i915_gem.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  55. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  56. {
  57. if (obj->tiling_mode)
  58. i915_gem_release_mmap(obj);
  59. /* As we do not have an associated fence register, we will force
  60. * a tiling change if we ever need to acquire one.
  61. */
  62. obj->fence_dirty = false;
  63. obj->fence_reg = I915_FENCE_REG_NONE;
  64. }
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static int
  79. i915_gem_wait_for_error(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. struct completion *x = &dev_priv->error_completion;
  83. unsigned long flags;
  84. int ret;
  85. if (!atomic_read(&dev_priv->mm.wedged))
  86. return 0;
  87. ret = wait_for_completion_interruptible(x);
  88. if (ret)
  89. return ret;
  90. if (atomic_read(&dev_priv->mm.wedged)) {
  91. /* GPU is hung, bump the completion count to account for
  92. * the token we just consumed so that we never hit zero and
  93. * end up waiting upon a subsequent completion event that
  94. * will never happen.
  95. */
  96. spin_lock_irqsave(&x->wait.lock, flags);
  97. x->done++;
  98. spin_unlock_irqrestore(&x->wait.lock, flags);
  99. }
  100. return 0;
  101. }
  102. int i915_mutex_lock_interruptible(struct drm_device *dev)
  103. {
  104. int ret;
  105. ret = i915_gem_wait_for_error(dev);
  106. if (ret)
  107. return ret;
  108. ret = mutex_lock_interruptible(&dev->struct_mutex);
  109. if (ret)
  110. return ret;
  111. WARN_ON(i915_verify_lists(dev));
  112. return 0;
  113. }
  114. static inline bool
  115. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  116. {
  117. return !obj->active;
  118. }
  119. int
  120. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  121. struct drm_file *file)
  122. {
  123. struct drm_i915_gem_init *args = data;
  124. if (drm_core_check_feature(dev, DRIVER_MODESET))
  125. return -ENODEV;
  126. if (args->gtt_start >= args->gtt_end ||
  127. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  128. return -EINVAL;
  129. /* GEM with user mode setting was never supported on ilk and later. */
  130. if (INTEL_INFO(dev)->gen >= 5)
  131. return -ENODEV;
  132. mutex_lock(&dev->struct_mutex);
  133. i915_gem_init_global_gtt(dev, args->gtt_start,
  134. args->gtt_end, args->gtt_end);
  135. mutex_unlock(&dev->struct_mutex);
  136. return 0;
  137. }
  138. int
  139. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  140. struct drm_file *file)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. struct drm_i915_gem_get_aperture *args = data;
  144. struct drm_i915_gem_object *obj;
  145. size_t pinned;
  146. pinned = 0;
  147. mutex_lock(&dev->struct_mutex);
  148. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
  149. if (obj->pin_count)
  150. pinned += obj->gtt_space->size;
  151. mutex_unlock(&dev->struct_mutex);
  152. args->aper_size = dev_priv->mm.gtt_total;
  153. args->aper_available_size = args->aper_size - pinned;
  154. return 0;
  155. }
  156. static int
  157. i915_gem_create(struct drm_file *file,
  158. struct drm_device *dev,
  159. uint64_t size,
  160. uint32_t *handle_p)
  161. {
  162. struct drm_i915_gem_object *obj;
  163. int ret;
  164. u32 handle;
  165. size = roundup(size, PAGE_SIZE);
  166. if (size == 0)
  167. return -EINVAL;
  168. /* Allocate the new object */
  169. obj = i915_gem_alloc_object(dev, size);
  170. if (obj == NULL)
  171. return -ENOMEM;
  172. ret = drm_gem_handle_create(file, &obj->base, &handle);
  173. if (ret) {
  174. drm_gem_object_release(&obj->base);
  175. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  176. kfree(obj);
  177. return ret;
  178. }
  179. /* drop reference from allocate - handle holds it now */
  180. drm_gem_object_unreference(&obj->base);
  181. trace_i915_gem_object_create(obj);
  182. *handle_p = handle;
  183. return 0;
  184. }
  185. int
  186. i915_gem_dumb_create(struct drm_file *file,
  187. struct drm_device *dev,
  188. struct drm_mode_create_dumb *args)
  189. {
  190. /* have to work out size/pitch and return them */
  191. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  192. args->size = args->pitch * args->height;
  193. return i915_gem_create(file, dev,
  194. args->size, &args->handle);
  195. }
  196. int i915_gem_dumb_destroy(struct drm_file *file,
  197. struct drm_device *dev,
  198. uint32_t handle)
  199. {
  200. return drm_gem_handle_delete(file, handle);
  201. }
  202. /**
  203. * Creates a new mm object and returns a handle to it.
  204. */
  205. int
  206. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  207. struct drm_file *file)
  208. {
  209. struct drm_i915_gem_create *args = data;
  210. return i915_gem_create(file, dev,
  211. args->size, &args->handle);
  212. }
  213. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  214. {
  215. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  216. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  217. obj->tiling_mode != I915_TILING_NONE;
  218. }
  219. static inline int
  220. __copy_to_user_swizzled(char __user *cpu_vaddr,
  221. const char *gpu_vaddr, int gpu_offset,
  222. int length)
  223. {
  224. int ret, cpu_offset = 0;
  225. while (length > 0) {
  226. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  227. int this_length = min(cacheline_end - gpu_offset, length);
  228. int swizzled_gpu_offset = gpu_offset ^ 64;
  229. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  230. gpu_vaddr + swizzled_gpu_offset,
  231. this_length);
  232. if (ret)
  233. return ret + length;
  234. cpu_offset += this_length;
  235. gpu_offset += this_length;
  236. length -= this_length;
  237. }
  238. return 0;
  239. }
  240. static inline int
  241. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  242. const char __user *cpu_vaddr,
  243. int length)
  244. {
  245. int ret, cpu_offset = 0;
  246. while (length > 0) {
  247. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  248. int this_length = min(cacheline_end - gpu_offset, length);
  249. int swizzled_gpu_offset = gpu_offset ^ 64;
  250. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  251. cpu_vaddr + cpu_offset,
  252. this_length);
  253. if (ret)
  254. return ret + length;
  255. cpu_offset += this_length;
  256. gpu_offset += this_length;
  257. length -= this_length;
  258. }
  259. return 0;
  260. }
  261. /* Per-page copy function for the shmem pread fastpath.
  262. * Flushes invalid cachelines before reading the target if
  263. * needs_clflush is set. */
  264. static int
  265. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  266. char __user *user_data,
  267. bool page_do_bit17_swizzling, bool needs_clflush)
  268. {
  269. char *vaddr;
  270. int ret;
  271. if (unlikely(page_do_bit17_swizzling))
  272. return -EINVAL;
  273. vaddr = kmap_atomic(page);
  274. if (needs_clflush)
  275. drm_clflush_virt_range(vaddr + shmem_page_offset,
  276. page_length);
  277. ret = __copy_to_user_inatomic(user_data,
  278. vaddr + shmem_page_offset,
  279. page_length);
  280. kunmap_atomic(vaddr);
  281. return ret;
  282. }
  283. static void
  284. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  285. bool swizzled)
  286. {
  287. if (unlikely(swizzled)) {
  288. unsigned long start = (unsigned long) addr;
  289. unsigned long end = (unsigned long) addr + length;
  290. /* For swizzling simply ensure that we always flush both
  291. * channels. Lame, but simple and it works. Swizzled
  292. * pwrite/pread is far from a hotpath - current userspace
  293. * doesn't use it at all. */
  294. start = round_down(start, 128);
  295. end = round_up(end, 128);
  296. drm_clflush_virt_range((void *)start, end - start);
  297. } else {
  298. drm_clflush_virt_range(addr, length);
  299. }
  300. }
  301. /* Only difference to the fast-path function is that this can handle bit17
  302. * and uses non-atomic copy and kmap functions. */
  303. static int
  304. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  305. char __user *user_data,
  306. bool page_do_bit17_swizzling, bool needs_clflush)
  307. {
  308. char *vaddr;
  309. int ret;
  310. vaddr = kmap(page);
  311. if (needs_clflush)
  312. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  313. page_length,
  314. page_do_bit17_swizzling);
  315. if (page_do_bit17_swizzling)
  316. ret = __copy_to_user_swizzled(user_data,
  317. vaddr, shmem_page_offset,
  318. page_length);
  319. else
  320. ret = __copy_to_user(user_data,
  321. vaddr + shmem_page_offset,
  322. page_length);
  323. kunmap(page);
  324. return ret;
  325. }
  326. static int
  327. i915_gem_shmem_pread(struct drm_device *dev,
  328. struct drm_i915_gem_object *obj,
  329. struct drm_i915_gem_pread *args,
  330. struct drm_file *file)
  331. {
  332. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  333. char __user *user_data;
  334. ssize_t remain;
  335. loff_t offset;
  336. int shmem_page_offset, page_length, ret = 0;
  337. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  338. int hit_slowpath = 0;
  339. int prefaulted = 0;
  340. int needs_clflush = 0;
  341. int release_page;
  342. user_data = (char __user *) (uintptr_t) args->data_ptr;
  343. remain = args->size;
  344. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  345. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  346. /* If we're not in the cpu read domain, set ourself into the gtt
  347. * read domain and manually flush cachelines (if required). This
  348. * optimizes for the case when the gpu will dirty the data
  349. * anyway again before the next pread happens. */
  350. if (obj->cache_level == I915_CACHE_NONE)
  351. needs_clflush = 1;
  352. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  353. if (ret)
  354. return ret;
  355. }
  356. offset = args->offset;
  357. while (remain > 0) {
  358. struct page *page;
  359. /* Operation in this page
  360. *
  361. * shmem_page_offset = offset within page in shmem file
  362. * page_length = bytes to copy for this page
  363. */
  364. shmem_page_offset = offset_in_page(offset);
  365. page_length = remain;
  366. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  367. page_length = PAGE_SIZE - shmem_page_offset;
  368. if (obj->pages) {
  369. page = obj->pages[offset >> PAGE_SHIFT];
  370. release_page = 0;
  371. } else {
  372. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  373. if (IS_ERR(page)) {
  374. ret = PTR_ERR(page);
  375. goto out;
  376. }
  377. release_page = 1;
  378. }
  379. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  380. (page_to_phys(page) & (1 << 17)) != 0;
  381. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  382. user_data, page_do_bit17_swizzling,
  383. needs_clflush);
  384. if (ret == 0)
  385. goto next_page;
  386. hit_slowpath = 1;
  387. page_cache_get(page);
  388. mutex_unlock(&dev->struct_mutex);
  389. if (!prefaulted) {
  390. ret = fault_in_multipages_writeable(user_data, remain);
  391. /* Userspace is tricking us, but we've already clobbered
  392. * its pages with the prefault and promised to write the
  393. * data up to the first fault. Hence ignore any errors
  394. * and just continue. */
  395. (void)ret;
  396. prefaulted = 1;
  397. }
  398. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  399. user_data, page_do_bit17_swizzling,
  400. needs_clflush);
  401. mutex_lock(&dev->struct_mutex);
  402. page_cache_release(page);
  403. next_page:
  404. mark_page_accessed(page);
  405. if (release_page)
  406. page_cache_release(page);
  407. if (ret) {
  408. ret = -EFAULT;
  409. goto out;
  410. }
  411. remain -= page_length;
  412. user_data += page_length;
  413. offset += page_length;
  414. }
  415. out:
  416. if (hit_slowpath) {
  417. /* Fixup: Kill any reinstated backing storage pages */
  418. if (obj->madv == __I915_MADV_PURGED)
  419. i915_gem_object_truncate(obj);
  420. }
  421. return ret;
  422. }
  423. /**
  424. * Reads data from the object referenced by handle.
  425. *
  426. * On error, the contents of *data are undefined.
  427. */
  428. int
  429. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  430. struct drm_file *file)
  431. {
  432. struct drm_i915_gem_pread *args = data;
  433. struct drm_i915_gem_object *obj;
  434. int ret = 0;
  435. if (args->size == 0)
  436. return 0;
  437. if (!access_ok(VERIFY_WRITE,
  438. (char __user *)(uintptr_t)args->data_ptr,
  439. args->size))
  440. return -EFAULT;
  441. ret = i915_mutex_lock_interruptible(dev);
  442. if (ret)
  443. return ret;
  444. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  445. if (&obj->base == NULL) {
  446. ret = -ENOENT;
  447. goto unlock;
  448. }
  449. /* Bounds check source. */
  450. if (args->offset > obj->base.size ||
  451. args->size > obj->base.size - args->offset) {
  452. ret = -EINVAL;
  453. goto out;
  454. }
  455. trace_i915_gem_object_pread(obj, args->offset, args->size);
  456. ret = i915_gem_shmem_pread(dev, obj, args, file);
  457. out:
  458. drm_gem_object_unreference(&obj->base);
  459. unlock:
  460. mutex_unlock(&dev->struct_mutex);
  461. return ret;
  462. }
  463. /* This is the fast write path which cannot handle
  464. * page faults in the source data
  465. */
  466. static inline int
  467. fast_user_write(struct io_mapping *mapping,
  468. loff_t page_base, int page_offset,
  469. char __user *user_data,
  470. int length)
  471. {
  472. void __iomem *vaddr_atomic;
  473. void *vaddr;
  474. unsigned long unwritten;
  475. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  476. /* We can use the cpu mem copy function because this is X86. */
  477. vaddr = (void __force*)vaddr_atomic + page_offset;
  478. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  479. user_data, length);
  480. io_mapping_unmap_atomic(vaddr_atomic);
  481. return unwritten;
  482. }
  483. /**
  484. * This is the fast pwrite path, where we copy the data directly from the
  485. * user into the GTT, uncached.
  486. */
  487. static int
  488. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  489. struct drm_i915_gem_object *obj,
  490. struct drm_i915_gem_pwrite *args,
  491. struct drm_file *file)
  492. {
  493. drm_i915_private_t *dev_priv = dev->dev_private;
  494. ssize_t remain;
  495. loff_t offset, page_base;
  496. char __user *user_data;
  497. int page_offset, page_length, ret;
  498. ret = i915_gem_object_pin(obj, 0, true);
  499. if (ret)
  500. goto out;
  501. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  502. if (ret)
  503. goto out_unpin;
  504. ret = i915_gem_object_put_fence(obj);
  505. if (ret)
  506. goto out_unpin;
  507. user_data = (char __user *) (uintptr_t) args->data_ptr;
  508. remain = args->size;
  509. offset = obj->gtt_offset + args->offset;
  510. while (remain > 0) {
  511. /* Operation in this page
  512. *
  513. * page_base = page offset within aperture
  514. * page_offset = offset within page
  515. * page_length = bytes to copy for this page
  516. */
  517. page_base = offset & PAGE_MASK;
  518. page_offset = offset_in_page(offset);
  519. page_length = remain;
  520. if ((page_offset + remain) > PAGE_SIZE)
  521. page_length = PAGE_SIZE - page_offset;
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  527. page_offset, user_data, page_length)) {
  528. ret = -EFAULT;
  529. goto out_unpin;
  530. }
  531. remain -= page_length;
  532. user_data += page_length;
  533. offset += page_length;
  534. }
  535. out_unpin:
  536. i915_gem_object_unpin(obj);
  537. out:
  538. return ret;
  539. }
  540. /* Per-page copy function for the shmem pwrite fastpath.
  541. * Flushes invalid cachelines before writing to the target if
  542. * needs_clflush_before is set and flushes out any written cachelines after
  543. * writing if needs_clflush is set. */
  544. static int
  545. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  546. char __user *user_data,
  547. bool page_do_bit17_swizzling,
  548. bool needs_clflush_before,
  549. bool needs_clflush_after)
  550. {
  551. char *vaddr;
  552. int ret;
  553. if (unlikely(page_do_bit17_swizzling))
  554. return -EINVAL;
  555. vaddr = kmap_atomic(page);
  556. if (needs_clflush_before)
  557. drm_clflush_virt_range(vaddr + shmem_page_offset,
  558. page_length);
  559. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  560. user_data,
  561. page_length);
  562. if (needs_clflush_after)
  563. drm_clflush_virt_range(vaddr + shmem_page_offset,
  564. page_length);
  565. kunmap_atomic(vaddr);
  566. return ret;
  567. }
  568. /* Only difference to the fast-path function is that this can handle bit17
  569. * and uses non-atomic copy and kmap functions. */
  570. static int
  571. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  572. char __user *user_data,
  573. bool page_do_bit17_swizzling,
  574. bool needs_clflush_before,
  575. bool needs_clflush_after)
  576. {
  577. char *vaddr;
  578. int ret;
  579. vaddr = kmap(page);
  580. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  581. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  582. page_length,
  583. page_do_bit17_swizzling);
  584. if (page_do_bit17_swizzling)
  585. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  586. user_data,
  587. page_length);
  588. else
  589. ret = __copy_from_user(vaddr + shmem_page_offset,
  590. user_data,
  591. page_length);
  592. if (needs_clflush_after)
  593. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  594. page_length,
  595. page_do_bit17_swizzling);
  596. kunmap(page);
  597. return ret;
  598. }
  599. static int
  600. i915_gem_shmem_pwrite(struct drm_device *dev,
  601. struct drm_i915_gem_object *obj,
  602. struct drm_i915_gem_pwrite *args,
  603. struct drm_file *file)
  604. {
  605. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  606. ssize_t remain;
  607. loff_t offset;
  608. char __user *user_data;
  609. int shmem_page_offset, page_length, ret = 0;
  610. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  611. int hit_slowpath = 0;
  612. int needs_clflush_after = 0;
  613. int needs_clflush_before = 0;
  614. int release_page;
  615. user_data = (char __user *) (uintptr_t) args->data_ptr;
  616. remain = args->size;
  617. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  618. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  619. /* If we're not in the cpu write domain, set ourself into the gtt
  620. * write domain and manually flush cachelines (if required). This
  621. * optimizes for the case when the gpu will use the data
  622. * right away and we therefore have to clflush anyway. */
  623. if (obj->cache_level == I915_CACHE_NONE)
  624. needs_clflush_after = 1;
  625. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  626. if (ret)
  627. return ret;
  628. }
  629. /* Same trick applies for invalidate partially written cachelines before
  630. * writing. */
  631. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  632. && obj->cache_level == I915_CACHE_NONE)
  633. needs_clflush_before = 1;
  634. offset = args->offset;
  635. obj->dirty = 1;
  636. while (remain > 0) {
  637. struct page *page;
  638. int partial_cacheline_write;
  639. /* Operation in this page
  640. *
  641. * shmem_page_offset = offset within page in shmem file
  642. * page_length = bytes to copy for this page
  643. */
  644. shmem_page_offset = offset_in_page(offset);
  645. page_length = remain;
  646. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  647. page_length = PAGE_SIZE - shmem_page_offset;
  648. /* If we don't overwrite a cacheline completely we need to be
  649. * careful to have up-to-date data by first clflushing. Don't
  650. * overcomplicate things and flush the entire patch. */
  651. partial_cacheline_write = needs_clflush_before &&
  652. ((shmem_page_offset | page_length)
  653. & (boot_cpu_data.x86_clflush_size - 1));
  654. if (obj->pages) {
  655. page = obj->pages[offset >> PAGE_SHIFT];
  656. release_page = 0;
  657. } else {
  658. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  659. if (IS_ERR(page)) {
  660. ret = PTR_ERR(page);
  661. goto out;
  662. }
  663. release_page = 1;
  664. }
  665. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  666. (page_to_phys(page) & (1 << 17)) != 0;
  667. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  668. user_data, page_do_bit17_swizzling,
  669. partial_cacheline_write,
  670. needs_clflush_after);
  671. if (ret == 0)
  672. goto next_page;
  673. hit_slowpath = 1;
  674. page_cache_get(page);
  675. mutex_unlock(&dev->struct_mutex);
  676. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  677. user_data, page_do_bit17_swizzling,
  678. partial_cacheline_write,
  679. needs_clflush_after);
  680. mutex_lock(&dev->struct_mutex);
  681. page_cache_release(page);
  682. next_page:
  683. set_page_dirty(page);
  684. mark_page_accessed(page);
  685. if (release_page)
  686. page_cache_release(page);
  687. if (ret) {
  688. ret = -EFAULT;
  689. goto out;
  690. }
  691. remain -= page_length;
  692. user_data += page_length;
  693. offset += page_length;
  694. }
  695. out:
  696. if (hit_slowpath) {
  697. /* Fixup: Kill any reinstated backing storage pages */
  698. if (obj->madv == __I915_MADV_PURGED)
  699. i915_gem_object_truncate(obj);
  700. /* and flush dirty cachelines in case the object isn't in the cpu write
  701. * domain anymore. */
  702. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  703. i915_gem_clflush_object(obj);
  704. intel_gtt_chipset_flush();
  705. }
  706. }
  707. if (needs_clflush_after)
  708. intel_gtt_chipset_flush();
  709. return ret;
  710. }
  711. /**
  712. * Writes data to the object referenced by handle.
  713. *
  714. * On error, the contents of the buffer that were to be modified are undefined.
  715. */
  716. int
  717. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  718. struct drm_file *file)
  719. {
  720. struct drm_i915_gem_pwrite *args = data;
  721. struct drm_i915_gem_object *obj;
  722. int ret;
  723. if (args->size == 0)
  724. return 0;
  725. if (!access_ok(VERIFY_READ,
  726. (char __user *)(uintptr_t)args->data_ptr,
  727. args->size))
  728. return -EFAULT;
  729. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  730. args->size);
  731. if (ret)
  732. return -EFAULT;
  733. ret = i915_mutex_lock_interruptible(dev);
  734. if (ret)
  735. return ret;
  736. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  737. if (&obj->base == NULL) {
  738. ret = -ENOENT;
  739. goto unlock;
  740. }
  741. /* Bounds check destination. */
  742. if (args->offset > obj->base.size ||
  743. args->size > obj->base.size - args->offset) {
  744. ret = -EINVAL;
  745. goto out;
  746. }
  747. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  748. ret = -EFAULT;
  749. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  750. * it would end up going through the fenced access, and we'll get
  751. * different detiling behavior between reading and writing.
  752. * pread/pwrite currently are reading and writing from the CPU
  753. * perspective, requiring manual detiling by the client.
  754. */
  755. if (obj->phys_obj) {
  756. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  757. goto out;
  758. }
  759. if (obj->gtt_space &&
  760. obj->cache_level == I915_CACHE_NONE &&
  761. obj->tiling_mode == I915_TILING_NONE &&
  762. obj->map_and_fenceable &&
  763. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  764. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  765. /* Note that the gtt paths might fail with non-page-backed user
  766. * pointers (e.g. gtt mappings when moving data between
  767. * textures). Fallback to the shmem path in that case. */
  768. }
  769. if (ret == -EFAULT)
  770. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  771. out:
  772. drm_gem_object_unreference(&obj->base);
  773. unlock:
  774. mutex_unlock(&dev->struct_mutex);
  775. return ret;
  776. }
  777. /**
  778. * Called when user space prepares to use an object with the CPU, either
  779. * through the mmap ioctl's mapping or a GTT mapping.
  780. */
  781. int
  782. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  783. struct drm_file *file)
  784. {
  785. struct drm_i915_gem_set_domain *args = data;
  786. struct drm_i915_gem_object *obj;
  787. uint32_t read_domains = args->read_domains;
  788. uint32_t write_domain = args->write_domain;
  789. int ret;
  790. /* Only handle setting domains to types used by the CPU. */
  791. if (write_domain & I915_GEM_GPU_DOMAINS)
  792. return -EINVAL;
  793. if (read_domains & I915_GEM_GPU_DOMAINS)
  794. return -EINVAL;
  795. /* Having something in the write domain implies it's in the read
  796. * domain, and only that read domain. Enforce that in the request.
  797. */
  798. if (write_domain != 0 && read_domains != write_domain)
  799. return -EINVAL;
  800. ret = i915_mutex_lock_interruptible(dev);
  801. if (ret)
  802. return ret;
  803. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  804. if (&obj->base == NULL) {
  805. ret = -ENOENT;
  806. goto unlock;
  807. }
  808. if (read_domains & I915_GEM_DOMAIN_GTT) {
  809. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  810. /* Silently promote "you're not bound, there was nothing to do"
  811. * to success, since the client was just asking us to
  812. * make sure everything was done.
  813. */
  814. if (ret == -EINVAL)
  815. ret = 0;
  816. } else {
  817. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  818. }
  819. drm_gem_object_unreference(&obj->base);
  820. unlock:
  821. mutex_unlock(&dev->struct_mutex);
  822. return ret;
  823. }
  824. /**
  825. * Called when user space has done writes to this buffer
  826. */
  827. int
  828. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  829. struct drm_file *file)
  830. {
  831. struct drm_i915_gem_sw_finish *args = data;
  832. struct drm_i915_gem_object *obj;
  833. int ret = 0;
  834. ret = i915_mutex_lock_interruptible(dev);
  835. if (ret)
  836. return ret;
  837. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  838. if (&obj->base == NULL) {
  839. ret = -ENOENT;
  840. goto unlock;
  841. }
  842. /* Pinned buffers may be scanout, so flush the cache */
  843. if (obj->pin_count)
  844. i915_gem_object_flush_cpu_write_domain(obj);
  845. drm_gem_object_unreference(&obj->base);
  846. unlock:
  847. mutex_unlock(&dev->struct_mutex);
  848. return ret;
  849. }
  850. /**
  851. * Maps the contents of an object, returning the address it is mapped
  852. * into.
  853. *
  854. * While the mapping holds a reference on the contents of the object, it doesn't
  855. * imply a ref on the object itself.
  856. */
  857. int
  858. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_mmap *args = data;
  862. struct drm_gem_object *obj;
  863. unsigned long addr;
  864. obj = drm_gem_object_lookup(dev, file, args->handle);
  865. if (obj == NULL)
  866. return -ENOENT;
  867. addr = vm_mmap(obj->filp, 0, args->size,
  868. PROT_READ | PROT_WRITE, MAP_SHARED,
  869. args->offset);
  870. drm_gem_object_unreference_unlocked(obj);
  871. if (IS_ERR((void *)addr))
  872. return addr;
  873. args->addr_ptr = (uint64_t) addr;
  874. return 0;
  875. }
  876. /**
  877. * i915_gem_fault - fault a page into the GTT
  878. * vma: VMA in question
  879. * vmf: fault info
  880. *
  881. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  882. * from userspace. The fault handler takes care of binding the object to
  883. * the GTT (if needed), allocating and programming a fence register (again,
  884. * only if needed based on whether the old reg is still valid or the object
  885. * is tiled) and inserting a new PTE into the faulting process.
  886. *
  887. * Note that the faulting process may involve evicting existing objects
  888. * from the GTT and/or fence registers to make room. So performance may
  889. * suffer if the GTT working set is large or there are few fence registers
  890. * left.
  891. */
  892. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  893. {
  894. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  895. struct drm_device *dev = obj->base.dev;
  896. drm_i915_private_t *dev_priv = dev->dev_private;
  897. pgoff_t page_offset;
  898. unsigned long pfn;
  899. int ret = 0;
  900. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  901. /* We don't use vmf->pgoff since that has the fake offset */
  902. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  903. PAGE_SHIFT;
  904. ret = i915_mutex_lock_interruptible(dev);
  905. if (ret)
  906. goto out;
  907. trace_i915_gem_object_fault(obj, page_offset, true, write);
  908. /* Now bind it into the GTT if needed */
  909. if (!obj->map_and_fenceable) {
  910. ret = i915_gem_object_unbind(obj);
  911. if (ret)
  912. goto unlock;
  913. }
  914. if (!obj->gtt_space) {
  915. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  916. if (ret)
  917. goto unlock;
  918. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  919. if (ret)
  920. goto unlock;
  921. }
  922. if (!obj->has_global_gtt_mapping)
  923. i915_gem_gtt_bind_object(obj, obj->cache_level);
  924. ret = i915_gem_object_get_fence(obj);
  925. if (ret)
  926. goto unlock;
  927. if (i915_gem_object_is_inactive(obj))
  928. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  929. obj->fault_mappable = true;
  930. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  931. page_offset;
  932. /* Finally, remap it using the new GTT offset */
  933. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  934. unlock:
  935. mutex_unlock(&dev->struct_mutex);
  936. out:
  937. switch (ret) {
  938. case -EIO:
  939. case -EAGAIN:
  940. /* Give the error handler a chance to run and move the
  941. * objects off the GPU active list. Next time we service the
  942. * fault, we should be able to transition the page into the
  943. * GTT without touching the GPU (and so avoid further
  944. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  945. * with coherency, just lost writes.
  946. */
  947. set_need_resched();
  948. case 0:
  949. case -ERESTARTSYS:
  950. case -EINTR:
  951. return VM_FAULT_NOPAGE;
  952. case -ENOMEM:
  953. return VM_FAULT_OOM;
  954. default:
  955. return VM_FAULT_SIGBUS;
  956. }
  957. }
  958. /**
  959. * i915_gem_release_mmap - remove physical page mappings
  960. * @obj: obj in question
  961. *
  962. * Preserve the reservation of the mmapping with the DRM core code, but
  963. * relinquish ownership of the pages back to the system.
  964. *
  965. * It is vital that we remove the page mapping if we have mapped a tiled
  966. * object through the GTT and then lose the fence register due to
  967. * resource pressure. Similarly if the object has been moved out of the
  968. * aperture, than pages mapped into userspace must be revoked. Removing the
  969. * mapping will then trigger a page fault on the next user access, allowing
  970. * fixup by i915_gem_fault().
  971. */
  972. void
  973. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  974. {
  975. if (!obj->fault_mappable)
  976. return;
  977. if (obj->base.dev->dev_mapping)
  978. unmap_mapping_range(obj->base.dev->dev_mapping,
  979. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  980. obj->base.size, 1);
  981. obj->fault_mappable = false;
  982. }
  983. static uint32_t
  984. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  985. {
  986. uint32_t gtt_size;
  987. if (INTEL_INFO(dev)->gen >= 4 ||
  988. tiling_mode == I915_TILING_NONE)
  989. return size;
  990. /* Previous chips need a power-of-two fence region when tiling */
  991. if (INTEL_INFO(dev)->gen == 3)
  992. gtt_size = 1024*1024;
  993. else
  994. gtt_size = 512*1024;
  995. while (gtt_size < size)
  996. gtt_size <<= 1;
  997. return gtt_size;
  998. }
  999. /**
  1000. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1001. * @obj: object to check
  1002. *
  1003. * Return the required GTT alignment for an object, taking into account
  1004. * potential fence register mapping.
  1005. */
  1006. static uint32_t
  1007. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1008. uint32_t size,
  1009. int tiling_mode)
  1010. {
  1011. /*
  1012. * Minimum alignment is 4k (GTT page size), but might be greater
  1013. * if a fence register is needed for the object.
  1014. */
  1015. if (INTEL_INFO(dev)->gen >= 4 ||
  1016. tiling_mode == I915_TILING_NONE)
  1017. return 4096;
  1018. /*
  1019. * Previous chips need to be aligned to the size of the smallest
  1020. * fence register that can contain the object.
  1021. */
  1022. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1023. }
  1024. /**
  1025. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1026. * unfenced object
  1027. * @dev: the device
  1028. * @size: size of the object
  1029. * @tiling_mode: tiling mode of the object
  1030. *
  1031. * Return the required GTT alignment for an object, only taking into account
  1032. * unfenced tiled surface requirements.
  1033. */
  1034. uint32_t
  1035. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1036. uint32_t size,
  1037. int tiling_mode)
  1038. {
  1039. /*
  1040. * Minimum alignment is 4k (GTT page size) for sane hw.
  1041. */
  1042. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1043. tiling_mode == I915_TILING_NONE)
  1044. return 4096;
  1045. /* Previous hardware however needs to be aligned to a power-of-two
  1046. * tile height. The simplest method for determining this is to reuse
  1047. * the power-of-tile object size.
  1048. */
  1049. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1050. }
  1051. int
  1052. i915_gem_mmap_gtt(struct drm_file *file,
  1053. struct drm_device *dev,
  1054. uint32_t handle,
  1055. uint64_t *offset)
  1056. {
  1057. struct drm_i915_private *dev_priv = dev->dev_private;
  1058. struct drm_i915_gem_object *obj;
  1059. int ret;
  1060. ret = i915_mutex_lock_interruptible(dev);
  1061. if (ret)
  1062. return ret;
  1063. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1064. if (&obj->base == NULL) {
  1065. ret = -ENOENT;
  1066. goto unlock;
  1067. }
  1068. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1069. ret = -E2BIG;
  1070. goto out;
  1071. }
  1072. if (obj->madv != I915_MADV_WILLNEED) {
  1073. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1074. ret = -EINVAL;
  1075. goto out;
  1076. }
  1077. if (!obj->base.map_list.map) {
  1078. ret = drm_gem_create_mmap_offset(&obj->base);
  1079. if (ret)
  1080. goto out;
  1081. }
  1082. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1083. out:
  1084. drm_gem_object_unreference(&obj->base);
  1085. unlock:
  1086. mutex_unlock(&dev->struct_mutex);
  1087. return ret;
  1088. }
  1089. /**
  1090. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1091. * @dev: DRM device
  1092. * @data: GTT mapping ioctl data
  1093. * @file: GEM object info
  1094. *
  1095. * Simply returns the fake offset to userspace so it can mmap it.
  1096. * The mmap call will end up in drm_gem_mmap(), which will set things
  1097. * up so we can get faults in the handler above.
  1098. *
  1099. * The fault handler will take care of binding the object into the GTT
  1100. * (since it may have been evicted to make room for something), allocating
  1101. * a fence register, and mapping the appropriate aperture address into
  1102. * userspace.
  1103. */
  1104. int
  1105. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1106. struct drm_file *file)
  1107. {
  1108. struct drm_i915_gem_mmap_gtt *args = data;
  1109. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1110. }
  1111. static int
  1112. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1113. gfp_t gfpmask)
  1114. {
  1115. int page_count, i;
  1116. struct address_space *mapping;
  1117. struct inode *inode;
  1118. struct page *page;
  1119. /* Get the list of pages out of our struct file. They'll be pinned
  1120. * at this point until we release them.
  1121. */
  1122. page_count = obj->base.size / PAGE_SIZE;
  1123. BUG_ON(obj->pages != NULL);
  1124. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1125. if (obj->pages == NULL)
  1126. return -ENOMEM;
  1127. inode = obj->base.filp->f_path.dentry->d_inode;
  1128. mapping = inode->i_mapping;
  1129. gfpmask |= mapping_gfp_mask(mapping);
  1130. for (i = 0; i < page_count; i++) {
  1131. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1132. if (IS_ERR(page))
  1133. goto err_pages;
  1134. obj->pages[i] = page;
  1135. }
  1136. if (i915_gem_object_needs_bit17_swizzle(obj))
  1137. i915_gem_object_do_bit_17_swizzle(obj);
  1138. return 0;
  1139. err_pages:
  1140. while (i--)
  1141. page_cache_release(obj->pages[i]);
  1142. drm_free_large(obj->pages);
  1143. obj->pages = NULL;
  1144. return PTR_ERR(page);
  1145. }
  1146. static void
  1147. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1148. {
  1149. int page_count = obj->base.size / PAGE_SIZE;
  1150. int i;
  1151. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1152. if (i915_gem_object_needs_bit17_swizzle(obj))
  1153. i915_gem_object_save_bit_17_swizzle(obj);
  1154. if (obj->madv == I915_MADV_DONTNEED)
  1155. obj->dirty = 0;
  1156. for (i = 0; i < page_count; i++) {
  1157. if (obj->dirty)
  1158. set_page_dirty(obj->pages[i]);
  1159. if (obj->madv == I915_MADV_WILLNEED)
  1160. mark_page_accessed(obj->pages[i]);
  1161. page_cache_release(obj->pages[i]);
  1162. }
  1163. obj->dirty = 0;
  1164. drm_free_large(obj->pages);
  1165. obj->pages = NULL;
  1166. }
  1167. void
  1168. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1169. struct intel_ring_buffer *ring,
  1170. u32 seqno)
  1171. {
  1172. struct drm_device *dev = obj->base.dev;
  1173. struct drm_i915_private *dev_priv = dev->dev_private;
  1174. BUG_ON(ring == NULL);
  1175. obj->ring = ring;
  1176. /* Add a reference if we're newly entering the active list. */
  1177. if (!obj->active) {
  1178. drm_gem_object_reference(&obj->base);
  1179. obj->active = 1;
  1180. }
  1181. /* Move from whatever list we were on to the tail of execution. */
  1182. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1183. list_move_tail(&obj->ring_list, &ring->active_list);
  1184. obj->last_rendering_seqno = seqno;
  1185. if (obj->fenced_gpu_access) {
  1186. obj->last_fenced_seqno = seqno;
  1187. /* Bump MRU to take account of the delayed flush */
  1188. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1189. struct drm_i915_fence_reg *reg;
  1190. reg = &dev_priv->fence_regs[obj->fence_reg];
  1191. list_move_tail(&reg->lru_list,
  1192. &dev_priv->mm.fence_list);
  1193. }
  1194. }
  1195. }
  1196. static void
  1197. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1198. {
  1199. list_del_init(&obj->ring_list);
  1200. obj->last_rendering_seqno = 0;
  1201. obj->last_fenced_seqno = 0;
  1202. }
  1203. static void
  1204. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1205. {
  1206. struct drm_device *dev = obj->base.dev;
  1207. drm_i915_private_t *dev_priv = dev->dev_private;
  1208. BUG_ON(!obj->active);
  1209. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1210. i915_gem_object_move_off_active(obj);
  1211. }
  1212. static void
  1213. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1214. {
  1215. struct drm_device *dev = obj->base.dev;
  1216. struct drm_i915_private *dev_priv = dev->dev_private;
  1217. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1218. BUG_ON(!list_empty(&obj->gpu_write_list));
  1219. BUG_ON(!obj->active);
  1220. obj->ring = NULL;
  1221. i915_gem_object_move_off_active(obj);
  1222. obj->fenced_gpu_access = false;
  1223. obj->active = 0;
  1224. obj->pending_gpu_write = false;
  1225. drm_gem_object_unreference(&obj->base);
  1226. WARN_ON(i915_verify_lists(dev));
  1227. }
  1228. /* Immediately discard the backing storage */
  1229. static void
  1230. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1231. {
  1232. struct inode *inode;
  1233. /* Our goal here is to return as much of the memory as
  1234. * is possible back to the system as we are called from OOM.
  1235. * To do this we must instruct the shmfs to drop all of its
  1236. * backing pages, *now*.
  1237. */
  1238. inode = obj->base.filp->f_path.dentry->d_inode;
  1239. shmem_truncate_range(inode, 0, (loff_t)-1);
  1240. if (obj->base.map_list.map)
  1241. drm_gem_free_mmap_offset(&obj->base);
  1242. obj->madv = __I915_MADV_PURGED;
  1243. }
  1244. static inline int
  1245. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1246. {
  1247. return obj->madv == I915_MADV_DONTNEED;
  1248. }
  1249. static void
  1250. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1251. uint32_t flush_domains)
  1252. {
  1253. struct drm_i915_gem_object *obj, *next;
  1254. list_for_each_entry_safe(obj, next,
  1255. &ring->gpu_write_list,
  1256. gpu_write_list) {
  1257. if (obj->base.write_domain & flush_domains) {
  1258. uint32_t old_write_domain = obj->base.write_domain;
  1259. obj->base.write_domain = 0;
  1260. list_del_init(&obj->gpu_write_list);
  1261. i915_gem_object_move_to_active(obj, ring,
  1262. i915_gem_next_request_seqno(ring));
  1263. trace_i915_gem_object_change_domain(obj,
  1264. obj->base.read_domains,
  1265. old_write_domain);
  1266. }
  1267. }
  1268. }
  1269. static u32
  1270. i915_gem_get_seqno(struct drm_device *dev)
  1271. {
  1272. drm_i915_private_t *dev_priv = dev->dev_private;
  1273. u32 seqno = dev_priv->next_seqno;
  1274. /* reserve 0 for non-seqno */
  1275. if (++dev_priv->next_seqno == 0)
  1276. dev_priv->next_seqno = 1;
  1277. return seqno;
  1278. }
  1279. u32
  1280. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1281. {
  1282. if (ring->outstanding_lazy_request == 0)
  1283. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1284. return ring->outstanding_lazy_request;
  1285. }
  1286. int
  1287. i915_add_request(struct intel_ring_buffer *ring,
  1288. struct drm_file *file,
  1289. struct drm_i915_gem_request *request)
  1290. {
  1291. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1292. uint32_t seqno;
  1293. u32 request_ring_position;
  1294. int was_empty;
  1295. int ret;
  1296. BUG_ON(request == NULL);
  1297. seqno = i915_gem_next_request_seqno(ring);
  1298. /* Record the position of the start of the request so that
  1299. * should we detect the updated seqno part-way through the
  1300. * GPU processing the request, we never over-estimate the
  1301. * position of the head.
  1302. */
  1303. request_ring_position = intel_ring_get_tail(ring);
  1304. ret = ring->add_request(ring, &seqno);
  1305. if (ret)
  1306. return ret;
  1307. trace_i915_gem_request_add(ring, seqno);
  1308. request->seqno = seqno;
  1309. request->ring = ring;
  1310. request->tail = request_ring_position;
  1311. request->emitted_jiffies = jiffies;
  1312. was_empty = list_empty(&ring->request_list);
  1313. list_add_tail(&request->list, &ring->request_list);
  1314. if (file) {
  1315. struct drm_i915_file_private *file_priv = file->driver_priv;
  1316. spin_lock(&file_priv->mm.lock);
  1317. request->file_priv = file_priv;
  1318. list_add_tail(&request->client_list,
  1319. &file_priv->mm.request_list);
  1320. spin_unlock(&file_priv->mm.lock);
  1321. }
  1322. ring->outstanding_lazy_request = 0;
  1323. if (!dev_priv->mm.suspended) {
  1324. if (i915_enable_hangcheck) {
  1325. mod_timer(&dev_priv->hangcheck_timer,
  1326. jiffies +
  1327. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1328. }
  1329. if (was_empty)
  1330. queue_delayed_work(dev_priv->wq,
  1331. &dev_priv->mm.retire_work, HZ);
  1332. }
  1333. return 0;
  1334. }
  1335. static inline void
  1336. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1337. {
  1338. struct drm_i915_file_private *file_priv = request->file_priv;
  1339. if (!file_priv)
  1340. return;
  1341. spin_lock(&file_priv->mm.lock);
  1342. if (request->file_priv) {
  1343. list_del(&request->client_list);
  1344. request->file_priv = NULL;
  1345. }
  1346. spin_unlock(&file_priv->mm.lock);
  1347. }
  1348. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1349. struct intel_ring_buffer *ring)
  1350. {
  1351. while (!list_empty(&ring->request_list)) {
  1352. struct drm_i915_gem_request *request;
  1353. request = list_first_entry(&ring->request_list,
  1354. struct drm_i915_gem_request,
  1355. list);
  1356. list_del(&request->list);
  1357. i915_gem_request_remove_from_client(request);
  1358. kfree(request);
  1359. }
  1360. while (!list_empty(&ring->active_list)) {
  1361. struct drm_i915_gem_object *obj;
  1362. obj = list_first_entry(&ring->active_list,
  1363. struct drm_i915_gem_object,
  1364. ring_list);
  1365. obj->base.write_domain = 0;
  1366. list_del_init(&obj->gpu_write_list);
  1367. i915_gem_object_move_to_inactive(obj);
  1368. }
  1369. }
  1370. static void i915_gem_reset_fences(struct drm_device *dev)
  1371. {
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. int i;
  1374. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1375. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1376. i915_gem_write_fence(dev, i, NULL);
  1377. if (reg->obj)
  1378. i915_gem_object_fence_lost(reg->obj);
  1379. reg->pin_count = 0;
  1380. reg->obj = NULL;
  1381. INIT_LIST_HEAD(&reg->lru_list);
  1382. }
  1383. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1384. }
  1385. void i915_gem_reset(struct drm_device *dev)
  1386. {
  1387. struct drm_i915_private *dev_priv = dev->dev_private;
  1388. struct drm_i915_gem_object *obj;
  1389. struct intel_ring_buffer *ring;
  1390. int i;
  1391. for_each_ring(ring, dev_priv, i)
  1392. i915_gem_reset_ring_lists(dev_priv, ring);
  1393. /* Remove anything from the flushing lists. The GPU cache is likely
  1394. * to be lost on reset along with the data, so simply move the
  1395. * lost bo to the inactive list.
  1396. */
  1397. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1398. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1399. struct drm_i915_gem_object,
  1400. mm_list);
  1401. obj->base.write_domain = 0;
  1402. list_del_init(&obj->gpu_write_list);
  1403. i915_gem_object_move_to_inactive(obj);
  1404. }
  1405. /* Move everything out of the GPU domains to ensure we do any
  1406. * necessary invalidation upon reuse.
  1407. */
  1408. list_for_each_entry(obj,
  1409. &dev_priv->mm.inactive_list,
  1410. mm_list)
  1411. {
  1412. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1413. }
  1414. /* The fence registers are invalidated so clear them out */
  1415. i915_gem_reset_fences(dev);
  1416. }
  1417. /**
  1418. * This function clears the request list as sequence numbers are passed.
  1419. */
  1420. void
  1421. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1422. {
  1423. uint32_t seqno;
  1424. int i;
  1425. if (list_empty(&ring->request_list))
  1426. return;
  1427. WARN_ON(i915_verify_lists(ring->dev));
  1428. seqno = ring->get_seqno(ring);
  1429. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1430. if (seqno >= ring->sync_seqno[i])
  1431. ring->sync_seqno[i] = 0;
  1432. while (!list_empty(&ring->request_list)) {
  1433. struct drm_i915_gem_request *request;
  1434. request = list_first_entry(&ring->request_list,
  1435. struct drm_i915_gem_request,
  1436. list);
  1437. if (!i915_seqno_passed(seqno, request->seqno))
  1438. break;
  1439. trace_i915_gem_request_retire(ring, request->seqno);
  1440. /* We know the GPU must have read the request to have
  1441. * sent us the seqno + interrupt, so use the position
  1442. * of tail of the request to update the last known position
  1443. * of the GPU head.
  1444. */
  1445. ring->last_retired_head = request->tail;
  1446. list_del(&request->list);
  1447. i915_gem_request_remove_from_client(request);
  1448. kfree(request);
  1449. }
  1450. /* Move any buffers on the active list that are no longer referenced
  1451. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1452. */
  1453. while (!list_empty(&ring->active_list)) {
  1454. struct drm_i915_gem_object *obj;
  1455. obj = list_first_entry(&ring->active_list,
  1456. struct drm_i915_gem_object,
  1457. ring_list);
  1458. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1459. break;
  1460. if (obj->base.write_domain != 0)
  1461. i915_gem_object_move_to_flushing(obj);
  1462. else
  1463. i915_gem_object_move_to_inactive(obj);
  1464. }
  1465. if (unlikely(ring->trace_irq_seqno &&
  1466. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1467. ring->irq_put(ring);
  1468. ring->trace_irq_seqno = 0;
  1469. }
  1470. WARN_ON(i915_verify_lists(ring->dev));
  1471. }
  1472. void
  1473. i915_gem_retire_requests(struct drm_device *dev)
  1474. {
  1475. drm_i915_private_t *dev_priv = dev->dev_private;
  1476. struct intel_ring_buffer *ring;
  1477. int i;
  1478. for_each_ring(ring, dev_priv, i)
  1479. i915_gem_retire_requests_ring(ring);
  1480. }
  1481. static void
  1482. i915_gem_retire_work_handler(struct work_struct *work)
  1483. {
  1484. drm_i915_private_t *dev_priv;
  1485. struct drm_device *dev;
  1486. struct intel_ring_buffer *ring;
  1487. bool idle;
  1488. int i;
  1489. dev_priv = container_of(work, drm_i915_private_t,
  1490. mm.retire_work.work);
  1491. dev = dev_priv->dev;
  1492. /* Come back later if the device is busy... */
  1493. if (!mutex_trylock(&dev->struct_mutex)) {
  1494. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1495. return;
  1496. }
  1497. i915_gem_retire_requests(dev);
  1498. /* Send a periodic flush down the ring so we don't hold onto GEM
  1499. * objects indefinitely.
  1500. */
  1501. idle = true;
  1502. for_each_ring(ring, dev_priv, i) {
  1503. if (!list_empty(&ring->gpu_write_list)) {
  1504. struct drm_i915_gem_request *request;
  1505. int ret;
  1506. ret = i915_gem_flush_ring(ring,
  1507. 0, I915_GEM_GPU_DOMAINS);
  1508. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1509. if (ret || request == NULL ||
  1510. i915_add_request(ring, NULL, request))
  1511. kfree(request);
  1512. }
  1513. idle &= list_empty(&ring->request_list);
  1514. }
  1515. if (!dev_priv->mm.suspended && !idle)
  1516. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1517. mutex_unlock(&dev->struct_mutex);
  1518. }
  1519. static int
  1520. i915_gem_check_wedge(struct drm_i915_private *dev_priv)
  1521. {
  1522. BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
  1523. if (atomic_read(&dev_priv->mm.wedged)) {
  1524. struct completion *x = &dev_priv->error_completion;
  1525. bool recovery_complete;
  1526. unsigned long flags;
  1527. /* Give the error handler a chance to run. */
  1528. spin_lock_irqsave(&x->wait.lock, flags);
  1529. recovery_complete = x->done > 0;
  1530. spin_unlock_irqrestore(&x->wait.lock, flags);
  1531. return recovery_complete ? -EIO : -EAGAIN;
  1532. }
  1533. return 0;
  1534. }
  1535. /*
  1536. * Compare seqno against outstanding lazy request. Emit a request if they are
  1537. * equal.
  1538. */
  1539. static int
  1540. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  1541. {
  1542. int ret = 0;
  1543. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  1544. if (seqno == ring->outstanding_lazy_request) {
  1545. struct drm_i915_gem_request *request;
  1546. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1547. if (request == NULL)
  1548. return -ENOMEM;
  1549. ret = i915_add_request(ring, NULL, request);
  1550. if (ret) {
  1551. kfree(request);
  1552. return ret;
  1553. }
  1554. BUG_ON(seqno != request->seqno);
  1555. }
  1556. return ret;
  1557. }
  1558. /**
  1559. * __wait_seqno - wait until execution of seqno has finished
  1560. * @ring: the ring expected to report seqno
  1561. * @seqno: duh!
  1562. * @interruptible: do an interruptible wait (normally yes)
  1563. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  1564. *
  1565. * Returns 0 if the seqno was found within the alloted time. Else returns the
  1566. * errno with remaining time filled in timeout argument.
  1567. */
  1568. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  1569. bool interruptible, struct timespec *timeout)
  1570. {
  1571. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1572. struct timespec before, now, wait_time={1,0};
  1573. unsigned long timeout_jiffies;
  1574. long end;
  1575. bool wait_forever = true;
  1576. if (i915_seqno_passed(ring->get_seqno(ring), seqno))
  1577. return 0;
  1578. trace_i915_gem_request_wait_begin(ring, seqno);
  1579. if (timeout != NULL) {
  1580. wait_time = *timeout;
  1581. wait_forever = false;
  1582. }
  1583. timeout_jiffies = timespec_to_jiffies(&wait_time);
  1584. if (WARN_ON(!ring->irq_get(ring)))
  1585. return -ENODEV;
  1586. /* Record current time in case interrupted by signal, or wedged * */
  1587. getrawmonotonic(&before);
  1588. #define EXIT_COND \
  1589. (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
  1590. atomic_read(&dev_priv->mm.wedged))
  1591. do {
  1592. if (interruptible)
  1593. end = wait_event_interruptible_timeout(ring->irq_queue,
  1594. EXIT_COND,
  1595. timeout_jiffies);
  1596. else
  1597. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  1598. timeout_jiffies);
  1599. if (atomic_read(&dev_priv->mm.wedged))
  1600. end = -EAGAIN;
  1601. } while (end == 0 && wait_forever);
  1602. getrawmonotonic(&now);
  1603. ring->irq_put(ring);
  1604. trace_i915_gem_request_wait_end(ring, seqno);
  1605. #undef EXIT_COND
  1606. if (timeout) {
  1607. struct timespec sleep_time = timespec_sub(now, before);
  1608. *timeout = timespec_sub(*timeout, sleep_time);
  1609. }
  1610. switch (end) {
  1611. case -EAGAIN: /* Wedged */
  1612. case -ERESTARTSYS: /* Signal */
  1613. return (int)end;
  1614. case 0: /* Timeout */
  1615. if (timeout)
  1616. set_normalized_timespec(timeout, 0, 0);
  1617. return -ETIME;
  1618. default: /* Completed */
  1619. WARN_ON(end < 0); /* We're not aware of other errors */
  1620. return 0;
  1621. }
  1622. }
  1623. /**
  1624. * Waits for a sequence number to be signaled, and cleans up the
  1625. * request and object lists appropriately for that event.
  1626. */
  1627. int
  1628. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  1629. {
  1630. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1631. int ret = 0;
  1632. BUG_ON(seqno == 0);
  1633. ret = i915_gem_check_wedge(dev_priv);
  1634. if (ret)
  1635. return ret;
  1636. ret = i915_gem_check_olr(ring, seqno);
  1637. if (ret)
  1638. return ret;
  1639. ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
  1640. return ret;
  1641. }
  1642. /**
  1643. * Ensures that all rendering to the object has completed and the object is
  1644. * safe to unbind from the GTT or access from the CPU.
  1645. */
  1646. int
  1647. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1648. {
  1649. int ret;
  1650. /* This function only exists to support waiting for existing rendering,
  1651. * not for emitting required flushes.
  1652. */
  1653. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1654. /* If there is rendering queued on the buffer being evicted, wait for
  1655. * it.
  1656. */
  1657. if (obj->active) {
  1658. ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
  1659. if (ret)
  1660. return ret;
  1661. i915_gem_retire_requests_ring(obj->ring);
  1662. }
  1663. return 0;
  1664. }
  1665. /**
  1666. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1667. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1668. *
  1669. * Returns 0 if successful, else an error is returned with the remaining time in
  1670. * the timeout parameter.
  1671. * -ETIME: object is still busy after timeout
  1672. * -ERESTARTSYS: signal interrupted the wait
  1673. * -ENONENT: object doesn't exist
  1674. * Also possible, but rare:
  1675. * -EAGAIN: GPU wedged
  1676. * -ENOMEM: damn
  1677. * -ENODEV: Internal IRQ fail
  1678. * -E?: The add request failed
  1679. *
  1680. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1681. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1682. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1683. * without holding struct_mutex the object may become re-busied before this
  1684. * function completes. A similar but shorter * race condition exists in the busy
  1685. * ioctl
  1686. */
  1687. int
  1688. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1689. {
  1690. struct drm_i915_gem_wait *args = data;
  1691. struct drm_i915_gem_object *obj;
  1692. struct intel_ring_buffer *ring = NULL;
  1693. struct timespec timeout;
  1694. u32 seqno = 0;
  1695. int ret = 0;
  1696. timeout = ns_to_timespec(args->timeout_ns);
  1697. ret = i915_mutex_lock_interruptible(dev);
  1698. if (ret)
  1699. return ret;
  1700. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1701. if (&obj->base == NULL) {
  1702. mutex_unlock(&dev->struct_mutex);
  1703. return -ENOENT;
  1704. }
  1705. /* Need to make sure the object is flushed first. This non-obvious
  1706. * flush is required to enforce that (active && !olr) == no wait
  1707. * necessary.
  1708. */
  1709. ret = i915_gem_object_flush_gpu_write_domain(obj);
  1710. if (ret)
  1711. goto out;
  1712. if (obj->active) {
  1713. seqno = obj->last_rendering_seqno;
  1714. ring = obj->ring;
  1715. }
  1716. if (seqno == 0)
  1717. goto out;
  1718. ret = i915_gem_check_olr(ring, seqno);
  1719. if (ret)
  1720. goto out;
  1721. /* Do this after OLR check to make sure we make forward progress polling
  1722. * on this IOCTL with a 0 timeout (like busy ioctl)
  1723. */
  1724. if (!args->timeout_ns) {
  1725. ret = -ETIME;
  1726. goto out;
  1727. }
  1728. drm_gem_object_unreference(&obj->base);
  1729. mutex_unlock(&dev->struct_mutex);
  1730. ret = __wait_seqno(ring, seqno, true, &timeout);
  1731. WARN_ON(!timespec_valid(&timeout));
  1732. args->timeout_ns = timespec_to_ns(&timeout);
  1733. return ret;
  1734. out:
  1735. drm_gem_object_unreference(&obj->base);
  1736. mutex_unlock(&dev->struct_mutex);
  1737. return ret;
  1738. }
  1739. /**
  1740. * i915_gem_object_sync - sync an object to a ring.
  1741. *
  1742. * @obj: object which may be in use on another ring.
  1743. * @to: ring we wish to use the object on. May be NULL.
  1744. *
  1745. * This code is meant to abstract object synchronization with the GPU.
  1746. * Calling with NULL implies synchronizing the object with the CPU
  1747. * rather than a particular GPU ring.
  1748. *
  1749. * Returns 0 if successful, else propagates up the lower layer error.
  1750. */
  1751. int
  1752. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1753. struct intel_ring_buffer *to)
  1754. {
  1755. struct intel_ring_buffer *from = obj->ring;
  1756. u32 seqno;
  1757. int ret, idx;
  1758. if (from == NULL || to == from)
  1759. return 0;
  1760. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1761. return i915_gem_object_wait_rendering(obj);
  1762. idx = intel_ring_sync_index(from, to);
  1763. seqno = obj->last_rendering_seqno;
  1764. if (seqno <= from->sync_seqno[idx])
  1765. return 0;
  1766. ret = i915_gem_check_olr(obj->ring, seqno);
  1767. if (ret)
  1768. return ret;
  1769. ret = to->sync_to(to, from, seqno);
  1770. if (!ret)
  1771. from->sync_seqno[idx] = seqno;
  1772. return ret;
  1773. }
  1774. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1775. {
  1776. u32 old_write_domain, old_read_domains;
  1777. /* Act a barrier for all accesses through the GTT */
  1778. mb();
  1779. /* Force a pagefault for domain tracking on next user access */
  1780. i915_gem_release_mmap(obj);
  1781. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1782. return;
  1783. old_read_domains = obj->base.read_domains;
  1784. old_write_domain = obj->base.write_domain;
  1785. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1786. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1787. trace_i915_gem_object_change_domain(obj,
  1788. old_read_domains,
  1789. old_write_domain);
  1790. }
  1791. /**
  1792. * Unbinds an object from the GTT aperture.
  1793. */
  1794. int
  1795. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1796. {
  1797. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1798. int ret = 0;
  1799. if (obj->gtt_space == NULL)
  1800. return 0;
  1801. if (obj->pin_count != 0) {
  1802. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1803. return -EINVAL;
  1804. }
  1805. ret = i915_gem_object_finish_gpu(obj);
  1806. if (ret)
  1807. return ret;
  1808. /* Continue on if we fail due to EIO, the GPU is hung so we
  1809. * should be safe and we need to cleanup or else we might
  1810. * cause memory corruption through use-after-free.
  1811. */
  1812. i915_gem_object_finish_gtt(obj);
  1813. /* Move the object to the CPU domain to ensure that
  1814. * any possible CPU writes while it's not in the GTT
  1815. * are flushed when we go to remap it.
  1816. */
  1817. if (ret == 0)
  1818. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1819. if (ret == -ERESTARTSYS)
  1820. return ret;
  1821. if (ret) {
  1822. /* In the event of a disaster, abandon all caches and
  1823. * hope for the best.
  1824. */
  1825. i915_gem_clflush_object(obj);
  1826. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1827. }
  1828. /* release the fence reg _after_ flushing */
  1829. ret = i915_gem_object_put_fence(obj);
  1830. if (ret)
  1831. return ret;
  1832. trace_i915_gem_object_unbind(obj);
  1833. if (obj->has_global_gtt_mapping)
  1834. i915_gem_gtt_unbind_object(obj);
  1835. if (obj->has_aliasing_ppgtt_mapping) {
  1836. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1837. obj->has_aliasing_ppgtt_mapping = 0;
  1838. }
  1839. i915_gem_gtt_finish_object(obj);
  1840. i915_gem_object_put_pages_gtt(obj);
  1841. list_del_init(&obj->gtt_list);
  1842. list_del_init(&obj->mm_list);
  1843. /* Avoid an unnecessary call to unbind on rebind. */
  1844. obj->map_and_fenceable = true;
  1845. drm_mm_put_block(obj->gtt_space);
  1846. obj->gtt_space = NULL;
  1847. obj->gtt_offset = 0;
  1848. if (i915_gem_object_is_purgeable(obj))
  1849. i915_gem_object_truncate(obj);
  1850. return ret;
  1851. }
  1852. int
  1853. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1854. uint32_t invalidate_domains,
  1855. uint32_t flush_domains)
  1856. {
  1857. int ret;
  1858. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1859. return 0;
  1860. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1861. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1862. if (ret)
  1863. return ret;
  1864. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1865. i915_gem_process_flushing_list(ring, flush_domains);
  1866. return 0;
  1867. }
  1868. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1869. {
  1870. int ret;
  1871. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1872. return 0;
  1873. if (!list_empty(&ring->gpu_write_list)) {
  1874. ret = i915_gem_flush_ring(ring,
  1875. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1876. if (ret)
  1877. return ret;
  1878. }
  1879. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  1880. }
  1881. int i915_gpu_idle(struct drm_device *dev)
  1882. {
  1883. drm_i915_private_t *dev_priv = dev->dev_private;
  1884. struct intel_ring_buffer *ring;
  1885. int ret, i;
  1886. /* Flush everything onto the inactive list. */
  1887. for_each_ring(ring, dev_priv, i) {
  1888. ret = i915_ring_idle(ring);
  1889. if (ret)
  1890. return ret;
  1891. /* Is the device fubar? */
  1892. if (WARN_ON(!list_empty(&ring->gpu_write_list)))
  1893. return -EBUSY;
  1894. }
  1895. return 0;
  1896. }
  1897. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  1898. struct drm_i915_gem_object *obj)
  1899. {
  1900. drm_i915_private_t *dev_priv = dev->dev_private;
  1901. uint64_t val;
  1902. if (obj) {
  1903. u32 size = obj->gtt_space->size;
  1904. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1905. 0xfffff000) << 32;
  1906. val |= obj->gtt_offset & 0xfffff000;
  1907. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1908. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1909. if (obj->tiling_mode == I915_TILING_Y)
  1910. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1911. val |= I965_FENCE_REG_VALID;
  1912. } else
  1913. val = 0;
  1914. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  1915. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  1916. }
  1917. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  1918. struct drm_i915_gem_object *obj)
  1919. {
  1920. drm_i915_private_t *dev_priv = dev->dev_private;
  1921. uint64_t val;
  1922. if (obj) {
  1923. u32 size = obj->gtt_space->size;
  1924. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1925. 0xfffff000) << 32;
  1926. val |= obj->gtt_offset & 0xfffff000;
  1927. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1928. if (obj->tiling_mode == I915_TILING_Y)
  1929. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1930. val |= I965_FENCE_REG_VALID;
  1931. } else
  1932. val = 0;
  1933. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  1934. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  1935. }
  1936. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  1937. struct drm_i915_gem_object *obj)
  1938. {
  1939. drm_i915_private_t *dev_priv = dev->dev_private;
  1940. u32 val;
  1941. if (obj) {
  1942. u32 size = obj->gtt_space->size;
  1943. int pitch_val;
  1944. int tile_width;
  1945. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1946. (size & -size) != size ||
  1947. (obj->gtt_offset & (size - 1)),
  1948. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1949. obj->gtt_offset, obj->map_and_fenceable, size);
  1950. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1951. tile_width = 128;
  1952. else
  1953. tile_width = 512;
  1954. /* Note: pitch better be a power of two tile widths */
  1955. pitch_val = obj->stride / tile_width;
  1956. pitch_val = ffs(pitch_val) - 1;
  1957. val = obj->gtt_offset;
  1958. if (obj->tiling_mode == I915_TILING_Y)
  1959. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1960. val |= I915_FENCE_SIZE_BITS(size);
  1961. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1962. val |= I830_FENCE_REG_VALID;
  1963. } else
  1964. val = 0;
  1965. if (reg < 8)
  1966. reg = FENCE_REG_830_0 + reg * 4;
  1967. else
  1968. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  1969. I915_WRITE(reg, val);
  1970. POSTING_READ(reg);
  1971. }
  1972. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  1973. struct drm_i915_gem_object *obj)
  1974. {
  1975. drm_i915_private_t *dev_priv = dev->dev_private;
  1976. uint32_t val;
  1977. if (obj) {
  1978. u32 size = obj->gtt_space->size;
  1979. uint32_t pitch_val;
  1980. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1981. (size & -size) != size ||
  1982. (obj->gtt_offset & (size - 1)),
  1983. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1984. obj->gtt_offset, size);
  1985. pitch_val = obj->stride / 128;
  1986. pitch_val = ffs(pitch_val) - 1;
  1987. val = obj->gtt_offset;
  1988. if (obj->tiling_mode == I915_TILING_Y)
  1989. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1990. val |= I830_FENCE_SIZE_BITS(size);
  1991. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1992. val |= I830_FENCE_REG_VALID;
  1993. } else
  1994. val = 0;
  1995. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  1996. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  1997. }
  1998. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  1999. struct drm_i915_gem_object *obj)
  2000. {
  2001. switch (INTEL_INFO(dev)->gen) {
  2002. case 7:
  2003. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2004. case 5:
  2005. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2006. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2007. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2008. default: break;
  2009. }
  2010. }
  2011. static inline int fence_number(struct drm_i915_private *dev_priv,
  2012. struct drm_i915_fence_reg *fence)
  2013. {
  2014. return fence - dev_priv->fence_regs;
  2015. }
  2016. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2017. struct drm_i915_fence_reg *fence,
  2018. bool enable)
  2019. {
  2020. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2021. int reg = fence_number(dev_priv, fence);
  2022. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2023. if (enable) {
  2024. obj->fence_reg = reg;
  2025. fence->obj = obj;
  2026. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2027. } else {
  2028. obj->fence_reg = I915_FENCE_REG_NONE;
  2029. fence->obj = NULL;
  2030. list_del_init(&fence->lru_list);
  2031. }
  2032. }
  2033. static int
  2034. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2035. {
  2036. int ret;
  2037. if (obj->fenced_gpu_access) {
  2038. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2039. ret = i915_gem_flush_ring(obj->ring,
  2040. 0, obj->base.write_domain);
  2041. if (ret)
  2042. return ret;
  2043. }
  2044. obj->fenced_gpu_access = false;
  2045. }
  2046. if (obj->last_fenced_seqno) {
  2047. ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2048. if (ret)
  2049. return ret;
  2050. obj->last_fenced_seqno = 0;
  2051. }
  2052. /* Ensure that all CPU reads are completed before installing a fence
  2053. * and all writes before removing the fence.
  2054. */
  2055. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2056. mb();
  2057. return 0;
  2058. }
  2059. int
  2060. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2061. {
  2062. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2063. int ret;
  2064. ret = i915_gem_object_flush_fence(obj);
  2065. if (ret)
  2066. return ret;
  2067. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2068. return 0;
  2069. i915_gem_object_update_fence(obj,
  2070. &dev_priv->fence_regs[obj->fence_reg],
  2071. false);
  2072. i915_gem_object_fence_lost(obj);
  2073. return 0;
  2074. }
  2075. static struct drm_i915_fence_reg *
  2076. i915_find_fence_reg(struct drm_device *dev)
  2077. {
  2078. struct drm_i915_private *dev_priv = dev->dev_private;
  2079. struct drm_i915_fence_reg *reg, *avail;
  2080. int i;
  2081. /* First try to find a free reg */
  2082. avail = NULL;
  2083. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2084. reg = &dev_priv->fence_regs[i];
  2085. if (!reg->obj)
  2086. return reg;
  2087. if (!reg->pin_count)
  2088. avail = reg;
  2089. }
  2090. if (avail == NULL)
  2091. return NULL;
  2092. /* None available, try to steal one or wait for a user to finish */
  2093. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2094. if (reg->pin_count)
  2095. continue;
  2096. return reg;
  2097. }
  2098. return NULL;
  2099. }
  2100. /**
  2101. * i915_gem_object_get_fence - set up fencing for an object
  2102. * @obj: object to map through a fence reg
  2103. *
  2104. * When mapping objects through the GTT, userspace wants to be able to write
  2105. * to them without having to worry about swizzling if the object is tiled.
  2106. * This function walks the fence regs looking for a free one for @obj,
  2107. * stealing one if it can't find any.
  2108. *
  2109. * It then sets up the reg based on the object's properties: address, pitch
  2110. * and tiling format.
  2111. *
  2112. * For an untiled surface, this removes any existing fence.
  2113. */
  2114. int
  2115. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2116. {
  2117. struct drm_device *dev = obj->base.dev;
  2118. struct drm_i915_private *dev_priv = dev->dev_private;
  2119. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2120. struct drm_i915_fence_reg *reg;
  2121. int ret;
  2122. /* Have we updated the tiling parameters upon the object and so
  2123. * will need to serialise the write to the associated fence register?
  2124. */
  2125. if (obj->fence_dirty) {
  2126. ret = i915_gem_object_flush_fence(obj);
  2127. if (ret)
  2128. return ret;
  2129. }
  2130. /* Just update our place in the LRU if our fence is getting reused. */
  2131. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2132. reg = &dev_priv->fence_regs[obj->fence_reg];
  2133. if (!obj->fence_dirty) {
  2134. list_move_tail(&reg->lru_list,
  2135. &dev_priv->mm.fence_list);
  2136. return 0;
  2137. }
  2138. } else if (enable) {
  2139. reg = i915_find_fence_reg(dev);
  2140. if (reg == NULL)
  2141. return -EDEADLK;
  2142. if (reg->obj) {
  2143. struct drm_i915_gem_object *old = reg->obj;
  2144. ret = i915_gem_object_flush_fence(old);
  2145. if (ret)
  2146. return ret;
  2147. i915_gem_object_fence_lost(old);
  2148. }
  2149. } else
  2150. return 0;
  2151. i915_gem_object_update_fence(obj, reg, enable);
  2152. obj->fence_dirty = false;
  2153. return 0;
  2154. }
  2155. /**
  2156. * Finds free space in the GTT aperture and binds the object there.
  2157. */
  2158. static int
  2159. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2160. unsigned alignment,
  2161. bool map_and_fenceable)
  2162. {
  2163. struct drm_device *dev = obj->base.dev;
  2164. drm_i915_private_t *dev_priv = dev->dev_private;
  2165. struct drm_mm_node *free_space;
  2166. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2167. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2168. bool mappable, fenceable;
  2169. int ret;
  2170. if (obj->madv != I915_MADV_WILLNEED) {
  2171. DRM_ERROR("Attempting to bind a purgeable object\n");
  2172. return -EINVAL;
  2173. }
  2174. fence_size = i915_gem_get_gtt_size(dev,
  2175. obj->base.size,
  2176. obj->tiling_mode);
  2177. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2178. obj->base.size,
  2179. obj->tiling_mode);
  2180. unfenced_alignment =
  2181. i915_gem_get_unfenced_gtt_alignment(dev,
  2182. obj->base.size,
  2183. obj->tiling_mode);
  2184. if (alignment == 0)
  2185. alignment = map_and_fenceable ? fence_alignment :
  2186. unfenced_alignment;
  2187. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2188. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2189. return -EINVAL;
  2190. }
  2191. size = map_and_fenceable ? fence_size : obj->base.size;
  2192. /* If the object is bigger than the entire aperture, reject it early
  2193. * before evicting everything in a vain attempt to find space.
  2194. */
  2195. if (obj->base.size >
  2196. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2197. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2198. return -E2BIG;
  2199. }
  2200. search_free:
  2201. if (map_and_fenceable)
  2202. free_space =
  2203. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2204. size, alignment, 0,
  2205. dev_priv->mm.gtt_mappable_end,
  2206. 0);
  2207. else
  2208. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2209. size, alignment, 0);
  2210. if (free_space != NULL) {
  2211. if (map_and_fenceable)
  2212. obj->gtt_space =
  2213. drm_mm_get_block_range_generic(free_space,
  2214. size, alignment, 0,
  2215. dev_priv->mm.gtt_mappable_end,
  2216. 0);
  2217. else
  2218. obj->gtt_space =
  2219. drm_mm_get_block(free_space, size, alignment);
  2220. }
  2221. if (obj->gtt_space == NULL) {
  2222. /* If the gtt is empty and we're still having trouble
  2223. * fitting our object in, we're out of memory.
  2224. */
  2225. ret = i915_gem_evict_something(dev, size, alignment,
  2226. map_and_fenceable);
  2227. if (ret)
  2228. return ret;
  2229. goto search_free;
  2230. }
  2231. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2232. if (ret) {
  2233. drm_mm_put_block(obj->gtt_space);
  2234. obj->gtt_space = NULL;
  2235. if (ret == -ENOMEM) {
  2236. /* first try to reclaim some memory by clearing the GTT */
  2237. ret = i915_gem_evict_everything(dev, false);
  2238. if (ret) {
  2239. /* now try to shrink everyone else */
  2240. if (gfpmask) {
  2241. gfpmask = 0;
  2242. goto search_free;
  2243. }
  2244. return -ENOMEM;
  2245. }
  2246. goto search_free;
  2247. }
  2248. return ret;
  2249. }
  2250. ret = i915_gem_gtt_prepare_object(obj);
  2251. if (ret) {
  2252. i915_gem_object_put_pages_gtt(obj);
  2253. drm_mm_put_block(obj->gtt_space);
  2254. obj->gtt_space = NULL;
  2255. if (i915_gem_evict_everything(dev, false))
  2256. return ret;
  2257. goto search_free;
  2258. }
  2259. if (!dev_priv->mm.aliasing_ppgtt)
  2260. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2261. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2262. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2263. /* Assert that the object is not currently in any GPU domain. As it
  2264. * wasn't in the GTT, there shouldn't be any way it could have been in
  2265. * a GPU cache
  2266. */
  2267. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2268. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2269. obj->gtt_offset = obj->gtt_space->start;
  2270. fenceable =
  2271. obj->gtt_space->size == fence_size &&
  2272. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2273. mappable =
  2274. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2275. obj->map_and_fenceable = mappable && fenceable;
  2276. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2277. return 0;
  2278. }
  2279. void
  2280. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2281. {
  2282. /* If we don't have a page list set up, then we're not pinned
  2283. * to GPU, and we can ignore the cache flush because it'll happen
  2284. * again at bind time.
  2285. */
  2286. if (obj->pages == NULL)
  2287. return;
  2288. /* If the GPU is snooping the contents of the CPU cache,
  2289. * we do not need to manually clear the CPU cache lines. However,
  2290. * the caches are only snooped when the render cache is
  2291. * flushed/invalidated. As we always have to emit invalidations
  2292. * and flushes when moving into and out of the RENDER domain, correct
  2293. * snooping behaviour occurs naturally as the result of our domain
  2294. * tracking.
  2295. */
  2296. if (obj->cache_level != I915_CACHE_NONE)
  2297. return;
  2298. trace_i915_gem_object_clflush(obj);
  2299. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2300. }
  2301. /** Flushes any GPU write domain for the object if it's dirty. */
  2302. static int
  2303. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2304. {
  2305. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2306. return 0;
  2307. /* Queue the GPU write cache flushing we need. */
  2308. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2309. }
  2310. /** Flushes the GTT write domain for the object if it's dirty. */
  2311. static void
  2312. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2313. {
  2314. uint32_t old_write_domain;
  2315. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2316. return;
  2317. /* No actual flushing is required for the GTT write domain. Writes
  2318. * to it immediately go to main memory as far as we know, so there's
  2319. * no chipset flush. It also doesn't land in render cache.
  2320. *
  2321. * However, we do have to enforce the order so that all writes through
  2322. * the GTT land before any writes to the device, such as updates to
  2323. * the GATT itself.
  2324. */
  2325. wmb();
  2326. old_write_domain = obj->base.write_domain;
  2327. obj->base.write_domain = 0;
  2328. trace_i915_gem_object_change_domain(obj,
  2329. obj->base.read_domains,
  2330. old_write_domain);
  2331. }
  2332. /** Flushes the CPU write domain for the object if it's dirty. */
  2333. static void
  2334. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2335. {
  2336. uint32_t old_write_domain;
  2337. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2338. return;
  2339. i915_gem_clflush_object(obj);
  2340. intel_gtt_chipset_flush();
  2341. old_write_domain = obj->base.write_domain;
  2342. obj->base.write_domain = 0;
  2343. trace_i915_gem_object_change_domain(obj,
  2344. obj->base.read_domains,
  2345. old_write_domain);
  2346. }
  2347. /**
  2348. * Moves a single object to the GTT read, and possibly write domain.
  2349. *
  2350. * This function returns when the move is complete, including waiting on
  2351. * flushes to occur.
  2352. */
  2353. int
  2354. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2355. {
  2356. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2357. uint32_t old_write_domain, old_read_domains;
  2358. int ret;
  2359. /* Not valid to be called on unbound objects. */
  2360. if (obj->gtt_space == NULL)
  2361. return -EINVAL;
  2362. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2363. return 0;
  2364. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2365. if (ret)
  2366. return ret;
  2367. if (obj->pending_gpu_write || write) {
  2368. ret = i915_gem_object_wait_rendering(obj);
  2369. if (ret)
  2370. return ret;
  2371. }
  2372. i915_gem_object_flush_cpu_write_domain(obj);
  2373. old_write_domain = obj->base.write_domain;
  2374. old_read_domains = obj->base.read_domains;
  2375. /* It should now be out of any other write domains, and we can update
  2376. * the domain values for our changes.
  2377. */
  2378. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2379. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2380. if (write) {
  2381. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2382. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2383. obj->dirty = 1;
  2384. }
  2385. trace_i915_gem_object_change_domain(obj,
  2386. old_read_domains,
  2387. old_write_domain);
  2388. /* And bump the LRU for this access */
  2389. if (i915_gem_object_is_inactive(obj))
  2390. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2391. return 0;
  2392. }
  2393. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2394. enum i915_cache_level cache_level)
  2395. {
  2396. struct drm_device *dev = obj->base.dev;
  2397. drm_i915_private_t *dev_priv = dev->dev_private;
  2398. int ret;
  2399. if (obj->cache_level == cache_level)
  2400. return 0;
  2401. if (obj->pin_count) {
  2402. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2403. return -EBUSY;
  2404. }
  2405. if (obj->gtt_space) {
  2406. ret = i915_gem_object_finish_gpu(obj);
  2407. if (ret)
  2408. return ret;
  2409. i915_gem_object_finish_gtt(obj);
  2410. /* Before SandyBridge, you could not use tiling or fence
  2411. * registers with snooped memory, so relinquish any fences
  2412. * currently pointing to our region in the aperture.
  2413. */
  2414. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2415. ret = i915_gem_object_put_fence(obj);
  2416. if (ret)
  2417. return ret;
  2418. }
  2419. if (obj->has_global_gtt_mapping)
  2420. i915_gem_gtt_bind_object(obj, cache_level);
  2421. if (obj->has_aliasing_ppgtt_mapping)
  2422. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2423. obj, cache_level);
  2424. }
  2425. if (cache_level == I915_CACHE_NONE) {
  2426. u32 old_read_domains, old_write_domain;
  2427. /* If we're coming from LLC cached, then we haven't
  2428. * actually been tracking whether the data is in the
  2429. * CPU cache or not, since we only allow one bit set
  2430. * in obj->write_domain and have been skipping the clflushes.
  2431. * Just set it to the CPU cache for now.
  2432. */
  2433. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2434. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2435. old_read_domains = obj->base.read_domains;
  2436. old_write_domain = obj->base.write_domain;
  2437. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2438. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2439. trace_i915_gem_object_change_domain(obj,
  2440. old_read_domains,
  2441. old_write_domain);
  2442. }
  2443. obj->cache_level = cache_level;
  2444. return 0;
  2445. }
  2446. /*
  2447. * Prepare buffer for display plane (scanout, cursors, etc).
  2448. * Can be called from an uninterruptible phase (modesetting) and allows
  2449. * any flushes to be pipelined (for pageflips).
  2450. */
  2451. int
  2452. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2453. u32 alignment,
  2454. struct intel_ring_buffer *pipelined)
  2455. {
  2456. u32 old_read_domains, old_write_domain;
  2457. int ret;
  2458. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2459. if (ret)
  2460. return ret;
  2461. if (pipelined != obj->ring) {
  2462. ret = i915_gem_object_sync(obj, pipelined);
  2463. if (ret)
  2464. return ret;
  2465. }
  2466. /* The display engine is not coherent with the LLC cache on gen6. As
  2467. * a result, we make sure that the pinning that is about to occur is
  2468. * done with uncached PTEs. This is lowest common denominator for all
  2469. * chipsets.
  2470. *
  2471. * However for gen6+, we could do better by using the GFDT bit instead
  2472. * of uncaching, which would allow us to flush all the LLC-cached data
  2473. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2474. */
  2475. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2476. if (ret)
  2477. return ret;
  2478. /* As the user may map the buffer once pinned in the display plane
  2479. * (e.g. libkms for the bootup splash), we have to ensure that we
  2480. * always use map_and_fenceable for all scanout buffers.
  2481. */
  2482. ret = i915_gem_object_pin(obj, alignment, true);
  2483. if (ret)
  2484. return ret;
  2485. i915_gem_object_flush_cpu_write_domain(obj);
  2486. old_write_domain = obj->base.write_domain;
  2487. old_read_domains = obj->base.read_domains;
  2488. /* It should now be out of any other write domains, and we can update
  2489. * the domain values for our changes.
  2490. */
  2491. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2492. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2493. trace_i915_gem_object_change_domain(obj,
  2494. old_read_domains,
  2495. old_write_domain);
  2496. return 0;
  2497. }
  2498. int
  2499. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2500. {
  2501. int ret;
  2502. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2503. return 0;
  2504. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2505. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2506. if (ret)
  2507. return ret;
  2508. }
  2509. ret = i915_gem_object_wait_rendering(obj);
  2510. if (ret)
  2511. return ret;
  2512. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2513. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2514. return 0;
  2515. }
  2516. /**
  2517. * Moves a single object to the CPU read, and possibly write domain.
  2518. *
  2519. * This function returns when the move is complete, including waiting on
  2520. * flushes to occur.
  2521. */
  2522. int
  2523. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2524. {
  2525. uint32_t old_write_domain, old_read_domains;
  2526. int ret;
  2527. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2528. return 0;
  2529. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2530. if (ret)
  2531. return ret;
  2532. if (write || obj->pending_gpu_write) {
  2533. ret = i915_gem_object_wait_rendering(obj);
  2534. if (ret)
  2535. return ret;
  2536. }
  2537. i915_gem_object_flush_gtt_write_domain(obj);
  2538. old_write_domain = obj->base.write_domain;
  2539. old_read_domains = obj->base.read_domains;
  2540. /* Flush the CPU cache if it's still invalid. */
  2541. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2542. i915_gem_clflush_object(obj);
  2543. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2544. }
  2545. /* It should now be out of any other write domains, and we can update
  2546. * the domain values for our changes.
  2547. */
  2548. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2549. /* If we're writing through the CPU, then the GPU read domains will
  2550. * need to be invalidated at next use.
  2551. */
  2552. if (write) {
  2553. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2554. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2555. }
  2556. trace_i915_gem_object_change_domain(obj,
  2557. old_read_domains,
  2558. old_write_domain);
  2559. return 0;
  2560. }
  2561. /* Throttle our rendering by waiting until the ring has completed our requests
  2562. * emitted over 20 msec ago.
  2563. *
  2564. * Note that if we were to use the current jiffies each time around the loop,
  2565. * we wouldn't escape the function with any frames outstanding if the time to
  2566. * render a frame was over 20ms.
  2567. *
  2568. * This should get us reasonable parallelism between CPU and GPU but also
  2569. * relatively low latency when blocking on a particular request to finish.
  2570. */
  2571. static int
  2572. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2573. {
  2574. struct drm_i915_private *dev_priv = dev->dev_private;
  2575. struct drm_i915_file_private *file_priv = file->driver_priv;
  2576. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2577. struct drm_i915_gem_request *request;
  2578. struct intel_ring_buffer *ring = NULL;
  2579. u32 seqno = 0;
  2580. int ret;
  2581. if (atomic_read(&dev_priv->mm.wedged))
  2582. return -EIO;
  2583. spin_lock(&file_priv->mm.lock);
  2584. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2585. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2586. break;
  2587. ring = request->ring;
  2588. seqno = request->seqno;
  2589. }
  2590. spin_unlock(&file_priv->mm.lock);
  2591. if (seqno == 0)
  2592. return 0;
  2593. ret = __wait_seqno(ring, seqno, true, NULL);
  2594. if (ret == 0)
  2595. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2596. return ret;
  2597. }
  2598. int
  2599. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2600. uint32_t alignment,
  2601. bool map_and_fenceable)
  2602. {
  2603. int ret;
  2604. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2605. if (obj->gtt_space != NULL) {
  2606. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2607. (map_and_fenceable && !obj->map_and_fenceable)) {
  2608. WARN(obj->pin_count,
  2609. "bo is already pinned with incorrect alignment:"
  2610. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2611. " obj->map_and_fenceable=%d\n",
  2612. obj->gtt_offset, alignment,
  2613. map_and_fenceable,
  2614. obj->map_and_fenceable);
  2615. ret = i915_gem_object_unbind(obj);
  2616. if (ret)
  2617. return ret;
  2618. }
  2619. }
  2620. if (obj->gtt_space == NULL) {
  2621. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2622. map_and_fenceable);
  2623. if (ret)
  2624. return ret;
  2625. }
  2626. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2627. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2628. obj->pin_count++;
  2629. obj->pin_mappable |= map_and_fenceable;
  2630. return 0;
  2631. }
  2632. void
  2633. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2634. {
  2635. BUG_ON(obj->pin_count == 0);
  2636. BUG_ON(obj->gtt_space == NULL);
  2637. if (--obj->pin_count == 0)
  2638. obj->pin_mappable = false;
  2639. }
  2640. int
  2641. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2642. struct drm_file *file)
  2643. {
  2644. struct drm_i915_gem_pin *args = data;
  2645. struct drm_i915_gem_object *obj;
  2646. int ret;
  2647. ret = i915_mutex_lock_interruptible(dev);
  2648. if (ret)
  2649. return ret;
  2650. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2651. if (&obj->base == NULL) {
  2652. ret = -ENOENT;
  2653. goto unlock;
  2654. }
  2655. if (obj->madv != I915_MADV_WILLNEED) {
  2656. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2657. ret = -EINVAL;
  2658. goto out;
  2659. }
  2660. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2661. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2662. args->handle);
  2663. ret = -EINVAL;
  2664. goto out;
  2665. }
  2666. obj->user_pin_count++;
  2667. obj->pin_filp = file;
  2668. if (obj->user_pin_count == 1) {
  2669. ret = i915_gem_object_pin(obj, args->alignment, true);
  2670. if (ret)
  2671. goto out;
  2672. }
  2673. /* XXX - flush the CPU caches for pinned objects
  2674. * as the X server doesn't manage domains yet
  2675. */
  2676. i915_gem_object_flush_cpu_write_domain(obj);
  2677. args->offset = obj->gtt_offset;
  2678. out:
  2679. drm_gem_object_unreference(&obj->base);
  2680. unlock:
  2681. mutex_unlock(&dev->struct_mutex);
  2682. return ret;
  2683. }
  2684. int
  2685. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2686. struct drm_file *file)
  2687. {
  2688. struct drm_i915_gem_pin *args = data;
  2689. struct drm_i915_gem_object *obj;
  2690. int ret;
  2691. ret = i915_mutex_lock_interruptible(dev);
  2692. if (ret)
  2693. return ret;
  2694. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2695. if (&obj->base == NULL) {
  2696. ret = -ENOENT;
  2697. goto unlock;
  2698. }
  2699. if (obj->pin_filp != file) {
  2700. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2701. args->handle);
  2702. ret = -EINVAL;
  2703. goto out;
  2704. }
  2705. obj->user_pin_count--;
  2706. if (obj->user_pin_count == 0) {
  2707. obj->pin_filp = NULL;
  2708. i915_gem_object_unpin(obj);
  2709. }
  2710. out:
  2711. drm_gem_object_unreference(&obj->base);
  2712. unlock:
  2713. mutex_unlock(&dev->struct_mutex);
  2714. return ret;
  2715. }
  2716. int
  2717. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2718. struct drm_file *file)
  2719. {
  2720. struct drm_i915_gem_busy *args = data;
  2721. struct drm_i915_gem_object *obj;
  2722. int ret;
  2723. ret = i915_mutex_lock_interruptible(dev);
  2724. if (ret)
  2725. return ret;
  2726. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2727. if (&obj->base == NULL) {
  2728. ret = -ENOENT;
  2729. goto unlock;
  2730. }
  2731. /* Count all active objects as busy, even if they are currently not used
  2732. * by the gpu. Users of this interface expect objects to eventually
  2733. * become non-busy without any further actions, therefore emit any
  2734. * necessary flushes here.
  2735. */
  2736. args->busy = obj->active;
  2737. if (args->busy) {
  2738. /* Unconditionally flush objects, even when the gpu still uses this
  2739. * object. Userspace calling this function indicates that it wants to
  2740. * use this buffer rather sooner than later, so issuing the required
  2741. * flush earlier is beneficial.
  2742. */
  2743. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2744. ret = i915_gem_flush_ring(obj->ring,
  2745. 0, obj->base.write_domain);
  2746. } else {
  2747. ret = i915_gem_check_olr(obj->ring,
  2748. obj->last_rendering_seqno);
  2749. }
  2750. /* Update the active list for the hardware's current position.
  2751. * Otherwise this only updates on a delayed timer or when irqs
  2752. * are actually unmasked, and our working set ends up being
  2753. * larger than required.
  2754. */
  2755. i915_gem_retire_requests_ring(obj->ring);
  2756. args->busy = obj->active;
  2757. }
  2758. drm_gem_object_unreference(&obj->base);
  2759. unlock:
  2760. mutex_unlock(&dev->struct_mutex);
  2761. return ret;
  2762. }
  2763. int
  2764. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2765. struct drm_file *file_priv)
  2766. {
  2767. return i915_gem_ring_throttle(dev, file_priv);
  2768. }
  2769. int
  2770. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2771. struct drm_file *file_priv)
  2772. {
  2773. struct drm_i915_gem_madvise *args = data;
  2774. struct drm_i915_gem_object *obj;
  2775. int ret;
  2776. switch (args->madv) {
  2777. case I915_MADV_DONTNEED:
  2778. case I915_MADV_WILLNEED:
  2779. break;
  2780. default:
  2781. return -EINVAL;
  2782. }
  2783. ret = i915_mutex_lock_interruptible(dev);
  2784. if (ret)
  2785. return ret;
  2786. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2787. if (&obj->base == NULL) {
  2788. ret = -ENOENT;
  2789. goto unlock;
  2790. }
  2791. if (obj->pin_count) {
  2792. ret = -EINVAL;
  2793. goto out;
  2794. }
  2795. if (obj->madv != __I915_MADV_PURGED)
  2796. obj->madv = args->madv;
  2797. /* if the object is no longer bound, discard its backing storage */
  2798. if (i915_gem_object_is_purgeable(obj) &&
  2799. obj->gtt_space == NULL)
  2800. i915_gem_object_truncate(obj);
  2801. args->retained = obj->madv != __I915_MADV_PURGED;
  2802. out:
  2803. drm_gem_object_unreference(&obj->base);
  2804. unlock:
  2805. mutex_unlock(&dev->struct_mutex);
  2806. return ret;
  2807. }
  2808. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2809. size_t size)
  2810. {
  2811. struct drm_i915_private *dev_priv = dev->dev_private;
  2812. struct drm_i915_gem_object *obj;
  2813. struct address_space *mapping;
  2814. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2815. if (obj == NULL)
  2816. return NULL;
  2817. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2818. kfree(obj);
  2819. return NULL;
  2820. }
  2821. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2822. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2823. i915_gem_info_add_obj(dev_priv, size);
  2824. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2825. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2826. if (HAS_LLC(dev)) {
  2827. /* On some devices, we can have the GPU use the LLC (the CPU
  2828. * cache) for about a 10% performance improvement
  2829. * compared to uncached. Graphics requests other than
  2830. * display scanout are coherent with the CPU in
  2831. * accessing this cache. This means in this mode we
  2832. * don't need to clflush on the CPU side, and on the
  2833. * GPU side we only need to flush internal caches to
  2834. * get data visible to the CPU.
  2835. *
  2836. * However, we maintain the display planes as UC, and so
  2837. * need to rebind when first used as such.
  2838. */
  2839. obj->cache_level = I915_CACHE_LLC;
  2840. } else
  2841. obj->cache_level = I915_CACHE_NONE;
  2842. obj->base.driver_private = NULL;
  2843. obj->fence_reg = I915_FENCE_REG_NONE;
  2844. INIT_LIST_HEAD(&obj->mm_list);
  2845. INIT_LIST_HEAD(&obj->gtt_list);
  2846. INIT_LIST_HEAD(&obj->ring_list);
  2847. INIT_LIST_HEAD(&obj->exec_list);
  2848. INIT_LIST_HEAD(&obj->gpu_write_list);
  2849. obj->madv = I915_MADV_WILLNEED;
  2850. /* Avoid an unnecessary call to unbind on the first bind. */
  2851. obj->map_and_fenceable = true;
  2852. return obj;
  2853. }
  2854. int i915_gem_init_object(struct drm_gem_object *obj)
  2855. {
  2856. BUG();
  2857. return 0;
  2858. }
  2859. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2860. {
  2861. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2862. struct drm_device *dev = obj->base.dev;
  2863. drm_i915_private_t *dev_priv = dev->dev_private;
  2864. trace_i915_gem_object_destroy(obj);
  2865. if (obj->phys_obj)
  2866. i915_gem_detach_phys_object(dev, obj);
  2867. obj->pin_count = 0;
  2868. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  2869. bool was_interruptible;
  2870. was_interruptible = dev_priv->mm.interruptible;
  2871. dev_priv->mm.interruptible = false;
  2872. WARN_ON(i915_gem_object_unbind(obj));
  2873. dev_priv->mm.interruptible = was_interruptible;
  2874. }
  2875. if (obj->base.map_list.map)
  2876. drm_gem_free_mmap_offset(&obj->base);
  2877. drm_gem_object_release(&obj->base);
  2878. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2879. kfree(obj->bit_17);
  2880. kfree(obj);
  2881. }
  2882. int
  2883. i915_gem_idle(struct drm_device *dev)
  2884. {
  2885. drm_i915_private_t *dev_priv = dev->dev_private;
  2886. int ret;
  2887. mutex_lock(&dev->struct_mutex);
  2888. if (dev_priv->mm.suspended) {
  2889. mutex_unlock(&dev->struct_mutex);
  2890. return 0;
  2891. }
  2892. ret = i915_gpu_idle(dev);
  2893. if (ret) {
  2894. mutex_unlock(&dev->struct_mutex);
  2895. return ret;
  2896. }
  2897. i915_gem_retire_requests(dev);
  2898. /* Under UMS, be paranoid and evict. */
  2899. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2900. i915_gem_evict_everything(dev, false);
  2901. i915_gem_reset_fences(dev);
  2902. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2903. * We need to replace this with a semaphore, or something.
  2904. * And not confound mm.suspended!
  2905. */
  2906. dev_priv->mm.suspended = 1;
  2907. del_timer_sync(&dev_priv->hangcheck_timer);
  2908. i915_kernel_lost_context(dev);
  2909. i915_gem_cleanup_ringbuffer(dev);
  2910. mutex_unlock(&dev->struct_mutex);
  2911. /* Cancel the retire work handler, which should be idle now. */
  2912. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2913. return 0;
  2914. }
  2915. void i915_gem_init_swizzling(struct drm_device *dev)
  2916. {
  2917. drm_i915_private_t *dev_priv = dev->dev_private;
  2918. if (INTEL_INFO(dev)->gen < 5 ||
  2919. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2920. return;
  2921. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2922. DISP_TILE_SURFACE_SWIZZLING);
  2923. if (IS_GEN5(dev))
  2924. return;
  2925. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2926. if (IS_GEN6(dev))
  2927. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2928. else
  2929. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2930. }
  2931. void i915_gem_init_ppgtt(struct drm_device *dev)
  2932. {
  2933. drm_i915_private_t *dev_priv = dev->dev_private;
  2934. uint32_t pd_offset;
  2935. struct intel_ring_buffer *ring;
  2936. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2937. uint32_t __iomem *pd_addr;
  2938. uint32_t pd_entry;
  2939. int i;
  2940. if (!dev_priv->mm.aliasing_ppgtt)
  2941. return;
  2942. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  2943. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  2944. dma_addr_t pt_addr;
  2945. if (dev_priv->mm.gtt->needs_dmar)
  2946. pt_addr = ppgtt->pt_dma_addr[i];
  2947. else
  2948. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  2949. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  2950. pd_entry |= GEN6_PDE_VALID;
  2951. writel(pd_entry, pd_addr + i);
  2952. }
  2953. readl(pd_addr);
  2954. pd_offset = ppgtt->pd_offset;
  2955. pd_offset /= 64; /* in cachelines, */
  2956. pd_offset <<= 16;
  2957. if (INTEL_INFO(dev)->gen == 6) {
  2958. uint32_t ecochk, gab_ctl, ecobits;
  2959. ecobits = I915_READ(GAC_ECO_BITS);
  2960. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  2961. gab_ctl = I915_READ(GAB_CTL);
  2962. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  2963. ecochk = I915_READ(GAM_ECOCHK);
  2964. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2965. ECOCHK_PPGTT_CACHE64B);
  2966. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2967. } else if (INTEL_INFO(dev)->gen >= 7) {
  2968. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2969. /* GFX_MODE is per-ring on gen7+ */
  2970. }
  2971. for_each_ring(ring, dev_priv, i) {
  2972. if (INTEL_INFO(dev)->gen >= 7)
  2973. I915_WRITE(RING_MODE_GEN7(ring),
  2974. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2975. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2976. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2977. }
  2978. }
  2979. int
  2980. i915_gem_init_hw(struct drm_device *dev)
  2981. {
  2982. drm_i915_private_t *dev_priv = dev->dev_private;
  2983. int ret;
  2984. i915_gem_init_swizzling(dev);
  2985. ret = intel_init_render_ring_buffer(dev);
  2986. if (ret)
  2987. return ret;
  2988. if (HAS_BSD(dev)) {
  2989. ret = intel_init_bsd_ring_buffer(dev);
  2990. if (ret)
  2991. goto cleanup_render_ring;
  2992. }
  2993. if (HAS_BLT(dev)) {
  2994. ret = intel_init_blt_ring_buffer(dev);
  2995. if (ret)
  2996. goto cleanup_bsd_ring;
  2997. }
  2998. dev_priv->next_seqno = 1;
  2999. i915_gem_init_ppgtt(dev);
  3000. return 0;
  3001. cleanup_bsd_ring:
  3002. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3003. cleanup_render_ring:
  3004. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3005. return ret;
  3006. }
  3007. static bool
  3008. intel_enable_ppgtt(struct drm_device *dev)
  3009. {
  3010. if (i915_enable_ppgtt >= 0)
  3011. return i915_enable_ppgtt;
  3012. #ifdef CONFIG_INTEL_IOMMU
  3013. /* Disable ppgtt on SNB if VT-d is on. */
  3014. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3015. return false;
  3016. #endif
  3017. return true;
  3018. }
  3019. int i915_gem_init(struct drm_device *dev)
  3020. {
  3021. struct drm_i915_private *dev_priv = dev->dev_private;
  3022. unsigned long gtt_size, mappable_size;
  3023. int ret;
  3024. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3025. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3026. mutex_lock(&dev->struct_mutex);
  3027. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3028. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3029. * aperture accordingly when using aliasing ppgtt. */
  3030. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3031. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3032. ret = i915_gem_init_aliasing_ppgtt(dev);
  3033. if (ret) {
  3034. mutex_unlock(&dev->struct_mutex);
  3035. return ret;
  3036. }
  3037. } else {
  3038. /* Let GEM Manage all of the aperture.
  3039. *
  3040. * However, leave one page at the end still bound to the scratch
  3041. * page. There are a number of places where the hardware
  3042. * apparently prefetches past the end of the object, and we've
  3043. * seen multiple hangs with the GPU head pointer stuck in a
  3044. * batchbuffer bound at the last page of the aperture. One page
  3045. * should be enough to keep any prefetching inside of the
  3046. * aperture.
  3047. */
  3048. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3049. gtt_size);
  3050. }
  3051. ret = i915_gem_init_hw(dev);
  3052. mutex_unlock(&dev->struct_mutex);
  3053. if (ret) {
  3054. i915_gem_cleanup_aliasing_ppgtt(dev);
  3055. return ret;
  3056. }
  3057. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3058. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3059. dev_priv->dri1.allow_batchbuffer = 1;
  3060. return 0;
  3061. }
  3062. void
  3063. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3064. {
  3065. drm_i915_private_t *dev_priv = dev->dev_private;
  3066. struct intel_ring_buffer *ring;
  3067. int i;
  3068. for_each_ring(ring, dev_priv, i)
  3069. intel_cleanup_ring_buffer(ring);
  3070. }
  3071. int
  3072. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3073. struct drm_file *file_priv)
  3074. {
  3075. drm_i915_private_t *dev_priv = dev->dev_private;
  3076. int ret;
  3077. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3078. return 0;
  3079. if (atomic_read(&dev_priv->mm.wedged)) {
  3080. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3081. atomic_set(&dev_priv->mm.wedged, 0);
  3082. }
  3083. mutex_lock(&dev->struct_mutex);
  3084. dev_priv->mm.suspended = 0;
  3085. ret = i915_gem_init_hw(dev);
  3086. if (ret != 0) {
  3087. mutex_unlock(&dev->struct_mutex);
  3088. return ret;
  3089. }
  3090. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3091. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3092. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3093. mutex_unlock(&dev->struct_mutex);
  3094. ret = drm_irq_install(dev);
  3095. if (ret)
  3096. goto cleanup_ringbuffer;
  3097. return 0;
  3098. cleanup_ringbuffer:
  3099. mutex_lock(&dev->struct_mutex);
  3100. i915_gem_cleanup_ringbuffer(dev);
  3101. dev_priv->mm.suspended = 1;
  3102. mutex_unlock(&dev->struct_mutex);
  3103. return ret;
  3104. }
  3105. int
  3106. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3107. struct drm_file *file_priv)
  3108. {
  3109. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3110. return 0;
  3111. drm_irq_uninstall(dev);
  3112. return i915_gem_idle(dev);
  3113. }
  3114. void
  3115. i915_gem_lastclose(struct drm_device *dev)
  3116. {
  3117. int ret;
  3118. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3119. return;
  3120. ret = i915_gem_idle(dev);
  3121. if (ret)
  3122. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3123. }
  3124. static void
  3125. init_ring_lists(struct intel_ring_buffer *ring)
  3126. {
  3127. INIT_LIST_HEAD(&ring->active_list);
  3128. INIT_LIST_HEAD(&ring->request_list);
  3129. INIT_LIST_HEAD(&ring->gpu_write_list);
  3130. }
  3131. void
  3132. i915_gem_load(struct drm_device *dev)
  3133. {
  3134. int i;
  3135. drm_i915_private_t *dev_priv = dev->dev_private;
  3136. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3137. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3138. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3139. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3140. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3141. for (i = 0; i < I915_NUM_RINGS; i++)
  3142. init_ring_lists(&dev_priv->ring[i]);
  3143. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3144. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3145. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3146. i915_gem_retire_work_handler);
  3147. init_completion(&dev_priv->error_completion);
  3148. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3149. if (IS_GEN3(dev)) {
  3150. I915_WRITE(MI_ARB_STATE,
  3151. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3152. }
  3153. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3154. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3155. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3156. dev_priv->fence_reg_start = 3;
  3157. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3158. dev_priv->num_fence_regs = 16;
  3159. else
  3160. dev_priv->num_fence_regs = 8;
  3161. /* Initialize fence registers to zero */
  3162. i915_gem_reset_fences(dev);
  3163. i915_gem_detect_bit_6_swizzle(dev);
  3164. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3165. dev_priv->mm.interruptible = true;
  3166. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3167. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3168. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3169. }
  3170. /*
  3171. * Create a physically contiguous memory object for this object
  3172. * e.g. for cursor + overlay regs
  3173. */
  3174. static int i915_gem_init_phys_object(struct drm_device *dev,
  3175. int id, int size, int align)
  3176. {
  3177. drm_i915_private_t *dev_priv = dev->dev_private;
  3178. struct drm_i915_gem_phys_object *phys_obj;
  3179. int ret;
  3180. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3181. return 0;
  3182. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3183. if (!phys_obj)
  3184. return -ENOMEM;
  3185. phys_obj->id = id;
  3186. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3187. if (!phys_obj->handle) {
  3188. ret = -ENOMEM;
  3189. goto kfree_obj;
  3190. }
  3191. #ifdef CONFIG_X86
  3192. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3193. #endif
  3194. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3195. return 0;
  3196. kfree_obj:
  3197. kfree(phys_obj);
  3198. return ret;
  3199. }
  3200. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3201. {
  3202. drm_i915_private_t *dev_priv = dev->dev_private;
  3203. struct drm_i915_gem_phys_object *phys_obj;
  3204. if (!dev_priv->mm.phys_objs[id - 1])
  3205. return;
  3206. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3207. if (phys_obj->cur_obj) {
  3208. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3209. }
  3210. #ifdef CONFIG_X86
  3211. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3212. #endif
  3213. drm_pci_free(dev, phys_obj->handle);
  3214. kfree(phys_obj);
  3215. dev_priv->mm.phys_objs[id - 1] = NULL;
  3216. }
  3217. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3218. {
  3219. int i;
  3220. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3221. i915_gem_free_phys_object(dev, i);
  3222. }
  3223. void i915_gem_detach_phys_object(struct drm_device *dev,
  3224. struct drm_i915_gem_object *obj)
  3225. {
  3226. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3227. char *vaddr;
  3228. int i;
  3229. int page_count;
  3230. if (!obj->phys_obj)
  3231. return;
  3232. vaddr = obj->phys_obj->handle->vaddr;
  3233. page_count = obj->base.size / PAGE_SIZE;
  3234. for (i = 0; i < page_count; i++) {
  3235. struct page *page = shmem_read_mapping_page(mapping, i);
  3236. if (!IS_ERR(page)) {
  3237. char *dst = kmap_atomic(page);
  3238. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3239. kunmap_atomic(dst);
  3240. drm_clflush_pages(&page, 1);
  3241. set_page_dirty(page);
  3242. mark_page_accessed(page);
  3243. page_cache_release(page);
  3244. }
  3245. }
  3246. intel_gtt_chipset_flush();
  3247. obj->phys_obj->cur_obj = NULL;
  3248. obj->phys_obj = NULL;
  3249. }
  3250. int
  3251. i915_gem_attach_phys_object(struct drm_device *dev,
  3252. struct drm_i915_gem_object *obj,
  3253. int id,
  3254. int align)
  3255. {
  3256. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3257. drm_i915_private_t *dev_priv = dev->dev_private;
  3258. int ret = 0;
  3259. int page_count;
  3260. int i;
  3261. if (id > I915_MAX_PHYS_OBJECT)
  3262. return -EINVAL;
  3263. if (obj->phys_obj) {
  3264. if (obj->phys_obj->id == id)
  3265. return 0;
  3266. i915_gem_detach_phys_object(dev, obj);
  3267. }
  3268. /* create a new object */
  3269. if (!dev_priv->mm.phys_objs[id - 1]) {
  3270. ret = i915_gem_init_phys_object(dev, id,
  3271. obj->base.size, align);
  3272. if (ret) {
  3273. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3274. id, obj->base.size);
  3275. return ret;
  3276. }
  3277. }
  3278. /* bind to the object */
  3279. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3280. obj->phys_obj->cur_obj = obj;
  3281. page_count = obj->base.size / PAGE_SIZE;
  3282. for (i = 0; i < page_count; i++) {
  3283. struct page *page;
  3284. char *dst, *src;
  3285. page = shmem_read_mapping_page(mapping, i);
  3286. if (IS_ERR(page))
  3287. return PTR_ERR(page);
  3288. src = kmap_atomic(page);
  3289. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3290. memcpy(dst, src, PAGE_SIZE);
  3291. kunmap_atomic(src);
  3292. mark_page_accessed(page);
  3293. page_cache_release(page);
  3294. }
  3295. return 0;
  3296. }
  3297. static int
  3298. i915_gem_phys_pwrite(struct drm_device *dev,
  3299. struct drm_i915_gem_object *obj,
  3300. struct drm_i915_gem_pwrite *args,
  3301. struct drm_file *file_priv)
  3302. {
  3303. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3304. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3305. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3306. unsigned long unwritten;
  3307. /* The physical object once assigned is fixed for the lifetime
  3308. * of the obj, so we can safely drop the lock and continue
  3309. * to access vaddr.
  3310. */
  3311. mutex_unlock(&dev->struct_mutex);
  3312. unwritten = copy_from_user(vaddr, user_data, args->size);
  3313. mutex_lock(&dev->struct_mutex);
  3314. if (unwritten)
  3315. return -EFAULT;
  3316. }
  3317. intel_gtt_chipset_flush();
  3318. return 0;
  3319. }
  3320. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3321. {
  3322. struct drm_i915_file_private *file_priv = file->driver_priv;
  3323. /* Clean up our request list when the client is going away, so that
  3324. * later retire_requests won't dereference our soon-to-be-gone
  3325. * file_priv.
  3326. */
  3327. spin_lock(&file_priv->mm.lock);
  3328. while (!list_empty(&file_priv->mm.request_list)) {
  3329. struct drm_i915_gem_request *request;
  3330. request = list_first_entry(&file_priv->mm.request_list,
  3331. struct drm_i915_gem_request,
  3332. client_list);
  3333. list_del(&request->client_list);
  3334. request->file_priv = NULL;
  3335. }
  3336. spin_unlock(&file_priv->mm.lock);
  3337. }
  3338. static int
  3339. i915_gpu_is_active(struct drm_device *dev)
  3340. {
  3341. drm_i915_private_t *dev_priv = dev->dev_private;
  3342. int lists_empty;
  3343. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3344. list_empty(&dev_priv->mm.active_list);
  3345. return !lists_empty;
  3346. }
  3347. static int
  3348. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3349. {
  3350. struct drm_i915_private *dev_priv =
  3351. container_of(shrinker,
  3352. struct drm_i915_private,
  3353. mm.inactive_shrinker);
  3354. struct drm_device *dev = dev_priv->dev;
  3355. struct drm_i915_gem_object *obj, *next;
  3356. int nr_to_scan = sc->nr_to_scan;
  3357. int cnt;
  3358. if (!mutex_trylock(&dev->struct_mutex))
  3359. return 0;
  3360. /* "fast-path" to count number of available objects */
  3361. if (nr_to_scan == 0) {
  3362. cnt = 0;
  3363. list_for_each_entry(obj,
  3364. &dev_priv->mm.inactive_list,
  3365. mm_list)
  3366. cnt++;
  3367. mutex_unlock(&dev->struct_mutex);
  3368. return cnt / 100 * sysctl_vfs_cache_pressure;
  3369. }
  3370. rescan:
  3371. /* first scan for clean buffers */
  3372. i915_gem_retire_requests(dev);
  3373. list_for_each_entry_safe(obj, next,
  3374. &dev_priv->mm.inactive_list,
  3375. mm_list) {
  3376. if (i915_gem_object_is_purgeable(obj)) {
  3377. if (i915_gem_object_unbind(obj) == 0 &&
  3378. --nr_to_scan == 0)
  3379. break;
  3380. }
  3381. }
  3382. /* second pass, evict/count anything still on the inactive list */
  3383. cnt = 0;
  3384. list_for_each_entry_safe(obj, next,
  3385. &dev_priv->mm.inactive_list,
  3386. mm_list) {
  3387. if (nr_to_scan &&
  3388. i915_gem_object_unbind(obj) == 0)
  3389. nr_to_scan--;
  3390. else
  3391. cnt++;
  3392. }
  3393. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3394. /*
  3395. * We are desperate for pages, so as a last resort, wait
  3396. * for the GPU to finish and discard whatever we can.
  3397. * This has a dramatic impact to reduce the number of
  3398. * OOM-killer events whilst running the GPU aggressively.
  3399. */
  3400. if (i915_gpu_idle(dev) == 0)
  3401. goto rescan;
  3402. }
  3403. mutex_unlock(&dev->struct_mutex);
  3404. return cnt / 100 * sysctl_vfs_cache_pressure;
  3405. }