start = 0;
  1364. p->se.sum_exec_runtime = 0;
  1365. p->se.prev_sum_exec_runtime = 0;
  1366. p->se.nr_migrations = 0;
  1367. p->se.vruntime = 0;
  1368. INIT_LIST_HEAD(&p->se.group_node);
  1369. #ifdef CONFIG_SCHEDSTATS
  1370. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1371. #endif
  1372. INIT_LIST_HEAD(&p->rt.run_list);
  1373. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1374. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1375. #endif
  1376. #ifdef CONFIG_NUMA_BALANCING
  1377. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1378. p->mm->numa_next_scan = jiffies;
  1379. p->mm->numa_next_reset = jiffies;
  1380. p->mm->numa_scan_seq = 0;
  1381. }
  1382. p->node_stamp = 0ULL;
  1383. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1384. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1385. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1386. p->numa_work.next = &p->numa_work;
  1387. #endif /* CONFIG_NUMA_BALANCING */
  1388. }
  1389. #ifdef CONFIG_NUMA_BALANCING
  1390. #ifdef CONFIG_SCHED_DEBUG
  1391. void set_numabalancing_state(bool enabled)
  1392. {
  1393. if (enabled)
  1394. sched_feat_set("NUMA");
  1395. else
  1396. sched_feat_set("NO_NUMA");
  1397. }
  1398. #else
  1399. __read_mostly bool numabalancing_enabled;
  1400. void set_numabalancing_state(bool enabled)
  1401. {
  1402. numabalancing_enabled = enabled;
  1403. }
  1404. #endif /* CONFIG_SCHED_DEBUG */
  1405. #endif /* CONFIG_NUMA_BALANCING */
  1406. /*
  1407. * fork()/clone()-time setup:
  1408. */
  1409. void sched_fork(struct task_struct *p)
  1410. {
  1411. unsigned long flags;
  1412. int cpu = get_cpu();
  1413. __sched_fork(p);
  1414. /*
  1415. * We mark the process as running here. This guarantees that
  1416. * nobody will actually run it, and a signal or other external
  1417. * event cannot wake it up and insert it on the runqueue either.
  1418. */
  1419. p->state = TASK_RUNNING;
  1420. /*
  1421. * Make sure we do not leak PI boosting priority to the child.
  1422. */
  1423. p->prio = current->normal_prio;
  1424. /*
  1425. * Revert to default priority/policy on fork if requested.
  1426. */
  1427. if (unlikely(p->sched_reset_on_fork)) {
  1428. if (task_has_rt_policy(p)) {
  1429. p->policy = SCHED_NORMAL;
  1430. p->static_prio = NICE_TO_PRIO(0);
  1431. p->rt_priority = 0;
  1432. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1433. p->static_prio = NICE_TO_PRIO(0);
  1434. p->prio = p->normal_prio = __normal_prio(p);
  1435. set_load_weight(p);
  1436. /*
  1437. * We don't need the reset flag anymore after the fork. It has
  1438. * fulfilled its duty:
  1439. */
  1440. p->sched_reset_on_fork = 0;
  1441. }
  1442. if (!rt_prio(p->prio))
  1443. p->sched_class = &fair_sched_class;
  1444. if (p->sched_class->task_fork)
  1445. p->sched_class->task_fork(p);
  1446. /*
  1447. * The child is not yet in the pid-hash so no cgroup attach races,
  1448. * and the cgroup is pinned to this child due to cgroup_fork()
  1449. * is ran before sched_fork().
  1450. *
  1451. * Silence PROVE_RCU.
  1452. */
  1453. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1454. set_task_cpu(p, cpu);
  1455. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1456. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1457. if (likely(sched_info_on()))
  1458. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1459. #endif
  1460. #if defined(CONFIG_SMP)
  1461. p->on_cpu = 0;
  1462. #endif
  1463. init_task_preempt_count(p);
  1464. #ifdef CONFIG_SMP
  1465. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1466. #endif
  1467. put_cpu();
  1468. }
  1469. /*
  1470. * wake_up_new_task - wake up a newly created task for the first time.
  1471. *
  1472. * This function will do some initial scheduler statistics housekeeping
  1473. * that must be done for every newly created context, then puts the task
  1474. * on the runqueue and wakes it.
  1475. */
  1476. void wake_up_new_task(struct task_struct *p)
  1477. {
  1478. unsigned long flags;
  1479. struct rq *rq;
  1480. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1481. #ifdef CONFIG_SMP
  1482. /*
  1483. * Fork balancing, do it here and not earlier because:
  1484. * - cpus_allowed can change in the fork path
  1485. * - any previously selected cpu might disappear through hotplug
  1486. */
  1487. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1488. #endif
  1489. /* Initialize new task's runnable average */
  1490. init_task_runnable_average(p);
  1491. rq = __task_rq_lock(p);
  1492. activate_task(rq, p, 0);
  1493. p->on_rq = 1;
  1494. trace_sched_wakeup_new(p, true);
  1495. check_preempt_curr(rq, p, WF_FORK);
  1496. #ifdef CONFIG_SMP
  1497. if (p->sched_class->task_woken)
  1498. p->sched_class->task_woken(rq, p);
  1499. #endif
  1500. task_rq_unlock(rq, p, &flags);
  1501. }
  1502. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1503. /**
  1504. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1505. * @notifier: notifier struct to register
  1506. */
  1507. void preempt_notifier_register(struct preempt_notifier *notifier)
  1508. {
  1509. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1510. }
  1511. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1512. /**
  1513. * preempt_notifier_unregister - no longer interested in preemption notifications
  1514. * @notifier: notifier struct to unregister
  1515. *
  1516. * This is safe to call from within a preemption notifier.
  1517. */
  1518. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1519. {
  1520. hlist_del(&notifier->link);
  1521. }
  1522. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1523. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1524. {
  1525. struct preempt_notifier *notifier;
  1526. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1527. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1528. }
  1529. static void
  1530. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1531. struct task_struct *next)
  1532. {
  1533. struct preempt_notifier *notifier;
  1534. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1535. notifier->ops->sched_out(notifier, next);
  1536. }
  1537. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1538. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1539. {
  1540. }
  1541. static void
  1542. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1543. struct task_struct *next)
  1544. {
  1545. }
  1546. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1547. /**
  1548. * prepare_task_switch - prepare to switch tasks
  1549. * @rq: the runqueue preparing to switch
  1550. * @prev: the current task that is being switched out
  1551. * @next: the task we are going to switch to.
  1552. *
  1553. * This is called with the rq lock held and interrupts off. It must
  1554. * be paired with a subsequent finish_task_switch after the context
  1555. * switch.
  1556. *
  1557. * prepare_task_switch sets up locking and calls architecture specific
  1558. * hooks.
  1559. */
  1560. static inline void
  1561. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1562. struct task_struct *next)
  1563. {
  1564. trace_sched_switch(prev, next);
  1565. sched_info_switch(rq, prev, next);
  1566. perf_event_task_sched_out(prev, next);
  1567. fire_sched_out_preempt_notifiers(prev, next);
  1568. prepare_lock_switch(rq, next);
  1569. prepare_arch_switch(next);
  1570. }
  1571. /**
  1572. * finish_task_switch - clean up after a task-switch
  1573. * @rq: runqueue associated with task-switch
  1574. * @prev: the thread we just switched away from.
  1575. *
  1576. * finish_task_switch must be called after the context switch, paired
  1577. * with a prepare_task_switch call before the context switch.
  1578. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1579. * and do any other architecture-specific cleanup actions.
  1580. *
  1581. * Note that we may have delayed dropping an mm in context_switch(). If
  1582. * so, we finish that here outside of the runqueue lock. (Doing it
  1583. * with the lock held can cause deadlocks; see schedule() for
  1584. * details.)
  1585. */
  1586. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1587. __releases(rq->lock)
  1588. {
  1589. struct mm_struct *mm = rq->prev_mm;
  1590. long prev_state;
  1591. rq->prev_mm = NULL;
  1592. /*
  1593. * A task struct has one reference for the use as "current".
  1594. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1595. * schedule one last time. The schedule call will never return, and
  1596. * the scheduled task must drop that reference.
  1597. * The test for TASK_DEAD must occur while the runqueue locks are
  1598. * still held, otherwise prev could be scheduled on another cpu, die
  1599. * there before we look at prev->state, and then the reference would
  1600. * be dropped twice.
  1601. * Manfred Spraul <manfred@colorfullife.com>
  1602. */
  1603. prev_state = prev->state;
  1604. vtime_task_switch(prev);
  1605. finish_arch_switch(prev);
  1606. perf_event_task_sched_in(prev, current);
  1607. finish_lock_switch(rq, prev);
  1608. finish_arch_post_lock_switch();
  1609. fire_sched_in_preempt_notifiers(current);
  1610. if (mm)
  1611. mmdrop(mm);
  1612. if (unlikely(prev_state == TASK_DEAD)) {
  1613. /*
  1614. * Remove function-return probe instances associated with this
  1615. * task and put them back on the free list.
  1616. */
  1617. kprobe_flush_task(prev);
  1618. put_task_struct(prev);
  1619. }
  1620. tick_nohz_task_switch(current);
  1621. }
  1622. #ifdef CONFIG_SMP
  1623. /* assumes rq->lock is held */
  1624. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1625. {
  1626. if (prev->sched_class->pre_schedule)
  1627. prev->sched_class->pre_schedule(rq, prev);
  1628. }
  1629. /* rq->lock is NOT held, but preemption is disabled */
  1630. static inline void post_schedule(struct rq *rq)
  1631. {
  1632. if (rq->post_schedule) {
  1633. unsigned long flags;
  1634. raw_spin_lock_irqsave(&rq->lock, flags);
  1635. if (rq->curr->sched_class->post_schedule)
  1636. rq->curr->sched_class->post_schedule(rq);
  1637. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1638. rq->post_schedule = 0;
  1639. }
  1640. }
  1641. #else
  1642. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1643. {
  1644. }
  1645. static inline void post_schedule(struct rq *rq)
  1646. {
  1647. }
  1648. #endif
  1649. /**
  1650. * schedule_tail - first thing a freshly forked thread must call.
  1651. * @prev: the thread we just switched away from.
  1652. */
  1653. asmlinkage void schedule_tail(struct task_struct *prev)
  1654. __releases(rq->lock)
  1655. {
  1656. struct rq *rq = this_rq();
  1657. finish_task_switch(rq, prev);
  1658. /*
  1659. * FIXME: do we need to worry about rq being invalidated by the
  1660. * task_switch?
  1661. */
  1662. post_schedule(rq);
  1663. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1664. /* In this case, finish_task_switch does not reenable preemption */
  1665. preempt_enable();
  1666. #endif
  1667. if (current->set_child_tid)
  1668. put_user(task_pid_vnr(current), current->set_child_tid);
  1669. }
  1670. /*
  1671. * context_switch - switch to the new MM and the new
  1672. * thread's register state.
  1673. */
  1674. static inline void
  1675. context_switch(struct rq *rq, struct task_struct *prev,
  1676. struct task_struct *next)
  1677. {
  1678. struct mm_struct *mm, *oldmm;
  1679. prepare_task_switch(rq, prev, next);
  1680. mm = next->mm;
  1681. oldmm = prev->active_mm;
  1682. /*
  1683. * For paravirt, this is coupled with an exit in switch_to to
  1684. * combine the page table reload and the switch backend into
  1685. * one hypercall.
  1686. */
  1687. arch_start_context_switch(prev);
  1688. if (!mm) {
  1689. next->active_mm = oldmm;
  1690. atomic_inc(&oldmm->mm_count);
  1691. enter_lazy_tlb(oldmm, next);
  1692. } else
  1693. switch_mm(oldmm, mm, next);
  1694. if (!prev->mm) {
  1695. prev->active_mm = NULL;
  1696. rq->prev_mm = oldmm;
  1697. }
  1698. /*
  1699. * Since the runqueue lock will be released by the next
  1700. * task (which is an invalid locking op but in the case
  1701. * of the scheduler it's an obvious special-case), so we
  1702. * do an early lockdep release here:
  1703. */
  1704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1705. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1706. #endif
  1707. context_tracking_task_switch(prev, next);
  1708. /* Here we just switch the register state and the stack. */
  1709. switch_to(prev, next, prev);
  1710. barrier();
  1711. /*
  1712. * this_rq must be evaluated again because prev may have moved
  1713. * CPUs since it called schedule(), thus the 'rq' on its stack
  1714. * frame will be invalid.
  1715. */
  1716. finish_task_switch(this_rq(), prev);
  1717. }
  1718. /*
  1719. * nr_running and nr_context_switches:
  1720. *
  1721. * externally visible scheduler statistics: current number of runnable
  1722. * threads, total number of context switches performed since bootup.
  1723. */
  1724. unsigned long nr_running(void)
  1725. {
  1726. unsigned long i, sum = 0;
  1727. for_each_online_cpu(i)
  1728. sum += cpu_rq(i)->nr_running;
  1729. return sum;
  1730. }
  1731. unsigned long long nr_context_switches(void)
  1732. {
  1733. int i;
  1734. unsigned long long sum = 0;
  1735. for_each_possible_cpu(i)
  1736. sum += cpu_rq(i)->nr_switches;
  1737. return sum;
  1738. }
  1739. unsigned long nr_iowait(void)
  1740. {
  1741. unsigned long i, sum = 0;
  1742. for_each_possible_cpu(i)
  1743. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1744. return sum;
  1745. }
  1746. unsigned long nr_iowait_cpu(int cpu)
  1747. {
  1748. struct rq *this = cpu_rq(cpu);
  1749. return atomic_read(&this->nr_iowait);
  1750. }
  1751. #ifdef CONFIG_SMP
  1752. /*
  1753. * sched_exec - execve() is a valuable balancing opportunity, because at
  1754. * this point the task has the smallest effective memory and cache footprint.
  1755. */
  1756. void sched_exec(void)
  1757. {
  1758. struct task_struct *p = current;
  1759. unsigned long flags;
  1760. int dest_cpu;
  1761. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1762. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  1763. if (dest_cpu == smp_processor_id())
  1764. goto unlock;
  1765. if (likely(cpu_active(dest_cpu))) {
  1766. struct migration_arg arg = { p, dest_cpu };
  1767. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1768. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1769. return;
  1770. }
  1771. unlock:
  1772. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1773. }
  1774. #endif
  1775. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1776. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1777. EXPORT_PER_CPU_SYMBOL(kstat);
  1778. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1779. /*
  1780. * Return any ns on the sched_clock that have not yet been accounted in
  1781. * @p in case that task is currently running.
  1782. *
  1783. * Called with task_rq_lock() held on @rq.
  1784. */
  1785. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1786. {
  1787. u64 ns = 0;
  1788. if (task_current(rq, p)) {
  1789. update_rq_clock(rq);
  1790. ns = rq_clock_task(rq) - p->se.exec_start;
  1791. if ((s64)ns < 0)
  1792. ns = 0;
  1793. }
  1794. return ns;
  1795. }
  1796. unsigned long long task_delta_exec(struct task_struct *p)
  1797. {
  1798. unsigned long flags;
  1799. struct rq *rq;
  1800. u64 ns = 0;
  1801. rq = task_rq_lock(p, &flags);
  1802. ns = do_task_delta_exec(p, rq);
  1803. task_rq_unlock(rq, p, &flags);
  1804. return ns;
  1805. }
  1806. /*
  1807. * Return accounted runtime for the task.
  1808. * In case the task is currently running, return the runtime plus current's
  1809. * pending runtime that have not been accounted yet.
  1810. */
  1811. unsigned long long task_sched_runtime(struct task_struct *p)
  1812. {
  1813. unsigned long flags;
  1814. struct rq *rq;
  1815. u64 ns = 0;
  1816. rq = task_rq_lock(p, &flags);
  1817. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  1818. task_rq_unlock(rq, p, &flags);
  1819. return ns;
  1820. }
  1821. /*
  1822. * This function gets called by the timer code, with HZ frequency.
  1823. * We call it with interrupts disabled.
  1824. */
  1825. void scheduler_tick(void)
  1826. {
  1827. int cpu = smp_processor_id();
  1828. struct rq *rq = cpu_rq(cpu);
  1829. struct task_struct *curr = rq->curr;
  1830. sched_clock_tick();
  1831. raw_spin_lock(&rq->lock);
  1832. update_rq_clock(rq);
  1833. curr->sched_class->task_tick(rq, curr, 0);
  1834. update_cpu_load_active(rq);
  1835. raw_spin_unlock(&rq->lock);
  1836. perf_event_task_tick();
  1837. #ifdef CONFIG_SMP
  1838. rq->idle_balance = idle_cpu(cpu);
  1839. trigger_load_balance(rq, cpu);
  1840. #endif
  1841. rq_last_tick_reset(rq);
  1842. }
  1843. #ifdef CONFIG_NO_HZ_FULL
  1844. /**
  1845. * scheduler_tick_max_deferment
  1846. *
  1847. * Keep at least one tick per second when a single
  1848. * active task is running because the scheduler doesn't
  1849. * yet completely support full dynticks environment.
  1850. *
  1851. * This makes sure that uptime, CFS vruntime, load
  1852. * balancing, etc... continue to move forward, even
  1853. * with a very low granularity.
  1854. *
  1855. * Return: Maximum deferment in nanoseconds.
  1856. */
  1857. u64 scheduler_tick_max_deferment(void)
  1858. {
  1859. struct rq *rq = this_rq();
  1860. unsigned long next, now = ACCESS_ONCE(jiffies);
  1861. next = rq->last_sched_tick + HZ;
  1862. if (time_before_eq(next, now))
  1863. return 0;
  1864. return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
  1865. }
  1866. #endif
  1867. notrace unsigned long get_parent_ip(unsigned long addr)
  1868. {
  1869. if (in_lock_functions(addr)) {
  1870. addr = CALLER_ADDR2;
  1871. if (in_lock_functions(addr))
  1872. addr = CALLER_ADDR3;
  1873. }
  1874. return addr;
  1875. }
  1876. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  1877. defined(CONFIG_PREEMPT_TRACER))
  1878. void __kprobes preempt_count_add(int val)
  1879. {
  1880. #ifdef CONFIG_DEBUG_PREEMPT
  1881. /*
  1882. * Underflow?
  1883. */
  1884. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  1885. return;
  1886. #endif
  1887. __preempt_count_add(val);
  1888. #ifdef CONFIG_DEBUG_PREEMPT
  1889. /*
  1890. * Spinlock count overflowing soon?
  1891. */
  1892. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  1893. PREEMPT_MASK - 10);
  1894. #endif
  1895. if (preempt_count() == val)
  1896. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1897. }
  1898. EXPORT_SYMBOL(preempt_count_add);
  1899. void __kprobes preempt_count_sub(int val)
  1900. {
  1901. #ifdef CONFIG_DEBUG_PREEMPT
  1902. /*
  1903. * Underflow?
  1904. */
  1905. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  1906. return;
  1907. /*
  1908. * Is the spinlock portion underflowing?
  1909. */
  1910. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  1911. !(preempt_count() & PREEMPT_MASK)))
  1912. return;
  1913. #endif
  1914. if (preempt_count() == val)
  1915. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1916. __preempt_count_sub(val);
  1917. }
  1918. EXPORT_SYMBOL(preempt_count_sub);
  1919. #endif
  1920. /*
  1921. * Print scheduling while atomic bug:
  1922. */
  1923. static noinline void __schedule_bug(struct task_struct *prev)
  1924. {
  1925. if (oops_in_progress)
  1926. return;
  1927. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  1928. prev->comm, prev->pid, preempt_count());
  1929. debug_show_held_locks(prev);
  1930. print_modules();
  1931. if (irqs_disabled())
  1932. print_irqtrace_events(prev);
  1933. dump_stack();
  1934. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  1935. }
  1936. /*
  1937. * Various schedule()-time debugging checks and statistics:
  1938. */
  1939. static inline void schedule_debug(struct task_struct *prev)
  1940. {
  1941. /*
  1942. * Test if we are atomic. Since do_exit() needs to call into
  1943. * schedule() atomically, we ignore that path for now.
  1944. * Otherwise, whine if we are scheduling when we should not be.
  1945. */
  1946. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  1947. __schedule_bug(prev);
  1948. rcu_sleep_check();
  1949. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  1950. schedstat_inc(this_rq(), sched_count);
  1951. }
  1952. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  1953. {
  1954. if (prev->on_rq || rq->skip_clock_update < 0)
  1955. update_rq_clock(rq);
  1956. prev->sched_class->put_prev_task(rq, prev);
  1957. }
  1958. /*
  1959. * Pick up the highest-prio task:
  1960. */
  1961. static inline struct task_struct *
  1962. pick_next_task(struct rq *rq)
  1963. {
  1964. const struct sched_class *class;
  1965. struct task_struct *p;
  1966. /*
  1967. * Optimization: we know that if all tasks are in
  1968. * the fair class we can call that function directly:
  1969. */
  1970. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  1971. p = fair_sched_class.pick_next_task(rq);
  1972. if (likely(p))
  1973. return p;
  1974. }
  1975. for_each_class(class) {
  1976. p = class->pick_next_task(rq);
  1977. if (p)
  1978. return p;
  1979. }
  1980. BUG(); /* the idle class will always have a runnable task */
  1981. }
  1982. /*
  1983. * __schedule() is the main scheduler function.
  1984. *
  1985. * The main means of driving the scheduler and thus entering this function are:
  1986. *
  1987. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  1988. *
  1989. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  1990. * paths. For example, see arch/x86/entry_64.S.
  1991. *
  1992. * To drive preemption between tasks, the scheduler sets the flag in timer
  1993. * interrupt handler scheduler_tick().
  1994. *
  1995. * 3. Wakeups don't really cause entry into schedule(). They add a
  1996. * task to the run-queue and that's it.
  1997. *
  1998. * Now, if the new task added to the run-queue preempts the current
  1999. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2000. * called on the nearest possible occasion:
  2001. *
  2002. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2003. *
  2004. * - in syscall or exception context, at the next outmost
  2005. * preempt_enable(). (this might be as soon as the wake_up()'s
  2006. * spin_unlock()!)
  2007. *
  2008. * - in IRQ context, return from interrupt-handler to
  2009. * preemptible context
  2010. *
  2011. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2012. * then at the next:
  2013. *
  2014. * - cond_resched() call
  2015. * - explicit schedule() call
  2016. * - return from syscall or exception to user-space
  2017. * - return from interrupt-handler to user-space
  2018. */
  2019. static void __sched __schedule(void)
  2020. {
  2021. struct task_struct *prev, *next;
  2022. unsigned long *switch_count;
  2023. struct rq *rq;
  2024. int cpu;
  2025. need_resched:
  2026. preempt_disable();
  2027. cpu = smp_processor_id();
  2028. rq = cpu_rq(cpu);
  2029. rcu_note_context_switch(cpu);
  2030. prev = rq->curr;
  2031. schedule_debug(prev);
  2032. if (sched_feat(HRTICK))
  2033. hrtick_clear(rq);
  2034. /*
  2035. * Make sure that signal_pending_state()->signal_pending() below
  2036. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2037. * done by the caller to avoid the race with signal_wake_up().
  2038. */
  2039. smp_mb__before_spinlock();
  2040. raw_spin_lock_irq(&rq->lock);
  2041. switch_count = &prev->nivcsw;
  2042. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2043. if (unlikely(signal_pending_state(prev->state, prev))) {
  2044. prev->state = TASK_RUNNING;
  2045. } else {
  2046. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2047. prev->on_rq = 0;
  2048. /*
  2049. * If a worker went to sleep, notify and ask workqueue
  2050. * whether it wants to wake up a task to maintain
  2051. * concurrency.
  2052. */
  2053. if (prev->flags & PF_WQ_WORKER) {
  2054. struct task_struct *to_wakeup;
  2055. to_wakeup = wq_worker_sleeping(prev, cpu);
  2056. if (to_wakeup)
  2057. try_to_wake_up_local(to_wakeup);
  2058. }
  2059. }
  2060. switch_count = &prev->nvcsw;
  2061. }
  2062. pre_schedule(rq, prev);
  2063. if (unlikely(!rq->nr_running))
  2064. idle_balance(cpu, rq);
  2065. put_prev_task(rq, prev);
  2066. next = pick_next_task(rq);
  2067. clear_tsk_need_resched(prev);
  2068. clear_preempt_need_resched();
  2069. rq->skip_clock_update = 0;
  2070. if (likely(prev != next)) {
  2071. rq->nr_switches++;
  2072. rq->curr = next;
  2073. ++*switch_count;
  2074. context_switch(rq, prev, next); /* unlocks the rq */
  2075. /*
  2076. * The context switch have flipped the stack from under us
  2077. * and restored the local variables which were saved when
  2078. * this task called schedule() in the past. prev == current
  2079. * is still correct, but it can be moved to another cpu/rq.
  2080. */
  2081. cpu = smp_processor_id();
  2082. rq = cpu_rq(cpu);
  2083. } else
  2084. raw_spin_unlock_irq(&rq->lock);
  2085. post_schedule(rq);
  2086. sched_preempt_enable_no_resched();
  2087. if (need_resched())
  2088. goto need_resched;
  2089. }
  2090. static inline void sched_submit_work(struct task_struct *tsk)
  2091. {
  2092. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2093. return;
  2094. /*
  2095. * If we are going to sleep and we have plugged IO queued,
  2096. * make sure to submit it to avoid deadlocks.
  2097. */
  2098. if (blk_needs_flush_plug(tsk))
  2099. blk_schedule_flush_plug(tsk);
  2100. }
  2101. asmlinkage void __sched schedule(void)
  2102. {
  2103. struct task_struct *tsk = current;
  2104. sched_submit_work(tsk);
  2105. __schedule();
  2106. }
  2107. EXPORT_SYMBOL(schedule);
  2108. #ifdef CONFIG_CONTEXT_TRACKING
  2109. asmlinkage void __sched schedule_user(void)
  2110. {
  2111. /*
  2112. * If we come here after a random call to set_need_resched(),
  2113. * or we have been woken up remotely but the IPI has not yet arrived,
  2114. * we haven't yet exited the RCU idle mode. Do it here manually until
  2115. * we find a better solution.
  2116. */
  2117. user_exit();
  2118. schedule();
  2119. user_enter();
  2120. }
  2121. #endif
  2122. /**
  2123. * schedule_preempt_disabled - called with preemption disabled
  2124. *
  2125. * Returns with preemption disabled. Note: preempt_count must be 1
  2126. */
  2127. void __sched schedule_preempt_disabled(void)
  2128. {
  2129. sched_preempt_enable_no_resched();
  2130. schedule();
  2131. preempt_disable();
  2132. }
  2133. #ifdef CONFIG_PREEMPT
  2134. /*
  2135. * this is the entry point to schedule() from in-kernel preemption
  2136. * off of preempt_enable. Kernel preemptions off return from interrupt
  2137. * occur there and call schedule directly.
  2138. */
  2139. asmlinkage void __sched notrace preempt_schedule(void)
  2140. {
  2141. /*
  2142. * If there is a non-zero preempt_count or interrupts are disabled,
  2143. * we do not want to preempt the current task. Just return..
  2144. */
  2145. if (likely(!preemptible()))
  2146. return;
  2147. do {
  2148. __preempt_count_add(PREEMPT_ACTIVE);
  2149. __schedule();
  2150. __preempt_count_sub(PREEMPT_ACTIVE);
  2151. /*
  2152. * Check again in case we missed a preemption opportunity
  2153. * between schedule and now.
  2154. */
  2155. barrier();
  2156. } while (need_resched());
  2157. }
  2158. EXPORT_SYMBOL(preempt_schedule);
  2159. /*
  2160. * this is the entry point to schedule() from kernel preemption
  2161. * off of irq context.
  2162. * Note, that this is called and return with irqs disabled. This will
  2163. * protect us against recursive calling from irq.
  2164. */
  2165. asmlinkage void __sched preempt_schedule_irq(void)
  2166. {
  2167. enum ctx_state prev_state;
  2168. /* Catch callers which need to be fixed */
  2169. BUG_ON(preempt_count() || !irqs_disabled());
  2170. prev_state = exception_enter();
  2171. do {
  2172. __preempt_count_add(PREEMPT_ACTIVE);
  2173. local_irq_enable();
  2174. __schedule();
  2175. local_irq_disable();
  2176. __preempt_count_sub(PREEMPT_ACTIVE);
  2177. /*
  2178. * Check again in case we missed a preemption opportunity
  2179. * between schedule and now.
  2180. */
  2181. barrier();
  2182. } while (need_resched());
  2183. exception_exit(prev_state);
  2184. }
  2185. #endif /* CONFIG_PREEMPT */
  2186. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2187. void *key)
  2188. {
  2189. return try_to_wake_up(curr->private, mode, wake_flags);
  2190. }
  2191. EXPORT_SYMBOL(default_wake_function);
  2192. /*
  2193. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2194. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2195. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2196. *
  2197. * There are circumstances in which we can try to wake a task which has already
  2198. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2199. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2200. */
  2201. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2202. int nr_exclusive, int wake_flags, void *key)
  2203. {
  2204. wait_queue_t *curr, *next;
  2205. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2206. unsigned flags = curr->flags;
  2207. if (curr->func(curr, mode, wake_flags, key) &&
  2208. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2209. break;
  2210. }
  2211. }
  2212. /**
  2213. * __wake_up - wake up threads blocked on a waitqueue.
  2214. * @q: the waitqueue
  2215. * @mode: which threads
  2216. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2217. * @key: is directly passed to the wakeup function
  2218. *
  2219. * It may be assumed that this function implies a write memory barrier before
  2220. * changing the task state if and only if any tasks are woken up.
  2221. */
  2222. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2223. int nr_exclusive, void *key)
  2224. {
  2225. unsigned long flags;
  2226. spin_lock_irqsave(&q->lock, flags);
  2227. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2228. spin_unlock_irqrestore(&q->lock, flags);
  2229. }
  2230. EXPORT_SYMBOL(__wake_up);
  2231. /*
  2232. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2233. */
  2234. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2235. {
  2236. __wake_up_common(q, mode, nr, 0, NULL);
  2237. }
  2238. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2239. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2240. {
  2241. __wake_up_common(q, mode, 1, 0, key);
  2242. }
  2243. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2244. /**
  2245. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2246. * @q: the waitqueue
  2247. * @mode: which threads
  2248. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2249. * @key: opaque value to be passed to wakeup targets
  2250. *
  2251. * The sync wakeup differs that the waker knows that it will schedule
  2252. * away soon, so while the target thread will be woken up, it will not
  2253. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2254. * with each other. This can prevent needless bouncing between CPUs.
  2255. *
  2256. * On UP it can prevent extra preemption.
  2257. *
  2258. * It may be assumed that this function implies a write memory barrier before
  2259. * changing the task state if and only if any tasks are woken up.
  2260. */
  2261. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2262. int nr_exclusive, void *key)
  2263. {
  2264. unsigned long flags;
  2265. int wake_flags = WF_SYNC;
  2266. if (unlikely(!q))
  2267. return;
  2268. if (unlikely(nr_exclusive != 1))
  2269. wake_flags = 0;
  2270. spin_lock_irqsave(&q->lock, flags);
  2271. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2272. spin_unlock_irqrestore(&q->lock, flags);
  2273. }
  2274. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2275. /*
  2276. * __wake_up_sync - see __wake_up_sync_key()
  2277. */
  2278. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2279. {
  2280. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2281. }
  2282. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2283. /**
  2284. * complete: - signals a single thread waiting on this completion
  2285. * @x: holds the state of this particular completion
  2286. *
  2287. * This will wake up a single thread waiting on this completion. Threads will be
  2288. * awakened in the same order in which they were queued.
  2289. *
  2290. * See also complete_all(), wait_for_completion() and related routines.
  2291. *
  2292. * It may be assumed that this function implies a write memory barrier before
  2293. * changing the task state if and only if any tasks are woken up.
  2294. */
  2295. void complete(struct completion *x)
  2296. {
  2297. unsigned long flags;
  2298. spin_lock_irqsave(&x->wait.lock, flags);
  2299. x->done++;
  2300. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2301. spin_unlock_irqrestore(&x->wait.lock, flags);
  2302. }
  2303. EXPORT_SYMBOL(complete);
  2304. /**
  2305. * complete_all: - signals all threads waiting on this completion
  2306. * @x: holds the state of this particular completion
  2307. *
  2308. * This will wake up all threads waiting on this particular completion event.
  2309. *
  2310. * It may be assumed that this function implies a write memory barrier before
  2311. * changing the task state if and only if any tasks are woken up.
  2312. */
  2313. void complete_all(struct completion *x)
  2314. {
  2315. unsigned long flags;
  2316. spin_lock_irqsave(&x->wait.lock, flags);
  2317. x->done += UINT_MAX/2;
  2318. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2319. spin_unlock_irqrestore(&x->wait.lock, flags);
  2320. }
  2321. EXPORT_SYMBOL(complete_all);
  2322. static inline long __sched
  2323. do_wait_for_common(struct completion *x,
  2324. long (*action)(long), long timeout, int state)
  2325. {
  2326. if (!x->done) {
  2327. DECLARE_WAITQUEUE(wait, current);
  2328. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2329. do {
  2330. if (signal_pending_state(state, current)) {
  2331. timeout = -ERESTARTSYS;
  2332. break;
  2333. }
  2334. __set_current_state(state);
  2335. spin_unlock_irq(&x->wait.lock);
  2336. timeout = action(timeout);
  2337. spin_lock_irq(&x->wait.lock);
  2338. } while (!x->done && timeout);
  2339. __remove_wait_queue(&x->wait, &wait);
  2340. if (!x->done)
  2341. return timeout;
  2342. }
  2343. x->done--;
  2344. return timeout ?: 1;
  2345. }
  2346. static inline long __sched
  2347. __wait_for_common(struct completion *x,
  2348. long (*action)(long), long timeout, int state)
  2349. {
  2350. might_sleep();
  2351. spin_lock_irq(&x->wait.lock);
  2352. timeout = do_wait_for_common(x, action, timeout, state);
  2353. spin_unlock_irq(&x->wait.lock);
  2354. return timeout;
  2355. }
  2356. static long __sched
  2357. wait_for_common(struct completion *x, long timeout, int state)
  2358. {
  2359. return __wait_for_common(x, schedule_timeout, timeout, state);
  2360. }
  2361. static long __sched
  2362. wait_for_common_io(struct completion *x, long timeout, int state)
  2363. {
  2364. return __wait_for_common(x, io_schedule_timeout, timeout, state);
  2365. }
  2366. /**
  2367. * wait_for_completion: - waits for completion of a task
  2368. * @x: holds the state of this particular completion
  2369. *
  2370. * This waits to be signaled for completion of a specific task. It is NOT
  2371. * interruptible and there is no timeout.
  2372. *
  2373. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2374. * and interrupt capability. Also see complete().
  2375. */
  2376. void __sched wait_for_completion(struct completion *x)
  2377. {
  2378. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2379. }
  2380. EXPORT_SYMBOL(wait_for_completion);
  2381. /**
  2382. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2383. * @x: holds the state of this particular completion
  2384. * @timeout: timeout value in jiffies
  2385. *
  2386. * This waits for either a completion of a specific task to be signaled or for a
  2387. * specified timeout to expire. The timeout is in jiffies. It is not
  2388. * interruptible.
  2389. *
  2390. * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
  2391. * till timeout) if completed.
  2392. */
  2393. unsigned long __sched
  2394. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2395. {
  2396. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2397. }
  2398. EXPORT_SYMBOL(wait_for_completion_timeout);
  2399. /**
  2400. * wait_for_completion_io: - waits for completion of a task
  2401. * @x: holds the state of this particular completion
  2402. *
  2403. * This waits to be signaled for completion of a specific task. It is NOT
  2404. * interruptible and there is no timeout. The caller is accounted as waiting
  2405. * for IO.
  2406. */
  2407. void __sched wait_for_completion_io(struct completion *x)
  2408. {
  2409. wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2410. }
  2411. EXPORT_SYMBOL(wait_for_completion_io);
  2412. /**
  2413. * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
  2414. * @x: holds the state of this particular completion
  2415. * @timeout: timeout value in jiffies
  2416. *
  2417. * This waits for either a completion of a specific task to be signaled or for a
  2418. * specified timeout to expire. The timeout is in jiffies. It is not
  2419. * interruptible. The caller is accounted as waiting for IO.
  2420. *
  2421. * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
  2422. * till timeout) if completed.
  2423. */
  2424. unsigned long __sched
  2425. wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
  2426. {
  2427. return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
  2428. }
  2429. EXPORT_SYMBOL(wait_for_completion_io_timeout);
  2430. /**
  2431. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2432. * @x: holds the state of this particular completion
  2433. *
  2434. * This waits for completion of a specific task to be signaled. It is
  2435. * interruptible.
  2436. *
  2437. * Return: -ERESTARTSYS if interrupted, 0 if completed.
  2438. */
  2439. int __sched wait_for_completion_interruptible(struct completion *x)
  2440. {
  2441. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2442. if (t == -ERESTARTSYS)
  2443. return t;
  2444. return 0;
  2445. }
  2446. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2447. /**
  2448. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2449. * @x: holds the state of this particular completion
  2450. * @timeout: timeout value in jiffies
  2451. *
  2452. * This waits for either a completion of a specific task to be signaled or for a
  2453. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2454. *
  2455. * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
  2456. * or number of jiffies left till timeout) if completed.
  2457. */
  2458. long __sched
  2459. wait_for_completion_interruptible_timeout(struct completion *x,
  2460. unsigned long timeout)
  2461. {
  2462. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2463. }
  2464. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2465. /**
  2466. * wait_for_completion_killable: - waits for completion of a task (killable)
  2467. * @x: holds the state of this particular completion
  2468. *
  2469. * This waits to be signaled for completion of a specific task. It can be
  2470. * interrupted by a kill signal.
  2471. *
  2472. * Return: -ERESTARTSYS if interrupted, 0 if completed.
  2473. */
  2474. int __sched wait_for_completion_killable(struct completion *x)
  2475. {
  2476. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2477. if (t == -ERESTARTSYS)
  2478. return t;
  2479. return 0;
  2480. }
  2481. EXPORT_SYMBOL(wait_for_completion_killable);
  2482. /**
  2483. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2484. * @x: holds the state of this particular completion
  2485. * @timeout: timeout value in jiffies
  2486. *
  2487. * This waits for either a completion of a specific task to be
  2488. * signaled or for a specified timeout to expire. It can be
  2489. * interrupted by a kill signal. The timeout is in jiffies.
  2490. *
  2491. * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
  2492. * or number of jiffies left till timeout) if completed.
  2493. */
  2494. long __sched
  2495. wait_for_completion_killable_timeout(struct completion *x,
  2496. unsigned long timeout)
  2497. {
  2498. return wait_for_common(x, timeout, TASK_KILLABLE);
  2499. }
  2500. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2501. /**
  2502. * try_wait_for_completion - try to decrement a completion without blocking
  2503. * @x: completion structure
  2504. *
  2505. * Return: 0 if a decrement cannot be done without blocking
  2506. * 1 if a decrement succeeded.
  2507. *
  2508. * If a completion is being used as a counting completion,
  2509. * attempt to decrement the counter without blocking. This
  2510. * enables us to avoid waiting if the resource the completion
  2511. * is protecting is not available.
  2512. */
  2513. bool try_wait_for_completion(struct completion *x)
  2514. {
  2515. unsigned long flags;
  2516. int ret = 1;
  2517. spin_lock_irqsave(&x->wait.lock, flags);
  2518. if (!x->done)
  2519. ret = 0;
  2520. else
  2521. x->done--;
  2522. spin_unlock_irqrestore(&x->wait.lock, flags);
  2523. return ret;
  2524. }
  2525. EXPORT_SYMBOL(try_wait_for_completion);
  2526. /**
  2527. * completion_done - Test to see if a completion has any waiters
  2528. * @x: completion structure
  2529. *
  2530. * Return: 0 if there are waiters (wait_for_completion() in progress)
  2531. * 1 if there are no waiters.
  2532. *
  2533. */
  2534. bool completion_done(struct completion *x)
  2535. {
  2536. unsigned long flags;
  2537. int ret = 1;
  2538. spin_lock_irqsave(&x->wait.lock, flags);
  2539. if (!x->done)
  2540. ret = 0;
  2541. spin_unlock_irqrestore(&x->wait.lock, flags);
  2542. return ret;
  2543. }
  2544. EXPORT_SYMBOL(completion_done);
  2545. static long __sched
  2546. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2547. {
  2548. unsigned long flags;
  2549. wait_queue_t wait;
  2550. init_waitqueue_entry(&wait, current);
  2551. __set_current_state(state);
  2552. spin_lock_irqsave(&q->lock, flags);
  2553. __add_wait_queue(q, &wait);
  2554. spin_unlock(&q->lock);
  2555. timeout = schedule_timeout(timeout);
  2556. spin_lock_irq(&q->lock);
  2557. __remove_wait_queue(q, &wait);
  2558. spin_unlock_irqrestore(&q->lock, flags);
  2559. return timeout;
  2560. }
  2561. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2562. {
  2563. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2564. }
  2565. EXPORT_SYMBOL(interruptible_sleep_on);
  2566. long __sched
  2567. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2568. {
  2569. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2570. }
  2571. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2572. void __sched sleep_on(wait_queue_head_t *q)
  2573. {
  2574. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2575. }
  2576. EXPORT_SYMBOL(sleep_on);
  2577. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2578. {
  2579. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2580. }
  2581. EXPORT_SYMBOL(sleep_on_timeout);
  2582. #ifdef CONFIG_RT_MUTEXES
  2583. /*
  2584. * rt_mutex_setprio - set the current priority of a task
  2585. * @p: task
  2586. * @prio: prio value (kernel-internal form)
  2587. *
  2588. * This function changes the 'effective' priority of a task. It does
  2589. * not touch ->normal_prio like __setscheduler().
  2590. *
  2591. * Used by the rt_mutex code to implement priority inheritance logic.
  2592. */
  2593. void rt_mutex_setprio(struct task_struct *p, int prio)
  2594. {
  2595. int oldprio, on_rq, running;
  2596. struct rq *rq;
  2597. const struct sched_class *prev_class;
  2598. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2599. rq = __task_rq_lock(p);
  2600. /*
  2601. * Idle task boosting is a nono in general. There is one
  2602. * exception, when PREEMPT_RT and NOHZ is active:
  2603. *
  2604. * The idle task calls get_next_timer_interrupt() and holds
  2605. * the timer wheel base->lock on the CPU and another CPU wants
  2606. * to access the timer (probably to cancel it). We can safely
  2607. * ignore the boosting request, as the idle CPU runs this code
  2608. * with interrupts disabled and will complete the lock
  2609. * protected section without being interrupted. So there is no
  2610. * real need to boost.
  2611. */
  2612. if (unlikely(p == rq->idle)) {
  2613. WARN_ON(p != rq->curr);
  2614. WARN_ON(p->pi_blocked_on);
  2615. goto out_unlock;
  2616. }
  2617. trace_sched_pi_setprio(p, prio);
  2618. oldprio = p->prio;
  2619. prev_class = p->sched_class;
  2620. on_rq = p->on_rq;
  2621. running = task_current(rq, p);
  2622. if (on_rq)
  2623. dequeue_task(rq, p, 0);
  2624. if (running)
  2625. p->sched_class->put_prev_task(rq, p);
  2626. if (rt_prio(prio))
  2627. p->sched_class = &rt_sched_class;
  2628. else
  2629. p->sched_class = &fair_sched_class;
  2630. p->prio = prio;
  2631. if (running)
  2632. p->sched_class->set_curr_task(rq);
  2633. if (on_rq)
  2634. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  2635. check_class_changed(rq, p, prev_class, oldprio);
  2636. out_unlock:
  2637. __task_rq_unlock(rq);
  2638. }
  2639. #endif
  2640. void set_user_nice(struct task_struct *p, long nice)
  2641. {
  2642. int old_prio, delta, on_rq;
  2643. unsigned long flags;
  2644. struct rq *rq;
  2645. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2646. return;
  2647. /*
  2648. * We have to be careful, if called from sys_setpriority(),
  2649. * the task might be in the middle of scheduling on another CPU.
  2650. */
  2651. rq = task_rq_lock(p, &flags);
  2652. /*
  2653. * The RT priorities are set via sched_setscheduler(), but we still
  2654. * allow the 'normal' nice value to be set - but as expected
  2655. * it wont have any effect on scheduling until the task is
  2656. * SCHED_FIFO/SCHED_RR:
  2657. */
  2658. if (task_has_rt_policy(p)) {
  2659. p->static_prio = NICE_TO_PRIO(nice);
  2660. goto out_unlock;
  2661. }
  2662. on_rq = p->on_rq;
  2663. if (on_rq)
  2664. dequeue_task(rq, p, 0);
  2665. p->static_prio = NICE_TO_PRIO(nice);
  2666. set_load_weight(p);
  2667. old_prio = p->prio;
  2668. p->prio = effective_prio(p);
  2669. delta = p->prio - old_prio;
  2670. if (on_rq) {
  2671. enqueue_task(rq, p, 0);
  2672. /*
  2673. * If the task increased its priority or is running and
  2674. * lowered its priority, then reschedule its CPU:
  2675. */
  2676. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2677. resched_task(rq->curr);
  2678. }
  2679. out_unlock:
  2680. task_rq_unlock(rq, p, &flags);
  2681. }
  2682. EXPORT_SYMBOL(set_user_nice);
  2683. /*
  2684. * can_nice - check if a task can reduce its nice value
  2685. * @p: task
  2686. * @nice: nice value
  2687. */
  2688. int can_nice(const struct task_struct *p, const int nice)
  2689. {
  2690. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2691. int nice_rlim = 20 - nice;
  2692. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2693. capable(CAP_SYS_NICE));
  2694. }
  2695. #ifdef __ARCH_WANT_SYS_NICE
  2696. /*
  2697. * sys_nice - change the priority of the current process.
  2698. * @increment: priority increment
  2699. *
  2700. * sys_setpriority is a more generic, but much slower function that
  2701. * does similar things.
  2702. */
  2703. SYSCALL_DEFINE1(nice, int, increment)
  2704. {
  2705. long nice, retval;
  2706. /*
  2707. * Setpriority might change our priority at the same moment.
  2708. * We don't have to worry. Conceptually one call occurs first
  2709. * and we have a single winner.
  2710. */
  2711. if (increment < -40)
  2712. increment = -40;
  2713. if (increment > 40)
  2714. increment = 40;
  2715. nice = TASK_NICE(current) + increment;
  2716. if (nice < -20)
  2717. nice = -20;
  2718. if (nice > 19)
  2719. nice = 19;
  2720. if (increment < 0 && !can_nice(current, nice))
  2721. return -EPERM;
  2722. retval = security_task_setnice(current, nice);
  2723. if (retval)
  2724. return retval;
  2725. set_user_nice(current, nice);
  2726. return 0;
  2727. }
  2728. #endif
  2729. /**
  2730. * task_prio - return the priority value of a given task.
  2731. * @p: the task in question.
  2732. *
  2733. * Return: The priority value as seen by users in /proc.
  2734. * RT tasks are offset by -200. Normal tasks are centered
  2735. * around 0, value goes from -16 to +15.
  2736. */
  2737. int task_prio(const struct task_struct *p)
  2738. {
  2739. return p->prio - MAX_RT_PRIO;
  2740. }
  2741. /**
  2742. * task_nice - return the nice value of a given task.
  2743. * @p: the task in question.
  2744. *
  2745. * Return: The nice value [ -20 ... 0 ... 19 ].
  2746. */
  2747. int task_nice(const struct task_struct *p)
  2748. {
  2749. return TASK_NICE(p);
  2750. }
  2751. EXPORT_SYMBOL(task_nice);
  2752. /**
  2753. * idle_cpu - is a given cpu idle currently?
  2754. * @cpu: the processor in question.
  2755. *
  2756. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2757. */
  2758. int idle_cpu(int cpu)
  2759. {
  2760. struct rq *rq = cpu_rq(cpu);
  2761. if (rq->curr != rq->idle)
  2762. return 0;
  2763. if (rq->nr_running)
  2764. return 0;
  2765. #ifdef CONFIG_SMP
  2766. if (!llist_empty(&rq->wake_list))
  2767. return 0;
  2768. #endif
  2769. return 1;
  2770. }
  2771. /**
  2772. * idle_task - return the idle task for a given cpu.
  2773. * @cpu: the processor in question.
  2774. *
  2775. * Return: The idle task for the cpu @cpu.
  2776. */
  2777. struct task_struct *idle_task(int cpu)
  2778. {
  2779. return cpu_rq(cpu)->idle;
  2780. }
  2781. /**
  2782. * find_process_by_pid - find a process with a matching PID value.
  2783. * @pid: the pid in question.
  2784. *
  2785. * The task of @pid, if found. %NULL otherwise.
  2786. */
  2787. static struct task_struct *find_process_by_pid(pid_t pid)
  2788. {
  2789. return pid ? find_task_by_vpid(pid) : current;
  2790. }
  2791. /* Actually do priority change: must hold rq lock. */
  2792. static void
  2793. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  2794. {
  2795. p->policy = policy;
  2796. p->rt_priority = prio;
  2797. p->normal_prio = normal_prio(p);
  2798. /* we are holding p->pi_lock already */
  2799. p->prio = rt_mutex_getprio(p);
  2800. if (rt_prio(p->prio))
  2801. p->sched_class = &rt_sched_class;
  2802. else
  2803. p->sched_class = &fair_sched_class;
  2804. set_load_weight(p);
  2805. }
  2806. /*
  2807. * check the target process has a UID that matches the current process's
  2808. */
  2809. static bool check_same_owner(struct task_struct *p)
  2810. {
  2811. const struct cred *cred = current_cred(), *pcred;
  2812. bool match;
  2813. rcu_read_lock();
  2814. pcred = __task_cred(p);
  2815. match = (uid_eq(cred->euid, pcred->euid) ||
  2816. uid_eq(cred->euid, pcred->uid));
  2817. rcu_read_unlock();
  2818. return match;
  2819. }
  2820. static int __sched_setscheduler(struct task_struct *p, int policy,
  2821. const struct sched_param *param, bool user)
  2822. {
  2823. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2824. unsigned long flags;
  2825. const struct sched_class *prev_class;
  2826. struct rq *rq;
  2827. int reset_on_fork;
  2828. /* may grab non-irq protected spin_locks */
  2829. BUG_ON(in_interrupt());
  2830. recheck:
  2831. /* double check policy once rq lock held */
  2832. if (policy < 0) {
  2833. reset_on_fork = p->sched_reset_on_fork;
  2834. policy = oldpolicy = p->policy;
  2835. } else {
  2836. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  2837. policy &= ~SCHED_RESET_ON_FORK;
  2838. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  2839. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2840. policy != SCHED_IDLE)
  2841. return -EINVAL;
  2842. }
  2843. /*
  2844. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2845. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2846. * SCHED_BATCH and SCHED_IDLE is 0.
  2847. */
  2848. if (param->sched_priority < 0 ||
  2849. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  2850. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  2851. return -EINVAL;
  2852. if (rt_policy(policy) != (param->sched_priority != 0))
  2853. return -EINVAL;
  2854. /*
  2855. * Allow unprivileged RT tasks to decrease priority:
  2856. */
  2857. if (user && !capable(CAP_SYS_NICE)) {
  2858. if (rt_policy(policy)) {
  2859. unsigned long rlim_rtprio =
  2860. task_rlimit(p, RLIMIT_RTPRIO);
  2861. /* can't set/change the rt policy */
  2862. if (policy != p->policy && !rlim_rtprio)
  2863. return -EPERM;
  2864. /* can't increase priority */
  2865. if (param->sched_priority > p->rt_priority &&
  2866. param->sched_priority > rlim_rtprio)
  2867. return -EPERM;
  2868. }
  2869. /*
  2870. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2871. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2872. */
  2873. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2874. if (!can_nice(p, TASK_NICE(p)))
  2875. return -EPERM;
  2876. }
  2877. /* can't change other user's priorities */
  2878. if (!check_same_owner(p))
  2879. return -EPERM;
  2880. /* Normal users shall not reset the sched_reset_on_fork flag */
  2881. if (p->sched_reset_on_fork && !reset_on_fork)
  2882. return -EPERM;
  2883. }
  2884. if (user) {
  2885. retval = security_task_setscheduler(p);
  2886. if (retval)
  2887. return retval;
  2888. }
  2889. /*
  2890. * make sure no PI-waiters arrive (or leave) while we are
  2891. * changing the priority of the task:
  2892. *
  2893. * To be able to change p->policy safely, the appropriate
  2894. * runqueue lock must be held.
  2895. */
  2896. rq = task_rq_lock(p, &flags);
  2897. /*
  2898. * Changing the policy of the stop threads its a very bad idea
  2899. */
  2900. if (p == rq->stop) {
  2901. task_rq_unlock(rq, p, &flags);
  2902. return -EINVAL;
  2903. }
  2904. /*
  2905. * If not changing anything there's no need to proceed further:
  2906. */
  2907. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  2908. param->sched_priority == p->rt_priority))) {
  2909. task_rq_unlock(rq, p, &flags);
  2910. return 0;
  2911. }
  2912. #ifdef CONFIG_RT_GROUP_SCHED
  2913. if (user) {
  2914. /*
  2915. * Do not allow realtime tasks into groups that have no runtime
  2916. * assigned.
  2917. */
  2918. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2919. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2920. !task_group_is_autogroup(task_group(p))) {
  2921. task_rq_unlock(rq, p, &flags);
  2922. return -EPERM;
  2923. }
  2924. }
  2925. #endif
  2926. /* recheck policy now with rq lock held */
  2927. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2928. policy = oldpolicy = -1;
  2929. task_rq_unlock(rq, p, &flags);
  2930. goto recheck;
  2931. }
  2932. on_rq = p->on_rq;
  2933. running = task_current(rq, p);
  2934. if (on_rq)
  2935. dequeue_task(rq, p, 0);
  2936. if (running)
  2937. p->sched_class->put_prev_task(rq, p);
  2938. p->sched_reset_on_fork = reset_on_fork;
  2939. oldprio = p->prio;
  2940. prev_class = p->sched_class;
  2941. __setscheduler(rq, p, policy, param->sched_priority);
  2942. if (running)
  2943. p->sched_class->set_curr_task(rq);
  2944. if (on_rq)
  2945. enqueue_task(rq, p, 0);
  2946. check_class_changed(rq, p, prev_class, oldprio);
  2947. task_rq_unlock(rq, p, &flags);
  2948. rt_mutex_adjust_pi(p);
  2949. return 0;
  2950. }
  2951. /**
  2952. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2953. * @p: the task in question.
  2954. * @policy: new policy.
  2955. * @param: structure containing the new RT priority.
  2956. *
  2957. * Return: 0 on success. An error code otherwise.
  2958. *
  2959. * NOTE that the task may be already dead.
  2960. */
  2961. int sched_setscheduler(struct task_struct *p, int policy,
  2962. const struct sched_param *param)
  2963. {
  2964. return __sched_setscheduler(p, policy, param, true);
  2965. }
  2966. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2967. /**
  2968. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  2969. * @p: the task in question.
  2970. * @policy: new policy.
  2971. * @param: structure containing the new RT priority.
  2972. *
  2973. * Just like sched_setscheduler, only don't bother checking if the
  2974. * current context has permission. For example, this is needed in
  2975. * stop_machine(): we create temporary high priority worker threads,
  2976. * but our caller might not have that capability.
  2977. *
  2978. * Return: 0 on success. An error code otherwise.
  2979. */
  2980. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  2981. const struct sched_param *param)
  2982. {
  2983. return __sched_setscheduler(p, policy, param, false);
  2984. }
  2985. static int
  2986. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  2987. {
  2988. struct sched_param lparam;
  2989. struct task_struct *p;
  2990. int retval;
  2991. if (!param || pid < 0)
  2992. return -EINVAL;
  2993. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  2994. return -EFAULT;
  2995. rcu_read_lock();
  2996. retval = -ESRCH;
  2997. p = find_process_by_pid(pid);
  2998. if (p != NULL)
  2999. retval = sched_setscheduler(p, policy, &lparam);
  3000. rcu_read_unlock();
  3001. return retval;
  3002. }
  3003. /**
  3004. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3005. * @pid: the pid in question.
  3006. * @policy: new policy.
  3007. * @param: structure containing the new RT priority.
  3008. *
  3009. * Return: 0 on success. An error code otherwise.
  3010. */
  3011. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3012. struct sched_param __user *, param)
  3013. {
  3014. /* negative values for policy are not valid */
  3015. if (policy < 0)
  3016. return -EINVAL;
  3017. return do_sched_setscheduler(pid, policy, param);
  3018. }
  3019. /**
  3020. * sys_sched_setparam - set/change the RT priority of a thread
  3021. * @pid: the pid in question.
  3022. * @param: structure containing the new RT priority.
  3023. *
  3024. * Return: 0 on success. An error code otherwise.
  3025. */
  3026. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3027. {
  3028. return do_sched_setscheduler(pid, -1, param);
  3029. }
  3030. /**
  3031. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3032. * @pid: the pid in question.
  3033. *
  3034. * Return: On success, the policy of the thread. Otherwise, a negative error
  3035. * code.
  3036. */
  3037. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3038. {
  3039. struct task_struct *p;
  3040. int retval;
  3041. if (pid < 0)
  3042. return -EINVAL;
  3043. retval = -ESRCH;
  3044. rcu_read_lock();
  3045. p = find_process_by_pid(pid);
  3046. if (p) {
  3047. retval = security_task_getscheduler(p);
  3048. if (!retval)
  3049. retval = p->policy
  3050. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3051. }
  3052. rcu_read_unlock();
  3053. return retval;
  3054. }
  3055. /**
  3056. * sys_sched_getparam - get the RT priority of a thread
  3057. * @pid: the pid in question.
  3058. * @param: structure containing the RT priority.
  3059. *
  3060. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3061. * code.
  3062. */
  3063. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3064. {
  3065. struct sched_param lp;
  3066. struct task_struct *p;
  3067. int retval;
  3068. if (!param || pid < 0)
  3069. return -EINVAL;
  3070. rcu_read_lock();
  3071. p = find_process_by_pid(pid);
  3072. retval = -ESRCH;
  3073. if (!p)
  3074. goto out_unlock;
  3075. retval = security_task_getscheduler(p);
  3076. if (retval)
  3077. goto out_unlock;
  3078. lp.sched_priority = p->rt_priority;
  3079. rcu_read_unlock();
  3080. /*
  3081. * This one might sleep, we cannot do it with a spinlock held ...
  3082. */
  3083. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3084. return retval;
  3085. out_unlock:
  3086. rcu_read_unlock();
  3087. return retval;
  3088. }
  3089. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3090. {
  3091. cpumask_var_t cpus_allowed, new_mask;
  3092. struct task_struct *p;
  3093. int retval;
  3094. get_online_cpus();
  3095. rcu_read_lock();
  3096. p = find_process_by_pid(pid);
  3097. if (!p) {
  3098. rcu_read_unlock();
  3099. put_online_cpus();
  3100. return -ESRCH;
  3101. }
  3102. /* Prevent p going away */
  3103. get_task_struct(p);
  3104. rcu_read_unlock();
  3105. if (p->flags & PF_NO_SETAFFINITY) {
  3106. retval = -EINVAL;
  3107. goto out_put_task;
  3108. }
  3109. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3110. retval = -ENOMEM;
  3111. goto out_put_task;
  3112. }
  3113. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3114. retval = -ENOMEM;
  3115. goto out_free_cpus_allowed;
  3116. }
  3117. retval = -EPERM;
  3118. if (!check_same_owner(p)) {
  3119. rcu_read_lock();
  3120. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3121. rcu_read_unlock();
  3122. goto out_unlock;
  3123. }
  3124. rcu_read_unlock();
  3125. }
  3126. retval = security_task_setscheduler(p);
  3127. if (retval)
  3128. goto out_unlock;
  3129. cpuset_cpus_allowed(p, cpus_allowed);
  3130. cpumask_and(new_mask, in_mask, cpus_allowed);
  3131. again:
  3132. retval = set_cpus_allowed_ptr(p, new_mask);
  3133. if (!retval) {
  3134. cpuset_cpus_allowed(p, cpus_allowed);
  3135. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3136. /*
  3137. * We must have raced with a concurrent cpuset
  3138. * update. Just reset the cpus_allowed to the
  3139. * cpuset's cpus_allowed
  3140. */
  3141. cpumask_copy(new_mask, cpus_allowed);
  3142. goto again;
  3143. }
  3144. }
  3145. out_unlock:
  3146. free_cpumask_var(new_mask);
  3147. out_free_cpus_allowed:
  3148. free_cpumask_var(cpus_allowed);
  3149. out_put_task:
  3150. put_task_struct(p);
  3151. put_online_cpus();
  3152. return retval;
  3153. }
  3154. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3155. struct cpumask *new_mask)
  3156. {
  3157. if (len < cpumask_size())
  3158. cpumask_clear(new_mask);
  3159. else if (len > cpumask_size())
  3160. len = cpumask_size();
  3161. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3162. }
  3163. /**
  3164. * sys_sched_setaffinity - set the cpu affinity of a process
  3165. * @pid: pid of the process
  3166. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3167. * @user_mask_ptr: user-space pointer to the new cpu mask
  3168. *
  3169. * Return: 0 on success. An error code otherwise.
  3170. */
  3171. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3172. unsigned long __user *, user_mask_ptr)
  3173. {
  3174. cpumask_var_t new_mask;
  3175. int retval;
  3176. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3177. return -ENOMEM;
  3178. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3179. if (retval == 0)
  3180. retval = sched_setaffinity(pid, new_mask);
  3181. free_cpumask_var(new_mask);
  3182. return retval;
  3183. }
  3184. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3185. {
  3186. struct task_struct *p;
  3187. unsigned long flags;
  3188. int retval;
  3189. get_online_cpus();
  3190. rcu_read_lock();
  3191. retval = -ESRCH;
  3192. p = find_process_by_pid(pid);
  3193. if (!p)
  3194. goto out_unlock;
  3195. retval = security_task_getscheduler(p);
  3196. if (retval)
  3197. goto out_unlock;
  3198. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3199. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3200. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3201. out_unlock:
  3202. rcu_read_unlock();
  3203. put_online_cpus();
  3204. return retval;
  3205. }
  3206. /**
  3207. * sys_sched_getaffinity - get the cpu affinity of a process
  3208. * @pid: pid of the process
  3209. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3210. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3211. *
  3212. * Return: 0 on success. An error code otherwise.
  3213. */
  3214. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3215. unsigned long __user *, user_mask_ptr)
  3216. {
  3217. int ret;
  3218. cpumask_var_t mask;
  3219. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3220. return -EINVAL;
  3221. if (len & (sizeof(unsigned long)-1))
  3222. return -EINVAL;
  3223. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3224. return -ENOMEM;
  3225. ret = sched_getaffinity(pid, mask);
  3226. if (ret == 0) {
  3227. size_t retlen = min_t(size_t, len, cpumask_size());
  3228. if (copy_to_user(user_mask_ptr, mask, retlen))
  3229. ret = -EFAULT;
  3230. else
  3231. ret = retlen;
  3232. }
  3233. free_cpumask_var(mask);
  3234. return ret;
  3235. }
  3236. /**
  3237. * sys_sched_yield - yield the current processor to other threads.
  3238. *
  3239. * This function yields the current CPU to other tasks. If there are no
  3240. * other threads running on this CPU then this function will return.
  3241. *
  3242. * Return: 0.
  3243. */
  3244. SYSCALL_DEFINE0(sched_yield)
  3245. {
  3246. struct rq *rq = this_rq_lock();
  3247. schedstat_inc(rq, yld_count);
  3248. current->sched_class->yield_task(rq);
  3249. /*
  3250. * Since we are going to call schedule() anyway, there's
  3251. * no need to preempt or enable interrupts:
  3252. */
  3253. __release(rq->lock);
  3254. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3255. do_raw_spin_unlock(&rq->lock);
  3256. sched_preempt_enable_no_resched();
  3257. schedule();
  3258. return 0;
  3259. }
  3260. static void __cond_resched(void)
  3261. {
  3262. __preempt_count_add(PREEMPT_ACTIVE);
  3263. __schedule();
  3264. __preempt_count_sub(PREEMPT_ACTIVE);
  3265. }
  3266. int __sched _cond_resched(void)
  3267. {
  3268. if (should_resched()) {
  3269. __cond_resched();
  3270. return 1;
  3271. }
  3272. return 0;
  3273. }
  3274. EXPORT_SYMBOL(_cond_resched);
  3275. /*
  3276. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3277. * call schedule, and on return reacquire the lock.
  3278. *
  3279. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3280. * operations here to prevent schedule() from being called twice (once via
  3281. * spin_unlock(), once by hand).
  3282. */
  3283. int __cond_resched_lock(spinlock_t *lock)
  3284. {
  3285. int resched = should_resched();
  3286. int ret = 0;
  3287. lockdep_assert_held(lock);
  3288. if (spin_needbreak(lock) || resched) {
  3289. spin_unlock(lock);
  3290. if (resched)
  3291. __cond_resched();
  3292. else
  3293. cpu_relax();
  3294. ret = 1;
  3295. spin_lock(lock);
  3296. }
  3297. return ret;
  3298. }
  3299. EXPORT_SYMBOL(__cond_resched_lock);
  3300. int __sched __cond_resched_softirq(void)
  3301. {
  3302. BUG_ON(!in_softirq());
  3303. if (should_resched()) {
  3304. local_bh_enable();
  3305. __cond_resched();
  3306. local_bh_disable();
  3307. return 1;
  3308. }
  3309. return 0;
  3310. }
  3311. EXPORT_SYMBOL(__cond_resched_softirq);
  3312. /**
  3313. * yield - yield the current processor to other threads.
  3314. *
  3315. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3316. *
  3317. * The scheduler is at all times free to pick the calling task as the most
  3318. * eligible task to run, if removing the yield() call from your code breaks
  3319. * it, its already broken.
  3320. *
  3321. * Typical broken usage is:
  3322. *
  3323. * while (!event)
  3324. * yield();
  3325. *
  3326. * where one assumes that yield() will let 'the other' process run that will
  3327. * make event true. If the current task is a SCHED_FIFO task that will never
  3328. * happen. Never use yield() as a progress guarantee!!
  3329. *
  3330. * If you want to use yield() to wait for something, use wait_event().
  3331. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3332. * If you still want to use yield(), do not!
  3333. */
  3334. void __sched yield(void)
  3335. {
  3336. set_current_state(TASK_RUNNING);
  3337. sys_sched_yield();
  3338. }
  3339. EXPORT_SYMBOL(yield);
  3340. /**
  3341. * yield_to - yield the current processor to another thread in
  3342. * your thread group, or accelerate that thread toward the
  3343. * processor it's on.
  3344. * @p: target task
  3345. * @preempt: whether task preemption is allowed or not
  3346. *
  3347. * It's the caller's job to ensure that the target task struct
  3348. * can't go away on us before we can do any checks.
  3349. *
  3350. * Return:
  3351. * true (>0) if we indeed boosted the target task.
  3352. * false (0) if we failed to boost the target.
  3353. * -ESRCH if there's no task to yield to.
  3354. */
  3355. bool __sched yield_to(struct task_struct *p, bool preempt)
  3356. {
  3357. struct task_struct *curr = current;
  3358. struct rq *rq, *p_rq;
  3359. unsigned long flags;
  3360. int yielded = 0;
  3361. local_irq_save(flags);
  3362. rq = this_rq();
  3363. again:
  3364. p_rq = task_rq(p);
  3365. /*
  3366. * If we're the only runnable task on the rq and target rq also
  3367. * has only one task, there's absolutely no point in yielding.
  3368. */
  3369. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3370. yielded = -ESRCH;
  3371. goto out_irq;
  3372. }
  3373. double_rq_lock(rq, p_rq);
  3374. while (task_rq(p) != p_rq) {
  3375. double_rq_unlock(rq, p_rq);
  3376. goto again;
  3377. }
  3378. if (!curr->sched_class->yield_to_task)
  3379. goto out_unlock;
  3380. if (curr->sched_class != p->sched_class)
  3381. goto out_unlock;
  3382. if (task_running(p_rq, p) || p->state)
  3383. goto out_unlock;
  3384. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3385. if (yielded) {
  3386. schedstat_inc(rq, yld_count);
  3387. /*
  3388. * Make p's CPU reschedule; pick_next_entity takes care of
  3389. * fairness.
  3390. */
  3391. if (preempt && rq != p_rq)
  3392. resched_task(p_rq->curr);
  3393. }
  3394. out_unlock:
  3395. double_rq_unlock(rq, p_rq);
  3396. out_irq:
  3397. local_irq_restore(flags);
  3398. if (yielded > 0)
  3399. schedule();
  3400. return yielded;
  3401. }
  3402. EXPORT_SYMBOL_GPL(yield_to);
  3403. /*
  3404. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3405. * that process accounting knows that this is a task in IO wait state.
  3406. */
  3407. void __sched io_schedule(void)
  3408. {
  3409. struct rq *rq = raw_rq();
  3410. delayacct_blkio_start();
  3411. atomic_inc(&rq->nr_iowait);
  3412. blk_flush_plug(current);
  3413. current->in_iowait = 1;
  3414. schedule();
  3415. current->in_iowait = 0;
  3416. atomic_dec(&rq->nr_iowait);
  3417. delayacct_blkio_end();
  3418. }
  3419. EXPORT_SYMBOL(io_schedule);
  3420. long __sched io_schedule_timeout(long timeout)
  3421. {
  3422. struct rq *rq = raw_rq();
  3423. long ret;
  3424. delayacct_blkio_start();
  3425. atomic_inc(&rq->nr_iowait);
  3426. blk_flush_plug(current);
  3427. current->in_iowait = 1;
  3428. ret = schedule_timeout(timeout);
  3429. current->in_iowait = 0;
  3430. atomic_dec(&rq->nr_iowait);
  3431. delayacct_blkio_end();
  3432. return ret;
  3433. }
  3434. /**
  3435. * sys_sched_get_priority_max - return maximum RT priority.
  3436. * @policy: scheduling class.
  3437. *
  3438. * Return: On success, this syscall returns the maximum
  3439. * rt_priority that can be used by a given scheduling class.
  3440. * On failure, a negative error code is returned.
  3441. */
  3442. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3443. {
  3444. int ret = -EINVAL;
  3445. switch (policy) {
  3446. case SCHED_FIFO:
  3447. case SCHED_RR:
  3448. ret = MAX_USER_RT_PRIO-1;
  3449. break;
  3450. case SCHED_NORMAL:
  3451. case SCHED_BATCH:
  3452. case SCHED_IDLE:
  3453. ret = 0;
  3454. break;
  3455. }
  3456. return ret;
  3457. }
  3458. /**
  3459. * sys_sched_get_priority_min - return minimum RT priority.
  3460. * @policy: scheduling class.
  3461. *
  3462. * Return: On success, this syscall returns the minimum
  3463. * rt_priority that can be used by a given scheduling class.
  3464. * On failure, a negative error code is returned.
  3465. */
  3466. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3467. {
  3468. int ret = -EINVAL;
  3469. switch (policy) {
  3470. case SCHED_FIFO:
  3471. case SCHED_RR:
  3472. ret = 1;
  3473. break;
  3474. case SCHED_NORMAL:
  3475. case SCHED_BATCH:
  3476. case SCHED_IDLE:
  3477. ret = 0;
  3478. }
  3479. return ret;
  3480. }
  3481. /**
  3482. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3483. * @pid: pid of the process.
  3484. * @interval: userspace pointer to the timeslice value.
  3485. *
  3486. * this syscall writes the default timeslice value of a given process
  3487. * into the user-space timespec buffer. A value of '0' means infinity.
  3488. *
  3489. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3490. * an error code.
  3491. */
  3492. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3493. struct timespec __user *, interval)
  3494. {
  3495. struct task_struct *p;
  3496. unsigned int time_slice;
  3497. unsigned long flags;
  3498. struct rq *rq;
  3499. int retval;
  3500. struct timespec t;
  3501. if (pid < 0)
  3502. return -EINVAL;
  3503. retval = -ESRCH;
  3504. rcu_read_lock();
  3505. p = find_process_by_pid(pid);
  3506. if (!p)
  3507. goto out_unlock;
  3508. retval = security_task_getscheduler(p);
  3509. if (retval)
  3510. goto out_unlock;
  3511. rq = task_rq_lock(p, &flags);
  3512. time_slice = p->sched_class->get_rr_interval(rq, p);
  3513. task_rq_unlock(rq, p, &flags);
  3514. rcu_read_unlock();
  3515. jiffies_to_timespec(time_slice, &t);
  3516. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3517. return retval;
  3518. out_unlock:
  3519. rcu_read_unlock();
  3520. return retval;
  3521. }
  3522. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3523. void sched_show_task(struct task_struct *p)
  3524. {
  3525. unsigned long free = 0;
  3526. int ppid;
  3527. unsigned state;
  3528. state = p->state ? __ffs(p->state) + 1 : 0;
  3529. printk(KERN_INFO "%-15.15s %c", p->comm,
  3530. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3531. #if BITS_PER_LONG == 32
  3532. if (state == TASK_RUNNING)
  3533. printk(KERN_CONT " running ");
  3534. else
  3535. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3536. #else
  3537. if (state == TASK_RUNNING)
  3538. printk(KERN_CONT " running task ");
  3539. else
  3540. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3541. #endif
  3542. #ifdef CONFIG_DEBUG_STACK_USAGE
  3543. free = stack_not_used(p);
  3544. #endif
  3545. rcu_read_lock();
  3546. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3547. rcu_read_unlock();
  3548. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3549. task_pid_nr(p), ppid,
  3550. (unsigned long)task_thread_info(p)->flags);
  3551. print_worker_info(KERN_INFO, p);
  3552. show_stack(p, NULL);
  3553. }
  3554. void show_state_filter(unsigned long state_filter)
  3555. {
  3556. struct task_struct *g, *p;
  3557. #if BITS_PER_LONG == 32
  3558. printk(KERN_INFO
  3559. " task PC stack pid father\n");
  3560. #else
  3561. printk(KERN_INFO
  3562. " task PC stack pid father\n");
  3563. #endif
  3564. rcu_read_lock();
  3565. do_each_thread(g, p) {
  3566. /*
  3567. * reset the NMI-timeout, listing all files on a slow
  3568. * console might take a lot of time:
  3569. */
  3570. touch_nmi_watchdog();
  3571. if (!state_filter || (p->state & state_filter))
  3572. sched_show_task(p);
  3573. } while_each_thread(g, p);
  3574. touch_all_softlockup_watchdogs();
  3575. #ifdef CONFIG_SCHED_DEBUG
  3576. sysrq_sched_debug_show();
  3577. #endif
  3578. rcu_read_unlock();
  3579. /*
  3580. * Only show locks if all tasks are dumped:
  3581. */
  3582. if (!state_filter)
  3583. debug_show_all_locks();
  3584. }
  3585. void init_idle_bootup_task(struct task_struct *idle)
  3586. {
  3587. idle->sched_class = &idle_sched_class;
  3588. }
  3589. /**
  3590. * init_idle - set up an idle thread for a given CPU
  3591. * @idle: task in question
  3592. * @cpu: cpu the idle task belongs to
  3593. *
  3594. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3595. * flag, to make booting more robust.
  3596. */
  3597. void init_idle(struct task_struct *idle, int cpu)
  3598. {
  3599. struct rq *rq = cpu_rq(cpu);
  3600. unsigned long flags;
  3601. raw_spin_lock_irqsave(&rq->lock, flags);
  3602. __sched_fork(idle);
  3603. idle->state = TASK_RUNNING;
  3604. idle->se.exec_start = sched_clock();
  3605. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3606. /*
  3607. * We're having a chicken and egg problem, even though we are
  3608. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3609. * lockdep check in task_group() will fail.
  3610. *
  3611. * Similar case to sched_fork(). / Alternatively we could
  3612. * use task_rq_lock() here and obtain the other rq->lock.
  3613. *
  3614. * Silence PROVE_RCU
  3615. */
  3616. rcu_read_lock();
  3617. __set_task_cpu(idle, cpu);
  3618. rcu_read_unlock();
  3619. rq->curr = rq->idle = idle;
  3620. #if defined(CONFIG_SMP)
  3621. idle->on_cpu = 1;
  3622. #endif
  3623. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3624. /* Set the preempt count _outside_ the spinlocks! */
  3625. init_idle_preempt_count(idle, cpu);
  3626. /*
  3627. * The idle tasks have their own, simple scheduling class:
  3628. */
  3629. idle->sched_class = &idle_sched_class;
  3630. ftrace_graph_init_idle_task(idle, cpu);
  3631. vtime_init_idle(idle, cpu);
  3632. #if defined(CONFIG_SMP)
  3633. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3634. #endif
  3635. }
  3636. #ifdef CONFIG_SMP
  3637. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3638. {
  3639. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3640. p->sched_class->set_cpus_allowed(p, new_mask);
  3641. cpumask_copy(&p->cpus_allowed, new_mask);
  3642. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3643. }
  3644. /*
  3645. * This is how migration works:
  3646. *
  3647. * 1) we invoke migration_cpu_stop() on the target CPU using
  3648. * stop_one_cpu().
  3649. * 2) stopper starts to run (implicitly forcing the migrated thread
  3650. * off the CPU)
  3651. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3652. * 4) if it's in the wrong runqueue then the migration thread removes
  3653. * it and puts it into the right queue.
  3654. * 5) stopper completes and stop_one_cpu() returns and the migration
  3655. * is done.
  3656. */
  3657. /*
  3658. * Change a given task's CPU affinity. Migrate the thread to a
  3659. * proper CPU and schedule it away if the CPU it's executing on
  3660. * is removed from the allowed bitmask.
  3661. *
  3662. * NOTE: the caller must have a valid reference to the task, the
  3663. * task must not exit() & deallocate itself prematurely. The
  3664. * call is not atomic; no spinlocks may be held.
  3665. */
  3666. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3667. {
  3668. unsigned long flags;
  3669. struct rq *rq;
  3670. unsigned int dest_cpu;
  3671. int ret = 0;
  3672. rq = task_rq_lock(p, &flags);
  3673. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3674. goto out;
  3675. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3676. ret = -EINVAL;
  3677. goto out;
  3678. }
  3679. do_set_cpus_allowed(p, new_mask);
  3680. /* Can the task run on the task's current CPU? If so, we're done */
  3681. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3682. goto out;
  3683. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3684. if (p->on_rq) {
  3685. struct migration_arg arg = { p, dest_cpu };
  3686. /* Need help from migration thread: drop lock and wait. */
  3687. task_rq_unlock(rq, p, &flags);
  3688. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3689. tlb_migrate_finish(p->mm);
  3690. return 0;
  3691. }
  3692. out:
  3693. task_rq_unlock(rq, p, &flags);
  3694. return ret;
  3695. }
  3696. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3697. /*
  3698. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3699. * this because either it can't run here any more (set_cpus_allowed()
  3700. * away from this CPU, or CPU going down), or because we're
  3701. * attempting to rebalance this task on exec (sched_exec).
  3702. *
  3703. * So we race with normal scheduler movements, but that's OK, as long
  3704. * as the task is no longer on this CPU.
  3705. *
  3706. * Returns non-zero if task was successfully migrated.
  3707. */
  3708. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3709. {
  3710. struct rq *rq_dest, *rq_src;
  3711. int ret = 0;
  3712. if (unlikely(!cpu_active(dest_cpu)))
  3713. return ret;
  3714. rq_src = cpu_rq(src_cpu);
  3715. rq_dest = cpu_rq(dest_cpu);
  3716. raw_spin_lock(&p->pi_lock);
  3717. double_rq_lock(rq_src, rq_dest);
  3718. /* Already moved. */
  3719. if (task_cpu(p) != src_cpu)
  3720. goto done;
  3721. /* Affinity changed (again). */
  3722. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3723. goto fail;
  3724. /*
  3725. * If we're not on a rq, the next wake-up will ensure we're
  3726. * placed properly.
  3727. */
  3728. if (p->on_rq) {
  3729. dequeue_task(rq_src, p, 0);
  3730. set_task_cpu(p, dest_cpu);
  3731. enqueue_task(rq_dest, p, 0);
  3732. check_preempt_curr(rq_dest, p, 0);
  3733. }
  3734. done:
  3735. ret = 1;
  3736. fail:
  3737. double_rq_unlock(rq_src, rq_dest);
  3738. raw_spin_unlock(&p->pi_lock);
  3739. return ret;
  3740. }
  3741. /*
  3742. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3743. * and performs thread migration by bumping thread off CPU then
  3744. * 'pushing' onto another runqueue.
  3745. */
  3746. static int migration_cpu_stop(void *data)
  3747. {
  3748. struct migration_arg *arg = data;
  3749. /*
  3750. * The original target cpu might have gone down and we might
  3751. * be on another cpu but it doesn't matter.
  3752. */
  3753. local_irq_disable();
  3754. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3755. local_irq_enable();
  3756. return 0;
  3757. }
  3758. #ifdef CONFIG_HOTPLUG_CPU
  3759. /*
  3760. * Ensures that the idle task is using init_mm right before its cpu goes
  3761. * offline.
  3762. */
  3763. void idle_task_exit(void)
  3764. {
  3765. struct mm_struct *mm = current->active_mm;
  3766. BUG_ON(cpu_online(smp_processor_id()));
  3767. if (mm != &init_mm)
  3768. switch_mm(mm, &init_mm, current);
  3769. mmdrop(mm);
  3770. }
  3771. /*
  3772. * Since this CPU is going 'away' for a while, fold any nr_active delta
  3773. * we might have. Assumes we're called after migrate_tasks() so that the
  3774. * nr_active count is stable.
  3775. *
  3776. * Also see the comment "Global load-average calculations".
  3777. */
  3778. static void calc_load_migrate(struct rq *rq)
  3779. {
  3780. long delta = calc_load_fold_active(rq);
  3781. if (delta)
  3782. atomic_long_add(delta, &calc_load_tasks);
  3783. }
  3784. /*
  3785. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  3786. * try_to_wake_up()->select_task_rq().
  3787. *
  3788. * Called with rq->lock held even though we'er in stop_machine() and
  3789. * there's no concurrency possible, we hold the required locks anyway
  3790. * because of lock validation efforts.
  3791. */
  3792. static void migrate_tasks(unsigned int dead_cpu)
  3793. {
  3794. struct rq *rq = cpu_rq(dead_cpu);
  3795. struct task_struct *next, *stop = rq->stop;
  3796. int dest_cpu;
  3797. /*
  3798. * Fudge the rq selection such that the below task selection loop
  3799. * doesn't get stuck on the currently eligible stop task.
  3800. *
  3801. * We're currently inside stop_machine() and the rq is either stuck
  3802. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  3803. * either way we should never end up calling schedule() until we're
  3804. * done here.
  3805. */
  3806. rq->stop = NULL;
  3807. /*
  3808. * put_prev_task() and pick_next_task() sched
  3809. * class method both need to have an up-to-date
  3810. * value of rq->clock[_task]
  3811. */
  3812. update_rq_clock(rq);
  3813. for ( ; ; ) {
  3814. /*
  3815. * There's this thread running, bail when that's the only
  3816. * remaining thread.
  3817. */
  3818. if (rq->nr_running == 1)
  3819. break;
  3820. next = pick_next_task(rq);
  3821. BUG_ON(!next);
  3822. next->sched_class->put_prev_task(rq, next);
  3823. /* Find suitable destination for @next, with force if needed. */
  3824. dest_cpu = select_fallback_rq(dead_cpu, next);
  3825. raw_spin_unlock(&rq->lock);
  3826. __migrate_task(next, dead_cpu, dest_cpu);
  3827. raw_spin_lock(&rq->lock);
  3828. }
  3829. rq->stop = stop;
  3830. }
  3831. #endif /* CONFIG_HOTPLUG_CPU */
  3832. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  3833. static struct ctl_table sd_ctl_dir[] = {
  3834. {
  3835. .procname = "sched_domain",
  3836. .mode = 0555,
  3837. },
  3838. {}
  3839. };
  3840. static struct ctl_table sd_ctl_root[] = {
  3841. {
  3842. .procname = "kernel",
  3843. .mode = 0555,
  3844. .child = sd_ctl_dir,
  3845. },
  3846. {}
  3847. };
  3848. static struct ctl_table *sd_alloc_ctl_entry(int n)
  3849. {
  3850. struct ctl_table *entry =
  3851. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  3852. return entry;
  3853. }
  3854. static void sd_free_ctl_entry(struct ctl_table **tablep)
  3855. {
  3856. struct ctl_table *entry;
  3857. /*
  3858. * In the intermediate directories, both the child directory and
  3859. * procname are dynamically allocated and could fail but the mode
  3860. * will always be set. In the lowest directory the names are
  3861. * static strings and all have proc handlers.
  3862. */
  3863. for (entry = *tablep; entry->mode; entry++) {
  3864. if (entry->child)
  3865. sd_free_ctl_entry(&entry->child);
  3866. if (entry->proc_handler == NULL)
  3867. kfree(entry->procname);
  3868. }
  3869. kfree(*tablep);
  3870. *tablep = NULL;
  3871. }
  3872. static int min_load_idx = 0;
  3873. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  3874. static void
  3875. set_table_entry(struct ctl_table *entry,
  3876. const char *procname, void *data, int maxlen,
  3877. umode_t mode, proc_handler *proc_handler,
  3878. bool load_idx)
  3879. {
  3880. entry->procname = procname;
  3881. entry->data = data;
  3882. entry->maxlen = maxlen;
  3883. entry->mode = mode;
  3884. entry->proc_handler = proc_handler;
  3885. if (load_idx) {
  3886. entry->extra1 = &min_load_idx;
  3887. entry->extra2 = &max_load_idx;
  3888. }
  3889. }
  3890. static struct ctl_table *
  3891. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  3892. {
  3893. struct ctl_table *table = sd_alloc_ctl_entry(13);
  3894. if (table == NULL)
  3895. return NULL;
  3896. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  3897. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3898. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  3899. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3900. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  3901. sizeof(int), 0644, proc_dointvec_minmax, true);
  3902. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  3903. sizeof(int), 0644, proc_dointvec_minmax, true);
  3904. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  3905. sizeof(int), 0644, proc_dointvec_minmax, true);
  3906. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  3907. sizeof(int), 0644, proc_dointvec_minmax, true);
  3908. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  3909. sizeof(int), 0644, proc_dointvec_minmax, true);
  3910. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  3911. sizeof(int), 0644, proc_dointvec_minmax, false);
  3912. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  3913. sizeof(int), 0644, proc_dointvec_minmax, false);
  3914. set_table_entry(&table[9], "cache_nice_tries",
  3915. &sd->cache_nice_tries,
  3916. sizeof(int), 0644, proc_dointvec_minmax, false);
  3917. set_table_entry(&table[10], "flags", &sd->flags,
  3918. sizeof(int), 0644, proc_dointvec_minmax, false);
  3919. set_table_entry(&table[11], "name", sd->name,
  3920. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  3921. /* &table[12] is terminator */
  3922. return table;
  3923. }
  3924. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  3925. {
  3926. struct ctl_table *entry, *table;
  3927. struct sched_domain *sd;
  3928. int domain_num = 0, i;
  3929. char buf[32];
  3930. for_each_domain(cpu, sd)
  3931. domain_num++;
  3932. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  3933. if (table == NULL)
  3934. return NULL;
  3935. i = 0;
  3936. for_each_domain(cpu, sd) {
  3937. snprintf(buf, 32, "domain%d", i);
  3938. entry->procname = kstrdup(buf, GFP_KERNEL);
  3939. entry->mode = 0555;
  3940. entry->child = sd_alloc_ctl_domain_table(sd);
  3941. entry++;
  3942. i++;
  3943. }
  3944. return table;
  3945. }
  3946. static struct ctl_table_header *sd_sysctl_header;
  3947. static void register_sched_domain_sysctl(void)
  3948. {
  3949. int i, cpu_num = num_possible_cpus();
  3950. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  3951. char buf[32];
  3952. WARN_ON(sd_ctl_dir[0].child);
  3953. sd_ctl_dir[0].child = entry;
  3954. if (entry == NULL)
  3955. return;
  3956. for_each_possible_cpu(i) {
  3957. snprintf(buf, 32, "cpu%d", i);
  3958. entry->procname = kstrdup(buf, GFP_KERNEL);
  3959. entry->mode = 0555;
  3960. entry->child = sd_alloc_ctl_cpu_table(i);
  3961. entry++;
  3962. }
  3963. WARN_ON(sd_sysctl_header);
  3964. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  3965. }
  3966. /* may be called multiple times per register */
  3967. static void unregister_sched_domain_sysctl(void)
  3968. {
  3969. if (sd_sysctl_header)
  3970. unregister_sysctl_table(sd_sysctl_header);
  3971. sd_sysctl_header = NULL;
  3972. if (sd_ctl_dir[0].child)
  3973. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  3974. }
  3975. #else
  3976. static void register_sched_domain_sysctl(void)
  3977. {
  3978. }
  3979. static void unregister_sched_domain_sysctl(void)
  3980. {
  3981. }
  3982. #endif
  3983. static void set_rq_online(struct rq *rq)
  3984. {
  3985. if (!rq->online) {
  3986. const struct sched_class *class;
  3987. cpumask_set_cpu(rq->cpu, rq->rd->online);
  3988. rq->online = 1;
  3989. for_each_class(class) {
  3990. if (class->rq_online)
  3991. class->rq_online(rq);
  3992. }
  3993. }
  3994. }
  3995. static void set_rq_offline(struct rq *rq)
  3996. {
  3997. if (rq->online) {
  3998. const struct sched_class *class;
  3999. for_each_class(class) {
  4000. if (class->rq_offline)
  4001. class->rq_offline(rq);
  4002. }
  4003. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4004. rq->online = 0;
  4005. }
  4006. }
  4007. /*
  4008. * migration_call - callback that gets triggered when a CPU is added.
  4009. * Here we can start up the necessary migration thread for the new CPU.
  4010. */
  4011. static int
  4012. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4013. {
  4014. int cpu = (long)hcpu;
  4015. unsigned long flags;
  4016. struct rq *rq = cpu_rq(cpu);
  4017. switch (action & ~CPU_TASKS_FROZEN) {
  4018. case CPU_UP_PREPARE:
  4019. rq->calc_load_update = calc_load_update;
  4020. break;
  4021. case CPU_ONLINE:
  4022. /* Update our root-domain */
  4023. raw_spin_lock_irqsave(&rq->lock, flags);
  4024. if (rq->rd) {
  4025. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4026. set_rq_online(rq);
  4027. }
  4028. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4029. break;
  4030. #ifdef CONFIG_HOTPLUG_CPU
  4031. case CPU_DYING:
  4032. sched_ttwu_pending();
  4033. /* Update our root-domain */
  4034. raw_spin_lock_irqsave(&rq->lock, flags);
  4035. if (rq->rd) {
  4036. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4037. set_rq_offline(rq);
  4038. }
  4039. migrate_tasks(cpu);
  4040. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4041. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4042. break;
  4043. case CPU_DEAD:
  4044. calc_load_migrate(rq);
  4045. break;
  4046. #endif
  4047. }
  4048. update_max_interval();
  4049. return NOTIFY_OK;
  4050. }
  4051. /*
  4052. * Register at high priority so that task migration (migrate_all_tasks)
  4053. * happens before everything else. This has to be lower priority than
  4054. * the notifier in the perf_event subsystem, though.
  4055. */
  4056. static struct notifier_block migration_notifier = {
  4057. .notifier_call = migration_call,
  4058. .priority = CPU_PRI_MIGRATION,
  4059. };
  4060. static int sched_cpu_active(struct notifier_block *nfb,
  4061. unsigned long action, void *hcpu)
  4062. {
  4063. switch (action & ~CPU_TASKS_FROZEN) {
  4064. case CPU_STARTING:
  4065. case CPU_DOWN_FAILED:
  4066. set_cpu_active((long)hcpu, true);
  4067. return NOTIFY_OK;
  4068. default:
  4069. return NOTIFY_DONE;
  4070. }
  4071. }
  4072. static int sched_cpu_inactive(struct notifier_block *nfb,
  4073. unsigned long action, void *hcpu)
  4074. {
  4075. switch (action & ~CPU_TASKS_FROZEN) {
  4076. case CPU_DOWN_PREPARE:
  4077. set_cpu_active((long)hcpu, false);
  4078. return NOTIFY_OK;
  4079. default:
  4080. return NOTIFY_DONE;
  4081. }
  4082. }
  4083. static int __init migration_init(void)
  4084. {
  4085. void *cpu = (void *)(long)smp_processor_id();
  4086. int err;
  4087. /* Initialize migration for the boot CPU */
  4088. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4089. BUG_ON(err == NOTIFY_BAD);
  4090. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4091. register_cpu_notifier(&migration_notifier);
  4092. /* Register cpu active notifiers */
  4093. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4094. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4095. return 0;
  4096. }
  4097. early_initcall(migration_init);
  4098. #endif
  4099. #ifdef CONFIG_SMP
  4100. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4101. #ifdef CONFIG_SCHED_DEBUG
  4102. static __read_mostly int sched_debug_enabled;
  4103. static int __init sched_debug_setup(char *str)
  4104. {
  4105. sched_debug_enabled = 1;
  4106. return 0;
  4107. }
  4108. early_param("sched_debug", sched_debug_setup);
  4109. static inline bool sched_debug(void)
  4110. {
  4111. return sched_debug_enabled;
  4112. }
  4113. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4114. struct cpumask *groupmask)
  4115. {
  4116. struct sched_group *group = sd->groups;
  4117. char str[256];
  4118. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4119. cpumask_clear(groupmask);
  4120. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4121. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4122. printk("does not load-balance\n");
  4123. if (sd->parent)
  4124. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4125. " has parent");
  4126. return -1;
  4127. }
  4128. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4129. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4130. printk(KERN_ERR "ERROR: domain->span does not contain "
  4131. "CPU%d\n", cpu);
  4132. }
  4133. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4134. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4135. " CPU%d\n", cpu);
  4136. }
  4137. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4138. do {
  4139. if (!group) {
  4140. printk("\n");
  4141. printk(KERN_ERR "ERROR: group is NULL\n");
  4142. break;
  4143. }
  4144. /*
  4145. * Even though we initialize ->power to something semi-sane,
  4146. * we leave power_orig unset. This allows us to detect if
  4147. * domain iteration is still funny without causing /0 traps.
  4148. */
  4149. if (!group->sgp->power_orig) {
  4150. printk(KERN_CONT "\n");
  4151. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4152. "set\n");
  4153. break;
  4154. }
  4155. if (!cpumask_weight(sched_group_cpus(group))) {
  4156. printk(KERN_CONT "\n");
  4157. printk(KERN_ERR "ERROR: empty group\n");
  4158. break;
  4159. }
  4160. if (!(sd->flags & SD_OVERLAP) &&
  4161. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4162. printk(KERN_CONT "\n");
  4163. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4164. break;
  4165. }
  4166. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4167. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4168. printk(KERN_CONT " %s", str);
  4169. if (group->sgp->power != SCHED_POWER_SCALE) {
  4170. printk(KERN_CONT " (cpu_power = %d)",
  4171. group->sgp->power);
  4172. }
  4173. group = group->next;
  4174. } while (group != sd->groups);
  4175. printk(KERN_CONT "\n");
  4176. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4177. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4178. if (sd->parent &&
  4179. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4180. printk(KERN_ERR "ERROR: parent span is not a superset "
  4181. "of domain->span\n");
  4182. return 0;
  4183. }
  4184. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4185. {
  4186. int level = 0;
  4187. if (!sched_debug_enabled)
  4188. return;
  4189. if (!sd) {
  4190. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4191. return;
  4192. }
  4193. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4194. for (;;) {
  4195. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4196. break;
  4197. level++;
  4198. sd = sd->parent;
  4199. if (!sd)
  4200. break;
  4201. }
  4202. }
  4203. #else /* !CONFIG_SCHED_DEBUG */
  4204. # define sched_domain_debug(sd, cpu) do { } while (0)
  4205. static inline bool sched_debug(void)
  4206. {
  4207. return false;
  4208. }
  4209. #endif /* CONFIG_SCHED_DEBUG */
  4210. static int sd_degenerate(struct sched_domain *sd)
  4211. {
  4212. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4213. return 1;
  4214. /* Following flags need at least 2 groups */
  4215. if (sd->flags & (SD_LOAD_BALANCE |
  4216. SD_BALANCE_NEWIDLE |
  4217. SD_BALANCE_FORK |
  4218. SD_BALANCE_EXEC |
  4219. SD_SHARE_CPUPOWER |
  4220. SD_SHARE_PKG_RESOURCES)) {
  4221. if (sd->groups != sd->groups->next)
  4222. return 0;
  4223. }
  4224. /* Following flags don't use groups */
  4225. if (sd->flags & (SD_WAKE_AFFINE))
  4226. return 0;
  4227. return 1;
  4228. }
  4229. static int
  4230. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4231. {
  4232. unsigned long cflags = sd->flags, pflags = parent->flags;
  4233. if (sd_degenerate(parent))
  4234. return 1;
  4235. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4236. return 0;
  4237. /* Flags needing groups don't count if only 1 group in parent */
  4238. if (parent->groups == parent->groups->next) {
  4239. pflags &= ~(SD_LOAD_BALANCE |
  4240. SD_BALANCE_NEWIDLE |
  4241. SD_BALANCE_FORK |
  4242. SD_BALANCE_EXEC |
  4243. SD_SHARE_CPUPOWER |
  4244. SD_SHARE_PKG_RESOURCES |
  4245. SD_PREFER_SIBLING);
  4246. if (nr_node_ids == 1)
  4247. pflags &= ~SD_SERIALIZE;
  4248. }
  4249. if (~cflags & pflags)
  4250. return 0;
  4251. return 1;
  4252. }
  4253. static void free_rootdomain(struct rcu_head *rcu)
  4254. {
  4255. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4256. cpupri_cleanup(&rd->cpupri);
  4257. free_cpumask_var(rd->rto_mask);
  4258. free_cpumask_var(rd->online);
  4259. free_cpumask_var(rd->span);
  4260. kfree(rd);
  4261. }
  4262. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4263. {
  4264. struct root_domain *old_rd = NULL;
  4265. unsigned long flags;
  4266. raw_spin_lock_irqsave(&rq->lock, flags);
  4267. if (rq->rd) {
  4268. old_rd = rq->rd;
  4269. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4270. set_rq_offline(rq);
  4271. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4272. /*
  4273. * If we dont want to free the old_rt yet then
  4274. * set old_rd to NULL to skip the freeing later
  4275. * in this function:
  4276. */
  4277. if (!atomic_dec_and_test(&old_rd->refcount))
  4278. old_rd = NULL;
  4279. }
  4280. atomic_inc(&rd->refcount);
  4281. rq->rd = rd;
  4282. cpumask_set_cpu(rq->cpu, rd->span);
  4283. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4284. set_rq_online(rq);
  4285. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4286. if (old_rd)
  4287. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4288. }
  4289. static int init_rootdomain(struct root_domain *rd)
  4290. {
  4291. memset(rd, 0, sizeof(*rd));
  4292. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4293. goto out;
  4294. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4295. goto free_span;
  4296. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4297. goto free_online;
  4298. if (cpupri_init(&rd->cpupri) != 0)
  4299. goto free_rto_mask;
  4300. return 0;
  4301. free_rto_mask:
  4302. free_cpumask_var(rd->rto_mask);
  4303. free_online:
  4304. free_cpumask_var(rd->online);
  4305. free_span:
  4306. free_cpumask_var(rd->span);
  4307. out:
  4308. return -ENOMEM;
  4309. }
  4310. /*
  4311. * By default the system creates a single root-domain with all cpus as
  4312. * members (mimicking the global state we have today).
  4313. */
  4314. struct root_domain def_root_domain;
  4315. static void init_defrootdomain(void)
  4316. {
  4317. init_rootdomain(&def_root_domain);
  4318. atomic_set(&def_root_domain.refcount, 1);
  4319. }
  4320. static struct root_domain *alloc_rootdomain(void)
  4321. {
  4322. struct root_domain *rd;
  4323. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4324. if (!rd)
  4325. return NULL;
  4326. if (init_rootdomain(rd) != 0) {
  4327. kfree(rd);
  4328. return NULL;
  4329. }
  4330. return rd;
  4331. }
  4332. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4333. {
  4334. struct sched_group *tmp, *first;
  4335. if (!sg)
  4336. return;
  4337. first = sg;
  4338. do {
  4339. tmp = sg->next;
  4340. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4341. kfree(sg->sgp);
  4342. kfree(sg);
  4343. sg = tmp;
  4344. } while (sg != first);
  4345. }
  4346. static void free_sched_domain(struct rcu_head *rcu)
  4347. {
  4348. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4349. /*
  4350. * If its an overlapping domain it has private groups, iterate and
  4351. * nuke them all.
  4352. */
  4353. if (sd->flags & SD_OVERLAP) {
  4354. free_sched_groups(sd->groups, 1);
  4355. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4356. kfree(sd->groups->sgp);
  4357. kfree(sd->groups);
  4358. }
  4359. kfree(sd);
  4360. }
  4361. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4362. {
  4363. call_rcu(&sd->rcu, free_sched_domain);
  4364. }
  4365. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4366. {
  4367. for (; sd; sd = sd->parent)
  4368. destroy_sched_domain(sd, cpu);
  4369. }
  4370. /*
  4371. * Keep a special pointer to the highest sched_domain that has
  4372. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4373. * allows us to avoid some pointer chasing select_idle_sibling().
  4374. *
  4375. * Also keep a unique ID per domain (we use the first cpu number in
  4376. * the cpumask of the domain), this allows us to quickly tell if
  4377. * two cpus are in the same cache domain, see cpus_share_cache().
  4378. */
  4379. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4380. DEFINE_PER_CPU(int, sd_llc_size);
  4381. DEFINE_PER_CPU(int, sd_llc_id);
  4382. static void update_top_cache_domain(int cpu)
  4383. {
  4384. struct sched_domain *sd;
  4385. int id = cpu;
  4386. int size = 1;
  4387. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4388. if (sd) {
  4389. id = cpumask_first(sched_domain_span(sd));
  4390. size = cpumask_weight(sched_domain_span(sd));
  4391. }
  4392. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4393. per_cpu(sd_llc_size, cpu) = size;
  4394. per_cpu(sd_llc_id, cpu) = id;
  4395. }
  4396. /*
  4397. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4398. * hold the hotplug lock.
  4399. */
  4400. static void
  4401. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4402. {
  4403. struct rq *rq = cpu_rq(cpu);
  4404. struct sched_domain *tmp;
  4405. /* Remove the sched domains which do not contribute to scheduling. */
  4406. for (tmp = sd; tmp; ) {
  4407. struct sched_domain *parent = tmp->parent;
  4408. if (!parent)
  4409. break;
  4410. if (sd_parent_degenerate(tmp, parent)) {
  4411. tmp->parent = parent->parent;
  4412. if (parent->parent)
  4413. parent->parent->child = tmp;
  4414. /*
  4415. * Transfer SD_PREFER_SIBLING down in case of a
  4416. * degenerate parent; the spans match for this
  4417. * so the property transfers.
  4418. */
  4419. if (parent->flags & SD_PREFER_SIBLING)
  4420. tmp->flags |= SD_PREFER_SIBLING;
  4421. destroy_sched_domain(parent, cpu);
  4422. } else
  4423. tmp = tmp->parent;
  4424. }
  4425. if (sd && sd_degenerate(sd)) {
  4426. tmp = sd;
  4427. sd = sd->parent;
  4428. destroy_sched_domain(tmp, cpu);
  4429. if (sd)
  4430. sd->child = NULL;
  4431. }
  4432. sched_domain_debug(sd, cpu);
  4433. rq_attach_root(rq, rd);
  4434. tmp = rq->sd;
  4435. rcu_assign_pointer(rq->sd, sd);
  4436. destroy_sched_domains(tmp, cpu);
  4437. update_top_cache_domain(cpu);
  4438. }
  4439. /* cpus with isolated domains */
  4440. static cpumask_var_t cpu_isolated_map;
  4441. /* Setup the mask of cpus configured for isolated domains */
  4442. static int __init isolated_cpu_setup(char *str)
  4443. {
  4444. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4445. cpulist_parse(str, cpu_isolated_map);
  4446. return 1;
  4447. }
  4448. __setup("isolcpus=", isolated_cpu_setup);
  4449. static const struct cpumask *cpu_cpu_mask(int cpu)
  4450. {
  4451. return cpumask_of_node(cpu_to_node(cpu));
  4452. }
  4453. struct sd_data {
  4454. struct sched_domain **__percpu sd;
  4455. struct sched_group **__percpu sg;
  4456. struct sched_group_power **__percpu sgp;
  4457. };
  4458. struct s_data {
  4459. struct sched_domain ** __percpu sd;
  4460. struct root_domain *rd;
  4461. };
  4462. enum s_alloc {
  4463. sa_rootdomain,
  4464. sa_sd,
  4465. sa_sd_storage,
  4466. sa_none,
  4467. };
  4468. struct sched_domain_topology_level;
  4469. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4470. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4471. #define SDTL_OVERLAP 0x01
  4472. struct sched_domain_topology_level {
  4473. sched_domain_init_f init;
  4474. sched_domain_mask_f mask;
  4475. int flags;
  4476. int numa_level;
  4477. struct sd_data data;
  4478. };
  4479. /*
  4480. * Build an iteration mask that can exclude certain CPUs from the upwards
  4481. * domain traversal.
  4482. *
  4483. * Asymmetric node setups can result in situations where the domain tree is of
  4484. * unequal depth, make sure to skip domains that already cover the entire
  4485. * range.
  4486. *
  4487. * In that case build_sched_domains() will have terminated the iteration early
  4488. * and our sibling sd spans will be empty. Domains should always include the
  4489. * cpu they're built on, so check that.
  4490. *
  4491. */
  4492. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4493. {
  4494. const struct cpumask *span = sched_domain_span(sd);
  4495. struct sd_data *sdd = sd->private;
  4496. struct sched_domain *sibling;
  4497. int i;
  4498. for_each_cpu(i, span) {
  4499. sibling = *per_cpu_ptr(sdd->sd, i);
  4500. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4501. continue;
  4502. cpumask_set_cpu(i, sched_group_mask(sg));
  4503. }
  4504. }
  4505. /*
  4506. * Return the canonical balance cpu for this group, this is the first cpu
  4507. * of this group that's also in the iteration mask.
  4508. */
  4509. int group_balance_cpu(struct sched_group *sg)
  4510. {
  4511. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4512. }
  4513. static int
  4514. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4515. {
  4516. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4517. const struct cpumask *span = sched_domain_span(sd);
  4518. struct cpumask *covered = sched_domains_tmpmask;
  4519. struct sd_data *sdd = sd->private;
  4520. struct sched_domain *child;
  4521. int i;
  4522. cpumask_clear(covered);
  4523. for_each_cpu(i, span) {
  4524. struct cpumask *sg_span;
  4525. if (cpumask_test_cpu(i, covered))
  4526. continue;
  4527. child = *per_cpu_ptr(sdd->sd, i);
  4528. /* See the comment near build_group_mask(). */
  4529. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4530. continue;
  4531. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4532. GFP_KERNEL, cpu_to_node(cpu));
  4533. if (!sg)
  4534. goto fail;
  4535. sg_span = sched_group_cpus(sg);
  4536. if (child->child) {
  4537. child = child->child;
  4538. cpumask_copy(sg_span, sched_domain_span(child));
  4539. } else
  4540. cpumask_set_cpu(i, sg_span);
  4541. cpumask_or(covered, covered, sg_span);
  4542. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4543. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4544. build_group_mask(sd, sg);
  4545. /*
  4546. * Initialize sgp->power such that even if we mess up the
  4547. * domains and no possible iteration will get us here, we won't
  4548. * die on a /0 trap.
  4549. */
  4550. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4551. /*
  4552. * Make sure the first group of this domain contains the
  4553. * canonical balance cpu. Otherwise the sched_domain iteration
  4554. * breaks. See update_sg_lb_stats().
  4555. */
  4556. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4557. group_balance_cpu(sg) == cpu)
  4558. groups = sg;
  4559. if (!first)
  4560. first = sg;
  4561. if (last)
  4562. last->next = sg;
  4563. last = sg;
  4564. last->next = first;
  4565. }
  4566. sd->groups = groups;
  4567. return 0;
  4568. fail:
  4569. free_sched_groups(first, 0);
  4570. return -ENOMEM;
  4571. }
  4572. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4573. {
  4574. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4575. struct sched_domain *child = sd->child;
  4576. if (child)
  4577. cpu = cpumask_first(sched_domain_span(child));
  4578. if (sg) {
  4579. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4580. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4581. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4582. }
  4583. return cpu;
  4584. }
  4585. /*
  4586. * build_sched_groups will build a circular linked list of the groups
  4587. * covered by the given span, and will set each group's ->cpumask correctly,
  4588. * and ->cpu_power to 0.
  4589. *
  4590. * Assumes the sched_domain tree is fully constructed
  4591. */
  4592. static int
  4593. build_sched_groups(struct sched_domain *sd, int cpu)
  4594. {
  4595. struct sched_group *first = NULL, *last = NULL;
  4596. struct sd_data *sdd = sd->private;
  4597. const struct cpumask *span = sched_domain_span(sd);
  4598. struct cpumask *covered;
  4599. int i;
  4600. get_group(cpu, sdd, &sd->groups);
  4601. atomic_inc(&sd->groups->ref);
  4602. if (cpu != cpumask_first(span))
  4603. return 0;
  4604. lockdep_assert_held(&sched_domains_mutex);
  4605. covered = sched_domains_tmpmask;
  4606. cpumask_clear(covered);
  4607. for_each_cpu(i, span) {
  4608. struct sched_group *sg;
  4609. int group, j;
  4610. if (cpumask_test_cpu(i, covered))
  4611. continue;
  4612. group = get_group(i, sdd, &sg);
  4613. cpumask_clear(sched_group_cpus(sg));
  4614. sg->sgp->power = 0;
  4615. cpumask_setall(sched_group_mask(sg));
  4616. for_each_cpu(j, span) {
  4617. if (get_group(j, sdd, NULL) != group)
  4618. continue;
  4619. cpumask_set_cpu(j, covered);
  4620. cpumask_set_cpu(j, sched_group_cpus(sg));
  4621. }
  4622. if (!first)
  4623. first = sg;
  4624. if (last)
  4625. last->next = sg;
  4626. last = sg;
  4627. }
  4628. last->next = first;
  4629. return 0;
  4630. }
  4631. /*
  4632. * Initialize sched groups cpu_power.
  4633. *
  4634. * cpu_power indicates the capacity of sched group, which is used while
  4635. * distributing the load between different sched groups in a sched domain.
  4636. * Typically cpu_power for all the groups in a sched domain will be same unless
  4637. * there are asymmetries in the topology. If there are asymmetries, group
  4638. * having more cpu_power will pickup more load compared to the group having
  4639. * less cpu_power.
  4640. */
  4641. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4642. {
  4643. struct sched_group *sg = sd->groups;
  4644. WARN_ON(!sg);
  4645. do {
  4646. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4647. sg = sg->next;
  4648. } while (sg != sd->groups);
  4649. if (cpu != group_balance_cpu(sg))
  4650. return;
  4651. update_group_power(sd, cpu);
  4652. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4653. }
  4654. int __weak arch_sd_sibling_asym_packing(void)
  4655. {
  4656. return 0*SD_ASYM_PACKING;
  4657. }
  4658. /*
  4659. * Initializers for schedule domains
  4660. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4661. */
  4662. #ifdef CONFIG_SCHED_DEBUG
  4663. # define SD_INIT_NAME(sd, type) sd->name = #type
  4664. #else
  4665. # define SD_INIT_NAME(sd, type) do { } while (0)
  4666. #endif
  4667. #define SD_INIT_FUNC(type) \
  4668. static noinline struct sched_domain * \
  4669. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4670. { \
  4671. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4672. *sd = SD_##type##_INIT; \
  4673. SD_INIT_NAME(sd, type); \
  4674. sd->private = &tl->data; \
  4675. return sd; \
  4676. }
  4677. SD_INIT_FUNC(CPU)
  4678. #ifdef CONFIG_SCHED_SMT
  4679. SD_INIT_FUNC(SIBLING)
  4680. #endif
  4681. #ifdef CONFIG_SCHED_MC
  4682. SD_INIT_FUNC(MC)
  4683. #endif
  4684. #ifdef CONFIG_SCHED_BOOK
  4685. SD_INIT_FUNC(BOOK)
  4686. #endif
  4687. static int default_relax_domain_level = -1;
  4688. int sched_domain_level_max;
  4689. static int __init setup_relax_domain_level(char *str)
  4690. {
  4691. if (kstrtoint(str, 0, &default_relax_domain_level))
  4692. pr_warn("Unable to set relax_domain_level\n");
  4693. return 1;
  4694. }
  4695. __setup("relax_domain_level=", setup_relax_domain_level);
  4696. static void set_domain_attribute(struct sched_domain *sd,
  4697. struct sched_domain_attr *attr)
  4698. {
  4699. int request;
  4700. if (!attr || attr->relax_domain_level < 0) {
  4701. if (default_relax_domain_level < 0)
  4702. return;
  4703. else
  4704. request = default_relax_domain_level;
  4705. } else
  4706. request = attr->relax_domain_level;
  4707. if (request < sd->level) {
  4708. /* turn off idle balance on this domain */
  4709. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4710. } else {
  4711. /* turn on idle balance on this domain */
  4712. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4713. }
  4714. }
  4715. static void __sdt_free(const struct cpumask *cpu_map);
  4716. static int __sdt_alloc(const struct cpumask *cpu_map);
  4717. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4718. const struct cpumask *cpu_map)
  4719. {
  4720. switch (what) {
  4721. case sa_rootdomain:
  4722. if (!atomic_read(&d->rd->refcount))
  4723. free_rootdomain(&d->rd->rcu); /* fall through */
  4724. case sa_sd:
  4725. free_percpu(d->sd); /* fall through */
  4726. case sa_sd_storage:
  4727. __sdt_free(cpu_map); /* fall through */
  4728. case sa_none:
  4729. break;
  4730. }
  4731. }
  4732. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  4733. const struct cpumask *cpu_map)
  4734. {
  4735. memset(d, 0, sizeof(*d));
  4736. if (__sdt_alloc(cpu_map))
  4737. return sa_sd_storage;
  4738. d->sd = alloc_percpu(struct sched_domain *);
  4739. if (!d->sd)
  4740. return sa_sd_storage;
  4741. d->rd = alloc_rootdomain();
  4742. if (!d->rd)
  4743. return sa_sd;
  4744. return sa_rootdomain;
  4745. }
  4746. /*
  4747. * NULL the sd_data elements we've used to build the sched_domain and
  4748. * sched_group structure so that the subsequent __free_domain_allocs()
  4749. * will not free the data we're using.
  4750. */
  4751. static void claim_allocations(int cpu, struct sched_domain *sd)
  4752. {
  4753. struct sd_data *sdd = sd->private;
  4754. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  4755. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  4756. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  4757. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  4758. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  4759. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  4760. }
  4761. #ifdef CONFIG_SCHED_SMT
  4762. static const struct cpumask *cpu_smt_mask(int cpu)
  4763. {
  4764. return topology_thread_cpumask(cpu);
  4765. }
  4766. #endif
  4767. /*
  4768. * Topology list, bottom-up.
  4769. */
  4770. static struct sched_domain_topology_level default_topology[] = {
  4771. #ifdef CONFIG_SCHED_SMT
  4772. { sd_init_SIBLING, cpu_smt_mask, },
  4773. #endif
  4774. #ifdef CONFIG_SCHED_MC
  4775. { sd_init_MC, cpu_coregroup_mask, },
  4776. #endif
  4777. #ifdef CONFIG_SCHED_BOOK
  4778. { sd_init_BOOK, cpu_book_mask, },
  4779. #endif
  4780. { sd_init_CPU, cpu_cpu_mask, },
  4781. { NULL, },
  4782. };
  4783. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  4784. #define for_each_sd_topology(tl) \
  4785. for (tl = sched_domain_topology; tl->init; tl++)
  4786. #ifdef CONFIG_NUMA
  4787. static int sched_domains_numa_levels;
  4788. static int *sched_domains_numa_distance;
  4789. static struct cpumask ***sched_domains_numa_masks;
  4790. static int sched_domains_curr_level;
  4791. static inline int sd_local_flags(int level)
  4792. {
  4793. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  4794. return 0;
  4795. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  4796. }
  4797. static struct sched_domain *
  4798. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  4799. {
  4800. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  4801. int level = tl->numa_level;
  4802. int sd_weight = cpumask_weight(
  4803. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  4804. *sd = (struct sched_domain){
  4805. .min_interval = sd_weight,
  4806. .max_interval = 2*sd_weight,
  4807. .busy_factor = 32,
  4808. .imbalance_pct = 125,
  4809. .cache_nice_tries = 2,
  4810. .busy_idx = 3,
  4811. .idle_idx = 2,
  4812. .newidle_idx = 0,
  4813. .wake_idx = 0,
  4814. .forkexec_idx = 0,
  4815. .flags = 1*SD_LOAD_BALANCE
  4816. | 1*SD_BALANCE_NEWIDLE
  4817. | 0*SD_BALANCE_EXEC
  4818. | 0*SD_BALANCE_FORK
  4819. | 0*SD_BALANCE_WAKE
  4820. | 0*SD_WAKE_AFFINE
  4821. | 0*SD_SHARE_CPUPOWER
  4822. | 0*SD_SHARE_PKG_RESOURCES
  4823. | 1*SD_SERIALIZE
  4824. | 0*SD_PREFER_SIBLING
  4825. | sd_local_flags(level)
  4826. ,
  4827. .last_balance = jiffies,
  4828. .balance_interval = sd_weight,
  4829. };
  4830. SD_INIT_NAME(sd, NUMA);
  4831. sd->private = &tl->data;
  4832. /*
  4833. * Ugly hack to pass state to sd_numa_mask()...
  4834. */
  4835. sched_domains_curr_level = tl->numa_level;
  4836. return sd;
  4837. }
  4838. static const struct cpumask *sd_numa_mask(int cpu)
  4839. {
  4840. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  4841. }
  4842. static void sched_numa_warn(const char *str)
  4843. {
  4844. static int done = false;
  4845. int i,j;
  4846. if (done)
  4847. return;
  4848. done = true;
  4849. printk(KERN_WARNING "ERROR: %s\n\n", str);
  4850. for (i = 0; i < nr_node_ids; i++) {
  4851. printk(KERN_WARNING " ");
  4852. for (j = 0; j < nr_node_ids; j++)
  4853. printk(KERN_CONT "%02d ", node_distance(i,j));
  4854. printk(KERN_CONT "\n");
  4855. }
  4856. printk(KERN_WARNING "\n");
  4857. }
  4858. static bool find_numa_distance(int distance)
  4859. {
  4860. int i;
  4861. if (distance == node_distance(0, 0))
  4862. return true;
  4863. for (i = 0; i < sched_domains_numa_levels; i++) {
  4864. if (sched_domains_numa_distance[i] == distance)
  4865. return true;
  4866. }
  4867. return false;
  4868. }
  4869. static void sched_init_numa(void)
  4870. {
  4871. int next_distance, curr_distance = node_distance(0, 0);
  4872. struct sched_domain_topology_level *tl;
  4873. int level = 0;
  4874. int i, j, k;
  4875. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  4876. if (!sched_domains_numa_distance)
  4877. return;
  4878. /*
  4879. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  4880. * unique distances in the node_distance() table.
  4881. *
  4882. * Assumes node_distance(0,j) includes all distances in
  4883. * node_distance(i,j) in order to avoid cubic time.
  4884. */
  4885. next_distance = curr_distance;
  4886. for (i = 0; i < nr_node_ids; i++) {
  4887. for (j = 0; j < nr_node_ids; j++) {
  4888. for (k = 0; k < nr_node_ids; k++) {
  4889. int distance = node_distance(i, k);
  4890. if (distance > curr_distance &&
  4891. (distance < next_distance ||
  4892. next_distance == curr_distance))
  4893. next_distance = distance;
  4894. /*
  4895. * While not a strong assumption it would be nice to know
  4896. * about cases where if node A is connected to B, B is not
  4897. * equally connected to A.
  4898. */
  4899. if (sched_debug() && node_distance(k, i) != distance)
  4900. sched_numa_warn("Node-distance not symmetric");
  4901. if (sched_debug() && i && !find_numa_distance(distance))
  4902. sched_numa_warn("Node-0 not representative");
  4903. }
  4904. if (next_distance != curr_distance) {
  4905. sched_domains_numa_distance[level++] = next_distance;
  4906. sched_domains_numa_levels = level;
  4907. curr_distance = next_distance;
  4908. } else break;
  4909. }
  4910. /*
  4911. * In case of sched_debug() we verify the above assumption.
  4912. */
  4913. if (!sched_debug())
  4914. break;
  4915. }
  4916. /*
  4917. * 'level' contains the number of unique distances, excluding the
  4918. * identity distance node_distance(i,i).
  4919. *
  4920. * The sched_domains_numa_distance[] array includes the actual distance
  4921. * numbers.
  4922. */
  4923. /*
  4924. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  4925. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  4926. * the array will contain less then 'level' members. This could be
  4927. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  4928. * in other functions.
  4929. *
  4930. * We reset it to 'level' at the end of this function.
  4931. */
  4932. sched_domains_numa_levels = 0;
  4933. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  4934. if (!sched_domains_numa_masks)
  4935. return;
  4936. /*
  4937. * Now for each level, construct a mask per node which contains all
  4938. * cpus of nodes that are that many hops away from us.
  4939. */
  4940. for (i = 0; i < level; i++) {
  4941. sched_domains_numa_masks[i] =
  4942. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  4943. if (!sched_domains_numa_masks[i])
  4944. return;
  4945. for (j = 0; j < nr_node_ids; j++) {
  4946. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  4947. if (!mask)
  4948. return;
  4949. sched_domains_numa_masks[i][j] = mask;
  4950. for (k = 0; k < nr_node_ids; k++) {
  4951. if (node_distance(j, k) > sched_domains_numa_distance[i])
  4952. continue;
  4953. cpumask_or(mask, mask, cpumask_of_node(k));
  4954. }
  4955. }
  4956. }
  4957. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  4958. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  4959. if (!tl)
  4960. return;
  4961. /*
  4962. * Copy the default topology bits..
  4963. */
  4964. for (i = 0; default_topology[i].init; i++)
  4965. tl[i] = default_topology[i];
  4966. /*
  4967. * .. and append 'j' levels of NUMA goodness.
  4968. */
  4969. for (j = 0; j < level; i++, j++) {
  4970. tl[i] = (struct sched_domain_topology_level){
  4971. .init = sd_numa_init,
  4972. .mask = sd_numa_mask,
  4973. .flags = SDTL_OVERLAP,
  4974. .numa_level = j,
  4975. };
  4976. }
  4977. sched_domain_topology = tl;
  4978. sched_domains_numa_levels = level;
  4979. }
  4980. static void sched_domains_numa_masks_set(int cpu)
  4981. {
  4982. int i, j;
  4983. int node = cpu_to_node(cpu);
  4984. for (i = 0; i < sched_domains_numa_levels; i++) {
  4985. for (j = 0; j < nr_node_ids; j++) {
  4986. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  4987. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  4988. }
  4989. }
  4990. }
  4991. static void sched_domains_numa_masks_clear(int cpu)
  4992. {
  4993. int i, j;
  4994. for (i = 0; i < sched_domains_numa_levels; i++) {
  4995. for (j = 0; j < nr_node_ids; j++)
  4996. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  4997. }
  4998. }
  4999. /*
  5000. * Update sched_domains_numa_masks[level][node] array when new cpus
  5001. * are onlined.
  5002. */
  5003. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5004. unsigned long action,
  5005. void *hcpu)
  5006. {
  5007. int cpu = (long)hcpu;
  5008. switch (action & ~CPU_TASKS_FROZEN) {
  5009. case CPU_ONLINE:
  5010. sched_domains_numa_masks_set(cpu);
  5011. break;
  5012. case CPU_DEAD:
  5013. sched_domains_numa_masks_clear(cpu);
  5014. break;
  5015. default:
  5016. return NOTIFY_DONE;
  5017. }
  5018. return NOTIFY_OK;
  5019. }
  5020. #else
  5021. static inline void sched_init_numa(void)
  5022. {
  5023. }
  5024. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5025. unsigned long action,
  5026. void *hcpu)
  5027. {
  5028. return 0;
  5029. }
  5030. #endif /* CONFIG_NUMA */
  5031. static int __sdt_alloc(const struct cpumask *cpu_map)
  5032. {
  5033. struct sched_domain_topology_level *tl;
  5034. int j;
  5035. for_each_sd_topology(tl) {
  5036. struct sd_data *sdd = &tl->data;
  5037. sdd->sd = alloc_percpu(struct sched_domain *);
  5038. if (!sdd->sd)
  5039. return -ENOMEM;
  5040. sdd->sg = alloc_percpu(struct sched_group *);
  5041. if (!sdd->sg)
  5042. return -ENOMEM;
  5043. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5044. if (!sdd->sgp)
  5045. return -ENOMEM;
  5046. for_each_cpu(j, cpu_map) {
  5047. struct sched_domain *sd;
  5048. struct sched_group *sg;
  5049. struct sched_group_power *sgp;
  5050. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5051. GFP_KERNEL, cpu_to_node(j));
  5052. if (!sd)
  5053. return -ENOMEM;
  5054. *per_cpu_ptr(sdd->sd, j) = sd;
  5055. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5056. GFP_KERNEL, cpu_to_node(j));
  5057. if (!sg)
  5058. return -ENOMEM;
  5059. sg->next = sg;
  5060. *per_cpu_ptr(sdd->sg, j) = sg;
  5061. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5062. GFP_KERNEL, cpu_to_node(j));
  5063. if (!sgp)
  5064. return -ENOMEM;
  5065. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5066. }
  5067. }
  5068. return 0;
  5069. }
  5070. static void __sdt_free(const struct cpumask *cpu_map)
  5071. {
  5072. struct sched_domain_topology_level *tl;
  5073. int j;
  5074. for_each_sd_topology(tl) {
  5075. struct sd_data *sdd = &tl->data;
  5076. for_each_cpu(j, cpu_map) {
  5077. struct sched_domain *sd;
  5078. if (sdd->sd) {
  5079. sd = *per_cpu_ptr(sdd->sd, j);
  5080. if (sd && (sd->flags & SD_OVERLAP))
  5081. free_sched_groups(sd->groups, 0);
  5082. kfree(*per_cpu_ptr(sdd->sd, j));
  5083. }
  5084. if (sdd->sg)
  5085. kfree(*per_cpu_ptr(sdd->sg, j));
  5086. if (sdd->sgp)
  5087. kfree(*per_cpu_ptr(sdd->sgp, j));
  5088. }
  5089. free_percpu(sdd->sd);
  5090. sdd->sd = NULL;
  5091. free_percpu(sdd->sg);
  5092. sdd->sg = NULL;
  5093. free_percpu(sdd->sgp);
  5094. sdd->sgp = NULL;
  5095. }
  5096. }
  5097. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5098. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5099. struct sched_domain *child, int cpu)
  5100. {
  5101. struct sched_domain *sd = tl->init(tl, cpu);
  5102. if (!sd)
  5103. return child;
  5104. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5105. if (child) {
  5106. sd->level = child->level + 1;
  5107. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5108. child->parent = sd;
  5109. sd->child = child;
  5110. }
  5111. set_domain_attribute(sd, attr);
  5112. return sd;
  5113. }
  5114. /*
  5115. * Build sched domains for a given set of cpus and attach the sched domains
  5116. * to the individual cpus
  5117. */
  5118. static int build_sched_domains(const struct cpumask *cpu_map,
  5119. struct sched_domain_attr *attr)
  5120. {
  5121. enum s_alloc alloc_state;
  5122. struct sched_domain *sd;
  5123. struct s_data d;
  5124. int i, ret = -ENOMEM;
  5125. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5126. if (alloc_state != sa_rootdomain)
  5127. goto error;
  5128. /* Set up domains for cpus specified by the cpu_map. */
  5129. for_each_cpu(i, cpu_map) {
  5130. struct sched_domain_topology_level *tl;
  5131. sd = NULL;
  5132. for_each_sd_topology(tl) {
  5133. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5134. if (tl == sched_domain_topology)
  5135. *per_cpu_ptr(d.sd, i) = sd;
  5136. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5137. sd->flags |= SD_OVERLAP;
  5138. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5139. break;
  5140. }
  5141. }
  5142. /* Build the groups for the domains */
  5143. for_each_cpu(i, cpu_map) {
  5144. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5145. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5146. if (sd->flags & SD_OVERLAP) {
  5147. if (build_overlap_sched_groups(sd, i))
  5148. goto error;
  5149. } else {
  5150. if (build_sched_groups(sd, i))
  5151. goto error;
  5152. }
  5153. }
  5154. }
  5155. /* Calculate CPU power for physical packages and nodes */
  5156. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5157. if (!cpumask_test_cpu(i, cpu_map))
  5158. continue;
  5159. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5160. claim_allocations(i, sd);
  5161. init_sched_groups_power(i, sd);
  5162. }
  5163. }
  5164. /* Attach the domains */
  5165. rcu_read_lock();
  5166. for_each_cpu(i, cpu_map) {
  5167. sd = *per_cpu_ptr(d.sd, i);
  5168. cpu_attach_domain(sd, d.rd, i);
  5169. }
  5170. rcu_read_unlock();
  5171. ret = 0;
  5172. error:
  5173. __free_domain_allocs(&d, alloc_state, cpu_map);
  5174. return ret;
  5175. }
  5176. static cpumask_var_t *doms_cur; /* current sched domains */
  5177. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5178. static struct sched_domain_attr *dattr_cur;
  5179. /* attribues of custom domains in 'doms_cur' */
  5180. /*
  5181. * Special case: If a kmalloc of a doms_cur partition (array of
  5182. * cpumask) fails, then fallback to a single sched domain,
  5183. * as determined by the single cpumask fallback_doms.
  5184. */
  5185. static cpumask_var_t fallback_doms;
  5186. /*
  5187. * arch_update_cpu_topology lets virtualized architectures update the
  5188. * cpu core maps. It is supposed to return 1 if the topology changed
  5189. * or 0 if it stayed the same.
  5190. */
  5191. int __attribute__((weak)) arch_update_cpu_topology(void)
  5192. {
  5193. return 0;
  5194. }
  5195. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5196. {
  5197. int i;
  5198. cpumask_var_t *doms;
  5199. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5200. if (!doms)
  5201. return NULL;
  5202. for (i = 0; i < ndoms; i++) {
  5203. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5204. free_sched_domains(doms, i);
  5205. return NULL;
  5206. }
  5207. }
  5208. return doms;
  5209. }
  5210. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5211. {
  5212. unsigned int i;
  5213. for (i = 0; i < ndoms; i++)
  5214. free_cpumask_var(doms[i]);
  5215. kfree(doms);
  5216. }
  5217. /*
  5218. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5219. * For now this just excludes isolated cpus, but could be used to
  5220. * exclude other special cases in the future.
  5221. */
  5222. static int init_sched_domains(const struct cpumask *cpu_map)
  5223. {
  5224. int err;
  5225. arch_update_cpu_topology();
  5226. ndoms_cur = 1;
  5227. doms_cur = alloc_sched_domains(ndoms_cur);
  5228. if (!doms_cur)
  5229. doms_cur = &fallback_doms;
  5230. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5231. err = build_sched_domains(doms_cur[0], NULL);
  5232. register_sched_domain_sysctl();
  5233. return err;
  5234. }
  5235. /*
  5236. * Detach sched domains from a group of cpus specified in cpu_map
  5237. * These cpus will now be attached to the NULL domain
  5238. */
  5239. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5240. {
  5241. int i;
  5242. rcu_read_lock();
  5243. for_each_cpu(i, cpu_map)
  5244. cpu_attach_domain(NULL, &def_root_domain, i);
  5245. rcu_read_unlock();
  5246. }
  5247. /* handle null as "default" */
  5248. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5249. struct sched_domain_attr *new, int idx_new)
  5250. {
  5251. struct sched_domain_attr tmp;
  5252. /* fast path */
  5253. if (!new && !cur)
  5254. return 1;
  5255. tmp = SD_ATTR_INIT;
  5256. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5257. new ? (new + idx_new) : &tmp,
  5258. sizeof(struct sched_domain_attr));
  5259. }
  5260. /*
  5261. * Partition sched domains as specified by the 'ndoms_new'
  5262. * cpumasks in the array doms_new[] of cpumasks. This compares
  5263. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5264. * It destroys each deleted domain and builds each new domain.
  5265. *
  5266. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5267. * The masks don't intersect (don't overlap.) We should setup one
  5268. * sched domain for each mask. CPUs not in any of the cpumasks will
  5269. * not be load balanced. If the same cpumask appears both in the
  5270. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5271. * it as it is.
  5272. *
  5273. * The passed in 'doms_new' should be allocated using
  5274. * alloc_sched_domains. This routine takes ownership of it and will
  5275. * free_sched_domains it when done with it. If the caller failed the
  5276. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5277. * and partition_sched_domains() will fallback to the single partition
  5278. * 'fallback_doms', it also forces the domains to be rebuilt.
  5279. *
  5280. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5281. * ndoms_new == 0 is a special case for destroying existing domains,
  5282. * and it will not create the default domain.
  5283. *
  5284. * Call with hotplug lock held
  5285. */
  5286. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5287. struct sched_domain_attr *dattr_new)
  5288. {
  5289. int i, j, n;
  5290. int new_topology;
  5291. mutex_lock(&sched_domains_mutex);
  5292. /* always unregister in case we don't destroy any domains */
  5293. unregister_sched_domain_sysctl();
  5294. /* Let architecture update cpu core mappings. */
  5295. new_topology = arch_update_cpu_topology();
  5296. n = doms_new ? ndoms_new : 0;
  5297. /* Destroy deleted domains */
  5298. for (i = 0; i < ndoms_cur; i++) {
  5299. for (j = 0; j < n && !new_topology; j++) {
  5300. if (cpumask_equal(doms_cur[i], doms_new[j])
  5301. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5302. goto match1;
  5303. }
  5304. /* no match - a current sched domain not in new doms_new[] */
  5305. detach_destroy_domains(doms_cur[i]);
  5306. match1:
  5307. ;
  5308. }
  5309. n = ndoms_cur;
  5310. if (doms_new == NULL) {
  5311. n = 0;
  5312. doms_new = &fallback_doms;
  5313. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5314. WARN_ON_ONCE(dattr_new);
  5315. }
  5316. /* Build new domains */
  5317. for (i = 0; i < ndoms_new; i++) {
  5318. for (j = 0; j < n && !new_topology; j++) {
  5319. if (cpumask_equal(doms_new[i], doms_cur[j])
  5320. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5321. goto match2;
  5322. }
  5323. /* no match - add a new doms_new */
  5324. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5325. match2:
  5326. ;
  5327. }
  5328. /* Remember the new sched domains */
  5329. if (doms_cur != &fallback_doms)
  5330. free_sched_domains(doms_cur, ndoms_cur);
  5331. kfree(dattr_cur); /* kfree(NULL) is safe */
  5332. doms_cur = doms_new;
  5333. dattr_cur = dattr_new;
  5334. ndoms_cur = ndoms_new;
  5335. register_sched_domain_sysctl();
  5336. mutex_unlock(&sched_domains_mutex);
  5337. }
  5338. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5339. /*
  5340. * Update cpusets according to cpu_active mask. If cpusets are
  5341. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5342. * around partition_sched_domains().
  5343. *
  5344. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5345. * want to restore it back to its original state upon resume anyway.
  5346. */
  5347. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5348. void *hcpu)
  5349. {
  5350. switch (action) {
  5351. case CPU_ONLINE_FROZEN:
  5352. case CPU_DOWN_FAILED_FROZEN:
  5353. /*
  5354. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5355. * resume sequence. As long as this is not the last online
  5356. * operation in the resume sequence, just build a single sched
  5357. * domain, ignoring cpusets.
  5358. */
  5359. num_cpus_frozen--;
  5360. if (likely(num_cpus_frozen)) {
  5361. partition_sched_domains(1, NULL, NULL);
  5362. break;
  5363. }
  5364. /*
  5365. * This is the last CPU online operation. So fall through and
  5366. * restore the original sched domains by considering the
  5367. * cpuset configurations.
  5368. */
  5369. case CPU_ONLINE:
  5370. case CPU_DOWN_FAILED:
  5371. cpuset_update_active_cpus(true);
  5372. break;
  5373. default:
  5374. return NOTIFY_DONE;
  5375. }
  5376. return NOTIFY_OK;
  5377. }
  5378. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5379. void *hcpu)
  5380. {
  5381. switch (action) {
  5382. case CPU_DOWN_PREPARE:
  5383. cpuset_update_active_cpus(false);
  5384. break;
  5385. case CPU_DOWN_PREPARE_FROZEN:
  5386. num_cpus_frozen++;
  5387. partition_sched_domains(1, NULL, NULL);
  5388. break;
  5389. default:
  5390. return NOTIFY_DONE;
  5391. }
  5392. return NOTIFY_OK;
  5393. }
  5394. void __init sched_init_smp(void)
  5395. {
  5396. cpumask_var_t non_isolated_cpus;
  5397. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5398. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5399. sched_init_numa();
  5400. get_online_cpus();
  5401. mutex_lock(&sched_domains_mutex);
  5402. init_sched_domains(cpu_active_mask);
  5403. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5404. if (cpumask_empty(non_isolated_cpus))
  5405. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5406. mutex_unlock(&sched_domains_mutex);
  5407. put_online_cpus();
  5408. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5409. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5410. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5411. init_hrtick();
  5412. /* Move init over to a non-isolated CPU */
  5413. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5414. BUG();
  5415. sched_init_granularity();
  5416. free_cpumask_var(non_isolated_cpus);
  5417. init_sched_rt_class();
  5418. }
  5419. #else
  5420. void __init sched_init_smp(void)
  5421. {
  5422. sched_init_granularity();
  5423. }
  5424. #endif /* CONFIG_SMP */
  5425. const_debug unsigned int sysctl_timer_migration = 1;
  5426. int in_sched_functions(unsigned long addr)
  5427. {
  5428. return in_lock_functions(addr) ||
  5429. (addr >= (unsigned long)__sched_text_start
  5430. && addr < (unsigned long)__sched_text_end);
  5431. }
  5432. #ifdef CONFIG_CGROUP_SCHED
  5433. /*
  5434. * Default task group.
  5435. * Every task in system belongs to this group at bootup.
  5436. */
  5437. struct task_group root_task_group;
  5438. LIST_HEAD(task_groups);
  5439. #endif
  5440. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5441. void __init sched_init(void)
  5442. {
  5443. int i, j;
  5444. unsigned long alloc_size = 0, ptr;
  5445. #ifdef CONFIG_FAIR_GROUP_SCHED
  5446. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5447. #endif
  5448. #ifdef CONFIG_RT_GROUP_SCHED
  5449. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5450. #endif
  5451. #ifdef CONFIG_CPUMASK_OFFSTACK
  5452. alloc_size += num_possible_cpus() * cpumask_size();
  5453. #endif
  5454. if (alloc_size) {
  5455. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5456. #ifdef CONFIG_FAIR_GROUP_SCHED
  5457. root_task_group.se = (struct sched_entity **)ptr;
  5458. ptr += nr_cpu_ids * sizeof(void **);
  5459. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5460. ptr += nr_cpu_ids * sizeof(void **);
  5461. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5462. #ifdef CONFIG_RT_GROUP_SCHED
  5463. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5464. ptr += nr_cpu_ids * sizeof(void **);
  5465. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5466. ptr += nr_cpu_ids * sizeof(void **);
  5467. #endif /* CONFIG_RT_GROUP_SCHED */
  5468. #ifdef CONFIG_CPUMASK_OFFSTACK
  5469. for_each_possible_cpu(i) {
  5470. per_cpu(load_balance_mask, i) = (void *)ptr;
  5471. ptr += cpumask_size();
  5472. }
  5473. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5474. }
  5475. #ifdef CONFIG_SMP
  5476. init_defrootdomain();
  5477. #endif
  5478. init_rt_bandwidth(&def_rt_bandwidth,
  5479. global_rt_period(), global_rt_runtime());
  5480. #ifdef CONFIG_RT_GROUP_SCHED
  5481. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5482. global_rt_period(), global_rt_runtime());
  5483. #endif /* CONFIG_RT_GROUP_SCHED */
  5484. #ifdef CONFIG_CGROUP_SCHED
  5485. list_add(&root_task_group.list, &task_groups);
  5486. INIT_LIST_HEAD(&root_task_group.children);
  5487. INIT_LIST_HEAD(&root_task_group.siblings);
  5488. autogroup_init(&init_task);
  5489. #endif /* CONFIG_CGROUP_SCHED */
  5490. for_each_possible_cpu(i) {
  5491. struct rq *rq;
  5492. rq = cpu_rq(i);
  5493. raw_spin_lock_init(&rq->lock);
  5494. rq->nr_running = 0;
  5495. rq->calc_load_active = 0;
  5496. rq->calc_load_update = jiffies + LOAD_FREQ;
  5497. init_cfs_rq(&rq->cfs);
  5498. init_rt_rq(&rq->rt, rq);
  5499. #ifdef CONFIG_FAIR_GROUP_SCHED
  5500. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5501. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5502. /*
  5503. * How much cpu bandwidth does root_task_group get?
  5504. *
  5505. * In case of task-groups formed thr' the cgroup filesystem, it
  5506. * gets 100% of the cpu resources in the system. This overall
  5507. * system cpu resource is divided among the tasks of
  5508. * root_task_group and its child task-groups in a fair manner,
  5509. * based on each entity's (task or task-group's) weight
  5510. * (se->load.weight).
  5511. *
  5512. * In other words, if root_task_group has 10 tasks of weight
  5513. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5514. * then A0's share of the cpu resource is:
  5515. *
  5516. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5517. *
  5518. * We achieve this by letting root_task_group's tasks sit
  5519. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5520. */
  5521. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5522. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5523. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5524. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5525. #ifdef CONFIG_RT_GROUP_SCHED
  5526. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5527. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5528. #endif
  5529. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5530. rq->cpu_load[j] = 0;
  5531. rq->last_load_update_tick = jiffies;
  5532. #ifdef CONFIG_SMP
  5533. rq->sd = NULL;
  5534. rq->rd = NULL;
  5535. rq->cpu_power = SCHED_POWER_SCALE;
  5536. rq->post_schedule = 0;
  5537. rq->active_balance = 0;
  5538. rq->next_balance = jiffies;
  5539. rq->push_cpu = 0;
  5540. rq->cpu = i;
  5541. rq->online = 0;
  5542. rq->idle_stamp = 0;
  5543. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5544. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5545. INIT_LIST_HEAD(&rq->cfs_tasks);
  5546. rq_attach_root(rq, &def_root_domain);
  5547. #ifdef CONFIG_NO_HZ_COMMON
  5548. rq->nohz_flags = 0;
  5549. #endif
  5550. #ifdef CONFIG_NO_HZ_FULL
  5551. rq->last_sched_tick = 0;
  5552. #endif
  5553. #endif
  5554. init_rq_hrtick(rq);
  5555. atomic_set(&rq->nr_iowait, 0);
  5556. }
  5557. set_load_weight(&init_task);
  5558. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5559. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5560. #endif
  5561. #ifdef CONFIG_RT_MUTEXES
  5562. plist_head_init(&init_task.pi_waiters);
  5563. #endif
  5564. /*
  5565. * The boot idle thread does lazy MMU switching as well:
  5566. */
  5567. atomic_inc(&init_mm.mm_count);
  5568. enter_lazy_tlb(&init_mm, current);
  5569. /*
  5570. * Make us the idle thread. Technically, schedule() should not be
  5571. * called from this thread, however somewhere below it might be,
  5572. * but because we are the idle thread, we just pick up running again
  5573. * when this runqueue becomes "idle".
  5574. */
  5575. init_idle(current, smp_processor_id());
  5576. calc_load_update = jiffies + LOAD_FREQ;
  5577. /*
  5578. * During early bootup we pretend to be a normal task:
  5579. */
  5580. current->sched_class = &fair_sched_class;
  5581. #ifdef CONFIG_SMP
  5582. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5583. /* May be allocated at isolcpus cmdline parse time */
  5584. if (cpu_isolated_map == NULL)
  5585. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5586. idle_thread_set_boot_cpu();
  5587. #endif
  5588. init_sched_fair_class();
  5589. scheduler_running = 1;
  5590. }
  5591. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5592. static inline int preempt_count_equals(int preempt_offset)
  5593. {
  5594. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5595. return (nested == preempt_offset);
  5596. }
  5597. void __might_sleep(const char *file, int line, int preempt_offset)
  5598. {
  5599. static unsigned long prev_jiffy; /* ratelimiting */
  5600. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5601. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5602. system_state != SYSTEM_RUNNING || oops_in_progress)
  5603. return;
  5604. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5605. return;
  5606. prev_jiffy = jiffies;
  5607. printk(KERN_ERR
  5608. "BUG: sleeping function called from invalid context at %s:%d\n",
  5609. file, line);
  5610. printk(KERN_ERR
  5611. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5612. in_atomic(), irqs_disabled(),
  5613. current->pid, current->comm);
  5614. debug_show_held_locks(current);
  5615. if (irqs_disabled())
  5616. print_irqtrace_events(current);
  5617. dump_stack();
  5618. }
  5619. EXPORT_SYMBOL(__might_sleep);
  5620. #endif
  5621. #ifdef CONFIG_MAGIC_SYSRQ
  5622. static void normalize_task(struct rq *rq, struct task_struct *p)
  5623. {
  5624. const struct sched_class *prev_class = p->sched_class;
  5625. int old_prio = p->prio;
  5626. int on_rq;
  5627. on_rq = p->on_rq;
  5628. if (on_rq)
  5629. dequeue_task(rq, p, 0);
  5630. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5631. if (on_rq) {
  5632. enqueue_task(rq, p, 0);
  5633. resched_task(rq->curr);
  5634. }
  5635. check_class_changed(rq, p, prev_class, old_prio);
  5636. }
  5637. void normalize_rt_tasks(void)
  5638. {
  5639. struct task_struct *g, *p;
  5640. unsigned long flags;
  5641. struct rq *rq;
  5642. read_lock_irqsave(&tasklist_lock, flags);
  5643. do_each_thread(g, p) {
  5644. /*
  5645. * Only normalize user tasks:
  5646. */
  5647. if (!p->mm)
  5648. continue;
  5649. p->se.exec_start = 0;
  5650. #ifdef CONFIG_SCHEDSTATS
  5651. p->se.statistics.wait_start = 0;
  5652. p->se.statistics.sleep_start = 0;
  5653. p->se.statistics.block_start = 0;
  5654. #endif
  5655. if (!rt_task(p)) {
  5656. /*
  5657. * Renice negative nice level userspace
  5658. * tasks back to 0:
  5659. */
  5660. if (TASK_NICE(p) < 0 && p->mm)
  5661. set_user_nice(p, 0);
  5662. continue;
  5663. }
  5664. raw_spin_lock(&p->pi_lock);
  5665. rq = __task_rq_lock(p);
  5666. normalize_task(rq, p);
  5667. __task_rq_unlock(rq);
  5668. raw_spin_unlock(&p->pi_lock);
  5669. } while_each_thread(g, p);
  5670. read_unlock_irqrestore(&tasklist_lock, flags);
  5671. }
  5672. #endif /* CONFIG_MAGIC_SYSRQ */
  5673. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5674. /*
  5675. * These functions are only useful for the IA64 MCA handling, or kdb.
  5676. *
  5677. * They can only be called when the whole system has been
  5678. * stopped - every CPU needs to be quiescent, and no scheduling
  5679. * activity can take place. Using them for anything else would
  5680. * be a serious bug, and as a result, they aren't even visible
  5681. * under any other configuration.
  5682. */
  5683. /**
  5684. * curr_task - return the current task for a given cpu.
  5685. * @cpu: the processor in question.
  5686. *
  5687. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5688. *
  5689. * Return: The current task for @cpu.
  5690. */
  5691. struct task_struct *curr_task(int cpu)
  5692. {
  5693. return cpu_curr(cpu);
  5694. }
  5695. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5696. #ifdef CONFIG_IA64
  5697. /**
  5698. * set_curr_task - set the current task for a given cpu.
  5699. * @cpu: the processor in question.
  5700. * @p: the task pointer to set.
  5701. *
  5702. * Description: This function must only be used when non-maskable interrupts
  5703. * are serviced on a separate stack. It allows the architecture to switch the
  5704. * notion of the current task on a cpu in a non-blocking manner. This function
  5705. * must be called with all CPU's synchronized, and interrupts disabled, the
  5706. * and caller must save the original value of the current task (see
  5707. * curr_task() above) and restore that value before reenabling interrupts and
  5708. * re-starting the system.
  5709. *
  5710. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5711. */
  5712. void set_curr_task(int cpu, struct task_struct *p)
  5713. {
  5714. cpu_curr(cpu) = p;
  5715. }
  5716. #endif
  5717. #ifdef CONFIG_CGROUP_SCHED
  5718. /* task_group_lock serializes the addition/removal of task groups */
  5719. static DEFINE_SPINLOCK(task_group_lock);
  5720. static void free_sched_group(struct task_group *tg)
  5721. {
  5722. free_fair_sched_group(tg);
  5723. free_rt_sched_group(tg);
  5724. autogroup_free(tg);
  5725. kfree(tg);
  5726. }
  5727. /* allocate runqueue etc for a new task group */
  5728. struct task_group *sched_create_group(struct task_group *parent)
  5729. {
  5730. struct task_group *tg;
  5731. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5732. if (!tg)
  5733. return ERR_PTR(-ENOMEM);
  5734. if (!alloc_fair_sched_group(tg, parent))
  5735. goto err;
  5736. if (!alloc_rt_sched_group(tg, parent))
  5737. goto err;
  5738. return tg;
  5739. err:
  5740. free_sched_group(tg);
  5741. return ERR_PTR(-ENOMEM);
  5742. }
  5743. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5744. {
  5745. unsigned long flags;
  5746. spin_lock_irqsave(&task_group_lock, flags);
  5747. list_add_rcu(&tg->list, &task_groups);
  5748. WARN_ON(!parent); /* root should already exist */
  5749. tg->parent = parent;
  5750. INIT_LIST_HEAD(&tg->children);
  5751. list_add_rcu(&tg->siblings, &parent->children);
  5752. spin_unlock_irqrestore(&task_group_lock, flags);
  5753. }
  5754. /* rcu callback to free various structures associated with a task group */
  5755. static void free_sched_group_rcu(struct rcu_head *rhp)
  5756. {
  5757. /* now it should be safe to free those cfs_rqs */
  5758. free_sched_group(container_of(rhp, struct task_group, rcu));
  5759. }
  5760. /* Destroy runqueue etc associated with a task group */
  5761. void sched_destroy_group(struct task_group *tg)
  5762. {
  5763. /* wait for possible concurrent references to cfs_rqs complete */
  5764. call_rcu(&tg->rcu, free_sched_group_rcu);
  5765. }
  5766. void sched_offline_group(struct task_group *tg)
  5767. {
  5768. unsigned long flags;
  5769. int i;
  5770. /* end participation in shares distribution */
  5771. for_each_possible_cpu(i)
  5772. unregister_fair_sched_group(tg, i);
  5773. spin_lock_irqsave(&task_group_lock, flags);
  5774. list_del_rcu(&tg->list);
  5775. list_del_rcu(&tg->siblings);
  5776. spin_unlock_irqrestore(&task_group_lock, flags);
  5777. }
  5778. /* change task's runqueue when it moves between groups.
  5779. * The caller of this function should have put the task in its new group
  5780. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5781. * reflect its new group.
  5782. */
  5783. void sched_move_task(struct task_struct *tsk)
  5784. {
  5785. struct task_group *tg;
  5786. int on_rq, running;
  5787. unsigned long flags;
  5788. struct rq *rq;
  5789. rq = task_rq_lock(tsk, &flags);
  5790. running = task_current(rq, tsk);
  5791. on_rq = tsk->on_rq;
  5792. if (on_rq)
  5793. dequeue_task(rq, tsk, 0);
  5794. if (unlikely(running))
  5795. tsk->sched_class->put_prev_task(rq, tsk);
  5796. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  5797. lockdep_is_held(&tsk->sighand->siglock)),
  5798. struct task_group, css);
  5799. tg = autogroup_task_group(tsk, tg);
  5800. tsk->sched_task_group = tg;
  5801. #ifdef CONFIG_FAIR_GROUP_SCHED
  5802. if (tsk->sched_class->task_move_group)
  5803. tsk->sched_class->task_move_group(tsk, on_rq);
  5804. else
  5805. #endif
  5806. set_task_rq(tsk, task_cpu(tsk));
  5807. if (unlikely(running))
  5808. tsk->sched_class->set_curr_task(rq);
  5809. if (on_rq)
  5810. enqueue_task(rq, tsk, 0);
  5811. task_rq_unlock(rq, tsk, &flags);
  5812. }
  5813. #endif /* CONFIG_CGROUP_SCHED */
  5814. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  5815. static unsigned long to_ratio(u64 period, u64 runtime)
  5816. {
  5817. if (runtime == RUNTIME_INF)
  5818. return 1ULL << 20;
  5819. return div64_u64(runtime << 20, period);
  5820. }
  5821. #endif
  5822. #ifdef CONFIG_RT_GROUP_SCHED
  5823. /*
  5824. * Ensure that the real time constraints are schedulable.
  5825. */
  5826. static DEFINE_MUTEX(rt_constraints_mutex);
  5827. /* Must be called with tasklist_lock held */
  5828. static inline int tg_has_rt_tasks(struct task_group *tg)
  5829. {
  5830. struct task_struct *g, *p;
  5831. do_each_thread(g, p) {
  5832. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  5833. return 1;
  5834. } while_each_thread(g, p);
  5835. return 0;
  5836. }
  5837. struct rt_schedulable_data {
  5838. struct task_group *tg;
  5839. u64 rt_period;
  5840. u64 rt_runtime;
  5841. };
  5842. static int tg_rt_schedulable(struct task_group *tg, void *data)
  5843. {
  5844. struct rt_schedulable_data *d = data;
  5845. struct task_group *child;
  5846. unsigned long total, sum = 0;
  5847. u64 period, runtime;
  5848. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5849. runtime = tg->rt_bandwidth.rt_runtime;
  5850. if (tg == d->tg) {
  5851. period = d->rt_period;
  5852. runtime = d->rt_runtime;
  5853. }
  5854. /*
  5855. * Cannot have more runtime than the period.
  5856. */
  5857. if (runtime > period && runtime != RUNTIME_INF)
  5858. return -EINVAL;
  5859. /*
  5860. * Ensure we don't starve existing RT tasks.
  5861. */
  5862. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  5863. return -EBUSY;
  5864. total = to_ratio(period, runtime);
  5865. /*
  5866. * Nobody can have more than the global setting allows.
  5867. */
  5868. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  5869. return -EINVAL;
  5870. /*
  5871. * The sum of our children's runtime should not exceed our own.
  5872. */
  5873. list_for_each_entry_rcu(child, &tg->children, siblings) {
  5874. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  5875. runtime = child->rt_bandwidth.rt_runtime;
  5876. if (child == d->tg) {
  5877. period = d->rt_period;
  5878. runtime = d->rt_runtime;
  5879. }
  5880. sum += to_ratio(period, runtime);
  5881. }
  5882. if (sum > total)
  5883. return -EINVAL;
  5884. return 0;
  5885. }
  5886. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  5887. {
  5888. int ret;
  5889. struct rt_schedulable_data data = {
  5890. .tg = tg,
  5891. .rt_period = period,
  5892. .rt_runtime = runtime,
  5893. };
  5894. rcu_read_lock();
  5895. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  5896. rcu_read_unlock();
  5897. return ret;
  5898. }
  5899. static int tg_set_rt_bandwidth(struct task_group *tg,
  5900. u64 rt_period, u64 rt_runtime)
  5901. {
  5902. int i, err = 0;
  5903. mutex_lock(&rt_constraints_mutex);
  5904. read_lock(&tasklist_lock);
  5905. err = __rt_schedulable(tg, rt_period, rt_runtime);
  5906. if (err)
  5907. goto unlock;
  5908. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5909. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  5910. tg->rt_bandwidth.rt_runtime = rt_runtime;
  5911. for_each_possible_cpu(i) {
  5912. struct rt_rq *rt_rq = tg->rt_rq[i];
  5913. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5914. rt_rq->rt_runtime = rt_runtime;
  5915. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5916. }
  5917. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5918. unlock:
  5919. read_unlock(&tasklist_lock);
  5920. mutex_unlock(&rt_constraints_mutex);
  5921. return err;
  5922. }
  5923. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  5924. {
  5925. u64 rt_runtime, rt_period;
  5926. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5927. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  5928. if (rt_runtime_us < 0)
  5929. rt_runtime = RUNTIME_INF;
  5930. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5931. }
  5932. static long sched_group_rt_runtime(struct task_group *tg)
  5933. {
  5934. u64 rt_runtime_us;
  5935. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  5936. return -1;
  5937. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  5938. do_div(rt_runtime_us, NSEC_PER_USEC);
  5939. return rt_runtime_us;
  5940. }
  5941. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  5942. {
  5943. u64 rt_runtime, rt_period;
  5944. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  5945. rt_runtime = tg->rt_bandwidth.rt_runtime;
  5946. if (rt_period == 0)
  5947. return -EINVAL;
  5948. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5949. }
  5950. static long sched_group_rt_period(struct task_group *tg)
  5951. {
  5952. u64 rt_period_us;
  5953. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5954. do_div(rt_period_us, NSEC_PER_USEC);
  5955. return rt_period_us;
  5956. }
  5957. static int sched_rt_global_constraints(void)
  5958. {
  5959. u64 runtime, period;
  5960. int ret = 0;
  5961. if (sysctl_sched_rt_period <= 0)
  5962. return -EINVAL;
  5963. runtime = global_rt_runtime();
  5964. period = global_rt_period();
  5965. /*
  5966. * Sanity check on the sysctl variables.
  5967. */
  5968. if (runtime > period && runtime != RUNTIME_INF)
  5969. return -EINVAL;
  5970. mutex_lock(&rt_constraints_mutex);
  5971. read_lock(&tasklist_lock);
  5972. ret = __rt_schedulable(NULL, 0, 0);
  5973. read_unlock(&tasklist_lock);
  5974. mutex_unlock(&rt_constraints_mutex);
  5975. return ret;
  5976. }
  5977. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  5978. {
  5979. /* Don't accept realtime tasks when there is no way for them to run */
  5980. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  5981. return 0;
  5982. return 1;
  5983. }
  5984. #else /* !CONFIG_RT_GROUP_SCHED */
  5985. static int sched_rt_global_constraints(void)
  5986. {
  5987. unsigned long flags;
  5988. int i;
  5989. if (sysctl_sched_rt_period <= 0)
  5990. return -EINVAL;
  5991. /*
  5992. * There's always some RT tasks in the root group
  5993. * -- migration, kstopmachine etc..
  5994. */
  5995. if (sysctl_sched_rt_runtime == 0)
  5996. return -EBUSY;
  5997. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  5998. for_each_possible_cpu(i) {
  5999. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6000. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6001. rt_rq->rt_runtime = global_rt_runtime();
  6002. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6003. }
  6004. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6005. return 0;
  6006. }
  6007. #endif /* CONFIG_RT_GROUP_SCHED */
  6008. int sched_rr_handler(struct ctl_table *table, int write,
  6009. void __user *buffer, size_t *lenp,
  6010. loff_t *ppos)
  6011. {
  6012. int ret;
  6013. static DEFINE_MUTEX(mutex);
  6014. mutex_lock(&mutex);
  6015. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6016. /* make sure that internally we keep jiffies */
  6017. /* also, writing zero resets timeslice to default */
  6018. if (!ret && write) {
  6019. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6020. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6021. }
  6022. mutex_unlock(&mutex);
  6023. return ret;
  6024. }
  6025. int sched_rt_handler(struct ctl_table *table, int write,
  6026. void __user *buffer, size_t *lenp,
  6027. loff_t *ppos)
  6028. {
  6029. int ret;
  6030. int old_period, old_runtime;
  6031. static DEFINE_MUTEX(mutex);
  6032. mutex_lock(&mutex);
  6033. old_period = sysctl_sched_rt_period;
  6034. old_runtime = sysctl_sched_rt_runtime;
  6035. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6036. if (!ret && write) {
  6037. ret = sched_rt_global_constraints();
  6038. if (ret) {
  6039. sysctl_sched_rt_period = old_period;
  6040. sysctl_sched_rt_runtime = old_runtime;
  6041. } else {
  6042. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6043. def_rt_bandwidth.rt_period =
  6044. ns_to_ktime(global_rt_period());
  6045. }
  6046. }
  6047. mutex_unlock(&mutex);
  6048. return ret;
  6049. }
  6050. #ifdef CONFIG_CGROUP_SCHED
  6051. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6052. {
  6053. return css ? container_of(css, struct task_group, css) : NULL;
  6054. }
  6055. static struct cgroup_subsys_state *
  6056. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6057. {
  6058. struct task_group *parent = css_tg(parent_css);
  6059. struct task_group *tg;
  6060. if (!parent) {
  6061. /* This is early initialization for the top cgroup */
  6062. return &root_task_group.css;
  6063. }
  6064. tg = sched_create_group(parent);
  6065. if (IS_ERR(tg))
  6066. return ERR_PTR(-ENOMEM);
  6067. return &tg->css;
  6068. }
  6069. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6070. {
  6071. struct task_group *tg = css_tg(css);
  6072. struct task_group *parent = css_tg(css_parent(css));
  6073. if (parent)
  6074. sched_online_group(tg, parent);
  6075. return 0;
  6076. }
  6077. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6078. {
  6079. struct task_group *tg = css_tg(css);
  6080. sched_destroy_group(tg);
  6081. }
  6082. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6083. {
  6084. struct task_group *tg = css_tg(css);
  6085. sched_offline_group(tg);
  6086. }
  6087. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6088. struct cgroup_taskset *tset)
  6089. {
  6090. struct task_struct *task;
  6091. cgroup_taskset_for_each(task, css, tset) {
  6092. #ifdef CONFIG_RT_GROUP_SCHED
  6093. if (!sched_rt_can_attach(css_tg(css), task))
  6094. return -EINVAL;
  6095. #else
  6096. /* We don't support RT-tasks being in separate groups */
  6097. if (task->sched_class != &fair_sched_class)
  6098. return -EINVAL;
  6099. #endif
  6100. }
  6101. return 0;
  6102. }
  6103. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6104. struct cgroup_taskset *tset)
  6105. {
  6106. struct task_struct *task;
  6107. cgroup_taskset_for_each(task, css, tset)
  6108. sched_move_task(task);
  6109. }
  6110. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6111. struct cgroup_subsys_state *old_css,
  6112. struct task_struct *task)
  6113. {
  6114. /*
  6115. * cgroup_exit() is called in the copy_process() failure path.
  6116. * Ignore this case since the task hasn't ran yet, this avoids
  6117. * trying to poke a half freed task state from generic code.
  6118. */
  6119. if (!(task->flags & PF_EXITING))
  6120. return;
  6121. sched_move_task(task);
  6122. }
  6123. #ifdef CONFIG_FAIR_GROUP_SCHED
  6124. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6125. struct cftype *cftype, u64 shareval)
  6126. {
  6127. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6128. }
  6129. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6130. struct cftype *cft)
  6131. {
  6132. struct task_group *tg = css_tg(css);
  6133. return (u64) scale_load_down(tg->shares);
  6134. }
  6135. #ifdef CONFIG_CFS_BANDWIDTH
  6136. static DEFINE_MUTEX(cfs_constraints_mutex);
  6137. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6138. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6139. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6140. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6141. {
  6142. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6143. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6144. if (tg == &root_task_group)
  6145. return -EINVAL;
  6146. /*
  6147. * Ensure we have at some amount of bandwidth every period. This is
  6148. * to prevent reaching a state of large arrears when throttled via
  6149. * entity_tick() resulting in prolonged exit starvation.
  6150. */
  6151. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6152. return -EINVAL;
  6153. /*
  6154. * Likewise, bound things on the otherside by preventing insane quota
  6155. * periods. This also allows us to normalize in computing quota
  6156. * feasibility.
  6157. */
  6158. if (period > max_cfs_quota_period)
  6159. return -EINVAL;
  6160. mutex_lock(&cfs_constraints_mutex);
  6161. ret = __cfs_schedulable(tg, period, quota);
  6162. if (ret)
  6163. goto out_unlock;
  6164. runtime_enabled = quota != RUNTIME_INF;
  6165. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6166. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6167. raw_spin_lock_irq(&cfs_b->lock);
  6168. cfs_b->period = ns_to_ktime(period);
  6169. cfs_b->quota = quota;
  6170. __refill_cfs_bandwidth_runtime(cfs_b);
  6171. /* restart the period timer (if active) to handle new period expiry */
  6172. if (runtime_enabled && cfs_b->timer_active) {
  6173. /* force a reprogram */
  6174. cfs_b->timer_active = 0;
  6175. __start_cfs_bandwidth(cfs_b);
  6176. }
  6177. raw_spin_unlock_irq(&cfs_b->lock);
  6178. for_each_possible_cpu(i) {
  6179. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6180. struct rq *rq = cfs_rq->rq;
  6181. raw_spin_lock_irq(&rq->lock);
  6182. cfs_rq->runtime_enabled = runtime_enabled;
  6183. cfs_rq->runtime_remaining = 0;
  6184. if (cfs_rq->throttled)
  6185. unthrottle_cfs_rq(cfs_rq);
  6186. raw_spin_unlock_irq(&rq->lock);
  6187. }
  6188. out_unlock:
  6189. mutex_unlock(&cfs_constraints_mutex);
  6190. return ret;
  6191. }
  6192. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6193. {
  6194. u64 quota, period;
  6195. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6196. if (cfs_quota_us < 0)
  6197. quota = RUNTIME_INF;
  6198. else
  6199. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6200. return tg_set_cfs_bandwidth(tg, period, quota);
  6201. }
  6202. long tg_get_cfs_quota(struct task_group *tg)
  6203. {
  6204. u64 quota_us;
  6205. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6206. return -1;
  6207. quota_us = tg->cfs_bandwidth.quota;
  6208. do_div(quota_us, NSEC_PER_USEC);
  6209. return quota_us;
  6210. }
  6211. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6212. {
  6213. u64 quota, period;
  6214. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6215. quota = tg->cfs_bandwidth.quota;
  6216. return tg_set_cfs_bandwidth(tg, period, quota);
  6217. }
  6218. long tg_get_cfs_period(struct task_group *tg)
  6219. {
  6220. u64 cfs_period_us;
  6221. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6222. do_div(cfs_period_us, NSEC_PER_USEC);
  6223. return cfs_period_us;
  6224. }
  6225. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6226. struct cftype *cft)
  6227. {
  6228. return tg_get_cfs_quota(css_tg(css));
  6229. }
  6230. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6231. struct cftype *cftype, s64 cfs_quota_us)
  6232. {
  6233. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6234. }
  6235. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6236. struct cftype *cft)
  6237. {
  6238. return tg_get_cfs_period(css_tg(css));
  6239. }
  6240. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6241. struct cftype *cftype, u64 cfs_period_us)
  6242. {
  6243. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6244. }
  6245. struct cfs_schedulable_data {
  6246. struct task_group *tg;
  6247. u64 period, quota;
  6248. };
  6249. /*
  6250. * normalize group quota/period to be quota/max_period
  6251. * note: units are usecs
  6252. */
  6253. static u64 normalize_cfs_quota(struct task_group *tg,
  6254. struct cfs_schedulable_data *d)
  6255. {
  6256. u64 quota, period;
  6257. if (tg == d->tg) {
  6258. period = d->period;
  6259. quota = d->quota;
  6260. } else {
  6261. period = tg_get_cfs_period(tg);
  6262. quota = tg_get_cfs_quota(tg);
  6263. }
  6264. /* note: these should typically be equivalent */
  6265. if (quota == RUNTIME_INF || quota == -1)
  6266. return RUNTIME_INF;
  6267. return to_ratio(period, quota);
  6268. }
  6269. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6270. {
  6271. struct cfs_schedulable_data *d = data;
  6272. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6273. s64 quota = 0, parent_quota = -1;
  6274. if (!tg->parent) {
  6275. quota = RUNTIME_INF;
  6276. } else {
  6277. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6278. quota = normalize_cfs_quota(tg, d);
  6279. parent_quota = parent_b->hierarchal_quota;
  6280. /*
  6281. * ensure max(child_quota) <= parent_quota, inherit when no
  6282. * limit is set
  6283. */
  6284. if (quota == RUNTIME_INF)
  6285. quota = parent_quota;
  6286. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6287. return -EINVAL;
  6288. }
  6289. cfs_b->hierarchal_quota = quota;
  6290. return 0;
  6291. }
  6292. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6293. {
  6294. int ret;
  6295. struct cfs_schedulable_data data = {
  6296. .tg = tg,
  6297. .period = period,
  6298. .quota = quota,
  6299. };
  6300. if (quota != RUNTIME_INF) {
  6301. do_div(data.period, NSEC_PER_USEC);
  6302. do_div(data.quota, NSEC_PER_USEC);
  6303. }
  6304. rcu_read_lock();
  6305. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6306. rcu_read_unlock();
  6307. return ret;
  6308. }
  6309. static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
  6310. struct cgroup_map_cb *cb)
  6311. {
  6312. struct task_group *tg = css_tg(css);
  6313. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6314. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6315. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6316. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6317. return 0;
  6318. }
  6319. #endif /* CONFIG_CFS_BANDWIDTH */
  6320. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6321. #ifdef CONFIG_RT_GROUP_SCHED
  6322. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6323. struct cftype *cft, s64 val)
  6324. {
  6325. return sched_group_set_rt_runtime(css_tg(css), val);
  6326. }
  6327. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6328. struct cftype *cft)
  6329. {
  6330. return sched_group_rt_runtime(css_tg(css));
  6331. }
  6332. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6333. struct cftype *cftype, u64 rt_period_us)
  6334. {
  6335. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6336. }
  6337. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6338. struct cftype *cft)
  6339. {
  6340. return sched_group_rt_period(css_tg(css));
  6341. }
  6342. #endif /* CONFIG_RT_GROUP_SCHED */
  6343. static struct cftype cpu_files[] = {
  6344. #ifdef CONFIG_FAIR_GROUP_SCHED
  6345. {
  6346. .name = "shares",
  6347. .read_u64 = cpu_shares_read_u64,
  6348. .write_u64 = cpu_shares_write_u64,
  6349. },
  6350. #endif
  6351. #ifdef CONFIG_CFS_BANDWIDTH
  6352. {
  6353. .name = "cfs_quota_us",
  6354. .read_s64 = cpu_cfs_quota_read_s64,
  6355. .write_s64 = cpu_cfs_quota_write_s64,
  6356. },
  6357. {
  6358. .name = "cfs_period_us",
  6359. .read_u64 = cpu_cfs_period_read_u64,
  6360. .write_u64 = cpu_cfs_period_write_u64,
  6361. },
  6362. {
  6363. .name = "stat",
  6364. .read_map = cpu_stats_show,
  6365. },
  6366. #endif
  6367. #ifdef CONFIG_RT_GROUP_SCHED
  6368. {
  6369. .name = "rt_runtime_us",
  6370. .read_s64 = cpu_rt_runtime_read,
  6371. .write_s64 = cpu_rt_runtime_write,
  6372. },
  6373. {
  6374. .name = "rt_period_us",
  6375. .read_u64 = cpu_rt_period_read_uint,
  6376. .write_u64 = cpu_rt_period_write_uint,
  6377. },
  6378. #endif
  6379. { } /* terminate */
  6380. };
  6381. struct cgroup_subsys cpu_cgroup_subsys = {
  6382. .name = "cpu",
  6383. .css_alloc = cpu_cgroup_css_alloc,
  6384. .css_free = cpu_cgroup_css_free,
  6385. .css_online = cpu_cgroup_css_online,
  6386. .css_offline = cpu_cgroup_css_offline,
  6387. .can_attach = cpu_cgroup_can_attach,
  6388. .attach = cpu_cgroup_attach,
  6389. .exit = cpu_cgroup_exit,
  6390. .subsys_id = cpu_cgroup_subsys_id,
  6391. .base_cftypes = cpu_files,
  6392. .early_init = 1,
  6393. };
  6394. #endif /* CONFIG_CGROUP_SCHED */
  6395. void dump_cpu_task(int cpu)
  6396. {
  6397. pr_info("Task dump for CPU %d:\n", cpu);
  6398. sched_show_task(cpu_curr(cpu));
  6399. }