sched.c 178 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/cpu_acct.h>
  55. #include <linux/kthread.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/sysctl.h>
  58. #include <linux/syscalls.h>
  59. #include <linux/times.h>
  60. #include <linux/tsacct_kern.h>
  61. #include <linux/kprobes.h>
  62. #include <linux/delayacct.h>
  63. #include <linux/reciprocal_div.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <asm/tlb.h>
  67. #include <asm/irq_regs.h>
  68. /*
  69. * Scheduler clock - returns current time in nanosec units.
  70. * This is default implementation.
  71. * Architectures and sub-architectures can override this.
  72. */
  73. unsigned long long __attribute__((weak)) sched_clock(void)
  74. {
  75. return (unsigned long long)jiffies * (1000000000 / HZ);
  76. }
  77. /*
  78. * Convert user-nice values [ -20 ... 0 ... 19 ]
  79. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  80. * and back.
  81. */
  82. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  83. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  84. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  85. /*
  86. * 'User priority' is the nice value converted to something we
  87. * can work with better when scaling various scheduler parameters,
  88. * it's a [ 0 ... 39 ] range.
  89. */
  90. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  91. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  92. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  93. /*
  94. * Some helpers for converting nanosecond timing to jiffy resolution
  95. */
  96. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
  97. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #include <linux/cgroup.h>
  145. struct cfs_rq;
  146. /* task group related information */
  147. struct task_group {
  148. #ifdef CONFIG_FAIR_CGROUP_SCHED
  149. struct cgroup_subsys_state css;
  150. #endif
  151. /* schedulable entities of this group on each cpu */
  152. struct sched_entity **se;
  153. /* runqueue "owned" by this group on each cpu */
  154. struct cfs_rq **cfs_rq;
  155. unsigned long shares;
  156. /* spinlock to serialize modification to shares */
  157. spinlock_t lock;
  158. struct rcu_head rcu;
  159. };
  160. /* Default task group's sched entity on each cpu */
  161. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  162. /* Default task group's cfs_rq on each cpu */
  163. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  164. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  165. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  166. /* Default task group.
  167. * Every task in system belong to this group at bootup.
  168. */
  169. struct task_group init_task_group = {
  170. .se = init_sched_entity_p,
  171. .cfs_rq = init_cfs_rq_p,
  172. };
  173. #ifdef CONFIG_FAIR_USER_SCHED
  174. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  175. #else
  176. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  177. #endif
  178. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  179. /* return group to which a task belongs */
  180. static inline struct task_group *task_group(struct task_struct *p)
  181. {
  182. struct task_group *tg;
  183. #ifdef CONFIG_FAIR_USER_SCHED
  184. tg = p->user->tg;
  185. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  186. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  187. struct task_group, css);
  188. #else
  189. tg = &init_task_group;
  190. #endif
  191. return tg;
  192. }
  193. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  194. static inline void set_task_cfs_rq(struct task_struct *p)
  195. {
  196. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  197. p->se.parent = task_group(p)->se[task_cpu(p)];
  198. }
  199. #else
  200. static inline void set_task_cfs_rq(struct task_struct *p) { }
  201. #endif /* CONFIG_FAIR_GROUP_SCHED */
  202. /* CFS-related fields in a runqueue */
  203. struct cfs_rq {
  204. struct load_weight load;
  205. unsigned long nr_running;
  206. u64 exec_clock;
  207. u64 min_vruntime;
  208. struct rb_root tasks_timeline;
  209. struct rb_node *rb_leftmost;
  210. struct rb_node *rb_load_balance_curr;
  211. /* 'curr' points to currently running entity on this cfs_rq.
  212. * It is set to NULL otherwise (i.e when none are currently running).
  213. */
  214. struct sched_entity *curr;
  215. unsigned long nr_spread_over;
  216. #ifdef CONFIG_FAIR_GROUP_SCHED
  217. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  218. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  219. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  220. * (like users, containers etc.)
  221. *
  222. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  223. * list is used during load balance.
  224. */
  225. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  226. struct task_group *tg; /* group that "owns" this runqueue */
  227. #endif
  228. };
  229. /* Real-Time classes' related field in a runqueue: */
  230. struct rt_rq {
  231. struct rt_prio_array active;
  232. int rt_load_balance_idx;
  233. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  234. };
  235. /*
  236. * This is the main, per-CPU runqueue data structure.
  237. *
  238. * Locking rule: those places that want to lock multiple runqueues
  239. * (such as the load balancing or the thread migration code), lock
  240. * acquire operations must be ordered by ascending &runqueue.
  241. */
  242. struct rq {
  243. /* runqueue lock: */
  244. spinlock_t lock;
  245. /*
  246. * nr_running and cpu_load should be in the same cacheline because
  247. * remote CPUs use both these fields when doing load calculation.
  248. */
  249. unsigned long nr_running;
  250. #define CPU_LOAD_IDX_MAX 5
  251. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  252. unsigned char idle_at_tick;
  253. #ifdef CONFIG_NO_HZ
  254. unsigned char in_nohz_recently;
  255. #endif
  256. /* capture load from *all* tasks on this cpu: */
  257. struct load_weight load;
  258. unsigned long nr_load_updates;
  259. u64 nr_switches;
  260. struct cfs_rq cfs;
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. /* list of leaf cfs_rq on this cpu: */
  263. struct list_head leaf_cfs_rq_list;
  264. #endif
  265. struct rt_rq rt;
  266. /*
  267. * This is part of a global counter where only the total sum
  268. * over all CPUs matters. A task can increase this counter on
  269. * one CPU and if it got migrated afterwards it may decrease
  270. * it on another CPU. Always updated under the runqueue lock:
  271. */
  272. unsigned long nr_uninterruptible;
  273. struct task_struct *curr, *idle;
  274. unsigned long next_balance;
  275. struct mm_struct *prev_mm;
  276. u64 clock, prev_clock_raw;
  277. s64 clock_max_delta;
  278. unsigned int clock_warps, clock_overflows;
  279. u64 idle_clock;
  280. unsigned int clock_deep_idle_events;
  281. u64 tick_timestamp;
  282. atomic_t nr_iowait;
  283. #ifdef CONFIG_SMP
  284. struct sched_domain *sd;
  285. /* For active balancing */
  286. int active_balance;
  287. int push_cpu;
  288. /* cpu of this runqueue: */
  289. int cpu;
  290. struct task_struct *migration_thread;
  291. struct list_head migration_queue;
  292. #endif
  293. #ifdef CONFIG_SCHEDSTATS
  294. /* latency stats */
  295. struct sched_info rq_sched_info;
  296. /* sys_sched_yield() stats */
  297. unsigned int yld_exp_empty;
  298. unsigned int yld_act_empty;
  299. unsigned int yld_both_empty;
  300. unsigned int yld_count;
  301. /* schedule() stats */
  302. unsigned int sched_switch;
  303. unsigned int sched_count;
  304. unsigned int sched_goidle;
  305. /* try_to_wake_up() stats */
  306. unsigned int ttwu_count;
  307. unsigned int ttwu_local;
  308. /* BKL stats */
  309. unsigned int bkl_count;
  310. #endif
  311. struct lock_class_key rq_lock_key;
  312. };
  313. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  314. static DEFINE_MUTEX(sched_hotcpu_mutex);
  315. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  316. {
  317. rq->curr->sched_class->check_preempt_curr(rq, p);
  318. }
  319. static inline int cpu_of(struct rq *rq)
  320. {
  321. #ifdef CONFIG_SMP
  322. return rq->cpu;
  323. #else
  324. return 0;
  325. #endif
  326. }
  327. /*
  328. * Update the per-runqueue clock, as finegrained as the platform can give
  329. * us, but without assuming monotonicity, etc.:
  330. */
  331. static void __update_rq_clock(struct rq *rq)
  332. {
  333. u64 prev_raw = rq->prev_clock_raw;
  334. u64 now = sched_clock();
  335. s64 delta = now - prev_raw;
  336. u64 clock = rq->clock;
  337. #ifdef CONFIG_SCHED_DEBUG
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. #endif
  340. /*
  341. * Protect against sched_clock() occasionally going backwards:
  342. */
  343. if (unlikely(delta < 0)) {
  344. clock++;
  345. rq->clock_warps++;
  346. } else {
  347. /*
  348. * Catch too large forward jumps too:
  349. */
  350. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  351. if (clock < rq->tick_timestamp + TICK_NSEC)
  352. clock = rq->tick_timestamp + TICK_NSEC;
  353. else
  354. clock++;
  355. rq->clock_overflows++;
  356. } else {
  357. if (unlikely(delta > rq->clock_max_delta))
  358. rq->clock_max_delta = delta;
  359. clock += delta;
  360. }
  361. }
  362. rq->prev_clock_raw = now;
  363. rq->clock = clock;
  364. }
  365. static void update_rq_clock(struct rq *rq)
  366. {
  367. if (likely(smp_processor_id() == cpu_of(rq)))
  368. __update_rq_clock(rq);
  369. }
  370. /*
  371. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  372. * See detach_destroy_domains: synchronize_sched for details.
  373. *
  374. * The domain tree of any CPU may only be accessed from within
  375. * preempt-disabled sections.
  376. */
  377. #define for_each_domain(cpu, __sd) \
  378. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  379. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  380. #define this_rq() (&__get_cpu_var(runqueues))
  381. #define task_rq(p) cpu_rq(task_cpu(p))
  382. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  383. /*
  384. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  385. */
  386. #ifdef CONFIG_SCHED_DEBUG
  387. # define const_debug __read_mostly
  388. #else
  389. # define const_debug static const
  390. #endif
  391. /*
  392. * Debugging: various feature bits
  393. */
  394. enum {
  395. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  396. SCHED_FEAT_START_DEBIT = 2,
  397. SCHED_FEAT_TREE_AVG = 4,
  398. SCHED_FEAT_APPROX_AVG = 8,
  399. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  400. SCHED_FEAT_PREEMPT_RESTRICT = 32,
  401. };
  402. const_debug unsigned int sysctl_sched_features =
  403. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  404. SCHED_FEAT_START_DEBIT * 1 |
  405. SCHED_FEAT_TREE_AVG * 0 |
  406. SCHED_FEAT_APPROX_AVG * 0 |
  407. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  408. SCHED_FEAT_PREEMPT_RESTRICT * 1;
  409. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  410. /*
  411. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  412. * clock constructed from sched_clock():
  413. */
  414. unsigned long long cpu_clock(int cpu)
  415. {
  416. unsigned long long now;
  417. unsigned long flags;
  418. struct rq *rq;
  419. local_irq_save(flags);
  420. rq = cpu_rq(cpu);
  421. update_rq_clock(rq);
  422. now = rq->clock;
  423. local_irq_restore(flags);
  424. return now;
  425. }
  426. EXPORT_SYMBOL_GPL(cpu_clock);
  427. #ifndef prepare_arch_switch
  428. # define prepare_arch_switch(next) do { } while (0)
  429. #endif
  430. #ifndef finish_arch_switch
  431. # define finish_arch_switch(prev) do { } while (0)
  432. #endif
  433. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  434. static inline int task_running(struct rq *rq, struct task_struct *p)
  435. {
  436. return rq->curr == p;
  437. }
  438. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  439. {
  440. }
  441. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  442. {
  443. #ifdef CONFIG_DEBUG_SPINLOCK
  444. /* this is a valid case when another task releases the spinlock */
  445. rq->lock.owner = current;
  446. #endif
  447. /*
  448. * If we are tracking spinlock dependencies then we have to
  449. * fix up the runqueue lock - which gets 'carried over' from
  450. * prev into current:
  451. */
  452. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  453. spin_unlock_irq(&rq->lock);
  454. }
  455. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  456. static inline int task_running(struct rq *rq, struct task_struct *p)
  457. {
  458. #ifdef CONFIG_SMP
  459. return p->oncpu;
  460. #else
  461. return rq->curr == p;
  462. #endif
  463. }
  464. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  465. {
  466. #ifdef CONFIG_SMP
  467. /*
  468. * We can optimise this out completely for !SMP, because the
  469. * SMP rebalancing from interrupt is the only thing that cares
  470. * here.
  471. */
  472. next->oncpu = 1;
  473. #endif
  474. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  475. spin_unlock_irq(&rq->lock);
  476. #else
  477. spin_unlock(&rq->lock);
  478. #endif
  479. }
  480. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  481. {
  482. #ifdef CONFIG_SMP
  483. /*
  484. * After ->oncpu is cleared, the task can be moved to a different CPU.
  485. * We must ensure this doesn't happen until the switch is completely
  486. * finished.
  487. */
  488. smp_wmb();
  489. prev->oncpu = 0;
  490. #endif
  491. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  492. local_irq_enable();
  493. #endif
  494. }
  495. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  496. /*
  497. * __task_rq_lock - lock the runqueue a given task resides on.
  498. * Must be called interrupts disabled.
  499. */
  500. static inline struct rq *__task_rq_lock(struct task_struct *p)
  501. __acquires(rq->lock)
  502. {
  503. for (;;) {
  504. struct rq *rq = task_rq(p);
  505. spin_lock(&rq->lock);
  506. if (likely(rq == task_rq(p)))
  507. return rq;
  508. spin_unlock(&rq->lock);
  509. }
  510. }
  511. /*
  512. * task_rq_lock - lock the runqueue a given task resides on and disable
  513. * interrupts. Note the ordering: we can safely lookup the task_rq without
  514. * explicitly disabling preemption.
  515. */
  516. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  517. __acquires(rq->lock)
  518. {
  519. struct rq *rq;
  520. for (;;) {
  521. local_irq_save(*flags);
  522. rq = task_rq(p);
  523. spin_lock(&rq->lock);
  524. if (likely(rq == task_rq(p)))
  525. return rq;
  526. spin_unlock_irqrestore(&rq->lock, *flags);
  527. }
  528. }
  529. static void __task_rq_unlock(struct rq *rq)
  530. __releases(rq->lock)
  531. {
  532. spin_unlock(&rq->lock);
  533. }
  534. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  535. __releases(rq->lock)
  536. {
  537. spin_unlock_irqrestore(&rq->lock, *flags);
  538. }
  539. /*
  540. * this_rq_lock - lock this runqueue and disable interrupts.
  541. */
  542. static struct rq *this_rq_lock(void)
  543. __acquires(rq->lock)
  544. {
  545. struct rq *rq;
  546. local_irq_disable();
  547. rq = this_rq();
  548. spin_lock(&rq->lock);
  549. return rq;
  550. }
  551. /*
  552. * We are going deep-idle (irqs are disabled):
  553. */
  554. void sched_clock_idle_sleep_event(void)
  555. {
  556. struct rq *rq = cpu_rq(smp_processor_id());
  557. spin_lock(&rq->lock);
  558. __update_rq_clock(rq);
  559. spin_unlock(&rq->lock);
  560. rq->clock_deep_idle_events++;
  561. }
  562. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  563. /*
  564. * We just idled delta nanoseconds (called with irqs disabled):
  565. */
  566. void sched_clock_idle_wakeup_event(u64 delta_ns)
  567. {
  568. struct rq *rq = cpu_rq(smp_processor_id());
  569. u64 now = sched_clock();
  570. rq->idle_clock += delta_ns;
  571. /*
  572. * Override the previous timestamp and ignore all
  573. * sched_clock() deltas that occured while we idled,
  574. * and use the PM-provided delta_ns to advance the
  575. * rq clock:
  576. */
  577. spin_lock(&rq->lock);
  578. rq->prev_clock_raw = now;
  579. rq->clock += delta_ns;
  580. spin_unlock(&rq->lock);
  581. }
  582. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  583. /*
  584. * resched_task - mark a task 'to be rescheduled now'.
  585. *
  586. * On UP this means the setting of the need_resched flag, on SMP it
  587. * might also involve a cross-CPU call to trigger the scheduler on
  588. * the target CPU.
  589. */
  590. #ifdef CONFIG_SMP
  591. #ifndef tsk_is_polling
  592. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  593. #endif
  594. static void resched_task(struct task_struct *p)
  595. {
  596. int cpu;
  597. assert_spin_locked(&task_rq(p)->lock);
  598. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  599. return;
  600. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  601. cpu = task_cpu(p);
  602. if (cpu == smp_processor_id())
  603. return;
  604. /* NEED_RESCHED must be visible before we test polling */
  605. smp_mb();
  606. if (!tsk_is_polling(p))
  607. smp_send_reschedule(cpu);
  608. }
  609. static void resched_cpu(int cpu)
  610. {
  611. struct rq *rq = cpu_rq(cpu);
  612. unsigned long flags;
  613. if (!spin_trylock_irqsave(&rq->lock, flags))
  614. return;
  615. resched_task(cpu_curr(cpu));
  616. spin_unlock_irqrestore(&rq->lock, flags);
  617. }
  618. #else
  619. static inline void resched_task(struct task_struct *p)
  620. {
  621. assert_spin_locked(&task_rq(p)->lock);
  622. set_tsk_need_resched(p);
  623. }
  624. #endif
  625. #if BITS_PER_LONG == 32
  626. # define WMULT_CONST (~0UL)
  627. #else
  628. # define WMULT_CONST (1UL << 32)
  629. #endif
  630. #define WMULT_SHIFT 32
  631. /*
  632. * Shift right and round:
  633. */
  634. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  635. static unsigned long
  636. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  637. struct load_weight *lw)
  638. {
  639. u64 tmp;
  640. if (unlikely(!lw->inv_weight))
  641. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  642. tmp = (u64)delta_exec * weight;
  643. /*
  644. * Check whether we'd overflow the 64-bit multiplication:
  645. */
  646. if (unlikely(tmp > WMULT_CONST))
  647. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  648. WMULT_SHIFT/2);
  649. else
  650. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  651. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  652. }
  653. static inline unsigned long
  654. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  655. {
  656. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  657. }
  658. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  659. {
  660. lw->weight += inc;
  661. }
  662. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  663. {
  664. lw->weight -= dec;
  665. }
  666. /*
  667. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  668. * of tasks with abnormal "nice" values across CPUs the contribution that
  669. * each task makes to its run queue's load is weighted according to its
  670. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  671. * scaled version of the new time slice allocation that they receive on time
  672. * slice expiry etc.
  673. */
  674. #define WEIGHT_IDLEPRIO 2
  675. #define WMULT_IDLEPRIO (1 << 31)
  676. /*
  677. * Nice levels are multiplicative, with a gentle 10% change for every
  678. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  679. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  680. * that remained on nice 0.
  681. *
  682. * The "10% effect" is relative and cumulative: from _any_ nice level,
  683. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  684. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  685. * If a task goes up by ~10% and another task goes down by ~10% then
  686. * the relative distance between them is ~25%.)
  687. */
  688. static const int prio_to_weight[40] = {
  689. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  690. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  691. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  692. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  693. /* 0 */ 1024, 820, 655, 526, 423,
  694. /* 5 */ 335, 272, 215, 172, 137,
  695. /* 10 */ 110, 87, 70, 56, 45,
  696. /* 15 */ 36, 29, 23, 18, 15,
  697. };
  698. /*
  699. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  700. *
  701. * In cases where the weight does not change often, we can use the
  702. * precalculated inverse to speed up arithmetics by turning divisions
  703. * into multiplications:
  704. */
  705. static const u32 prio_to_wmult[40] = {
  706. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  707. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  708. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  709. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  710. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  711. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  712. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  713. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  714. };
  715. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  716. /*
  717. * runqueue iterator, to support SMP load-balancing between different
  718. * scheduling classes, without having to expose their internal data
  719. * structures to the load-balancing proper:
  720. */
  721. struct rq_iterator {
  722. void *arg;
  723. struct task_struct *(*start)(void *);
  724. struct task_struct *(*next)(void *);
  725. };
  726. #ifdef CONFIG_SMP
  727. static unsigned long
  728. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  729. unsigned long max_load_move, struct sched_domain *sd,
  730. enum cpu_idle_type idle, int *all_pinned,
  731. int *this_best_prio, struct rq_iterator *iterator);
  732. static int
  733. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  734. struct sched_domain *sd, enum cpu_idle_type idle,
  735. struct rq_iterator *iterator);
  736. #endif
  737. #include "sched_stats.h"
  738. #include "sched_idletask.c"
  739. #include "sched_fair.c"
  740. #include "sched_rt.c"
  741. #ifdef CONFIG_SCHED_DEBUG
  742. # include "sched_debug.c"
  743. #endif
  744. #define sched_class_highest (&rt_sched_class)
  745. /*
  746. * Update delta_exec, delta_fair fields for rq.
  747. *
  748. * delta_fair clock advances at a rate inversely proportional to
  749. * total load (rq->load.weight) on the runqueue, while
  750. * delta_exec advances at the same rate as wall-clock (provided
  751. * cpu is not idle).
  752. *
  753. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  754. * runqueue over any given interval. This (smoothened) load is used
  755. * during load balance.
  756. *
  757. * This function is called /before/ updating rq->load
  758. * and when switching tasks.
  759. */
  760. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  761. {
  762. update_load_add(&rq->load, p->se.load.weight);
  763. }
  764. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  765. {
  766. update_load_sub(&rq->load, p->se.load.weight);
  767. }
  768. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  769. {
  770. rq->nr_running++;
  771. inc_load(rq, p);
  772. }
  773. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  774. {
  775. rq->nr_running--;
  776. dec_load(rq, p);
  777. }
  778. static void set_load_weight(struct task_struct *p)
  779. {
  780. if (task_has_rt_policy(p)) {
  781. p->se.load.weight = prio_to_weight[0] * 2;
  782. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  783. return;
  784. }
  785. /*
  786. * SCHED_IDLE tasks get minimal weight:
  787. */
  788. if (p->policy == SCHED_IDLE) {
  789. p->se.load.weight = WEIGHT_IDLEPRIO;
  790. p->se.load.inv_weight = WMULT_IDLEPRIO;
  791. return;
  792. }
  793. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  794. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  795. }
  796. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  797. {
  798. sched_info_queued(p);
  799. p->sched_class->enqueue_task(rq, p, wakeup);
  800. p->se.on_rq = 1;
  801. }
  802. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  803. {
  804. p->sched_class->dequeue_task(rq, p, sleep);
  805. p->se.on_rq = 0;
  806. }
  807. /*
  808. * __normal_prio - return the priority that is based on the static prio
  809. */
  810. static inline int __normal_prio(struct task_struct *p)
  811. {
  812. return p->static_prio;
  813. }
  814. /*
  815. * Calculate the expected normal priority: i.e. priority
  816. * without taking RT-inheritance into account. Might be
  817. * boosted by interactivity modifiers. Changes upon fork,
  818. * setprio syscalls, and whenever the interactivity
  819. * estimator recalculates.
  820. */
  821. static inline int normal_prio(struct task_struct *p)
  822. {
  823. int prio;
  824. if (task_has_rt_policy(p))
  825. prio = MAX_RT_PRIO-1 - p->rt_priority;
  826. else
  827. prio = __normal_prio(p);
  828. return prio;
  829. }
  830. /*
  831. * Calculate the current priority, i.e. the priority
  832. * taken into account by the scheduler. This value might
  833. * be boosted by RT tasks, or might be boosted by
  834. * interactivity modifiers. Will be RT if the task got
  835. * RT-boosted. If not then it returns p->normal_prio.
  836. */
  837. static int effective_prio(struct task_struct *p)
  838. {
  839. p->normal_prio = normal_prio(p);
  840. /*
  841. * If we are RT tasks or we were boosted to RT priority,
  842. * keep the priority unchanged. Otherwise, update priority
  843. * to the normal priority:
  844. */
  845. if (!rt_prio(p->prio))
  846. return p->normal_prio;
  847. return p->prio;
  848. }
  849. /*
  850. * activate_task - move a task to the runqueue.
  851. */
  852. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  853. {
  854. if (p->state == TASK_UNINTERRUPTIBLE)
  855. rq->nr_uninterruptible--;
  856. enqueue_task(rq, p, wakeup);
  857. inc_nr_running(p, rq);
  858. }
  859. /*
  860. * deactivate_task - remove a task from the runqueue.
  861. */
  862. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  863. {
  864. if (p->state == TASK_UNINTERRUPTIBLE)
  865. rq->nr_uninterruptible++;
  866. dequeue_task(rq, p, sleep);
  867. dec_nr_running(p, rq);
  868. }
  869. /**
  870. * task_curr - is this task currently executing on a CPU?
  871. * @p: the task in question.
  872. */
  873. inline int task_curr(const struct task_struct *p)
  874. {
  875. return cpu_curr(task_cpu(p)) == p;
  876. }
  877. /* Used instead of source_load when we know the type == 0 */
  878. unsigned long weighted_cpuload(const int cpu)
  879. {
  880. return cpu_rq(cpu)->load.weight;
  881. }
  882. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  883. {
  884. #ifdef CONFIG_SMP
  885. task_thread_info(p)->cpu = cpu;
  886. #endif
  887. set_task_cfs_rq(p);
  888. }
  889. #ifdef CONFIG_SMP
  890. /*
  891. * Is this task likely cache-hot:
  892. */
  893. static inline int
  894. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  895. {
  896. s64 delta;
  897. if (p->sched_class != &fair_sched_class)
  898. return 0;
  899. if (sysctl_sched_migration_cost == -1)
  900. return 1;
  901. if (sysctl_sched_migration_cost == 0)
  902. return 0;
  903. delta = now - p->se.exec_start;
  904. return delta < (s64)sysctl_sched_migration_cost;
  905. }
  906. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  907. {
  908. int old_cpu = task_cpu(p);
  909. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  910. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  911. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  912. u64 clock_offset;
  913. clock_offset = old_rq->clock - new_rq->clock;
  914. #ifdef CONFIG_SCHEDSTATS
  915. if (p->se.wait_start)
  916. p->se.wait_start -= clock_offset;
  917. if (p->se.sleep_start)
  918. p->se.sleep_start -= clock_offset;
  919. if (p->se.block_start)
  920. p->se.block_start -= clock_offset;
  921. if (old_cpu != new_cpu) {
  922. schedstat_inc(p, se.nr_migrations);
  923. if (task_hot(p, old_rq->clock, NULL))
  924. schedstat_inc(p, se.nr_forced2_migrations);
  925. }
  926. #endif
  927. p->se.vruntime -= old_cfsrq->min_vruntime -
  928. new_cfsrq->min_vruntime;
  929. __set_task_cpu(p, new_cpu);
  930. }
  931. struct migration_req {
  932. struct list_head list;
  933. struct task_struct *task;
  934. int dest_cpu;
  935. struct completion done;
  936. };
  937. /*
  938. * The task's runqueue lock must be held.
  939. * Returns true if you have to wait for migration thread.
  940. */
  941. static int
  942. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  943. {
  944. struct rq *rq = task_rq(p);
  945. /*
  946. * If the task is not on a runqueue (and not running), then
  947. * it is sufficient to simply update the task's cpu field.
  948. */
  949. if (!p->se.on_rq && !task_running(rq, p)) {
  950. set_task_cpu(p, dest_cpu);
  951. return 0;
  952. }
  953. init_completion(&req->done);
  954. req->task = p;
  955. req->dest_cpu = dest_cpu;
  956. list_add(&req->list, &rq->migration_queue);
  957. return 1;
  958. }
  959. /*
  960. * wait_task_inactive - wait for a thread to unschedule.
  961. *
  962. * The caller must ensure that the task *will* unschedule sometime soon,
  963. * else this function might spin for a *long* time. This function can't
  964. * be called with interrupts off, or it may introduce deadlock with
  965. * smp_call_function() if an IPI is sent by the same process we are
  966. * waiting to become inactive.
  967. */
  968. void wait_task_inactive(struct task_struct *p)
  969. {
  970. unsigned long flags;
  971. int running, on_rq;
  972. struct rq *rq;
  973. for (;;) {
  974. /*
  975. * We do the initial early heuristics without holding
  976. * any task-queue locks at all. We'll only try to get
  977. * the runqueue lock when things look like they will
  978. * work out!
  979. */
  980. rq = task_rq(p);
  981. /*
  982. * If the task is actively running on another CPU
  983. * still, just relax and busy-wait without holding
  984. * any locks.
  985. *
  986. * NOTE! Since we don't hold any locks, it's not
  987. * even sure that "rq" stays as the right runqueue!
  988. * But we don't care, since "task_running()" will
  989. * return false if the runqueue has changed and p
  990. * is actually now running somewhere else!
  991. */
  992. while (task_running(rq, p))
  993. cpu_relax();
  994. /*
  995. * Ok, time to look more closely! We need the rq
  996. * lock now, to be *sure*. If we're wrong, we'll
  997. * just go back and repeat.
  998. */
  999. rq = task_rq_lock(p, &flags);
  1000. running = task_running(rq, p);
  1001. on_rq = p->se.on_rq;
  1002. task_rq_unlock(rq, &flags);
  1003. /*
  1004. * Was it really running after all now that we
  1005. * checked with the proper locks actually held?
  1006. *
  1007. * Oops. Go back and try again..
  1008. */
  1009. if (unlikely(running)) {
  1010. cpu_relax();
  1011. continue;
  1012. }
  1013. /*
  1014. * It's not enough that it's not actively running,
  1015. * it must be off the runqueue _entirely_, and not
  1016. * preempted!
  1017. *
  1018. * So if it wa still runnable (but just not actively
  1019. * running right now), it's preempted, and we should
  1020. * yield - it could be a while.
  1021. */
  1022. if (unlikely(on_rq)) {
  1023. schedule_timeout_uninterruptible(1);
  1024. continue;
  1025. }
  1026. /*
  1027. * Ahh, all good. It wasn't running, and it wasn't
  1028. * runnable, which means that it will never become
  1029. * running in the future either. We're all done!
  1030. */
  1031. break;
  1032. }
  1033. }
  1034. /***
  1035. * kick_process - kick a running thread to enter/exit the kernel
  1036. * @p: the to-be-kicked thread
  1037. *
  1038. * Cause a process which is running on another CPU to enter
  1039. * kernel-mode, without any delay. (to get signals handled.)
  1040. *
  1041. * NOTE: this function doesnt have to take the runqueue lock,
  1042. * because all it wants to ensure is that the remote task enters
  1043. * the kernel. If the IPI races and the task has been migrated
  1044. * to another CPU then no harm is done and the purpose has been
  1045. * achieved as well.
  1046. */
  1047. void kick_process(struct task_struct *p)
  1048. {
  1049. int cpu;
  1050. preempt_disable();
  1051. cpu = task_cpu(p);
  1052. if ((cpu != smp_processor_id()) && task_curr(p))
  1053. smp_send_reschedule(cpu);
  1054. preempt_enable();
  1055. }
  1056. /*
  1057. * Return a low guess at the load of a migration-source cpu weighted
  1058. * according to the scheduling class and "nice" value.
  1059. *
  1060. * We want to under-estimate the load of migration sources, to
  1061. * balance conservatively.
  1062. */
  1063. static unsigned long source_load(int cpu, int type)
  1064. {
  1065. struct rq *rq = cpu_rq(cpu);
  1066. unsigned long total = weighted_cpuload(cpu);
  1067. if (type == 0)
  1068. return total;
  1069. return min(rq->cpu_load[type-1], total);
  1070. }
  1071. /*
  1072. * Return a high guess at the load of a migration-target cpu weighted
  1073. * according to the scheduling class and "nice" value.
  1074. */
  1075. static unsigned long target_load(int cpu, int type)
  1076. {
  1077. struct rq *rq = cpu_rq(cpu);
  1078. unsigned long total = weighted_cpuload(cpu);
  1079. if (type == 0)
  1080. return total;
  1081. return max(rq->cpu_load[type-1], total);
  1082. }
  1083. /*
  1084. * Return the average load per task on the cpu's run queue
  1085. */
  1086. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1087. {
  1088. struct rq *rq = cpu_rq(cpu);
  1089. unsigned long total = weighted_cpuload(cpu);
  1090. unsigned long n = rq->nr_running;
  1091. return n ? total / n : SCHED_LOAD_SCALE;
  1092. }
  1093. /*
  1094. * find_idlest_group finds and returns the least busy CPU group within the
  1095. * domain.
  1096. */
  1097. static struct sched_group *
  1098. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1099. {
  1100. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1101. unsigned long min_load = ULONG_MAX, this_load = 0;
  1102. int load_idx = sd->forkexec_idx;
  1103. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1104. do {
  1105. unsigned long load, avg_load;
  1106. int local_group;
  1107. int i;
  1108. /* Skip over this group if it has no CPUs allowed */
  1109. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1110. continue;
  1111. local_group = cpu_isset(this_cpu, group->cpumask);
  1112. /* Tally up the load of all CPUs in the group */
  1113. avg_load = 0;
  1114. for_each_cpu_mask(i, group->cpumask) {
  1115. /* Bias balancing toward cpus of our domain */
  1116. if (local_group)
  1117. load = source_load(i, load_idx);
  1118. else
  1119. load = target_load(i, load_idx);
  1120. avg_load += load;
  1121. }
  1122. /* Adjust by relative CPU power of the group */
  1123. avg_load = sg_div_cpu_power(group,
  1124. avg_load * SCHED_LOAD_SCALE);
  1125. if (local_group) {
  1126. this_load = avg_load;
  1127. this = group;
  1128. } else if (avg_load < min_load) {
  1129. min_load = avg_load;
  1130. idlest = group;
  1131. }
  1132. } while (group = group->next, group != sd->groups);
  1133. if (!idlest || 100*this_load < imbalance*min_load)
  1134. return NULL;
  1135. return idlest;
  1136. }
  1137. /*
  1138. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1139. */
  1140. static int
  1141. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1142. {
  1143. cpumask_t tmp;
  1144. unsigned long load, min_load = ULONG_MAX;
  1145. int idlest = -1;
  1146. int i;
  1147. /* Traverse only the allowed CPUs */
  1148. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1149. for_each_cpu_mask(i, tmp) {
  1150. load = weighted_cpuload(i);
  1151. if (load < min_load || (load == min_load && i == this_cpu)) {
  1152. min_load = load;
  1153. idlest = i;
  1154. }
  1155. }
  1156. return idlest;
  1157. }
  1158. /*
  1159. * sched_balance_self: balance the current task (running on cpu) in domains
  1160. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1161. * SD_BALANCE_EXEC.
  1162. *
  1163. * Balance, ie. select the least loaded group.
  1164. *
  1165. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1166. *
  1167. * preempt must be disabled.
  1168. */
  1169. static int sched_balance_self(int cpu, int flag)
  1170. {
  1171. struct task_struct *t = current;
  1172. struct sched_domain *tmp, *sd = NULL;
  1173. for_each_domain(cpu, tmp) {
  1174. /*
  1175. * If power savings logic is enabled for a domain, stop there.
  1176. */
  1177. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1178. break;
  1179. if (tmp->flags & flag)
  1180. sd = tmp;
  1181. }
  1182. while (sd) {
  1183. cpumask_t span;
  1184. struct sched_group *group;
  1185. int new_cpu, weight;
  1186. if (!(sd->flags & flag)) {
  1187. sd = sd->child;
  1188. continue;
  1189. }
  1190. span = sd->span;
  1191. group = find_idlest_group(sd, t, cpu);
  1192. if (!group) {
  1193. sd = sd->child;
  1194. continue;
  1195. }
  1196. new_cpu = find_idlest_cpu(group, t, cpu);
  1197. if (new_cpu == -1 || new_cpu == cpu) {
  1198. /* Now try balancing at a lower domain level of cpu */
  1199. sd = sd->child;
  1200. continue;
  1201. }
  1202. /* Now try balancing at a lower domain level of new_cpu */
  1203. cpu = new_cpu;
  1204. sd = NULL;
  1205. weight = cpus_weight(span);
  1206. for_each_domain(cpu, tmp) {
  1207. if (weight <= cpus_weight(tmp->span))
  1208. break;
  1209. if (tmp->flags & flag)
  1210. sd = tmp;
  1211. }
  1212. /* while loop will break here if sd == NULL */
  1213. }
  1214. return cpu;
  1215. }
  1216. #endif /* CONFIG_SMP */
  1217. /*
  1218. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1219. * not idle and an idle cpu is available. The span of cpus to
  1220. * search starts with cpus closest then further out as needed,
  1221. * so we always favor a closer, idle cpu.
  1222. *
  1223. * Returns the CPU we should wake onto.
  1224. */
  1225. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1226. static int wake_idle(int cpu, struct task_struct *p)
  1227. {
  1228. cpumask_t tmp;
  1229. struct sched_domain *sd;
  1230. int i;
  1231. /*
  1232. * If it is idle, then it is the best cpu to run this task.
  1233. *
  1234. * This cpu is also the best, if it has more than one task already.
  1235. * Siblings must be also busy(in most cases) as they didn't already
  1236. * pickup the extra load from this cpu and hence we need not check
  1237. * sibling runqueue info. This will avoid the checks and cache miss
  1238. * penalities associated with that.
  1239. */
  1240. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1241. return cpu;
  1242. for_each_domain(cpu, sd) {
  1243. if (sd->flags & SD_WAKE_IDLE) {
  1244. cpus_and(tmp, sd->span, p->cpus_allowed);
  1245. for_each_cpu_mask(i, tmp) {
  1246. if (idle_cpu(i)) {
  1247. if (i != task_cpu(p)) {
  1248. schedstat_inc(p,
  1249. se.nr_wakeups_idle);
  1250. }
  1251. return i;
  1252. }
  1253. }
  1254. } else {
  1255. break;
  1256. }
  1257. }
  1258. return cpu;
  1259. }
  1260. #else
  1261. static inline int wake_idle(int cpu, struct task_struct *p)
  1262. {
  1263. return cpu;
  1264. }
  1265. #endif
  1266. /***
  1267. * try_to_wake_up - wake up a thread
  1268. * @p: the to-be-woken-up thread
  1269. * @state: the mask of task states that can be woken
  1270. * @sync: do a synchronous wakeup?
  1271. *
  1272. * Put it on the run-queue if it's not already there. The "current"
  1273. * thread is always on the run-queue (except when the actual
  1274. * re-schedule is in progress), and as such you're allowed to do
  1275. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1276. * runnable without the overhead of this.
  1277. *
  1278. * returns failure only if the task is already active.
  1279. */
  1280. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1281. {
  1282. int cpu, orig_cpu, this_cpu, success = 0;
  1283. unsigned long flags;
  1284. long old_state;
  1285. struct rq *rq;
  1286. #ifdef CONFIG_SMP
  1287. struct sched_domain *sd, *this_sd = NULL;
  1288. unsigned long load, this_load;
  1289. int new_cpu;
  1290. #endif
  1291. rq = task_rq_lock(p, &flags);
  1292. old_state = p->state;
  1293. if (!(old_state & state))
  1294. goto out;
  1295. if (p->se.on_rq)
  1296. goto out_running;
  1297. cpu = task_cpu(p);
  1298. orig_cpu = cpu;
  1299. this_cpu = smp_processor_id();
  1300. #ifdef CONFIG_SMP
  1301. if (unlikely(task_running(rq, p)))
  1302. goto out_activate;
  1303. new_cpu = cpu;
  1304. schedstat_inc(rq, ttwu_count);
  1305. if (cpu == this_cpu) {
  1306. schedstat_inc(rq, ttwu_local);
  1307. goto out_set_cpu;
  1308. }
  1309. for_each_domain(this_cpu, sd) {
  1310. if (cpu_isset(cpu, sd->span)) {
  1311. schedstat_inc(sd, ttwu_wake_remote);
  1312. this_sd = sd;
  1313. break;
  1314. }
  1315. }
  1316. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1317. goto out_set_cpu;
  1318. /*
  1319. * Check for affine wakeup and passive balancing possibilities.
  1320. */
  1321. if (this_sd) {
  1322. int idx = this_sd->wake_idx;
  1323. unsigned int imbalance;
  1324. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1325. load = source_load(cpu, idx);
  1326. this_load = target_load(this_cpu, idx);
  1327. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1328. if (this_sd->flags & SD_WAKE_AFFINE) {
  1329. unsigned long tl = this_load;
  1330. unsigned long tl_per_task;
  1331. /*
  1332. * Attract cache-cold tasks on sync wakeups:
  1333. */
  1334. if (sync && !task_hot(p, rq->clock, this_sd))
  1335. goto out_set_cpu;
  1336. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1337. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1338. /*
  1339. * If sync wakeup then subtract the (maximum possible)
  1340. * effect of the currently running task from the load
  1341. * of the current CPU:
  1342. */
  1343. if (sync)
  1344. tl -= current->se.load.weight;
  1345. if ((tl <= load &&
  1346. tl + target_load(cpu, idx) <= tl_per_task) ||
  1347. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1348. /*
  1349. * This domain has SD_WAKE_AFFINE and
  1350. * p is cache cold in this domain, and
  1351. * there is no bad imbalance.
  1352. */
  1353. schedstat_inc(this_sd, ttwu_move_affine);
  1354. schedstat_inc(p, se.nr_wakeups_affine);
  1355. goto out_set_cpu;
  1356. }
  1357. }
  1358. /*
  1359. * Start passive balancing when half the imbalance_pct
  1360. * limit is reached.
  1361. */
  1362. if (this_sd->flags & SD_WAKE_BALANCE) {
  1363. if (imbalance*this_load <= 100*load) {
  1364. schedstat_inc(this_sd, ttwu_move_balance);
  1365. schedstat_inc(p, se.nr_wakeups_passive);
  1366. goto out_set_cpu;
  1367. }
  1368. }
  1369. }
  1370. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1371. out_set_cpu:
  1372. new_cpu = wake_idle(new_cpu, p);
  1373. if (new_cpu != cpu) {
  1374. set_task_cpu(p, new_cpu);
  1375. task_rq_unlock(rq, &flags);
  1376. /* might preempt at this point */
  1377. rq = task_rq_lock(p, &flags);
  1378. old_state = p->state;
  1379. if (!(old_state & state))
  1380. goto out;
  1381. if (p->se.on_rq)
  1382. goto out_running;
  1383. this_cpu = smp_processor_id();
  1384. cpu = task_cpu(p);
  1385. }
  1386. out_activate:
  1387. #endif /* CONFIG_SMP */
  1388. schedstat_inc(p, se.nr_wakeups);
  1389. if (sync)
  1390. schedstat_inc(p, se.nr_wakeups_sync);
  1391. if (orig_cpu != cpu)
  1392. schedstat_inc(p, se.nr_wakeups_migrate);
  1393. if (cpu == this_cpu)
  1394. schedstat_inc(p, se.nr_wakeups_local);
  1395. else
  1396. schedstat_inc(p, se.nr_wakeups_remote);
  1397. update_rq_clock(rq);
  1398. activate_task(rq, p, 1);
  1399. check_preempt_curr(rq, p);
  1400. success = 1;
  1401. out_running:
  1402. p->state = TASK_RUNNING;
  1403. out:
  1404. task_rq_unlock(rq, &flags);
  1405. return success;
  1406. }
  1407. int fastcall wake_up_process(struct task_struct *p)
  1408. {
  1409. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1410. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1411. }
  1412. EXPORT_SYMBOL(wake_up_process);
  1413. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1414. {
  1415. return try_to_wake_up(p, state, 0);
  1416. }
  1417. /*
  1418. * Perform scheduler related setup for a newly forked process p.
  1419. * p is forked by current.
  1420. *
  1421. * __sched_fork() is basic setup used by init_idle() too:
  1422. */
  1423. static void __sched_fork(struct task_struct *p)
  1424. {
  1425. p->se.exec_start = 0;
  1426. p->se.sum_exec_runtime = 0;
  1427. p->se.prev_sum_exec_runtime = 0;
  1428. #ifdef CONFIG_SCHEDSTATS
  1429. p->se.wait_start = 0;
  1430. p->se.sum_sleep_runtime = 0;
  1431. p->se.sleep_start = 0;
  1432. p->se.block_start = 0;
  1433. p->se.sleep_max = 0;
  1434. p->se.block_max = 0;
  1435. p->se.exec_max = 0;
  1436. p->se.slice_max = 0;
  1437. p->se.wait_max = 0;
  1438. #endif
  1439. INIT_LIST_HEAD(&p->run_list);
  1440. p->se.on_rq = 0;
  1441. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1442. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1443. #endif
  1444. /*
  1445. * We mark the process as running here, but have not actually
  1446. * inserted it onto the runqueue yet. This guarantees that
  1447. * nobody will actually run it, and a signal or other external
  1448. * event cannot wake it up and insert it on the runqueue either.
  1449. */
  1450. p->state = TASK_RUNNING;
  1451. }
  1452. /*
  1453. * fork()/clone()-time setup:
  1454. */
  1455. void sched_fork(struct task_struct *p, int clone_flags)
  1456. {
  1457. int cpu = get_cpu();
  1458. __sched_fork(p);
  1459. #ifdef CONFIG_SMP
  1460. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1461. #endif
  1462. set_task_cpu(p, cpu);
  1463. /*
  1464. * Make sure we do not leak PI boosting priority to the child:
  1465. */
  1466. p->prio = current->normal_prio;
  1467. if (!rt_prio(p->prio))
  1468. p->sched_class = &fair_sched_class;
  1469. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1470. if (likely(sched_info_on()))
  1471. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1472. #endif
  1473. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1474. p->oncpu = 0;
  1475. #endif
  1476. #ifdef CONFIG_PREEMPT
  1477. /* Want to start with kernel preemption disabled. */
  1478. task_thread_info(p)->preempt_count = 1;
  1479. #endif
  1480. put_cpu();
  1481. }
  1482. /*
  1483. * wake_up_new_task - wake up a newly created task for the first time.
  1484. *
  1485. * This function will do some initial scheduler statistics housekeeping
  1486. * that must be done for every newly created context, then puts the task
  1487. * on the runqueue and wakes it.
  1488. */
  1489. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1490. {
  1491. unsigned long flags;
  1492. struct rq *rq;
  1493. rq = task_rq_lock(p, &flags);
  1494. BUG_ON(p->state != TASK_RUNNING);
  1495. update_rq_clock(rq);
  1496. p->prio = effective_prio(p);
  1497. if (!p->sched_class->task_new || !current->se.on_rq) {
  1498. activate_task(rq, p, 0);
  1499. } else {
  1500. /*
  1501. * Let the scheduling class do new task startup
  1502. * management (if any):
  1503. */
  1504. p->sched_class->task_new(rq, p);
  1505. inc_nr_running(p, rq);
  1506. }
  1507. check_preempt_curr(rq, p);
  1508. task_rq_unlock(rq, &flags);
  1509. }
  1510. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1511. /**
  1512. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1513. * @notifier: notifier struct to register
  1514. */
  1515. void preempt_notifier_register(struct preempt_notifier *notifier)
  1516. {
  1517. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1518. }
  1519. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1520. /**
  1521. * preempt_notifier_unregister - no longer interested in preemption notifications
  1522. * @notifier: notifier struct to unregister
  1523. *
  1524. * This is safe to call from within a preemption notifier.
  1525. */
  1526. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1527. {
  1528. hlist_del(&notifier->link);
  1529. }
  1530. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1531. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1532. {
  1533. struct preempt_notifier *notifier;
  1534. struct hlist_node *node;
  1535. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1536. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1537. }
  1538. static void
  1539. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1540. struct task_struct *next)
  1541. {
  1542. struct preempt_notifier *notifier;
  1543. struct hlist_node *node;
  1544. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1545. notifier->ops->sched_out(notifier, next);
  1546. }
  1547. #else
  1548. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1549. {
  1550. }
  1551. static void
  1552. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1553. struct task_struct *next)
  1554. {
  1555. }
  1556. #endif
  1557. /**
  1558. * prepare_task_switch - prepare to switch tasks
  1559. * @rq: the runqueue preparing to switch
  1560. * @prev: the current task that is being switched out
  1561. * @next: the task we are going to switch to.
  1562. *
  1563. * This is called with the rq lock held and interrupts off. It must
  1564. * be paired with a subsequent finish_task_switch after the context
  1565. * switch.
  1566. *
  1567. * prepare_task_switch sets up locking and calls architecture specific
  1568. * hooks.
  1569. */
  1570. static inline void
  1571. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1572. struct task_struct *next)
  1573. {
  1574. fire_sched_out_preempt_notifiers(prev, next);
  1575. prepare_lock_switch(rq, next);
  1576. prepare_arch_switch(next);
  1577. }
  1578. /**
  1579. * finish_task_switch - clean up after a task-switch
  1580. * @rq: runqueue associated with task-switch
  1581. * @prev: the thread we just switched away from.
  1582. *
  1583. * finish_task_switch must be called after the context switch, paired
  1584. * with a prepare_task_switch call before the context switch.
  1585. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1586. * and do any other architecture-specific cleanup actions.
  1587. *
  1588. * Note that we may have delayed dropping an mm in context_switch(). If
  1589. * so, we finish that here outside of the runqueue lock. (Doing it
  1590. * with the lock held can cause deadlocks; see schedule() for
  1591. * details.)
  1592. */
  1593. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1594. __releases(rq->lock)
  1595. {
  1596. struct mm_struct *mm = rq->prev_mm;
  1597. long prev_state;
  1598. rq->prev_mm = NULL;
  1599. /*
  1600. * A task struct has one reference for the use as "current".
  1601. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1602. * schedule one last time. The schedule call will never return, and
  1603. * the scheduled task must drop that reference.
  1604. * The test for TASK_DEAD must occur while the runqueue locks are
  1605. * still held, otherwise prev could be scheduled on another cpu, die
  1606. * there before we look at prev->state, and then the reference would
  1607. * be dropped twice.
  1608. * Manfred Spraul <manfred@colorfullife.com>
  1609. */
  1610. prev_state = prev->state;
  1611. finish_arch_switch(prev);
  1612. finish_lock_switch(rq, prev);
  1613. fire_sched_in_preempt_notifiers(current);
  1614. if (mm)
  1615. mmdrop(mm);
  1616. if (unlikely(prev_state == TASK_DEAD)) {
  1617. /*
  1618. * Remove function-return probe instances associated with this
  1619. * task and put them back on the free list.
  1620. */
  1621. kprobe_flush_task(prev);
  1622. put_task_struct(prev);
  1623. }
  1624. }
  1625. /**
  1626. * schedule_tail - first thing a freshly forked thread must call.
  1627. * @prev: the thread we just switched away from.
  1628. */
  1629. asmlinkage void schedule_tail(struct task_struct *prev)
  1630. __releases(rq->lock)
  1631. {
  1632. struct rq *rq = this_rq();
  1633. finish_task_switch(rq, prev);
  1634. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1635. /* In this case, finish_task_switch does not reenable preemption */
  1636. preempt_enable();
  1637. #endif
  1638. if (current->set_child_tid)
  1639. put_user(task_pid_vnr(current), current->set_child_tid);
  1640. }
  1641. /*
  1642. * context_switch - switch to the new MM and the new
  1643. * thread's register state.
  1644. */
  1645. static inline void
  1646. context_switch(struct rq *rq, struct task_struct *prev,
  1647. struct task_struct *next)
  1648. {
  1649. struct mm_struct *mm, *oldmm;
  1650. prepare_task_switch(rq, prev, next);
  1651. mm = next->mm;
  1652. oldmm = prev->active_mm;
  1653. /*
  1654. * For paravirt, this is coupled with an exit in switch_to to
  1655. * combine the page table reload and the switch backend into
  1656. * one hypercall.
  1657. */
  1658. arch_enter_lazy_cpu_mode();
  1659. if (unlikely(!mm)) {
  1660. next->active_mm = oldmm;
  1661. atomic_inc(&oldmm->mm_count);
  1662. enter_lazy_tlb(oldmm, next);
  1663. } else
  1664. switch_mm(oldmm, mm, next);
  1665. if (unlikely(!prev->mm)) {
  1666. prev->active_mm = NULL;
  1667. rq->prev_mm = oldmm;
  1668. }
  1669. /*
  1670. * Since the runqueue lock will be released by the next
  1671. * task (which is an invalid locking op but in the case
  1672. * of the scheduler it's an obvious special-case), so we
  1673. * do an early lockdep release here:
  1674. */
  1675. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1676. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1677. #endif
  1678. /* Here we just switch the register state and the stack. */
  1679. switch_to(prev, next, prev);
  1680. barrier();
  1681. /*
  1682. * this_rq must be evaluated again because prev may have moved
  1683. * CPUs since it called schedule(), thus the 'rq' on its stack
  1684. * frame will be invalid.
  1685. */
  1686. finish_task_switch(this_rq(), prev);
  1687. }
  1688. /*
  1689. * nr_running, nr_uninterruptible and nr_context_switches:
  1690. *
  1691. * externally visible scheduler statistics: current number of runnable
  1692. * threads, current number of uninterruptible-sleeping threads, total
  1693. * number of context switches performed since bootup.
  1694. */
  1695. unsigned long nr_running(void)
  1696. {
  1697. unsigned long i, sum = 0;
  1698. for_each_online_cpu(i)
  1699. sum += cpu_rq(i)->nr_running;
  1700. return sum;
  1701. }
  1702. unsigned long nr_uninterruptible(void)
  1703. {
  1704. unsigned long i, sum = 0;
  1705. for_each_possible_cpu(i)
  1706. sum += cpu_rq(i)->nr_uninterruptible;
  1707. /*
  1708. * Since we read the counters lockless, it might be slightly
  1709. * inaccurate. Do not allow it to go below zero though:
  1710. */
  1711. if (unlikely((long)sum < 0))
  1712. sum = 0;
  1713. return sum;
  1714. }
  1715. unsigned long long nr_context_switches(void)
  1716. {
  1717. int i;
  1718. unsigned long long sum = 0;
  1719. for_each_possible_cpu(i)
  1720. sum += cpu_rq(i)->nr_switches;
  1721. return sum;
  1722. }
  1723. unsigned long nr_iowait(void)
  1724. {
  1725. unsigned long i, sum = 0;
  1726. for_each_possible_cpu(i)
  1727. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1728. return sum;
  1729. }
  1730. unsigned long nr_active(void)
  1731. {
  1732. unsigned long i, running = 0, uninterruptible = 0;
  1733. for_each_online_cpu(i) {
  1734. running += cpu_rq(i)->nr_running;
  1735. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1736. }
  1737. if (unlikely((long)uninterruptible < 0))
  1738. uninterruptible = 0;
  1739. return running + uninterruptible;
  1740. }
  1741. /*
  1742. * Update rq->cpu_load[] statistics. This function is usually called every
  1743. * scheduler tick (TICK_NSEC).
  1744. */
  1745. static void update_cpu_load(struct rq *this_rq)
  1746. {
  1747. unsigned long this_load = this_rq->load.weight;
  1748. int i, scale;
  1749. this_rq->nr_load_updates++;
  1750. /* Update our load: */
  1751. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1752. unsigned long old_load, new_load;
  1753. /* scale is effectively 1 << i now, and >> i divides by scale */
  1754. old_load = this_rq->cpu_load[i];
  1755. new_load = this_load;
  1756. /*
  1757. * Round up the averaging division if load is increasing. This
  1758. * prevents us from getting stuck on 9 if the load is 10, for
  1759. * example.
  1760. */
  1761. if (new_load > old_load)
  1762. new_load += scale-1;
  1763. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1764. }
  1765. }
  1766. #ifdef CONFIG_SMP
  1767. /*
  1768. * double_rq_lock - safely lock two runqueues
  1769. *
  1770. * Note this does not disable interrupts like task_rq_lock,
  1771. * you need to do so manually before calling.
  1772. */
  1773. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1774. __acquires(rq1->lock)
  1775. __acquires(rq2->lock)
  1776. {
  1777. BUG_ON(!irqs_disabled());
  1778. if (rq1 == rq2) {
  1779. spin_lock(&rq1->lock);
  1780. __acquire(rq2->lock); /* Fake it out ;) */
  1781. } else {
  1782. if (rq1 < rq2) {
  1783. spin_lock(&rq1->lock);
  1784. spin_lock(&rq2->lock);
  1785. } else {
  1786. spin_lock(&rq2->lock);
  1787. spin_lock(&rq1->lock);
  1788. }
  1789. }
  1790. update_rq_clock(rq1);
  1791. update_rq_clock(rq2);
  1792. }
  1793. /*
  1794. * double_rq_unlock - safely unlock two runqueues
  1795. *
  1796. * Note this does not restore interrupts like task_rq_unlock,
  1797. * you need to do so manually after calling.
  1798. */
  1799. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1800. __releases(rq1->lock)
  1801. __releases(rq2->lock)
  1802. {
  1803. spin_unlock(&rq1->lock);
  1804. if (rq1 != rq2)
  1805. spin_unlock(&rq2->lock);
  1806. else
  1807. __release(rq2->lock);
  1808. }
  1809. /*
  1810. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1811. */
  1812. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1813. __releases(this_rq->lock)
  1814. __acquires(busiest->lock)
  1815. __acquires(this_rq->lock)
  1816. {
  1817. if (unlikely(!irqs_disabled())) {
  1818. /* printk() doesn't work good under rq->lock */
  1819. spin_unlock(&this_rq->lock);
  1820. BUG_ON(1);
  1821. }
  1822. if (unlikely(!spin_trylock(&busiest->lock))) {
  1823. if (busiest < this_rq) {
  1824. spin_unlock(&this_rq->lock);
  1825. spin_lock(&busiest->lock);
  1826. spin_lock(&this_rq->lock);
  1827. } else
  1828. spin_lock(&busiest->lock);
  1829. }
  1830. }
  1831. /*
  1832. * If dest_cpu is allowed for this process, migrate the task to it.
  1833. * This is accomplished by forcing the cpu_allowed mask to only
  1834. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1835. * the cpu_allowed mask is restored.
  1836. */
  1837. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1838. {
  1839. struct migration_req req;
  1840. unsigned long flags;
  1841. struct rq *rq;
  1842. rq = task_rq_lock(p, &flags);
  1843. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1844. || unlikely(cpu_is_offline(dest_cpu)))
  1845. goto out;
  1846. /* force the process onto the specified CPU */
  1847. if (migrate_task(p, dest_cpu, &req)) {
  1848. /* Need to wait for migration thread (might exit: take ref). */
  1849. struct task_struct *mt = rq->migration_thread;
  1850. get_task_struct(mt);
  1851. task_rq_unlock(rq, &flags);
  1852. wake_up_process(mt);
  1853. put_task_struct(mt);
  1854. wait_for_completion(&req.done);
  1855. return;
  1856. }
  1857. out:
  1858. task_rq_unlock(rq, &flags);
  1859. }
  1860. /*
  1861. * sched_exec - execve() is a valuable balancing opportunity, because at
  1862. * this point the task has the smallest effective memory and cache footprint.
  1863. */
  1864. void sched_exec(void)
  1865. {
  1866. int new_cpu, this_cpu = get_cpu();
  1867. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1868. put_cpu();
  1869. if (new_cpu != this_cpu)
  1870. sched_migrate_task(current, new_cpu);
  1871. }
  1872. /*
  1873. * pull_task - move a task from a remote runqueue to the local runqueue.
  1874. * Both runqueues must be locked.
  1875. */
  1876. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1877. struct rq *this_rq, int this_cpu)
  1878. {
  1879. deactivate_task(src_rq, p, 0);
  1880. set_task_cpu(p, this_cpu);
  1881. activate_task(this_rq, p, 0);
  1882. /*
  1883. * Note that idle threads have a prio of MAX_PRIO, for this test
  1884. * to be always true for them.
  1885. */
  1886. check_preempt_curr(this_rq, p);
  1887. }
  1888. /*
  1889. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1890. */
  1891. static
  1892. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1893. struct sched_domain *sd, enum cpu_idle_type idle,
  1894. int *all_pinned)
  1895. {
  1896. /*
  1897. * We do not migrate tasks that are:
  1898. * 1) running (obviously), or
  1899. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1900. * 3) are cache-hot on their current CPU.
  1901. */
  1902. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1903. schedstat_inc(p, se.nr_failed_migrations_affine);
  1904. return 0;
  1905. }
  1906. *all_pinned = 0;
  1907. if (task_running(rq, p)) {
  1908. schedstat_inc(p, se.nr_failed_migrations_running);
  1909. return 0;
  1910. }
  1911. /*
  1912. * Aggressive migration if:
  1913. * 1) task is cache cold, or
  1914. * 2) too many balance attempts have failed.
  1915. */
  1916. if (!task_hot(p, rq->clock, sd) ||
  1917. sd->nr_balance_failed > sd->cache_nice_tries) {
  1918. #ifdef CONFIG_SCHEDSTATS
  1919. if (task_hot(p, rq->clock, sd)) {
  1920. schedstat_inc(sd, lb_hot_gained[idle]);
  1921. schedstat_inc(p, se.nr_forced_migrations);
  1922. }
  1923. #endif
  1924. return 1;
  1925. }
  1926. if (task_hot(p, rq->clock, sd)) {
  1927. schedstat_inc(p, se.nr_failed_migrations_hot);
  1928. return 0;
  1929. }
  1930. return 1;
  1931. }
  1932. static unsigned long
  1933. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1934. unsigned long max_load_move, struct sched_domain *sd,
  1935. enum cpu_idle_type idle, int *all_pinned,
  1936. int *this_best_prio, struct rq_iterator *iterator)
  1937. {
  1938. int pulled = 0, pinned = 0, skip_for_load;
  1939. struct task_struct *p;
  1940. long rem_load_move = max_load_move;
  1941. if (max_load_move == 0)
  1942. goto out;
  1943. pinned = 1;
  1944. /*
  1945. * Start the load-balancing iterator:
  1946. */
  1947. p = iterator->start(iterator->arg);
  1948. next:
  1949. if (!p)
  1950. goto out;
  1951. /*
  1952. * To help distribute high priority tasks accross CPUs we don't
  1953. * skip a task if it will be the highest priority task (i.e. smallest
  1954. * prio value) on its new queue regardless of its load weight
  1955. */
  1956. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1957. SCHED_LOAD_SCALE_FUZZ;
  1958. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1959. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1960. p = iterator->next(iterator->arg);
  1961. goto next;
  1962. }
  1963. pull_task(busiest, p, this_rq, this_cpu);
  1964. pulled++;
  1965. rem_load_move -= p->se.load.weight;
  1966. /*
  1967. * We only want to steal up to the prescribed number of tasks
  1968. * and the prescribed amount of weighted load.
  1969. */
  1970. if (rem_load_move > 0) {
  1971. if (p->prio < *this_best_prio)
  1972. *this_best_prio = p->prio;
  1973. p = iterator->next(iterator->arg);
  1974. goto next;
  1975. }
  1976. out:
  1977. /*
  1978. * Right now, this is one of only two places pull_task() is called,
  1979. * so we can safely collect pull_task() stats here rather than
  1980. * inside pull_task().
  1981. */
  1982. schedstat_add(sd, lb_gained[idle], pulled);
  1983. if (all_pinned)
  1984. *all_pinned = pinned;
  1985. return max_load_move - rem_load_move;
  1986. }
  1987. /*
  1988. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1989. * this_rq, as part of a balancing operation within domain "sd".
  1990. * Returns 1 if successful and 0 otherwise.
  1991. *
  1992. * Called with both runqueues locked.
  1993. */
  1994. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1995. unsigned long max_load_move,
  1996. struct sched_domain *sd, enum cpu_idle_type idle,
  1997. int *all_pinned)
  1998. {
  1999. const struct sched_class *class = sched_class_highest;
  2000. unsigned long total_load_moved = 0;
  2001. int this_best_prio = this_rq->curr->prio;
  2002. do {
  2003. total_load_moved +=
  2004. class->load_balance(this_rq, this_cpu, busiest,
  2005. max_load_move - total_load_moved,
  2006. sd, idle, all_pinned, &this_best_prio);
  2007. class = class->next;
  2008. } while (class && max_load_move > total_load_moved);
  2009. return total_load_moved > 0;
  2010. }
  2011. static int
  2012. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2013. struct sched_domain *sd, enum cpu_idle_type idle,
  2014. struct rq_iterator *iterator)
  2015. {
  2016. struct task_struct *p = iterator->start(iterator->arg);
  2017. int pinned = 0;
  2018. while (p) {
  2019. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2020. pull_task(busiest, p, this_rq, this_cpu);
  2021. /*
  2022. * Right now, this is only the second place pull_task()
  2023. * is called, so we can safely collect pull_task()
  2024. * stats here rather than inside pull_task().
  2025. */
  2026. schedstat_inc(sd, lb_gained[idle]);
  2027. return 1;
  2028. }
  2029. p = iterator->next(iterator->arg);
  2030. }
  2031. return 0;
  2032. }
  2033. /*
  2034. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2035. * part of active balancing operations within "domain".
  2036. * Returns 1 if successful and 0 otherwise.
  2037. *
  2038. * Called with both runqueues locked.
  2039. */
  2040. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2041. struct sched_domain *sd, enum cpu_idle_type idle)
  2042. {
  2043. const struct sched_class *class;
  2044. for (class = sched_class_highest; class; class = class->next)
  2045. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2046. return 1;
  2047. return 0;
  2048. }
  2049. /*
  2050. * find_busiest_group finds and returns the busiest CPU group within the
  2051. * domain. It calculates and returns the amount of weighted load which
  2052. * should be moved to restore balance via the imbalance parameter.
  2053. */
  2054. static struct sched_group *
  2055. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2056. unsigned long *imbalance, enum cpu_idle_type idle,
  2057. int *sd_idle, cpumask_t *cpus, int *balance)
  2058. {
  2059. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2060. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2061. unsigned long max_pull;
  2062. unsigned long busiest_load_per_task, busiest_nr_running;
  2063. unsigned long this_load_per_task, this_nr_running;
  2064. int load_idx, group_imb = 0;
  2065. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2066. int power_savings_balance = 1;
  2067. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2068. unsigned long min_nr_running = ULONG_MAX;
  2069. struct sched_group *group_min = NULL, *group_leader = NULL;
  2070. #endif
  2071. max_load = this_load = total_load = total_pwr = 0;
  2072. busiest_load_per_task = busiest_nr_running = 0;
  2073. this_load_per_task = this_nr_running = 0;
  2074. if (idle == CPU_NOT_IDLE)
  2075. load_idx = sd->busy_idx;
  2076. else if (idle == CPU_NEWLY_IDLE)
  2077. load_idx = sd->newidle_idx;
  2078. else
  2079. load_idx = sd->idle_idx;
  2080. do {
  2081. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2082. int local_group;
  2083. int i;
  2084. int __group_imb = 0;
  2085. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2086. unsigned long sum_nr_running, sum_weighted_load;
  2087. local_group = cpu_isset(this_cpu, group->cpumask);
  2088. if (local_group)
  2089. balance_cpu = first_cpu(group->cpumask);
  2090. /* Tally up the load of all CPUs in the group */
  2091. sum_weighted_load = sum_nr_running = avg_load = 0;
  2092. max_cpu_load = 0;
  2093. min_cpu_load = ~0UL;
  2094. for_each_cpu_mask(i, group->cpumask) {
  2095. struct rq *rq;
  2096. if (!cpu_isset(i, *cpus))
  2097. continue;
  2098. rq = cpu_rq(i);
  2099. if (*sd_idle && rq->nr_running)
  2100. *sd_idle = 0;
  2101. /* Bias balancing toward cpus of our domain */
  2102. if (local_group) {
  2103. if (idle_cpu(i) && !first_idle_cpu) {
  2104. first_idle_cpu = 1;
  2105. balance_cpu = i;
  2106. }
  2107. load = target_load(i, load_idx);
  2108. } else {
  2109. load = source_load(i, load_idx);
  2110. if (load > max_cpu_load)
  2111. max_cpu_load = load;
  2112. if (min_cpu_load > load)
  2113. min_cpu_load = load;
  2114. }
  2115. avg_load += load;
  2116. sum_nr_running += rq->nr_running;
  2117. sum_weighted_load += weighted_cpuload(i);
  2118. }
  2119. /*
  2120. * First idle cpu or the first cpu(busiest) in this sched group
  2121. * is eligible for doing load balancing at this and above
  2122. * domains. In the newly idle case, we will allow all the cpu's
  2123. * to do the newly idle load balance.
  2124. */
  2125. if (idle != CPU_NEWLY_IDLE && local_group &&
  2126. balance_cpu != this_cpu && balance) {
  2127. *balance = 0;
  2128. goto ret;
  2129. }
  2130. total_load += avg_load;
  2131. total_pwr += group->__cpu_power;
  2132. /* Adjust by relative CPU power of the group */
  2133. avg_load = sg_div_cpu_power(group,
  2134. avg_load * SCHED_LOAD_SCALE);
  2135. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2136. __group_imb = 1;
  2137. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2138. if (local_group) {
  2139. this_load = avg_load;
  2140. this = group;
  2141. this_nr_running = sum_nr_running;
  2142. this_load_per_task = sum_weighted_load;
  2143. } else if (avg_load > max_load &&
  2144. (sum_nr_running > group_capacity || __group_imb)) {
  2145. max_load = avg_load;
  2146. busiest = group;
  2147. busiest_nr_running = sum_nr_running;
  2148. busiest_load_per_task = sum_weighted_load;
  2149. group_imb = __group_imb;
  2150. }
  2151. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2152. /*
  2153. * Busy processors will not participate in power savings
  2154. * balance.
  2155. */
  2156. if (idle == CPU_NOT_IDLE ||
  2157. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2158. goto group_next;
  2159. /*
  2160. * If the local group is idle or completely loaded
  2161. * no need to do power savings balance at this domain
  2162. */
  2163. if (local_group && (this_nr_running >= group_capacity ||
  2164. !this_nr_running))
  2165. power_savings_balance = 0;
  2166. /*
  2167. * If a group is already running at full capacity or idle,
  2168. * don't include that group in power savings calculations
  2169. */
  2170. if (!power_savings_balance || sum_nr_running >= group_capacity
  2171. || !sum_nr_running)
  2172. goto group_next;
  2173. /*
  2174. * Calculate the group which has the least non-idle load.
  2175. * This is the group from where we need to pick up the load
  2176. * for saving power
  2177. */
  2178. if ((sum_nr_running < min_nr_running) ||
  2179. (sum_nr_running == min_nr_running &&
  2180. first_cpu(group->cpumask) <
  2181. first_cpu(group_min->cpumask))) {
  2182. group_min = group;
  2183. min_nr_running = sum_nr_running;
  2184. min_load_per_task = sum_weighted_load /
  2185. sum_nr_running;
  2186. }
  2187. /*
  2188. * Calculate the group which is almost near its
  2189. * capacity but still has some space to pick up some load
  2190. * from other group and save more power
  2191. */
  2192. if (sum_nr_running <= group_capacity - 1) {
  2193. if (sum_nr_running > leader_nr_running ||
  2194. (sum_nr_running == leader_nr_running &&
  2195. first_cpu(group->cpumask) >
  2196. first_cpu(group_leader->cpumask))) {
  2197. group_leader = group;
  2198. leader_nr_running = sum_nr_running;
  2199. }
  2200. }
  2201. group_next:
  2202. #endif
  2203. group = group->next;
  2204. } while (group != sd->groups);
  2205. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2206. goto out_balanced;
  2207. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2208. if (this_load >= avg_load ||
  2209. 100*max_load <= sd->imbalance_pct*this_load)
  2210. goto out_balanced;
  2211. busiest_load_per_task /= busiest_nr_running;
  2212. if (group_imb)
  2213. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2214. /*
  2215. * We're trying to get all the cpus to the average_load, so we don't
  2216. * want to push ourselves above the average load, nor do we wish to
  2217. * reduce the max loaded cpu below the average load, as either of these
  2218. * actions would just result in more rebalancing later, and ping-pong
  2219. * tasks around. Thus we look for the minimum possible imbalance.
  2220. * Negative imbalances (*we* are more loaded than anyone else) will
  2221. * be counted as no imbalance for these purposes -- we can't fix that
  2222. * by pulling tasks to us. Be careful of negative numbers as they'll
  2223. * appear as very large values with unsigned longs.
  2224. */
  2225. if (max_load <= busiest_load_per_task)
  2226. goto out_balanced;
  2227. /*
  2228. * In the presence of smp nice balancing, certain scenarios can have
  2229. * max load less than avg load(as we skip the groups at or below
  2230. * its cpu_power, while calculating max_load..)
  2231. */
  2232. if (max_load < avg_load) {
  2233. *imbalance = 0;
  2234. goto small_imbalance;
  2235. }
  2236. /* Don't want to pull so many tasks that a group would go idle */
  2237. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2238. /* How much load to actually move to equalise the imbalance */
  2239. *imbalance = min(max_pull * busiest->__cpu_power,
  2240. (avg_load - this_load) * this->__cpu_power)
  2241. / SCHED_LOAD_SCALE;
  2242. /*
  2243. * if *imbalance is less than the average load per runnable task
  2244. * there is no gaurantee that any tasks will be moved so we'll have
  2245. * a think about bumping its value to force at least one task to be
  2246. * moved
  2247. */
  2248. if (*imbalance < busiest_load_per_task) {
  2249. unsigned long tmp, pwr_now, pwr_move;
  2250. unsigned int imbn;
  2251. small_imbalance:
  2252. pwr_move = pwr_now = 0;
  2253. imbn = 2;
  2254. if (this_nr_running) {
  2255. this_load_per_task /= this_nr_running;
  2256. if (busiest_load_per_task > this_load_per_task)
  2257. imbn = 1;
  2258. } else
  2259. this_load_per_task = SCHED_LOAD_SCALE;
  2260. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2261. busiest_load_per_task * imbn) {
  2262. *imbalance = busiest_load_per_task;
  2263. return busiest;
  2264. }
  2265. /*
  2266. * OK, we don't have enough imbalance to justify moving tasks,
  2267. * however we may be able to increase total CPU power used by
  2268. * moving them.
  2269. */
  2270. pwr_now += busiest->__cpu_power *
  2271. min(busiest_load_per_task, max_load);
  2272. pwr_now += this->__cpu_power *
  2273. min(this_load_per_task, this_load);
  2274. pwr_now /= SCHED_LOAD_SCALE;
  2275. /* Amount of load we'd subtract */
  2276. tmp = sg_div_cpu_power(busiest,
  2277. busiest_load_per_task * SCHED_LOAD_SCALE);
  2278. if (max_load > tmp)
  2279. pwr_move += busiest->__cpu_power *
  2280. min(busiest_load_per_task, max_load - tmp);
  2281. /* Amount of load we'd add */
  2282. if (max_load * busiest->__cpu_power <
  2283. busiest_load_per_task * SCHED_LOAD_SCALE)
  2284. tmp = sg_div_cpu_power(this,
  2285. max_load * busiest->__cpu_power);
  2286. else
  2287. tmp = sg_div_cpu_power(this,
  2288. busiest_load_per_task * SCHED_LOAD_SCALE);
  2289. pwr_move += this->__cpu_power *
  2290. min(this_load_per_task, this_load + tmp);
  2291. pwr_move /= SCHED_LOAD_SCALE;
  2292. /* Move if we gain throughput */
  2293. if (pwr_move > pwr_now)
  2294. *imbalance = busiest_load_per_task;
  2295. }
  2296. return busiest;
  2297. out_balanced:
  2298. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2299. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2300. goto ret;
  2301. if (this == group_leader && group_leader != group_min) {
  2302. *imbalance = min_load_per_task;
  2303. return group_min;
  2304. }
  2305. #endif
  2306. ret:
  2307. *imbalance = 0;
  2308. return NULL;
  2309. }
  2310. /*
  2311. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2312. */
  2313. static struct rq *
  2314. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2315. unsigned long imbalance, cpumask_t *cpus)
  2316. {
  2317. struct rq *busiest = NULL, *rq;
  2318. unsigned long max_load = 0;
  2319. int i;
  2320. for_each_cpu_mask(i, group->cpumask) {
  2321. unsigned long wl;
  2322. if (!cpu_isset(i, *cpus))
  2323. continue;
  2324. rq = cpu_rq(i);
  2325. wl = weighted_cpuload(i);
  2326. if (rq->nr_running == 1 && wl > imbalance)
  2327. continue;
  2328. if (wl > max_load) {
  2329. max_load = wl;
  2330. busiest = rq;
  2331. }
  2332. }
  2333. return busiest;
  2334. }
  2335. /*
  2336. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2337. * so long as it is large enough.
  2338. */
  2339. #define MAX_PINNED_INTERVAL 512
  2340. /*
  2341. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2342. * tasks if there is an imbalance.
  2343. */
  2344. static int load_balance(int this_cpu, struct rq *this_rq,
  2345. struct sched_domain *sd, enum cpu_idle_type idle,
  2346. int *balance)
  2347. {
  2348. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2349. struct sched_group *group;
  2350. unsigned long imbalance;
  2351. struct rq *busiest;
  2352. cpumask_t cpus = CPU_MASK_ALL;
  2353. unsigned long flags;
  2354. /*
  2355. * When power savings policy is enabled for the parent domain, idle
  2356. * sibling can pick up load irrespective of busy siblings. In this case,
  2357. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2358. * portraying it as CPU_NOT_IDLE.
  2359. */
  2360. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2361. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2362. sd_idle = 1;
  2363. schedstat_inc(sd, lb_count[idle]);
  2364. redo:
  2365. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2366. &cpus, balance);
  2367. if (*balance == 0)
  2368. goto out_balanced;
  2369. if (!group) {
  2370. schedstat_inc(sd, lb_nobusyg[idle]);
  2371. goto out_balanced;
  2372. }
  2373. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2374. if (!busiest) {
  2375. schedstat_inc(sd, lb_nobusyq[idle]);
  2376. goto out_balanced;
  2377. }
  2378. BUG_ON(busiest == this_rq);
  2379. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2380. ld_moved = 0;
  2381. if (busiest->nr_running > 1) {
  2382. /*
  2383. * Attempt to move tasks. If find_busiest_group has found
  2384. * an imbalance but busiest->nr_running <= 1, the group is
  2385. * still unbalanced. ld_moved simply stays zero, so it is
  2386. * correctly treated as an imbalance.
  2387. */
  2388. local_irq_save(flags);
  2389. double_rq_lock(this_rq, busiest);
  2390. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2391. imbalance, sd, idle, &all_pinned);
  2392. double_rq_unlock(this_rq, busiest);
  2393. local_irq_restore(flags);
  2394. /*
  2395. * some other cpu did the load balance for us.
  2396. */
  2397. if (ld_moved && this_cpu != smp_processor_id())
  2398. resched_cpu(this_cpu);
  2399. /* All tasks on this runqueue were pinned by CPU affinity */
  2400. if (unlikely(all_pinned)) {
  2401. cpu_clear(cpu_of(busiest), cpus);
  2402. if (!cpus_empty(cpus))
  2403. goto redo;
  2404. goto out_balanced;
  2405. }
  2406. }
  2407. if (!ld_moved) {
  2408. schedstat_inc(sd, lb_failed[idle]);
  2409. sd->nr_balance_failed++;
  2410. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2411. spin_lock_irqsave(&busiest->lock, flags);
  2412. /* don't kick the migration_thread, if the curr
  2413. * task on busiest cpu can't be moved to this_cpu
  2414. */
  2415. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2416. spin_unlock_irqrestore(&busiest->lock, flags);
  2417. all_pinned = 1;
  2418. goto out_one_pinned;
  2419. }
  2420. if (!busiest->active_balance) {
  2421. busiest->active_balance = 1;
  2422. busiest->push_cpu = this_cpu;
  2423. active_balance = 1;
  2424. }
  2425. spin_unlock_irqrestore(&busiest->lock, flags);
  2426. if (active_balance)
  2427. wake_up_process(busiest->migration_thread);
  2428. /*
  2429. * We've kicked active balancing, reset the failure
  2430. * counter.
  2431. */
  2432. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2433. }
  2434. } else
  2435. sd->nr_balance_failed = 0;
  2436. if (likely(!active_balance)) {
  2437. /* We were unbalanced, so reset the balancing interval */
  2438. sd->balance_interval = sd->min_interval;
  2439. } else {
  2440. /*
  2441. * If we've begun active balancing, start to back off. This
  2442. * case may not be covered by the all_pinned logic if there
  2443. * is only 1 task on the busy runqueue (because we don't call
  2444. * move_tasks).
  2445. */
  2446. if (sd->balance_interval < sd->max_interval)
  2447. sd->balance_interval *= 2;
  2448. }
  2449. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2450. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2451. return -1;
  2452. return ld_moved;
  2453. out_balanced:
  2454. schedstat_inc(sd, lb_balanced[idle]);
  2455. sd->nr_balance_failed = 0;
  2456. out_one_pinned:
  2457. /* tune up the balancing interval */
  2458. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2459. (sd->balance_interval < sd->max_interval))
  2460. sd->balance_interval *= 2;
  2461. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2462. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2463. return -1;
  2464. return 0;
  2465. }
  2466. /*
  2467. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2468. * tasks if there is an imbalance.
  2469. *
  2470. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2471. * this_rq is locked.
  2472. */
  2473. static int
  2474. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2475. {
  2476. struct sched_group *group;
  2477. struct rq *busiest = NULL;
  2478. unsigned long imbalance;
  2479. int ld_moved = 0;
  2480. int sd_idle = 0;
  2481. int all_pinned = 0;
  2482. cpumask_t cpus = CPU_MASK_ALL;
  2483. /*
  2484. * When power savings policy is enabled for the parent domain, idle
  2485. * sibling can pick up load irrespective of busy siblings. In this case,
  2486. * let the state of idle sibling percolate up as IDLE, instead of
  2487. * portraying it as CPU_NOT_IDLE.
  2488. */
  2489. if (sd->flags & SD_SHARE_CPUPOWER &&
  2490. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2491. sd_idle = 1;
  2492. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2493. redo:
  2494. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2495. &sd_idle, &cpus, NULL);
  2496. if (!group) {
  2497. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2498. goto out_balanced;
  2499. }
  2500. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2501. &cpus);
  2502. if (!busiest) {
  2503. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2504. goto out_balanced;
  2505. }
  2506. BUG_ON(busiest == this_rq);
  2507. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2508. ld_moved = 0;
  2509. if (busiest->nr_running > 1) {
  2510. /* Attempt to move tasks */
  2511. double_lock_balance(this_rq, busiest);
  2512. /* this_rq->clock is already updated */
  2513. update_rq_clock(busiest);
  2514. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2515. imbalance, sd, CPU_NEWLY_IDLE,
  2516. &all_pinned);
  2517. spin_unlock(&busiest->lock);
  2518. if (unlikely(all_pinned)) {
  2519. cpu_clear(cpu_of(busiest), cpus);
  2520. if (!cpus_empty(cpus))
  2521. goto redo;
  2522. }
  2523. }
  2524. if (!ld_moved) {
  2525. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2526. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2527. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2528. return -1;
  2529. } else
  2530. sd->nr_balance_failed = 0;
  2531. return ld_moved;
  2532. out_balanced:
  2533. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2534. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2535. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2536. return -1;
  2537. sd->nr_balance_failed = 0;
  2538. return 0;
  2539. }
  2540. /*
  2541. * idle_balance is called by schedule() if this_cpu is about to become
  2542. * idle. Attempts to pull tasks from other CPUs.
  2543. */
  2544. static void idle_balance(int this_cpu, struct rq *this_rq)
  2545. {
  2546. struct sched_domain *sd;
  2547. int pulled_task = -1;
  2548. unsigned long next_balance = jiffies + HZ;
  2549. for_each_domain(this_cpu, sd) {
  2550. unsigned long interval;
  2551. if (!(sd->flags & SD_LOAD_BALANCE))
  2552. continue;
  2553. if (sd->flags & SD_BALANCE_NEWIDLE)
  2554. /* If we've pulled tasks over stop searching: */
  2555. pulled_task = load_balance_newidle(this_cpu,
  2556. this_rq, sd);
  2557. interval = msecs_to_jiffies(sd->balance_interval);
  2558. if (time_after(next_balance, sd->last_balance + interval))
  2559. next_balance = sd->last_balance + interval;
  2560. if (pulled_task)
  2561. break;
  2562. }
  2563. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2564. /*
  2565. * We are going idle. next_balance may be set based on
  2566. * a busy processor. So reset next_balance.
  2567. */
  2568. this_rq->next_balance = next_balance;
  2569. }
  2570. }
  2571. /*
  2572. * active_load_balance is run by migration threads. It pushes running tasks
  2573. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2574. * running on each physical CPU where possible, and avoids physical /
  2575. * logical imbalances.
  2576. *
  2577. * Called with busiest_rq locked.
  2578. */
  2579. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2580. {
  2581. int target_cpu = busiest_rq->push_cpu;
  2582. struct sched_domain *sd;
  2583. struct rq *target_rq;
  2584. /* Is there any task to move? */
  2585. if (busiest_rq->nr_running <= 1)
  2586. return;
  2587. target_rq = cpu_rq(target_cpu);
  2588. /*
  2589. * This condition is "impossible", if it occurs
  2590. * we need to fix it. Originally reported by
  2591. * Bjorn Helgaas on a 128-cpu setup.
  2592. */
  2593. BUG_ON(busiest_rq == target_rq);
  2594. /* move a task from busiest_rq to target_rq */
  2595. double_lock_balance(busiest_rq, target_rq);
  2596. update_rq_clock(busiest_rq);
  2597. update_rq_clock(target_rq);
  2598. /* Search for an sd spanning us and the target CPU. */
  2599. for_each_domain(target_cpu, sd) {
  2600. if ((sd->flags & SD_LOAD_BALANCE) &&
  2601. cpu_isset(busiest_cpu, sd->span))
  2602. break;
  2603. }
  2604. if (likely(sd)) {
  2605. schedstat_inc(sd, alb_count);
  2606. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2607. sd, CPU_IDLE))
  2608. schedstat_inc(sd, alb_pushed);
  2609. else
  2610. schedstat_inc(sd, alb_failed);
  2611. }
  2612. spin_unlock(&target_rq->lock);
  2613. }
  2614. #ifdef CONFIG_NO_HZ
  2615. static struct {
  2616. atomic_t load_balancer;
  2617. cpumask_t cpu_mask;
  2618. } nohz ____cacheline_aligned = {
  2619. .load_balancer = ATOMIC_INIT(-1),
  2620. .cpu_mask = CPU_MASK_NONE,
  2621. };
  2622. /*
  2623. * This routine will try to nominate the ilb (idle load balancing)
  2624. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2625. * load balancing on behalf of all those cpus. If all the cpus in the system
  2626. * go into this tickless mode, then there will be no ilb owner (as there is
  2627. * no need for one) and all the cpus will sleep till the next wakeup event
  2628. * arrives...
  2629. *
  2630. * For the ilb owner, tick is not stopped. And this tick will be used
  2631. * for idle load balancing. ilb owner will still be part of
  2632. * nohz.cpu_mask..
  2633. *
  2634. * While stopping the tick, this cpu will become the ilb owner if there
  2635. * is no other owner. And will be the owner till that cpu becomes busy
  2636. * or if all cpus in the system stop their ticks at which point
  2637. * there is no need for ilb owner.
  2638. *
  2639. * When the ilb owner becomes busy, it nominates another owner, during the
  2640. * next busy scheduler_tick()
  2641. */
  2642. int select_nohz_load_balancer(int stop_tick)
  2643. {
  2644. int cpu = smp_processor_id();
  2645. if (stop_tick) {
  2646. cpu_set(cpu, nohz.cpu_mask);
  2647. cpu_rq(cpu)->in_nohz_recently = 1;
  2648. /*
  2649. * If we are going offline and still the leader, give up!
  2650. */
  2651. if (cpu_is_offline(cpu) &&
  2652. atomic_read(&nohz.load_balancer) == cpu) {
  2653. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2654. BUG();
  2655. return 0;
  2656. }
  2657. /* time for ilb owner also to sleep */
  2658. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2659. if (atomic_read(&nohz.load_balancer) == cpu)
  2660. atomic_set(&nohz.load_balancer, -1);
  2661. return 0;
  2662. }
  2663. if (atomic_read(&nohz.load_balancer) == -1) {
  2664. /* make me the ilb owner */
  2665. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2666. return 1;
  2667. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2668. return 1;
  2669. } else {
  2670. if (!cpu_isset(cpu, nohz.cpu_mask))
  2671. return 0;
  2672. cpu_clear(cpu, nohz.cpu_mask);
  2673. if (atomic_read(&nohz.load_balancer) == cpu)
  2674. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2675. BUG();
  2676. }
  2677. return 0;
  2678. }
  2679. #endif
  2680. static DEFINE_SPINLOCK(balancing);
  2681. /*
  2682. * It checks each scheduling domain to see if it is due to be balanced,
  2683. * and initiates a balancing operation if so.
  2684. *
  2685. * Balancing parameters are set up in arch_init_sched_domains.
  2686. */
  2687. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2688. {
  2689. int balance = 1;
  2690. struct rq *rq = cpu_rq(cpu);
  2691. unsigned long interval;
  2692. struct sched_domain *sd;
  2693. /* Earliest time when we have to do rebalance again */
  2694. unsigned long next_balance = jiffies + 60*HZ;
  2695. int update_next_balance = 0;
  2696. for_each_domain(cpu, sd) {
  2697. if (!(sd->flags & SD_LOAD_BALANCE))
  2698. continue;
  2699. interval = sd->balance_interval;
  2700. if (idle != CPU_IDLE)
  2701. interval *= sd->busy_factor;
  2702. /* scale ms to jiffies */
  2703. interval = msecs_to_jiffies(interval);
  2704. if (unlikely(!interval))
  2705. interval = 1;
  2706. if (interval > HZ*NR_CPUS/10)
  2707. interval = HZ*NR_CPUS/10;
  2708. if (sd->flags & SD_SERIALIZE) {
  2709. if (!spin_trylock(&balancing))
  2710. goto out;
  2711. }
  2712. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2713. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2714. /*
  2715. * We've pulled tasks over so either we're no
  2716. * longer idle, or one of our SMT siblings is
  2717. * not idle.
  2718. */
  2719. idle = CPU_NOT_IDLE;
  2720. }
  2721. sd->last_balance = jiffies;
  2722. }
  2723. if (sd->flags & SD_SERIALIZE)
  2724. spin_unlock(&balancing);
  2725. out:
  2726. if (time_after(next_balance, sd->last_balance + interval)) {
  2727. next_balance = sd->last_balance + interval;
  2728. update_next_balance = 1;
  2729. }
  2730. /*
  2731. * Stop the load balance at this level. There is another
  2732. * CPU in our sched group which is doing load balancing more
  2733. * actively.
  2734. */
  2735. if (!balance)
  2736. break;
  2737. }
  2738. /*
  2739. * next_balance will be updated only when there is a need.
  2740. * When the cpu is attached to null domain for ex, it will not be
  2741. * updated.
  2742. */
  2743. if (likely(update_next_balance))
  2744. rq->next_balance = next_balance;
  2745. }
  2746. /*
  2747. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2748. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2749. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2750. */
  2751. static void run_rebalance_domains(struct softirq_action *h)
  2752. {
  2753. int this_cpu = smp_processor_id();
  2754. struct rq *this_rq = cpu_rq(this_cpu);
  2755. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2756. CPU_IDLE : CPU_NOT_IDLE;
  2757. rebalance_domains(this_cpu, idle);
  2758. #ifdef CONFIG_NO_HZ
  2759. /*
  2760. * If this cpu is the owner for idle load balancing, then do the
  2761. * balancing on behalf of the other idle cpus whose ticks are
  2762. * stopped.
  2763. */
  2764. if (this_rq->idle_at_tick &&
  2765. atomic_read(&nohz.load_balancer) == this_cpu) {
  2766. cpumask_t cpus = nohz.cpu_mask;
  2767. struct rq *rq;
  2768. int balance_cpu;
  2769. cpu_clear(this_cpu, cpus);
  2770. for_each_cpu_mask(balance_cpu, cpus) {
  2771. /*
  2772. * If this cpu gets work to do, stop the load balancing
  2773. * work being done for other cpus. Next load
  2774. * balancing owner will pick it up.
  2775. */
  2776. if (need_resched())
  2777. break;
  2778. rebalance_domains(balance_cpu, CPU_IDLE);
  2779. rq = cpu_rq(balance_cpu);
  2780. if (time_after(this_rq->next_balance, rq->next_balance))
  2781. this_rq->next_balance = rq->next_balance;
  2782. }
  2783. }
  2784. #endif
  2785. }
  2786. /*
  2787. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2788. *
  2789. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2790. * idle load balancing owner or decide to stop the periodic load balancing,
  2791. * if the whole system is idle.
  2792. */
  2793. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2794. {
  2795. #ifdef CONFIG_NO_HZ
  2796. /*
  2797. * If we were in the nohz mode recently and busy at the current
  2798. * scheduler tick, then check if we need to nominate new idle
  2799. * load balancer.
  2800. */
  2801. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2802. rq->in_nohz_recently = 0;
  2803. if (atomic_read(&nohz.load_balancer) == cpu) {
  2804. cpu_clear(cpu, nohz.cpu_mask);
  2805. atomic_set(&nohz.load_balancer, -1);
  2806. }
  2807. if (atomic_read(&nohz.load_balancer) == -1) {
  2808. /*
  2809. * simple selection for now: Nominate the
  2810. * first cpu in the nohz list to be the next
  2811. * ilb owner.
  2812. *
  2813. * TBD: Traverse the sched domains and nominate
  2814. * the nearest cpu in the nohz.cpu_mask.
  2815. */
  2816. int ilb = first_cpu(nohz.cpu_mask);
  2817. if (ilb != NR_CPUS)
  2818. resched_cpu(ilb);
  2819. }
  2820. }
  2821. /*
  2822. * If this cpu is idle and doing idle load balancing for all the
  2823. * cpus with ticks stopped, is it time for that to stop?
  2824. */
  2825. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2826. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2827. resched_cpu(cpu);
  2828. return;
  2829. }
  2830. /*
  2831. * If this cpu is idle and the idle load balancing is done by
  2832. * someone else, then no need raise the SCHED_SOFTIRQ
  2833. */
  2834. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2835. cpu_isset(cpu, nohz.cpu_mask))
  2836. return;
  2837. #endif
  2838. if (time_after_eq(jiffies, rq->next_balance))
  2839. raise_softirq(SCHED_SOFTIRQ);
  2840. }
  2841. #else /* CONFIG_SMP */
  2842. /*
  2843. * on UP we do not need to balance between CPUs:
  2844. */
  2845. static inline void idle_balance(int cpu, struct rq *rq)
  2846. {
  2847. }
  2848. #endif
  2849. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2850. EXPORT_PER_CPU_SYMBOL(kstat);
  2851. /*
  2852. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2853. * that have not yet been banked in case the task is currently running.
  2854. */
  2855. unsigned long long task_sched_runtime(struct task_struct *p)
  2856. {
  2857. unsigned long flags;
  2858. u64 ns, delta_exec;
  2859. struct rq *rq;
  2860. rq = task_rq_lock(p, &flags);
  2861. ns = p->se.sum_exec_runtime;
  2862. if (rq->curr == p) {
  2863. update_rq_clock(rq);
  2864. delta_exec = rq->clock - p->se.exec_start;
  2865. if ((s64)delta_exec > 0)
  2866. ns += delta_exec;
  2867. }
  2868. task_rq_unlock(rq, &flags);
  2869. return ns;
  2870. }
  2871. /*
  2872. * Account user cpu time to a process.
  2873. * @p: the process that the cpu time gets accounted to
  2874. * @cputime: the cpu time spent in user space since the last update
  2875. */
  2876. void account_user_time(struct task_struct *p, cputime_t cputime)
  2877. {
  2878. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2879. cputime64_t tmp;
  2880. struct rq *rq = this_rq();
  2881. p->utime = cputime_add(p->utime, cputime);
  2882. if (p != rq->idle)
  2883. cpuacct_charge(p, cputime);
  2884. /* Add user time to cpustat. */
  2885. tmp = cputime_to_cputime64(cputime);
  2886. if (TASK_NICE(p) > 0)
  2887. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2888. else
  2889. cpustat->user = cputime64_add(cpustat->user, tmp);
  2890. }
  2891. /*
  2892. * Account guest cpu time to a process.
  2893. * @p: the process that the cpu time gets accounted to
  2894. * @cputime: the cpu time spent in virtual machine since the last update
  2895. */
  2896. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2897. {
  2898. cputime64_t tmp;
  2899. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2900. tmp = cputime_to_cputime64(cputime);
  2901. p->utime = cputime_add(p->utime, cputime);
  2902. p->gtime = cputime_add(p->gtime, cputime);
  2903. cpustat->user = cputime64_add(cpustat->user, tmp);
  2904. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2905. }
  2906. /*
  2907. * Account scaled user cpu time to a process.
  2908. * @p: the process that the cpu time gets accounted to
  2909. * @cputime: the cpu time spent in user space since the last update
  2910. */
  2911. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2912. {
  2913. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2914. }
  2915. /*
  2916. * Account system cpu time to a process.
  2917. * @p: the process that the cpu time gets accounted to
  2918. * @hardirq_offset: the offset to subtract from hardirq_count()
  2919. * @cputime: the cpu time spent in kernel space since the last update
  2920. */
  2921. void account_system_time(struct task_struct *p, int hardirq_offset,
  2922. cputime_t cputime)
  2923. {
  2924. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2925. struct rq *rq = this_rq();
  2926. cputime64_t tmp;
  2927. if (p->flags & PF_VCPU) {
  2928. account_guest_time(p, cputime);
  2929. return;
  2930. }
  2931. p->stime = cputime_add(p->stime, cputime);
  2932. /* Add system time to cpustat. */
  2933. tmp = cputime_to_cputime64(cputime);
  2934. if (hardirq_count() - hardirq_offset)
  2935. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2936. else if (softirq_count())
  2937. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2938. else if (p != rq->idle) {
  2939. cpustat->system = cputime64_add(cpustat->system, tmp);
  2940. cpuacct_charge(p, cputime);
  2941. } else if (atomic_read(&rq->nr_iowait) > 0)
  2942. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2943. else
  2944. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2945. /* Account for system time used */
  2946. acct_update_integrals(p);
  2947. }
  2948. /*
  2949. * Account scaled system cpu time to a process.
  2950. * @p: the process that the cpu time gets accounted to
  2951. * @hardirq_offset: the offset to subtract from hardirq_count()
  2952. * @cputime: the cpu time spent in kernel space since the last update
  2953. */
  2954. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2955. {
  2956. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2957. }
  2958. /*
  2959. * Account for involuntary wait time.
  2960. * @p: the process from which the cpu time has been stolen
  2961. * @steal: the cpu time spent in involuntary wait
  2962. */
  2963. void account_steal_time(struct task_struct *p, cputime_t steal)
  2964. {
  2965. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2966. cputime64_t tmp = cputime_to_cputime64(steal);
  2967. struct rq *rq = this_rq();
  2968. if (p == rq->idle) {
  2969. p->stime = cputime_add(p->stime, steal);
  2970. if (atomic_read(&rq->nr_iowait) > 0)
  2971. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2972. else
  2973. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2974. } else {
  2975. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2976. cpuacct_charge(p, -tmp);
  2977. }
  2978. }
  2979. /*
  2980. * This function gets called by the timer code, with HZ frequency.
  2981. * We call it with interrupts disabled.
  2982. *
  2983. * It also gets called by the fork code, when changing the parent's
  2984. * timeslices.
  2985. */
  2986. void scheduler_tick(void)
  2987. {
  2988. int cpu = smp_processor_id();
  2989. struct rq *rq = cpu_rq(cpu);
  2990. struct task_struct *curr = rq->curr;
  2991. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2992. spin_lock(&rq->lock);
  2993. __update_rq_clock(rq);
  2994. /*
  2995. * Let rq->clock advance by at least TICK_NSEC:
  2996. */
  2997. if (unlikely(rq->clock < next_tick))
  2998. rq->clock = next_tick;
  2999. rq->tick_timestamp = rq->clock;
  3000. update_cpu_load(rq);
  3001. if (curr != rq->idle) /* FIXME: needed? */
  3002. curr->sched_class->task_tick(rq, curr);
  3003. spin_unlock(&rq->lock);
  3004. #ifdef CONFIG_SMP
  3005. rq->idle_at_tick = idle_cpu(cpu);
  3006. trigger_load_balance(rq, cpu);
  3007. #endif
  3008. }
  3009. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3010. void fastcall add_preempt_count(int val)
  3011. {
  3012. /*
  3013. * Underflow?
  3014. */
  3015. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3016. return;
  3017. preempt_count() += val;
  3018. /*
  3019. * Spinlock count overflowing soon?
  3020. */
  3021. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3022. PREEMPT_MASK - 10);
  3023. }
  3024. EXPORT_SYMBOL(add_preempt_count);
  3025. void fastcall sub_preempt_count(int val)
  3026. {
  3027. /*
  3028. * Underflow?
  3029. */
  3030. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3031. return;
  3032. /*
  3033. * Is the spinlock portion underflowing?
  3034. */
  3035. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3036. !(preempt_count() & PREEMPT_MASK)))
  3037. return;
  3038. preempt_count() -= val;
  3039. }
  3040. EXPORT_SYMBOL(sub_preempt_count);
  3041. #endif
  3042. /*
  3043. * Print scheduling while atomic bug:
  3044. */
  3045. static noinline void __schedule_bug(struct task_struct *prev)
  3046. {
  3047. struct pt_regs *regs = get_irq_regs();
  3048. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3049. prev->comm, prev->pid, preempt_count());
  3050. debug_show_held_locks(prev);
  3051. if (irqs_disabled())
  3052. print_irqtrace_events(prev);
  3053. if (regs)
  3054. show_regs(regs);
  3055. else
  3056. dump_stack();
  3057. }
  3058. /*
  3059. * Various schedule()-time debugging checks and statistics:
  3060. */
  3061. static inline void schedule_debug(struct task_struct *prev)
  3062. {
  3063. /*
  3064. * Test if we are atomic. Since do_exit() needs to call into
  3065. * schedule() atomically, we ignore that path for now.
  3066. * Otherwise, whine if we are scheduling when we should not be.
  3067. */
  3068. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3069. __schedule_bug(prev);
  3070. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3071. schedstat_inc(this_rq(), sched_count);
  3072. #ifdef CONFIG_SCHEDSTATS
  3073. if (unlikely(prev->lock_depth >= 0)) {
  3074. schedstat_inc(this_rq(), bkl_count);
  3075. schedstat_inc(prev, sched_info.bkl_count);
  3076. }
  3077. #endif
  3078. }
  3079. /*
  3080. * Pick up the highest-prio task:
  3081. */
  3082. static inline struct task_struct *
  3083. pick_next_task(struct rq *rq, struct task_struct *prev)
  3084. {
  3085. const struct sched_class *class;
  3086. struct task_struct *p;
  3087. /*
  3088. * Optimization: we know that if all tasks are in
  3089. * the fair class we can call that function directly:
  3090. */
  3091. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3092. p = fair_sched_class.pick_next_task(rq);
  3093. if (likely(p))
  3094. return p;
  3095. }
  3096. class = sched_class_highest;
  3097. for ( ; ; ) {
  3098. p = class->pick_next_task(rq);
  3099. if (p)
  3100. return p;
  3101. /*
  3102. * Will never be NULL as the idle class always
  3103. * returns a non-NULL p:
  3104. */
  3105. class = class->next;
  3106. }
  3107. }
  3108. /*
  3109. * schedule() is the main scheduler function.
  3110. */
  3111. asmlinkage void __sched schedule(void)
  3112. {
  3113. struct task_struct *prev, *next;
  3114. long *switch_count;
  3115. struct rq *rq;
  3116. int cpu;
  3117. need_resched:
  3118. preempt_disable();
  3119. cpu = smp_processor_id();
  3120. rq = cpu_rq(cpu);
  3121. rcu_qsctr_inc(cpu);
  3122. prev = rq->curr;
  3123. switch_count = &prev->nivcsw;
  3124. release_kernel_lock(prev);
  3125. need_resched_nonpreemptible:
  3126. schedule_debug(prev);
  3127. /*
  3128. * Do the rq-clock update outside the rq lock:
  3129. */
  3130. local_irq_disable();
  3131. __update_rq_clock(rq);
  3132. spin_lock(&rq->lock);
  3133. clear_tsk_need_resched(prev);
  3134. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3135. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3136. unlikely(signal_pending(prev)))) {
  3137. prev->state = TASK_RUNNING;
  3138. } else {
  3139. deactivate_task(rq, prev, 1);
  3140. }
  3141. switch_count = &prev->nvcsw;
  3142. }
  3143. if (unlikely(!rq->nr_running))
  3144. idle_balance(cpu, rq);
  3145. prev->sched_class->put_prev_task(rq, prev);
  3146. next = pick_next_task(rq, prev);
  3147. sched_info_switch(prev, next);
  3148. if (likely(prev != next)) {
  3149. rq->nr_switches++;
  3150. rq->curr = next;
  3151. ++*switch_count;
  3152. context_switch(rq, prev, next); /* unlocks the rq */
  3153. } else
  3154. spin_unlock_irq(&rq->lock);
  3155. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3156. cpu = smp_processor_id();
  3157. rq = cpu_rq(cpu);
  3158. goto need_resched_nonpreemptible;
  3159. }
  3160. preempt_enable_no_resched();
  3161. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3162. goto need_resched;
  3163. }
  3164. EXPORT_SYMBOL(schedule);
  3165. #ifdef CONFIG_PREEMPT
  3166. /*
  3167. * this is the entry point to schedule() from in-kernel preemption
  3168. * off of preempt_enable. Kernel preemptions off return from interrupt
  3169. * occur there and call schedule directly.
  3170. */
  3171. asmlinkage void __sched preempt_schedule(void)
  3172. {
  3173. struct thread_info *ti = current_thread_info();
  3174. #ifdef CONFIG_PREEMPT_BKL
  3175. struct task_struct *task = current;
  3176. int saved_lock_depth;
  3177. #endif
  3178. /*
  3179. * If there is a non-zero preempt_count or interrupts are disabled,
  3180. * we do not want to preempt the current task. Just return..
  3181. */
  3182. if (likely(ti->preempt_count || irqs_disabled()))
  3183. return;
  3184. do {
  3185. add_preempt_count(PREEMPT_ACTIVE);
  3186. /*
  3187. * We keep the big kernel semaphore locked, but we
  3188. * clear ->lock_depth so that schedule() doesnt
  3189. * auto-release the semaphore:
  3190. */
  3191. #ifdef CONFIG_PREEMPT_BKL
  3192. saved_lock_depth = task->lock_depth;
  3193. task->lock_depth = -1;
  3194. #endif
  3195. schedule();
  3196. #ifdef CONFIG_PREEMPT_BKL
  3197. task->lock_depth = saved_lock_depth;
  3198. #endif
  3199. sub_preempt_count(PREEMPT_ACTIVE);
  3200. /*
  3201. * Check again in case we missed a preemption opportunity
  3202. * between schedule and now.
  3203. */
  3204. barrier();
  3205. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3206. }
  3207. EXPORT_SYMBOL(preempt_schedule);
  3208. /*
  3209. * this is the entry point to schedule() from kernel preemption
  3210. * off of irq context.
  3211. * Note, that this is called and return with irqs disabled. This will
  3212. * protect us against recursive calling from irq.
  3213. */
  3214. asmlinkage void __sched preempt_schedule_irq(void)
  3215. {
  3216. struct thread_info *ti = current_thread_info();
  3217. #ifdef CONFIG_PREEMPT_BKL
  3218. struct task_struct *task = current;
  3219. int saved_lock_depth;
  3220. #endif
  3221. /* Catch callers which need to be fixed */
  3222. BUG_ON(ti->preempt_count || !irqs_disabled());
  3223. do {
  3224. add_preempt_count(PREEMPT_ACTIVE);
  3225. /*
  3226. * We keep the big kernel semaphore locked, but we
  3227. * clear ->lock_depth so that schedule() doesnt
  3228. * auto-release the semaphore:
  3229. */
  3230. #ifdef CONFIG_PREEMPT_BKL
  3231. saved_lock_depth = task->lock_depth;
  3232. task->lock_depth = -1;
  3233. #endif
  3234. local_irq_enable();
  3235. schedule();
  3236. local_irq_disable();
  3237. #ifdef CONFIG_PREEMPT_BKL
  3238. task->lock_depth = saved_lock_depth;
  3239. #endif
  3240. sub_preempt_count(PREEMPT_ACTIVE);
  3241. /*
  3242. * Check again in case we missed a preemption opportunity
  3243. * between schedule and now.
  3244. */
  3245. barrier();
  3246. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3247. }
  3248. #endif /* CONFIG_PREEMPT */
  3249. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3250. void *key)
  3251. {
  3252. return try_to_wake_up(curr->private, mode, sync);
  3253. }
  3254. EXPORT_SYMBOL(default_wake_function);
  3255. /*
  3256. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3257. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3258. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3259. *
  3260. * There are circumstances in which we can try to wake a task which has already
  3261. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3262. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3263. */
  3264. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3265. int nr_exclusive, int sync, void *key)
  3266. {
  3267. wait_queue_t *curr, *next;
  3268. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3269. unsigned flags = curr->flags;
  3270. if (curr->func(curr, mode, sync, key) &&
  3271. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3272. break;
  3273. }
  3274. }
  3275. /**
  3276. * __wake_up - wake up threads blocked on a waitqueue.
  3277. * @q: the waitqueue
  3278. * @mode: which threads
  3279. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3280. * @key: is directly passed to the wakeup function
  3281. */
  3282. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3283. int nr_exclusive, void *key)
  3284. {
  3285. unsigned long flags;
  3286. spin_lock_irqsave(&q->lock, flags);
  3287. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3288. spin_unlock_irqrestore(&q->lock, flags);
  3289. }
  3290. EXPORT_SYMBOL(__wake_up);
  3291. /*
  3292. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3293. */
  3294. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3295. {
  3296. __wake_up_common(q, mode, 1, 0, NULL);
  3297. }
  3298. /**
  3299. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3300. * @q: the waitqueue
  3301. * @mode: which threads
  3302. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3303. *
  3304. * The sync wakeup differs that the waker knows that it will schedule
  3305. * away soon, so while the target thread will be woken up, it will not
  3306. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3307. * with each other. This can prevent needless bouncing between CPUs.
  3308. *
  3309. * On UP it can prevent extra preemption.
  3310. */
  3311. void fastcall
  3312. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3313. {
  3314. unsigned long flags;
  3315. int sync = 1;
  3316. if (unlikely(!q))
  3317. return;
  3318. if (unlikely(!nr_exclusive))
  3319. sync = 0;
  3320. spin_lock_irqsave(&q->lock, flags);
  3321. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3322. spin_unlock_irqrestore(&q->lock, flags);
  3323. }
  3324. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3325. void complete(struct completion *x)
  3326. {
  3327. unsigned long flags;
  3328. spin_lock_irqsave(&x->wait.lock, flags);
  3329. x->done++;
  3330. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3331. 1, 0, NULL);
  3332. spin_unlock_irqrestore(&x->wait.lock, flags);
  3333. }
  3334. EXPORT_SYMBOL(complete);
  3335. void complete_all(struct completion *x)
  3336. {
  3337. unsigned long flags;
  3338. spin_lock_irqsave(&x->wait.lock, flags);
  3339. x->done += UINT_MAX/2;
  3340. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3341. 0, 0, NULL);
  3342. spin_unlock_irqrestore(&x->wait.lock, flags);
  3343. }
  3344. EXPORT_SYMBOL(complete_all);
  3345. static inline long __sched
  3346. do_wait_for_common(struct completion *x, long timeout, int state)
  3347. {
  3348. if (!x->done) {
  3349. DECLARE_WAITQUEUE(wait, current);
  3350. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3351. __add_wait_queue_tail(&x->wait, &wait);
  3352. do {
  3353. if (state == TASK_INTERRUPTIBLE &&
  3354. signal_pending(current)) {
  3355. __remove_wait_queue(&x->wait, &wait);
  3356. return -ERESTARTSYS;
  3357. }
  3358. __set_current_state(state);
  3359. spin_unlock_irq(&x->wait.lock);
  3360. timeout = schedule_timeout(timeout);
  3361. spin_lock_irq(&x->wait.lock);
  3362. if (!timeout) {
  3363. __remove_wait_queue(&x->wait, &wait);
  3364. return timeout;
  3365. }
  3366. } while (!x->done);
  3367. __remove_wait_queue(&x->wait, &wait);
  3368. }
  3369. x->done--;
  3370. return timeout;
  3371. }
  3372. static long __sched
  3373. wait_for_common(struct completion *x, long timeout, int state)
  3374. {
  3375. might_sleep();
  3376. spin_lock_irq(&x->wait.lock);
  3377. timeout = do_wait_for_common(x, timeout, state);
  3378. spin_unlock_irq(&x->wait.lock);
  3379. return timeout;
  3380. }
  3381. void __sched wait_for_completion(struct completion *x)
  3382. {
  3383. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3384. }
  3385. EXPORT_SYMBOL(wait_for_completion);
  3386. unsigned long __sched
  3387. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3388. {
  3389. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3390. }
  3391. EXPORT_SYMBOL(wait_for_completion_timeout);
  3392. int __sched wait_for_completion_interruptible(struct completion *x)
  3393. {
  3394. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3395. if (t == -ERESTARTSYS)
  3396. return t;
  3397. return 0;
  3398. }
  3399. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3400. unsigned long __sched
  3401. wait_for_completion_interruptible_timeout(struct completion *x,
  3402. unsigned long timeout)
  3403. {
  3404. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3405. }
  3406. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3407. static long __sched
  3408. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3409. {
  3410. unsigned long flags;
  3411. wait_queue_t wait;
  3412. init_waitqueue_entry(&wait, current);
  3413. __set_current_state(state);
  3414. spin_lock_irqsave(&q->lock, flags);
  3415. __add_wait_queue(q, &wait);
  3416. spin_unlock(&q->lock);
  3417. timeout = schedule_timeout(timeout);
  3418. spin_lock_irq(&q->lock);
  3419. __remove_wait_queue(q, &wait);
  3420. spin_unlock_irqrestore(&q->lock, flags);
  3421. return timeout;
  3422. }
  3423. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3424. {
  3425. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3426. }
  3427. EXPORT_SYMBOL(interruptible_sleep_on);
  3428. long __sched
  3429. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3430. {
  3431. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3432. }
  3433. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3434. void __sched sleep_on(wait_queue_head_t *q)
  3435. {
  3436. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3437. }
  3438. EXPORT_SYMBOL(sleep_on);
  3439. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3440. {
  3441. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3442. }
  3443. EXPORT_SYMBOL(sleep_on_timeout);
  3444. #ifdef CONFIG_RT_MUTEXES
  3445. /*
  3446. * rt_mutex_setprio - set the current priority of a task
  3447. * @p: task
  3448. * @prio: prio value (kernel-internal form)
  3449. *
  3450. * This function changes the 'effective' priority of a task. It does
  3451. * not touch ->normal_prio like __setscheduler().
  3452. *
  3453. * Used by the rt_mutex code to implement priority inheritance logic.
  3454. */
  3455. void rt_mutex_setprio(struct task_struct *p, int prio)
  3456. {
  3457. unsigned long flags;
  3458. int oldprio, on_rq, running;
  3459. struct rq *rq;
  3460. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3461. rq = task_rq_lock(p, &flags);
  3462. update_rq_clock(rq);
  3463. oldprio = p->prio;
  3464. on_rq = p->se.on_rq;
  3465. running = task_running(rq, p);
  3466. if (on_rq) {
  3467. dequeue_task(rq, p, 0);
  3468. if (running)
  3469. p->sched_class->put_prev_task(rq, p);
  3470. }
  3471. if (rt_prio(prio))
  3472. p->sched_class = &rt_sched_class;
  3473. else
  3474. p->sched_class = &fair_sched_class;
  3475. p->prio = prio;
  3476. if (on_rq) {
  3477. if (running)
  3478. p->sched_class->set_curr_task(rq);
  3479. enqueue_task(rq, p, 0);
  3480. /*
  3481. * Reschedule if we are currently running on this runqueue and
  3482. * our priority decreased, or if we are not currently running on
  3483. * this runqueue and our priority is higher than the current's
  3484. */
  3485. if (running) {
  3486. if (p->prio > oldprio)
  3487. resched_task(rq->curr);
  3488. } else {
  3489. check_preempt_curr(rq, p);
  3490. }
  3491. }
  3492. task_rq_unlock(rq, &flags);
  3493. }
  3494. #endif
  3495. void set_user_nice(struct task_struct *p, long nice)
  3496. {
  3497. int old_prio, delta, on_rq;
  3498. unsigned long flags;
  3499. struct rq *rq;
  3500. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3501. return;
  3502. /*
  3503. * We have to be careful, if called from sys_setpriority(),
  3504. * the task might be in the middle of scheduling on another CPU.
  3505. */
  3506. rq = task_rq_lock(p, &flags);
  3507. update_rq_clock(rq);
  3508. /*
  3509. * The RT priorities are set via sched_setscheduler(), but we still
  3510. * allow the 'normal' nice value to be set - but as expected
  3511. * it wont have any effect on scheduling until the task is
  3512. * SCHED_FIFO/SCHED_RR:
  3513. */
  3514. if (task_has_rt_policy(p)) {
  3515. p->static_prio = NICE_TO_PRIO(nice);
  3516. goto out_unlock;
  3517. }
  3518. on_rq = p->se.on_rq;
  3519. if (on_rq) {
  3520. dequeue_task(rq, p, 0);
  3521. dec_load(rq, p);
  3522. }
  3523. p->static_prio = NICE_TO_PRIO(nice);
  3524. set_load_weight(p);
  3525. old_prio = p->prio;
  3526. p->prio = effective_prio(p);
  3527. delta = p->prio - old_prio;
  3528. if (on_rq) {
  3529. enqueue_task(rq, p, 0);
  3530. inc_load(rq, p);
  3531. /*
  3532. * If the task increased its priority or is running and
  3533. * lowered its priority, then reschedule its CPU:
  3534. */
  3535. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3536. resched_task(rq->curr);
  3537. }
  3538. out_unlock:
  3539. task_rq_unlock(rq, &flags);
  3540. }
  3541. EXPORT_SYMBOL(set_user_nice);
  3542. /*
  3543. * can_nice - check if a task can reduce its nice value
  3544. * @p: task
  3545. * @nice: nice value
  3546. */
  3547. int can_nice(const struct task_struct *p, const int nice)
  3548. {
  3549. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3550. int nice_rlim = 20 - nice;
  3551. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3552. capable(CAP_SYS_NICE));
  3553. }
  3554. #ifdef __ARCH_WANT_SYS_NICE
  3555. /*
  3556. * sys_nice - change the priority of the current process.
  3557. * @increment: priority increment
  3558. *
  3559. * sys_setpriority is a more generic, but much slower function that
  3560. * does similar things.
  3561. */
  3562. asmlinkage long sys_nice(int increment)
  3563. {
  3564. long nice, retval;
  3565. /*
  3566. * Setpriority might change our priority at the same moment.
  3567. * We don't have to worry. Conceptually one call occurs first
  3568. * and we have a single winner.
  3569. */
  3570. if (increment < -40)
  3571. increment = -40;
  3572. if (increment > 40)
  3573. increment = 40;
  3574. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3575. if (nice < -20)
  3576. nice = -20;
  3577. if (nice > 19)
  3578. nice = 19;
  3579. if (increment < 0 && !can_nice(current, nice))
  3580. return -EPERM;
  3581. retval = security_task_setnice(current, nice);
  3582. if (retval)
  3583. return retval;
  3584. set_user_nice(current, nice);
  3585. return 0;
  3586. }
  3587. #endif
  3588. /**
  3589. * task_prio - return the priority value of a given task.
  3590. * @p: the task in question.
  3591. *
  3592. * This is the priority value as seen by users in /proc.
  3593. * RT tasks are offset by -200. Normal tasks are centered
  3594. * around 0, value goes from -16 to +15.
  3595. */
  3596. int task_prio(const struct task_struct *p)
  3597. {
  3598. return p->prio - MAX_RT_PRIO;
  3599. }
  3600. /**
  3601. * task_nice - return the nice value of a given task.
  3602. * @p: the task in question.
  3603. */
  3604. int task_nice(const struct task_struct *p)
  3605. {
  3606. return TASK_NICE(p);
  3607. }
  3608. EXPORT_SYMBOL_GPL(task_nice);
  3609. /**
  3610. * idle_cpu - is a given cpu idle currently?
  3611. * @cpu: the processor in question.
  3612. */
  3613. int idle_cpu(int cpu)
  3614. {
  3615. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3616. }
  3617. /**
  3618. * idle_task - return the idle task for a given cpu.
  3619. * @cpu: the processor in question.
  3620. */
  3621. struct task_struct *idle_task(int cpu)
  3622. {
  3623. return cpu_rq(cpu)->idle;
  3624. }
  3625. /**
  3626. * find_process_by_pid - find a process with a matching PID value.
  3627. * @pid: the pid in question.
  3628. */
  3629. static struct task_struct *find_process_by_pid(pid_t pid)
  3630. {
  3631. return pid ? find_task_by_vpid(pid) : current;
  3632. }
  3633. /* Actually do priority change: must hold rq lock. */
  3634. static void
  3635. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3636. {
  3637. BUG_ON(p->se.on_rq);
  3638. p->policy = policy;
  3639. switch (p->policy) {
  3640. case SCHED_NORMAL:
  3641. case SCHED_BATCH:
  3642. case SCHED_IDLE:
  3643. p->sched_class = &fair_sched_class;
  3644. break;
  3645. case SCHED_FIFO:
  3646. case SCHED_RR:
  3647. p->sched_class = &rt_sched_class;
  3648. break;
  3649. }
  3650. p->rt_priority = prio;
  3651. p->normal_prio = normal_prio(p);
  3652. /* we are holding p->pi_lock already */
  3653. p->prio = rt_mutex_getprio(p);
  3654. set_load_weight(p);
  3655. }
  3656. /**
  3657. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3658. * @p: the task in question.
  3659. * @policy: new policy.
  3660. * @param: structure containing the new RT priority.
  3661. *
  3662. * NOTE that the task may be already dead.
  3663. */
  3664. int sched_setscheduler(struct task_struct *p, int policy,
  3665. struct sched_param *param)
  3666. {
  3667. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3668. unsigned long flags;
  3669. struct rq *rq;
  3670. /* may grab non-irq protected spin_locks */
  3671. BUG_ON(in_interrupt());
  3672. recheck:
  3673. /* double check policy once rq lock held */
  3674. if (policy < 0)
  3675. policy = oldpolicy = p->policy;
  3676. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3677. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3678. policy != SCHED_IDLE)
  3679. return -EINVAL;
  3680. /*
  3681. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3682. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3683. * SCHED_BATCH and SCHED_IDLE is 0.
  3684. */
  3685. if (param->sched_priority < 0 ||
  3686. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3687. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3688. return -EINVAL;
  3689. if (rt_policy(policy) != (param->sched_priority != 0))
  3690. return -EINVAL;
  3691. /*
  3692. * Allow unprivileged RT tasks to decrease priority:
  3693. */
  3694. if (!capable(CAP_SYS_NICE)) {
  3695. if (rt_policy(policy)) {
  3696. unsigned long rlim_rtprio;
  3697. if (!lock_task_sighand(p, &flags))
  3698. return -ESRCH;
  3699. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3700. unlock_task_sighand(p, &flags);
  3701. /* can't set/change the rt policy */
  3702. if (policy != p->policy && !rlim_rtprio)
  3703. return -EPERM;
  3704. /* can't increase priority */
  3705. if (param->sched_priority > p->rt_priority &&
  3706. param->sched_priority > rlim_rtprio)
  3707. return -EPERM;
  3708. }
  3709. /*
  3710. * Like positive nice levels, dont allow tasks to
  3711. * move out of SCHED_IDLE either:
  3712. */
  3713. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3714. return -EPERM;
  3715. /* can't change other user's priorities */
  3716. if ((current->euid != p->euid) &&
  3717. (current->euid != p->uid))
  3718. return -EPERM;
  3719. }
  3720. retval = security_task_setscheduler(p, policy, param);
  3721. if (retval)
  3722. return retval;
  3723. /*
  3724. * make sure no PI-waiters arrive (or leave) while we are
  3725. * changing the priority of the task:
  3726. */
  3727. spin_lock_irqsave(&p->pi_lock, flags);
  3728. /*
  3729. * To be able to change p->policy safely, the apropriate
  3730. * runqueue lock must be held.
  3731. */
  3732. rq = __task_rq_lock(p);
  3733. /* recheck policy now with rq lock held */
  3734. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3735. policy = oldpolicy = -1;
  3736. __task_rq_unlock(rq);
  3737. spin_unlock_irqrestore(&p->pi_lock, flags);
  3738. goto recheck;
  3739. }
  3740. update_rq_clock(rq);
  3741. on_rq = p->se.on_rq;
  3742. running = task_running(rq, p);
  3743. if (on_rq) {
  3744. deactivate_task(rq, p, 0);
  3745. if (running)
  3746. p->sched_class->put_prev_task(rq, p);
  3747. }
  3748. oldprio = p->prio;
  3749. __setscheduler(rq, p, policy, param->sched_priority);
  3750. if (on_rq) {
  3751. if (running)
  3752. p->sched_class->set_curr_task(rq);
  3753. activate_task(rq, p, 0);
  3754. /*
  3755. * Reschedule if we are currently running on this runqueue and
  3756. * our priority decreased, or if we are not currently running on
  3757. * this runqueue and our priority is higher than the current's
  3758. */
  3759. if (running) {
  3760. if (p->prio > oldprio)
  3761. resched_task(rq->curr);
  3762. } else {
  3763. check_preempt_curr(rq, p);
  3764. }
  3765. }
  3766. __task_rq_unlock(rq);
  3767. spin_unlock_irqrestore(&p->pi_lock, flags);
  3768. rt_mutex_adjust_pi(p);
  3769. return 0;
  3770. }
  3771. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3772. static int
  3773. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3774. {
  3775. struct sched_param lparam;
  3776. struct task_struct *p;
  3777. int retval;
  3778. if (!param || pid < 0)
  3779. return -EINVAL;
  3780. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3781. return -EFAULT;
  3782. rcu_read_lock();
  3783. retval = -ESRCH;
  3784. p = find_process_by_pid(pid);
  3785. if (p != NULL)
  3786. retval = sched_setscheduler(p, policy, &lparam);
  3787. rcu_read_unlock();
  3788. return retval;
  3789. }
  3790. /**
  3791. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3792. * @pid: the pid in question.
  3793. * @policy: new policy.
  3794. * @param: structure containing the new RT priority.
  3795. */
  3796. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3797. struct sched_param __user *param)
  3798. {
  3799. /* negative values for policy are not valid */
  3800. if (policy < 0)
  3801. return -EINVAL;
  3802. return do_sched_setscheduler(pid, policy, param);
  3803. }
  3804. /**
  3805. * sys_sched_setparam - set/change the RT priority of a thread
  3806. * @pid: the pid in question.
  3807. * @param: structure containing the new RT priority.
  3808. */
  3809. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3810. {
  3811. return do_sched_setscheduler(pid, -1, param);
  3812. }
  3813. /**
  3814. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3815. * @pid: the pid in question.
  3816. */
  3817. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3818. {
  3819. struct task_struct *p;
  3820. int retval;
  3821. if (pid < 0)
  3822. return -EINVAL;
  3823. retval = -ESRCH;
  3824. read_lock(&tasklist_lock);
  3825. p = find_process_by_pid(pid);
  3826. if (p) {
  3827. retval = security_task_getscheduler(p);
  3828. if (!retval)
  3829. retval = p->policy;
  3830. }
  3831. read_unlock(&tasklist_lock);
  3832. return retval;
  3833. }
  3834. /**
  3835. * sys_sched_getscheduler - get the RT priority of a thread
  3836. * @pid: the pid in question.
  3837. * @param: structure containing the RT priority.
  3838. */
  3839. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3840. {
  3841. struct sched_param lp;
  3842. struct task_struct *p;
  3843. int retval;
  3844. if (!param || pid < 0)
  3845. return -EINVAL;
  3846. read_lock(&tasklist_lock);
  3847. p = find_process_by_pid(pid);
  3848. retval = -ESRCH;
  3849. if (!p)
  3850. goto out_unlock;
  3851. retval = security_task_getscheduler(p);
  3852. if (retval)
  3853. goto out_unlock;
  3854. lp.sched_priority = p->rt_priority;
  3855. read_unlock(&tasklist_lock);
  3856. /*
  3857. * This one might sleep, we cannot do it with a spinlock held ...
  3858. */
  3859. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3860. return retval;
  3861. out_unlock:
  3862. read_unlock(&tasklist_lock);
  3863. return retval;
  3864. }
  3865. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3866. {
  3867. cpumask_t cpus_allowed;
  3868. struct task_struct *p;
  3869. int retval;
  3870. mutex_lock(&sched_hotcpu_mutex);
  3871. read_lock(&tasklist_lock);
  3872. p = find_process_by_pid(pid);
  3873. if (!p) {
  3874. read_unlock(&tasklist_lock);
  3875. mutex_unlock(&sched_hotcpu_mutex);
  3876. return -ESRCH;
  3877. }
  3878. /*
  3879. * It is not safe to call set_cpus_allowed with the
  3880. * tasklist_lock held. We will bump the task_struct's
  3881. * usage count and then drop tasklist_lock.
  3882. */
  3883. get_task_struct(p);
  3884. read_unlock(&tasklist_lock);
  3885. retval = -EPERM;
  3886. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3887. !capable(CAP_SYS_NICE))
  3888. goto out_unlock;
  3889. retval = security_task_setscheduler(p, 0, NULL);
  3890. if (retval)
  3891. goto out_unlock;
  3892. cpus_allowed = cpuset_cpus_allowed(p);
  3893. cpus_and(new_mask, new_mask, cpus_allowed);
  3894. again:
  3895. retval = set_cpus_allowed(p, new_mask);
  3896. if (!retval) {
  3897. cpus_allowed = cpuset_cpus_allowed(p);
  3898. if (!cpus_subset(new_mask, cpus_allowed)) {
  3899. /*
  3900. * We must have raced with a concurrent cpuset
  3901. * update. Just reset the cpus_allowed to the
  3902. * cpuset's cpus_allowed
  3903. */
  3904. new_mask = cpus_allowed;
  3905. goto again;
  3906. }
  3907. }
  3908. out_unlock:
  3909. put_task_struct(p);
  3910. mutex_unlock(&sched_hotcpu_mutex);
  3911. return retval;
  3912. }
  3913. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3914. cpumask_t *new_mask)
  3915. {
  3916. if (len < sizeof(cpumask_t)) {
  3917. memset(new_mask, 0, sizeof(cpumask_t));
  3918. } else if (len > sizeof(cpumask_t)) {
  3919. len = sizeof(cpumask_t);
  3920. }
  3921. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3922. }
  3923. /**
  3924. * sys_sched_setaffinity - set the cpu affinity of a process
  3925. * @pid: pid of the process
  3926. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3927. * @user_mask_ptr: user-space pointer to the new cpu mask
  3928. */
  3929. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3930. unsigned long __user *user_mask_ptr)
  3931. {
  3932. cpumask_t new_mask;
  3933. int retval;
  3934. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3935. if (retval)
  3936. return retval;
  3937. return sched_setaffinity(pid, new_mask);
  3938. }
  3939. /*
  3940. * Represents all cpu's present in the system
  3941. * In systems capable of hotplug, this map could dynamically grow
  3942. * as new cpu's are detected in the system via any platform specific
  3943. * method, such as ACPI for e.g.
  3944. */
  3945. cpumask_t cpu_present_map __read_mostly;
  3946. EXPORT_SYMBOL(cpu_present_map);
  3947. #ifndef CONFIG_SMP
  3948. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3949. EXPORT_SYMBOL(cpu_online_map);
  3950. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3951. EXPORT_SYMBOL(cpu_possible_map);
  3952. #endif
  3953. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3954. {
  3955. struct task_struct *p;
  3956. int retval;
  3957. mutex_lock(&sched_hotcpu_mutex);
  3958. read_lock(&tasklist_lock);
  3959. retval = -ESRCH;
  3960. p = find_process_by_pid(pid);
  3961. if (!p)
  3962. goto out_unlock;
  3963. retval = security_task_getscheduler(p);
  3964. if (retval)
  3965. goto out_unlock;
  3966. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3967. out_unlock:
  3968. read_unlock(&tasklist_lock);
  3969. mutex_unlock(&sched_hotcpu_mutex);
  3970. return retval;
  3971. }
  3972. /**
  3973. * sys_sched_getaffinity - get the cpu affinity of a process
  3974. * @pid: pid of the process
  3975. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3976. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3977. */
  3978. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3979. unsigned long __user *user_mask_ptr)
  3980. {
  3981. int ret;
  3982. cpumask_t mask;
  3983. if (len < sizeof(cpumask_t))
  3984. return -EINVAL;
  3985. ret = sched_getaffinity(pid, &mask);
  3986. if (ret < 0)
  3987. return ret;
  3988. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3989. return -EFAULT;
  3990. return sizeof(cpumask_t);
  3991. }
  3992. /**
  3993. * sys_sched_yield - yield the current processor to other threads.
  3994. *
  3995. * This function yields the current CPU to other tasks. If there are no
  3996. * other threads running on this CPU then this function will return.
  3997. */
  3998. asmlinkage long sys_sched_yield(void)
  3999. {
  4000. struct rq *rq = this_rq_lock();
  4001. schedstat_inc(rq, yld_count);
  4002. current->sched_class->yield_task(rq);
  4003. /*
  4004. * Since we are going to call schedule() anyway, there's
  4005. * no need to preempt or enable interrupts:
  4006. */
  4007. __release(rq->lock);
  4008. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4009. _raw_spin_unlock(&rq->lock);
  4010. preempt_enable_no_resched();
  4011. schedule();
  4012. return 0;
  4013. }
  4014. static void __cond_resched(void)
  4015. {
  4016. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4017. __might_sleep(__FILE__, __LINE__);
  4018. #endif
  4019. /*
  4020. * The BKS might be reacquired before we have dropped
  4021. * PREEMPT_ACTIVE, which could trigger a second
  4022. * cond_resched() call.
  4023. */
  4024. do {
  4025. add_preempt_count(PREEMPT_ACTIVE);
  4026. schedule();
  4027. sub_preempt_count(PREEMPT_ACTIVE);
  4028. } while (need_resched());
  4029. }
  4030. int __sched cond_resched(void)
  4031. {
  4032. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4033. system_state == SYSTEM_RUNNING) {
  4034. __cond_resched();
  4035. return 1;
  4036. }
  4037. return 0;
  4038. }
  4039. EXPORT_SYMBOL(cond_resched);
  4040. /*
  4041. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4042. * call schedule, and on return reacquire the lock.
  4043. *
  4044. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4045. * operations here to prevent schedule() from being called twice (once via
  4046. * spin_unlock(), once by hand).
  4047. */
  4048. int cond_resched_lock(spinlock_t *lock)
  4049. {
  4050. int ret = 0;
  4051. if (need_lockbreak(lock)) {
  4052. spin_unlock(lock);
  4053. cpu_relax();
  4054. ret = 1;
  4055. spin_lock(lock);
  4056. }
  4057. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4058. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4059. _raw_spin_unlock(lock);
  4060. preempt_enable_no_resched();
  4061. __cond_resched();
  4062. ret = 1;
  4063. spin_lock(lock);
  4064. }
  4065. return ret;
  4066. }
  4067. EXPORT_SYMBOL(cond_resched_lock);
  4068. int __sched cond_resched_softirq(void)
  4069. {
  4070. BUG_ON(!in_softirq());
  4071. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4072. local_bh_enable();
  4073. __cond_resched();
  4074. local_bh_disable();
  4075. return 1;
  4076. }
  4077. return 0;
  4078. }
  4079. EXPORT_SYMBOL(cond_resched_softirq);
  4080. /**
  4081. * yield - yield the current processor to other threads.
  4082. *
  4083. * This is a shortcut for kernel-space yielding - it marks the
  4084. * thread runnable and calls sys_sched_yield().
  4085. */
  4086. void __sched yield(void)
  4087. {
  4088. set_current_state(TASK_RUNNING);
  4089. sys_sched_yield();
  4090. }
  4091. EXPORT_SYMBOL(yield);
  4092. /*
  4093. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4094. * that process accounting knows that this is a task in IO wait state.
  4095. *
  4096. * But don't do that if it is a deliberate, throttling IO wait (this task
  4097. * has set its backing_dev_info: the queue against which it should throttle)
  4098. */
  4099. void __sched io_schedule(void)
  4100. {
  4101. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4102. delayacct_blkio_start();
  4103. atomic_inc(&rq->nr_iowait);
  4104. schedule();
  4105. atomic_dec(&rq->nr_iowait);
  4106. delayacct_blkio_end();
  4107. }
  4108. EXPORT_SYMBOL(io_schedule);
  4109. long __sched io_schedule_timeout(long timeout)
  4110. {
  4111. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4112. long ret;
  4113. delayacct_blkio_start();
  4114. atomic_inc(&rq->nr_iowait);
  4115. ret = schedule_timeout(timeout);
  4116. atomic_dec(&rq->nr_iowait);
  4117. delayacct_blkio_end();
  4118. return ret;
  4119. }
  4120. /**
  4121. * sys_sched_get_priority_max - return maximum RT priority.
  4122. * @policy: scheduling class.
  4123. *
  4124. * this syscall returns the maximum rt_priority that can be used
  4125. * by a given scheduling class.
  4126. */
  4127. asmlinkage long sys_sched_get_priority_max(int policy)
  4128. {
  4129. int ret = -EINVAL;
  4130. switch (policy) {
  4131. case SCHED_FIFO:
  4132. case SCHED_RR:
  4133. ret = MAX_USER_RT_PRIO-1;
  4134. break;
  4135. case SCHED_NORMAL:
  4136. case SCHED_BATCH:
  4137. case SCHED_IDLE:
  4138. ret = 0;
  4139. break;
  4140. }
  4141. return ret;
  4142. }
  4143. /**
  4144. * sys_sched_get_priority_min - return minimum RT priority.
  4145. * @policy: scheduling class.
  4146. *
  4147. * this syscall returns the minimum rt_priority that can be used
  4148. * by a given scheduling class.
  4149. */
  4150. asmlinkage long sys_sched_get_priority_min(int policy)
  4151. {
  4152. int ret = -EINVAL;
  4153. switch (policy) {
  4154. case SCHED_FIFO:
  4155. case SCHED_RR:
  4156. ret = 1;
  4157. break;
  4158. case SCHED_NORMAL:
  4159. case SCHED_BATCH:
  4160. case SCHED_IDLE:
  4161. ret = 0;
  4162. }
  4163. return ret;
  4164. }
  4165. /**
  4166. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4167. * @pid: pid of the process.
  4168. * @interval: userspace pointer to the timeslice value.
  4169. *
  4170. * this syscall writes the default timeslice value of a given process
  4171. * into the user-space timespec buffer. A value of '0' means infinity.
  4172. */
  4173. asmlinkage
  4174. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4175. {
  4176. struct task_struct *p;
  4177. unsigned int time_slice;
  4178. int retval;
  4179. struct timespec t;
  4180. if (pid < 0)
  4181. return -EINVAL;
  4182. retval = -ESRCH;
  4183. read_lock(&tasklist_lock);
  4184. p = find_process_by_pid(pid);
  4185. if (!p)
  4186. goto out_unlock;
  4187. retval = security_task_getscheduler(p);
  4188. if (retval)
  4189. goto out_unlock;
  4190. if (p->policy == SCHED_FIFO)
  4191. time_slice = 0;
  4192. else if (p->policy == SCHED_RR)
  4193. time_slice = DEF_TIMESLICE;
  4194. else {
  4195. struct sched_entity *se = &p->se;
  4196. unsigned long flags;
  4197. struct rq *rq;
  4198. rq = task_rq_lock(p, &flags);
  4199. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4200. task_rq_unlock(rq, &flags);
  4201. }
  4202. read_unlock(&tasklist_lock);
  4203. jiffies_to_timespec(time_slice, &t);
  4204. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4205. return retval;
  4206. out_unlock:
  4207. read_unlock(&tasklist_lock);
  4208. return retval;
  4209. }
  4210. static const char stat_nam[] = "RSDTtZX";
  4211. static void show_task(struct task_struct *p)
  4212. {
  4213. unsigned long free = 0;
  4214. unsigned state;
  4215. state = p->state ? __ffs(p->state) + 1 : 0;
  4216. printk(KERN_INFO "%-13.13s %c", p->comm,
  4217. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4218. #if BITS_PER_LONG == 32
  4219. if (state == TASK_RUNNING)
  4220. printk(KERN_CONT " running ");
  4221. else
  4222. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4223. #else
  4224. if (state == TASK_RUNNING)
  4225. printk(KERN_CONT " running task ");
  4226. else
  4227. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4228. #endif
  4229. #ifdef CONFIG_DEBUG_STACK_USAGE
  4230. {
  4231. unsigned long *n = end_of_stack(p);
  4232. while (!*n)
  4233. n++;
  4234. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4235. }
  4236. #endif
  4237. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4238. task_pid_nr(p), task_pid_nr(p->parent));
  4239. if (state != TASK_RUNNING)
  4240. show_stack(p, NULL);
  4241. }
  4242. void show_state_filter(unsigned long state_filter)
  4243. {
  4244. struct task_struct *g, *p;
  4245. #if BITS_PER_LONG == 32
  4246. printk(KERN_INFO
  4247. " task PC stack pid father\n");
  4248. #else
  4249. printk(KERN_INFO
  4250. " task PC stack pid father\n");
  4251. #endif
  4252. read_lock(&tasklist_lock);
  4253. do_each_thread(g, p) {
  4254. /*
  4255. * reset the NMI-timeout, listing all files on a slow
  4256. * console might take alot of time:
  4257. */
  4258. touch_nmi_watchdog();
  4259. if (!state_filter || (p->state & state_filter))
  4260. show_task(p);
  4261. } while_each_thread(g, p);
  4262. touch_all_softlockup_watchdogs();
  4263. #ifdef CONFIG_SCHED_DEBUG
  4264. sysrq_sched_debug_show();
  4265. #endif
  4266. read_unlock(&tasklist_lock);
  4267. /*
  4268. * Only show locks if all tasks are dumped:
  4269. */
  4270. if (state_filter == -1)
  4271. debug_show_all_locks();
  4272. }
  4273. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4274. {
  4275. idle->sched_class = &idle_sched_class;
  4276. }
  4277. /**
  4278. * init_idle - set up an idle thread for a given CPU
  4279. * @idle: task in question
  4280. * @cpu: cpu the idle task belongs to
  4281. *
  4282. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4283. * flag, to make booting more robust.
  4284. */
  4285. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4286. {
  4287. struct rq *rq = cpu_rq(cpu);
  4288. unsigned long flags;
  4289. __sched_fork(idle);
  4290. idle->se.exec_start = sched_clock();
  4291. idle->prio = idle->normal_prio = MAX_PRIO;
  4292. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4293. __set_task_cpu(idle, cpu);
  4294. spin_lock_irqsave(&rq->lock, flags);
  4295. rq->curr = rq->idle = idle;
  4296. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4297. idle->oncpu = 1;
  4298. #endif
  4299. spin_unlock_irqrestore(&rq->lock, flags);
  4300. /* Set the preempt count _outside_ the spinlocks! */
  4301. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4302. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4303. #else
  4304. task_thread_info(idle)->preempt_count = 0;
  4305. #endif
  4306. /*
  4307. * The idle tasks have their own, simple scheduling class:
  4308. */
  4309. idle->sched_class = &idle_sched_class;
  4310. }
  4311. /*
  4312. * In a system that switches off the HZ timer nohz_cpu_mask
  4313. * indicates which cpus entered this state. This is used
  4314. * in the rcu update to wait only for active cpus. For system
  4315. * which do not switch off the HZ timer nohz_cpu_mask should
  4316. * always be CPU_MASK_NONE.
  4317. */
  4318. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4319. /*
  4320. * Increase the granularity value when there are more CPUs,
  4321. * because with more CPUs the 'effective latency' as visible
  4322. * to users decreases. But the relationship is not linear,
  4323. * so pick a second-best guess by going with the log2 of the
  4324. * number of CPUs.
  4325. *
  4326. * This idea comes from the SD scheduler of Con Kolivas:
  4327. */
  4328. static inline void sched_init_granularity(void)
  4329. {
  4330. unsigned int factor = 1 + ilog2(num_online_cpus());
  4331. const unsigned long limit = 200000000;
  4332. sysctl_sched_min_granularity *= factor;
  4333. if (sysctl_sched_min_granularity > limit)
  4334. sysctl_sched_min_granularity = limit;
  4335. sysctl_sched_latency *= factor;
  4336. if (sysctl_sched_latency > limit)
  4337. sysctl_sched_latency = limit;
  4338. sysctl_sched_wakeup_granularity *= factor;
  4339. sysctl_sched_batch_wakeup_granularity *= factor;
  4340. }
  4341. #ifdef CONFIG_SMP
  4342. /*
  4343. * This is how migration works:
  4344. *
  4345. * 1) we queue a struct migration_req structure in the source CPU's
  4346. * runqueue and wake up that CPU's migration thread.
  4347. * 2) we down() the locked semaphore => thread blocks.
  4348. * 3) migration thread wakes up (implicitly it forces the migrated
  4349. * thread off the CPU)
  4350. * 4) it gets the migration request and checks whether the migrated
  4351. * task is still in the wrong runqueue.
  4352. * 5) if it's in the wrong runqueue then the migration thread removes
  4353. * it and puts it into the right queue.
  4354. * 6) migration thread up()s the semaphore.
  4355. * 7) we wake up and the migration is done.
  4356. */
  4357. /*
  4358. * Change a given task's CPU affinity. Migrate the thread to a
  4359. * proper CPU and schedule it away if the CPU it's executing on
  4360. * is removed from the allowed bitmask.
  4361. *
  4362. * NOTE: the caller must have a valid reference to the task, the
  4363. * task must not exit() & deallocate itself prematurely. The
  4364. * call is not atomic; no spinlocks may be held.
  4365. */
  4366. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4367. {
  4368. struct migration_req req;
  4369. unsigned long flags;
  4370. struct rq *rq;
  4371. int ret = 0;
  4372. rq = task_rq_lock(p, &flags);
  4373. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4374. ret = -EINVAL;
  4375. goto out;
  4376. }
  4377. p->cpus_allowed = new_mask;
  4378. /* Can the task run on the task's current CPU? If so, we're done */
  4379. if (cpu_isset(task_cpu(p), new_mask))
  4380. goto out;
  4381. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4382. /* Need help from migration thread: drop lock and wait. */
  4383. task_rq_unlock(rq, &flags);
  4384. wake_up_process(rq->migration_thread);
  4385. wait_for_completion(&req.done);
  4386. tlb_migrate_finish(p->mm);
  4387. return 0;
  4388. }
  4389. out:
  4390. task_rq_unlock(rq, &flags);
  4391. return ret;
  4392. }
  4393. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4394. /*
  4395. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4396. * this because either it can't run here any more (set_cpus_allowed()
  4397. * away from this CPU, or CPU going down), or because we're
  4398. * attempting to rebalance this task on exec (sched_exec).
  4399. *
  4400. * So we race with normal scheduler movements, but that's OK, as long
  4401. * as the task is no longer on this CPU.
  4402. *
  4403. * Returns non-zero if task was successfully migrated.
  4404. */
  4405. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4406. {
  4407. struct rq *rq_dest, *rq_src;
  4408. int ret = 0, on_rq;
  4409. if (unlikely(cpu_is_offline(dest_cpu)))
  4410. return ret;
  4411. rq_src = cpu_rq(src_cpu);
  4412. rq_dest = cpu_rq(dest_cpu);
  4413. double_rq_lock(rq_src, rq_dest);
  4414. /* Already moved. */
  4415. if (task_cpu(p) != src_cpu)
  4416. goto out;
  4417. /* Affinity changed (again). */
  4418. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4419. goto out;
  4420. on_rq = p->se.on_rq;
  4421. if (on_rq)
  4422. deactivate_task(rq_src, p, 0);
  4423. set_task_cpu(p, dest_cpu);
  4424. if (on_rq) {
  4425. activate_task(rq_dest, p, 0);
  4426. check_preempt_curr(rq_dest, p);
  4427. }
  4428. ret = 1;
  4429. out:
  4430. double_rq_unlock(rq_src, rq_dest);
  4431. return ret;
  4432. }
  4433. /*
  4434. * migration_thread - this is a highprio system thread that performs
  4435. * thread migration by bumping thread off CPU then 'pushing' onto
  4436. * another runqueue.
  4437. */
  4438. static int migration_thread(void *data)
  4439. {
  4440. int cpu = (long)data;
  4441. struct rq *rq;
  4442. rq = cpu_rq(cpu);
  4443. BUG_ON(rq->migration_thread != current);
  4444. set_current_state(TASK_INTERRUPTIBLE);
  4445. while (!kthread_should_stop()) {
  4446. struct migration_req *req;
  4447. struct list_head *head;
  4448. spin_lock_irq(&rq->lock);
  4449. if (cpu_is_offline(cpu)) {
  4450. spin_unlock_irq(&rq->lock);
  4451. goto wait_to_die;
  4452. }
  4453. if (rq->active_balance) {
  4454. active_load_balance(rq, cpu);
  4455. rq->active_balance = 0;
  4456. }
  4457. head = &rq->migration_queue;
  4458. if (list_empty(head)) {
  4459. spin_unlock_irq(&rq->lock);
  4460. schedule();
  4461. set_current_state(TASK_INTERRUPTIBLE);
  4462. continue;
  4463. }
  4464. req = list_entry(head->next, struct migration_req, list);
  4465. list_del_init(head->next);
  4466. spin_unlock(&rq->lock);
  4467. __migrate_task(req->task, cpu, req->dest_cpu);
  4468. local_irq_enable();
  4469. complete(&req->done);
  4470. }
  4471. __set_current_state(TASK_RUNNING);
  4472. return 0;
  4473. wait_to_die:
  4474. /* Wait for kthread_stop */
  4475. set_current_state(TASK_INTERRUPTIBLE);
  4476. while (!kthread_should_stop()) {
  4477. schedule();
  4478. set_current_state(TASK_INTERRUPTIBLE);
  4479. }
  4480. __set_current_state(TASK_RUNNING);
  4481. return 0;
  4482. }
  4483. #ifdef CONFIG_HOTPLUG_CPU
  4484. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4485. {
  4486. int ret;
  4487. local_irq_disable();
  4488. ret = __migrate_task(p, src_cpu, dest_cpu);
  4489. local_irq_enable();
  4490. return ret;
  4491. }
  4492. /*
  4493. * Figure out where task on dead CPU should go, use force if necessary.
  4494. * NOTE: interrupts should be disabled by the caller
  4495. */
  4496. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4497. {
  4498. unsigned long flags;
  4499. cpumask_t mask;
  4500. struct rq *rq;
  4501. int dest_cpu;
  4502. do {
  4503. /* On same node? */
  4504. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4505. cpus_and(mask, mask, p->cpus_allowed);
  4506. dest_cpu = any_online_cpu(mask);
  4507. /* On any allowed CPU? */
  4508. if (dest_cpu == NR_CPUS)
  4509. dest_cpu = any_online_cpu(p->cpus_allowed);
  4510. /* No more Mr. Nice Guy. */
  4511. if (dest_cpu == NR_CPUS) {
  4512. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4513. /*
  4514. * Try to stay on the same cpuset, where the
  4515. * current cpuset may be a subset of all cpus.
  4516. * The cpuset_cpus_allowed_locked() variant of
  4517. * cpuset_cpus_allowed() will not block. It must be
  4518. * called within calls to cpuset_lock/cpuset_unlock.
  4519. */
  4520. rq = task_rq_lock(p, &flags);
  4521. p->cpus_allowed = cpus_allowed;
  4522. dest_cpu = any_online_cpu(p->cpus_allowed);
  4523. task_rq_unlock(rq, &flags);
  4524. /*
  4525. * Don't tell them about moving exiting tasks or
  4526. * kernel threads (both mm NULL), since they never
  4527. * leave kernel.
  4528. */
  4529. if (p->mm && printk_ratelimit())
  4530. printk(KERN_INFO "process %d (%s) no "
  4531. "longer affine to cpu%d\n",
  4532. task_pid_nr(p), p->comm, dead_cpu);
  4533. }
  4534. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4535. }
  4536. /*
  4537. * While a dead CPU has no uninterruptible tasks queued at this point,
  4538. * it might still have a nonzero ->nr_uninterruptible counter, because
  4539. * for performance reasons the counter is not stricly tracking tasks to
  4540. * their home CPUs. So we just add the counter to another CPU's counter,
  4541. * to keep the global sum constant after CPU-down:
  4542. */
  4543. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4544. {
  4545. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4546. unsigned long flags;
  4547. local_irq_save(flags);
  4548. double_rq_lock(rq_src, rq_dest);
  4549. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4550. rq_src->nr_uninterruptible = 0;
  4551. double_rq_unlock(rq_src, rq_dest);
  4552. local_irq_restore(flags);
  4553. }
  4554. /* Run through task list and migrate tasks from the dead cpu. */
  4555. static void migrate_live_tasks(int src_cpu)
  4556. {
  4557. struct task_struct *p, *t;
  4558. read_lock(&tasklist_lock);
  4559. do_each_thread(t, p) {
  4560. if (p == current)
  4561. continue;
  4562. if (task_cpu(p) == src_cpu)
  4563. move_task_off_dead_cpu(src_cpu, p);
  4564. } while_each_thread(t, p);
  4565. read_unlock(&tasklist_lock);
  4566. }
  4567. /*
  4568. * activate_idle_task - move idle task to the _front_ of runqueue.
  4569. */
  4570. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4571. {
  4572. update_rq_clock(rq);
  4573. if (p->state == TASK_UNINTERRUPTIBLE)
  4574. rq->nr_uninterruptible--;
  4575. enqueue_task(rq, p, 0);
  4576. inc_nr_running(p, rq);
  4577. }
  4578. /*
  4579. * Schedules idle task to be the next runnable task on current CPU.
  4580. * It does so by boosting its priority to highest possible and adding it to
  4581. * the _front_ of the runqueue. Used by CPU offline code.
  4582. */
  4583. void sched_idle_next(void)
  4584. {
  4585. int this_cpu = smp_processor_id();
  4586. struct rq *rq = cpu_rq(this_cpu);
  4587. struct task_struct *p = rq->idle;
  4588. unsigned long flags;
  4589. /* cpu has to be offline */
  4590. BUG_ON(cpu_online(this_cpu));
  4591. /*
  4592. * Strictly not necessary since rest of the CPUs are stopped by now
  4593. * and interrupts disabled on the current cpu.
  4594. */
  4595. spin_lock_irqsave(&rq->lock, flags);
  4596. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4597. /* Add idle task to the _front_ of its priority queue: */
  4598. activate_idle_task(p, rq);
  4599. spin_unlock_irqrestore(&rq->lock, flags);
  4600. }
  4601. /*
  4602. * Ensures that the idle task is using init_mm right before its cpu goes
  4603. * offline.
  4604. */
  4605. void idle_task_exit(void)
  4606. {
  4607. struct mm_struct *mm = current->active_mm;
  4608. BUG_ON(cpu_online(smp_processor_id()));
  4609. if (mm != &init_mm)
  4610. switch_mm(mm, &init_mm, current);
  4611. mmdrop(mm);
  4612. }
  4613. /* called under rq->lock with disabled interrupts */
  4614. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4615. {
  4616. struct rq *rq = cpu_rq(dead_cpu);
  4617. /* Must be exiting, otherwise would be on tasklist. */
  4618. BUG_ON(!p->exit_state);
  4619. /* Cannot have done final schedule yet: would have vanished. */
  4620. BUG_ON(p->state == TASK_DEAD);
  4621. get_task_struct(p);
  4622. /*
  4623. * Drop lock around migration; if someone else moves it,
  4624. * that's OK. No task can be added to this CPU, so iteration is
  4625. * fine.
  4626. */
  4627. spin_unlock_irq(&rq->lock);
  4628. move_task_off_dead_cpu(dead_cpu, p);
  4629. spin_lock_irq(&rq->lock);
  4630. put_task_struct(p);
  4631. }
  4632. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4633. static void migrate_dead_tasks(unsigned int dead_cpu)
  4634. {
  4635. struct rq *rq = cpu_rq(dead_cpu);
  4636. struct task_struct *next;
  4637. for ( ; ; ) {
  4638. if (!rq->nr_running)
  4639. break;
  4640. update_rq_clock(rq);
  4641. next = pick_next_task(rq, rq->curr);
  4642. if (!next)
  4643. break;
  4644. migrate_dead(dead_cpu, next);
  4645. }
  4646. }
  4647. #endif /* CONFIG_HOTPLUG_CPU */
  4648. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4649. static struct ctl_table sd_ctl_dir[] = {
  4650. {
  4651. .procname = "sched_domain",
  4652. .mode = 0555,
  4653. },
  4654. {0, },
  4655. };
  4656. static struct ctl_table sd_ctl_root[] = {
  4657. {
  4658. .ctl_name = CTL_KERN,
  4659. .procname = "kernel",
  4660. .mode = 0555,
  4661. .child = sd_ctl_dir,
  4662. },
  4663. {0, },
  4664. };
  4665. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4666. {
  4667. struct ctl_table *entry =
  4668. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4669. return entry;
  4670. }
  4671. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4672. {
  4673. struct ctl_table *entry;
  4674. /*
  4675. * In the intermediate directories, both the child directory and
  4676. * procname are dynamically allocated and could fail but the mode
  4677. * will always be set. In the lowest directory the names are
  4678. * static strings and all have proc handlers.
  4679. */
  4680. for (entry = *tablep; entry->mode; entry++) {
  4681. if (entry->child)
  4682. sd_free_ctl_entry(&entry->child);
  4683. if (entry->proc_handler == NULL)
  4684. kfree(entry->procname);
  4685. }
  4686. kfree(*tablep);
  4687. *tablep = NULL;
  4688. }
  4689. static void
  4690. set_table_entry(struct ctl_table *entry,
  4691. const char *procname, void *data, int maxlen,
  4692. mode_t mode, proc_handler *proc_handler)
  4693. {
  4694. entry->procname = procname;
  4695. entry->data = data;
  4696. entry->maxlen = maxlen;
  4697. entry->mode = mode;
  4698. entry->proc_handler = proc_handler;
  4699. }
  4700. static struct ctl_table *
  4701. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4702. {
  4703. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4704. if (table == NULL)
  4705. return NULL;
  4706. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4707. sizeof(long), 0644, proc_doulongvec_minmax);
  4708. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4709. sizeof(long), 0644, proc_doulongvec_minmax);
  4710. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4711. sizeof(int), 0644, proc_dointvec_minmax);
  4712. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4713. sizeof(int), 0644, proc_dointvec_minmax);
  4714. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4715. sizeof(int), 0644, proc_dointvec_minmax);
  4716. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4717. sizeof(int), 0644, proc_dointvec_minmax);
  4718. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4719. sizeof(int), 0644, proc_dointvec_minmax);
  4720. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4723. sizeof(int), 0644, proc_dointvec_minmax);
  4724. set_table_entry(&table[9], "cache_nice_tries",
  4725. &sd->cache_nice_tries,
  4726. sizeof(int), 0644, proc_dointvec_minmax);
  4727. set_table_entry(&table[10], "flags", &sd->flags,
  4728. sizeof(int), 0644, proc_dointvec_minmax);
  4729. /* &table[11] is terminator */
  4730. return table;
  4731. }
  4732. static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
  4733. {
  4734. struct ctl_table *entry, *table;
  4735. struct sched_domain *sd;
  4736. int domain_num = 0, i;
  4737. char buf[32];
  4738. for_each_domain(cpu, sd)
  4739. domain_num++;
  4740. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4741. if (table == NULL)
  4742. return NULL;
  4743. i = 0;
  4744. for_each_domain(cpu, sd) {
  4745. snprintf(buf, 32, "domain%d", i);
  4746. entry->procname = kstrdup(buf, GFP_KERNEL);
  4747. entry->mode = 0555;
  4748. entry->child = sd_alloc_ctl_domain_table(sd);
  4749. entry++;
  4750. i++;
  4751. }
  4752. return table;
  4753. }
  4754. static struct ctl_table_header *sd_sysctl_header;
  4755. static void register_sched_domain_sysctl(void)
  4756. {
  4757. int i, cpu_num = num_online_cpus();
  4758. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4759. char buf[32];
  4760. WARN_ON(sd_ctl_dir[0].child);
  4761. sd_ctl_dir[0].child = entry;
  4762. if (entry == NULL)
  4763. return;
  4764. for_each_online_cpu(i) {
  4765. snprintf(buf, 32, "cpu%d", i);
  4766. entry->procname = kstrdup(buf, GFP_KERNEL);
  4767. entry->mode = 0555;
  4768. entry->child = sd_alloc_ctl_cpu_table(i);
  4769. entry++;
  4770. }
  4771. WARN_ON(sd_sysctl_header);
  4772. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4773. }
  4774. /* may be called multiple times per register */
  4775. static void unregister_sched_domain_sysctl(void)
  4776. {
  4777. if (sd_sysctl_header)
  4778. unregister_sysctl_table(sd_sysctl_header);
  4779. sd_sysctl_header = NULL;
  4780. if (sd_ctl_dir[0].child)
  4781. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4782. }
  4783. #else
  4784. static void register_sched_domain_sysctl(void)
  4785. {
  4786. }
  4787. static void unregister_sched_domain_sysctl(void)
  4788. {
  4789. }
  4790. #endif
  4791. /*
  4792. * migration_call - callback that gets triggered when a CPU is added.
  4793. * Here we can start up the necessary migration thread for the new CPU.
  4794. */
  4795. static int __cpuinit
  4796. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4797. {
  4798. struct task_struct *p;
  4799. int cpu = (long)hcpu;
  4800. unsigned long flags;
  4801. struct rq *rq;
  4802. switch (action) {
  4803. case CPU_LOCK_ACQUIRE:
  4804. mutex_lock(&sched_hotcpu_mutex);
  4805. break;
  4806. case CPU_UP_PREPARE:
  4807. case CPU_UP_PREPARE_FROZEN:
  4808. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4809. if (IS_ERR(p))
  4810. return NOTIFY_BAD;
  4811. kthread_bind(p, cpu);
  4812. /* Must be high prio: stop_machine expects to yield to it. */
  4813. rq = task_rq_lock(p, &flags);
  4814. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4815. task_rq_unlock(rq, &flags);
  4816. cpu_rq(cpu)->migration_thread = p;
  4817. break;
  4818. case CPU_ONLINE:
  4819. case CPU_ONLINE_FROZEN:
  4820. /* Strictly unnecessary, as first user will wake it. */
  4821. wake_up_process(cpu_rq(cpu)->migration_thread);
  4822. break;
  4823. #ifdef CONFIG_HOTPLUG_CPU
  4824. case CPU_UP_CANCELED:
  4825. case CPU_UP_CANCELED_FROZEN:
  4826. if (!cpu_rq(cpu)->migration_thread)
  4827. break;
  4828. /* Unbind it from offline cpu so it can run. Fall thru. */
  4829. kthread_bind(cpu_rq(cpu)->migration_thread,
  4830. any_online_cpu(cpu_online_map));
  4831. kthread_stop(cpu_rq(cpu)->migration_thread);
  4832. cpu_rq(cpu)->migration_thread = NULL;
  4833. break;
  4834. case CPU_DEAD:
  4835. case CPU_DEAD_FROZEN:
  4836. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4837. migrate_live_tasks(cpu);
  4838. rq = cpu_rq(cpu);
  4839. kthread_stop(rq->migration_thread);
  4840. rq->migration_thread = NULL;
  4841. /* Idle task back to normal (off runqueue, low prio) */
  4842. spin_lock_irq(&rq->lock);
  4843. update_rq_clock(rq);
  4844. deactivate_task(rq, rq->idle, 0);
  4845. rq->idle->static_prio = MAX_PRIO;
  4846. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4847. rq->idle->sched_class = &idle_sched_class;
  4848. migrate_dead_tasks(cpu);
  4849. spin_unlock_irq(&rq->lock);
  4850. cpuset_unlock();
  4851. migrate_nr_uninterruptible(rq);
  4852. BUG_ON(rq->nr_running != 0);
  4853. /* No need to migrate the tasks: it was best-effort if
  4854. * they didn't take sched_hotcpu_mutex. Just wake up
  4855. * the requestors. */
  4856. spin_lock_irq(&rq->lock);
  4857. while (!list_empty(&rq->migration_queue)) {
  4858. struct migration_req *req;
  4859. req = list_entry(rq->migration_queue.next,
  4860. struct migration_req, list);
  4861. list_del_init(&req->list);
  4862. complete(&req->done);
  4863. }
  4864. spin_unlock_irq(&rq->lock);
  4865. break;
  4866. #endif
  4867. case CPU_LOCK_RELEASE:
  4868. mutex_unlock(&sched_hotcpu_mutex);
  4869. break;
  4870. }
  4871. return NOTIFY_OK;
  4872. }
  4873. /* Register at highest priority so that task migration (migrate_all_tasks)
  4874. * happens before everything else.
  4875. */
  4876. static struct notifier_block __cpuinitdata migration_notifier = {
  4877. .notifier_call = migration_call,
  4878. .priority = 10
  4879. };
  4880. int __init migration_init(void)
  4881. {
  4882. void *cpu = (void *)(long)smp_processor_id();
  4883. int err;
  4884. /* Start one for the boot CPU: */
  4885. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4886. BUG_ON(err == NOTIFY_BAD);
  4887. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4888. register_cpu_notifier(&migration_notifier);
  4889. return 0;
  4890. }
  4891. #endif
  4892. #ifdef CONFIG_SMP
  4893. /* Number of possible processor ids */
  4894. int nr_cpu_ids __read_mostly = NR_CPUS;
  4895. EXPORT_SYMBOL(nr_cpu_ids);
  4896. #ifdef CONFIG_SCHED_DEBUG
  4897. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4898. {
  4899. struct sched_group *group = sd->groups;
  4900. cpumask_t groupmask;
  4901. char str[NR_CPUS];
  4902. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4903. cpus_clear(groupmask);
  4904. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4905. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4906. printk("does not load-balance\n");
  4907. if (sd->parent)
  4908. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4909. " has parent");
  4910. return -1;
  4911. }
  4912. printk(KERN_CONT "span %s\n", str);
  4913. if (!cpu_isset(cpu, sd->span)) {
  4914. printk(KERN_ERR "ERROR: domain->span does not contain "
  4915. "CPU%d\n", cpu);
  4916. }
  4917. if (!cpu_isset(cpu, group->cpumask)) {
  4918. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4919. " CPU%d\n", cpu);
  4920. }
  4921. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4922. do {
  4923. if (!group) {
  4924. printk("\n");
  4925. printk(KERN_ERR "ERROR: group is NULL\n");
  4926. break;
  4927. }
  4928. if (!group->__cpu_power) {
  4929. printk(KERN_CONT "\n");
  4930. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4931. "set\n");
  4932. break;
  4933. }
  4934. if (!cpus_weight(group->cpumask)) {
  4935. printk(KERN_CONT "\n");
  4936. printk(KERN_ERR "ERROR: empty group\n");
  4937. break;
  4938. }
  4939. if (cpus_intersects(groupmask, group->cpumask)) {
  4940. printk(KERN_CONT "\n");
  4941. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4942. break;
  4943. }
  4944. cpus_or(groupmask, groupmask, group->cpumask);
  4945. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4946. printk(KERN_CONT " %s", str);
  4947. group = group->next;
  4948. } while (group != sd->groups);
  4949. printk(KERN_CONT "\n");
  4950. if (!cpus_equal(sd->span, groupmask))
  4951. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4952. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4953. printk(KERN_ERR "ERROR: parent span is not a superset "
  4954. "of domain->span\n");
  4955. return 0;
  4956. }
  4957. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4958. {
  4959. int level = 0;
  4960. if (!sd) {
  4961. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4962. return;
  4963. }
  4964. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4965. for (;;) {
  4966. if (sched_domain_debug_one(sd, cpu, level))
  4967. break;
  4968. level++;
  4969. sd = sd->parent;
  4970. if (!sd)
  4971. break;
  4972. }
  4973. }
  4974. #else
  4975. # define sched_domain_debug(sd, cpu) do { } while (0)
  4976. #endif
  4977. static int sd_degenerate(struct sched_domain *sd)
  4978. {
  4979. if (cpus_weight(sd->span) == 1)
  4980. return 1;
  4981. /* Following flags need at least 2 groups */
  4982. if (sd->flags & (SD_LOAD_BALANCE |
  4983. SD_BALANCE_NEWIDLE |
  4984. SD_BALANCE_FORK |
  4985. SD_BALANCE_EXEC |
  4986. SD_SHARE_CPUPOWER |
  4987. SD_SHARE_PKG_RESOURCES)) {
  4988. if (sd->groups != sd->groups->next)
  4989. return 0;
  4990. }
  4991. /* Following flags don't use groups */
  4992. if (sd->flags & (SD_WAKE_IDLE |
  4993. SD_WAKE_AFFINE |
  4994. SD_WAKE_BALANCE))
  4995. return 0;
  4996. return 1;
  4997. }
  4998. static int
  4999. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5000. {
  5001. unsigned long cflags = sd->flags, pflags = parent->flags;
  5002. if (sd_degenerate(parent))
  5003. return 1;
  5004. if (!cpus_equal(sd->span, parent->span))
  5005. return 0;
  5006. /* Does parent contain flags not in child? */
  5007. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5008. if (cflags & SD_WAKE_AFFINE)
  5009. pflags &= ~SD_WAKE_BALANCE;
  5010. /* Flags needing groups don't count if only 1 group in parent */
  5011. if (parent->groups == parent->groups->next) {
  5012. pflags &= ~(SD_LOAD_BALANCE |
  5013. SD_BALANCE_NEWIDLE |
  5014. SD_BALANCE_FORK |
  5015. SD_BALANCE_EXEC |
  5016. SD_SHARE_CPUPOWER |
  5017. SD_SHARE_PKG_RESOURCES);
  5018. }
  5019. if (~cflags & pflags)
  5020. return 0;
  5021. return 1;
  5022. }
  5023. /*
  5024. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5025. * hold the hotplug lock.
  5026. */
  5027. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5028. {
  5029. struct rq *rq = cpu_rq(cpu);
  5030. struct sched_domain *tmp;
  5031. /* Remove the sched domains which do not contribute to scheduling. */
  5032. for (tmp = sd; tmp; tmp = tmp->parent) {
  5033. struct sched_domain *parent = tmp->parent;
  5034. if (!parent)
  5035. break;
  5036. if (sd_parent_degenerate(tmp, parent)) {
  5037. tmp->parent = parent->parent;
  5038. if (parent->parent)
  5039. parent->parent->child = tmp;
  5040. }
  5041. }
  5042. if (sd && sd_degenerate(sd)) {
  5043. sd = sd->parent;
  5044. if (sd)
  5045. sd->child = NULL;
  5046. }
  5047. sched_domain_debug(sd, cpu);
  5048. rcu_assign_pointer(rq->sd, sd);
  5049. }
  5050. /* cpus with isolated domains */
  5051. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5052. /* Setup the mask of cpus configured for isolated domains */
  5053. static int __init isolated_cpu_setup(char *str)
  5054. {
  5055. int ints[NR_CPUS], i;
  5056. str = get_options(str, ARRAY_SIZE(ints), ints);
  5057. cpus_clear(cpu_isolated_map);
  5058. for (i = 1; i <= ints[0]; i++)
  5059. if (ints[i] < NR_CPUS)
  5060. cpu_set(ints[i], cpu_isolated_map);
  5061. return 1;
  5062. }
  5063. __setup("isolcpus=", isolated_cpu_setup);
  5064. /*
  5065. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5066. * to a function which identifies what group(along with sched group) a CPU
  5067. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5068. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5069. *
  5070. * init_sched_build_groups will build a circular linked list of the groups
  5071. * covered by the given span, and will set each group's ->cpumask correctly,
  5072. * and ->cpu_power to 0.
  5073. */
  5074. static void
  5075. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5076. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5077. struct sched_group **sg))
  5078. {
  5079. struct sched_group *first = NULL, *last = NULL;
  5080. cpumask_t covered = CPU_MASK_NONE;
  5081. int i;
  5082. for_each_cpu_mask(i, span) {
  5083. struct sched_group *sg;
  5084. int group = group_fn(i, cpu_map, &sg);
  5085. int j;
  5086. if (cpu_isset(i, covered))
  5087. continue;
  5088. sg->cpumask = CPU_MASK_NONE;
  5089. sg->__cpu_power = 0;
  5090. for_each_cpu_mask(j, span) {
  5091. if (group_fn(j, cpu_map, NULL) != group)
  5092. continue;
  5093. cpu_set(j, covered);
  5094. cpu_set(j, sg->cpumask);
  5095. }
  5096. if (!first)
  5097. first = sg;
  5098. if (last)
  5099. last->next = sg;
  5100. last = sg;
  5101. }
  5102. last->next = first;
  5103. }
  5104. #define SD_NODES_PER_DOMAIN 16
  5105. #ifdef CONFIG_NUMA
  5106. /**
  5107. * find_next_best_node - find the next node to include in a sched_domain
  5108. * @node: node whose sched_domain we're building
  5109. * @used_nodes: nodes already in the sched_domain
  5110. *
  5111. * Find the next node to include in a given scheduling domain. Simply
  5112. * finds the closest node not already in the @used_nodes map.
  5113. *
  5114. * Should use nodemask_t.
  5115. */
  5116. static int find_next_best_node(int node, unsigned long *used_nodes)
  5117. {
  5118. int i, n, val, min_val, best_node = 0;
  5119. min_val = INT_MAX;
  5120. for (i = 0; i < MAX_NUMNODES; i++) {
  5121. /* Start at @node */
  5122. n = (node + i) % MAX_NUMNODES;
  5123. if (!nr_cpus_node(n))
  5124. continue;
  5125. /* Skip already used nodes */
  5126. if (test_bit(n, used_nodes))
  5127. continue;
  5128. /* Simple min distance search */
  5129. val = node_distance(node, n);
  5130. if (val < min_val) {
  5131. min_val = val;
  5132. best_node = n;
  5133. }
  5134. }
  5135. set_bit(best_node, used_nodes);
  5136. return best_node;
  5137. }
  5138. /**
  5139. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5140. * @node: node whose cpumask we're constructing
  5141. * @size: number of nodes to include in this span
  5142. *
  5143. * Given a node, construct a good cpumask for its sched_domain to span. It
  5144. * should be one that prevents unnecessary balancing, but also spreads tasks
  5145. * out optimally.
  5146. */
  5147. static cpumask_t sched_domain_node_span(int node)
  5148. {
  5149. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5150. cpumask_t span, nodemask;
  5151. int i;
  5152. cpus_clear(span);
  5153. bitmap_zero(used_nodes, MAX_NUMNODES);
  5154. nodemask = node_to_cpumask(node);
  5155. cpus_or(span, span, nodemask);
  5156. set_bit(node, used_nodes);
  5157. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5158. int next_node = find_next_best_node(node, used_nodes);
  5159. nodemask = node_to_cpumask(next_node);
  5160. cpus_or(span, span, nodemask);
  5161. }
  5162. return span;
  5163. }
  5164. #endif
  5165. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5166. /*
  5167. * SMT sched-domains:
  5168. */
  5169. #ifdef CONFIG_SCHED_SMT
  5170. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5171. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5172. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5173. struct sched_group **sg)
  5174. {
  5175. if (sg)
  5176. *sg = &per_cpu(sched_group_cpus, cpu);
  5177. return cpu;
  5178. }
  5179. #endif
  5180. /*
  5181. * multi-core sched-domains:
  5182. */
  5183. #ifdef CONFIG_SCHED_MC
  5184. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5185. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5186. #endif
  5187. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5188. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5189. struct sched_group **sg)
  5190. {
  5191. int group;
  5192. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5193. cpus_and(mask, mask, *cpu_map);
  5194. group = first_cpu(mask);
  5195. if (sg)
  5196. *sg = &per_cpu(sched_group_core, group);
  5197. return group;
  5198. }
  5199. #elif defined(CONFIG_SCHED_MC)
  5200. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5201. struct sched_group **sg)
  5202. {
  5203. if (sg)
  5204. *sg = &per_cpu(sched_group_core, cpu);
  5205. return cpu;
  5206. }
  5207. #endif
  5208. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5209. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5210. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5211. struct sched_group **sg)
  5212. {
  5213. int group;
  5214. #ifdef CONFIG_SCHED_MC
  5215. cpumask_t mask = cpu_coregroup_map(cpu);
  5216. cpus_and(mask, mask, *cpu_map);
  5217. group = first_cpu(mask);
  5218. #elif defined(CONFIG_SCHED_SMT)
  5219. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5220. cpus_and(mask, mask, *cpu_map);
  5221. group = first_cpu(mask);
  5222. #else
  5223. group = cpu;
  5224. #endif
  5225. if (sg)
  5226. *sg = &per_cpu(sched_group_phys, group);
  5227. return group;
  5228. }
  5229. #ifdef CONFIG_NUMA
  5230. /*
  5231. * The init_sched_build_groups can't handle what we want to do with node
  5232. * groups, so roll our own. Now each node has its own list of groups which
  5233. * gets dynamically allocated.
  5234. */
  5235. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5236. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5237. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5238. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5239. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5240. struct sched_group **sg)
  5241. {
  5242. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5243. int group;
  5244. cpus_and(nodemask, nodemask, *cpu_map);
  5245. group = first_cpu(nodemask);
  5246. if (sg)
  5247. *sg = &per_cpu(sched_group_allnodes, group);
  5248. return group;
  5249. }
  5250. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5251. {
  5252. struct sched_group *sg = group_head;
  5253. int j;
  5254. if (!sg)
  5255. return;
  5256. do {
  5257. for_each_cpu_mask(j, sg->cpumask) {
  5258. struct sched_domain *sd;
  5259. sd = &per_cpu(phys_domains, j);
  5260. if (j != first_cpu(sd->groups->cpumask)) {
  5261. /*
  5262. * Only add "power" once for each
  5263. * physical package.
  5264. */
  5265. continue;
  5266. }
  5267. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5268. }
  5269. sg = sg->next;
  5270. } while (sg != group_head);
  5271. }
  5272. #endif
  5273. #ifdef CONFIG_NUMA
  5274. /* Free memory allocated for various sched_group structures */
  5275. static void free_sched_groups(const cpumask_t *cpu_map)
  5276. {
  5277. int cpu, i;
  5278. for_each_cpu_mask(cpu, *cpu_map) {
  5279. struct sched_group **sched_group_nodes
  5280. = sched_group_nodes_bycpu[cpu];
  5281. if (!sched_group_nodes)
  5282. continue;
  5283. for (i = 0; i < MAX_NUMNODES; i++) {
  5284. cpumask_t nodemask = node_to_cpumask(i);
  5285. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5286. cpus_and(nodemask, nodemask, *cpu_map);
  5287. if (cpus_empty(nodemask))
  5288. continue;
  5289. if (sg == NULL)
  5290. continue;
  5291. sg = sg->next;
  5292. next_sg:
  5293. oldsg = sg;
  5294. sg = sg->next;
  5295. kfree(oldsg);
  5296. if (oldsg != sched_group_nodes[i])
  5297. goto next_sg;
  5298. }
  5299. kfree(sched_group_nodes);
  5300. sched_group_nodes_bycpu[cpu] = NULL;
  5301. }
  5302. }
  5303. #else
  5304. static void free_sched_groups(const cpumask_t *cpu_map)
  5305. {
  5306. }
  5307. #endif
  5308. /*
  5309. * Initialize sched groups cpu_power.
  5310. *
  5311. * cpu_power indicates the capacity of sched group, which is used while
  5312. * distributing the load between different sched groups in a sched domain.
  5313. * Typically cpu_power for all the groups in a sched domain will be same unless
  5314. * there are asymmetries in the topology. If there are asymmetries, group
  5315. * having more cpu_power will pickup more load compared to the group having
  5316. * less cpu_power.
  5317. *
  5318. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5319. * the maximum number of tasks a group can handle in the presence of other idle
  5320. * or lightly loaded groups in the same sched domain.
  5321. */
  5322. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5323. {
  5324. struct sched_domain *child;
  5325. struct sched_group *group;
  5326. WARN_ON(!sd || !sd->groups);
  5327. if (cpu != first_cpu(sd->groups->cpumask))
  5328. return;
  5329. child = sd->child;
  5330. sd->groups->__cpu_power = 0;
  5331. /*
  5332. * For perf policy, if the groups in child domain share resources
  5333. * (for example cores sharing some portions of the cache hierarchy
  5334. * or SMT), then set this domain groups cpu_power such that each group
  5335. * can handle only one task, when there are other idle groups in the
  5336. * same sched domain.
  5337. */
  5338. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5339. (child->flags &
  5340. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5341. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5342. return;
  5343. }
  5344. /*
  5345. * add cpu_power of each child group to this groups cpu_power
  5346. */
  5347. group = child->groups;
  5348. do {
  5349. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5350. group = group->next;
  5351. } while (group != child->groups);
  5352. }
  5353. /*
  5354. * Build sched domains for a given set of cpus and attach the sched domains
  5355. * to the individual cpus
  5356. */
  5357. static int build_sched_domains(const cpumask_t *cpu_map)
  5358. {
  5359. int i;
  5360. #ifdef CONFIG_NUMA
  5361. struct sched_group **sched_group_nodes = NULL;
  5362. int sd_allnodes = 0;
  5363. /*
  5364. * Allocate the per-node list of sched groups
  5365. */
  5366. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5367. GFP_KERNEL);
  5368. if (!sched_group_nodes) {
  5369. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5370. return -ENOMEM;
  5371. }
  5372. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5373. #endif
  5374. /*
  5375. * Set up domains for cpus specified by the cpu_map.
  5376. */
  5377. for_each_cpu_mask(i, *cpu_map) {
  5378. struct sched_domain *sd = NULL, *p;
  5379. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5380. cpus_and(nodemask, nodemask, *cpu_map);
  5381. #ifdef CONFIG_NUMA
  5382. if (cpus_weight(*cpu_map) >
  5383. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5384. sd = &per_cpu(allnodes_domains, i);
  5385. *sd = SD_ALLNODES_INIT;
  5386. sd->span = *cpu_map;
  5387. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5388. p = sd;
  5389. sd_allnodes = 1;
  5390. } else
  5391. p = NULL;
  5392. sd = &per_cpu(node_domains, i);
  5393. *sd = SD_NODE_INIT;
  5394. sd->span = sched_domain_node_span(cpu_to_node(i));
  5395. sd->parent = p;
  5396. if (p)
  5397. p->child = sd;
  5398. cpus_and(sd->span, sd->span, *cpu_map);
  5399. #endif
  5400. p = sd;
  5401. sd = &per_cpu(phys_domains, i);
  5402. *sd = SD_CPU_INIT;
  5403. sd->span = nodemask;
  5404. sd->parent = p;
  5405. if (p)
  5406. p->child = sd;
  5407. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5408. #ifdef CONFIG_SCHED_MC
  5409. p = sd;
  5410. sd = &per_cpu(core_domains, i);
  5411. *sd = SD_MC_INIT;
  5412. sd->span = cpu_coregroup_map(i);
  5413. cpus_and(sd->span, sd->span, *cpu_map);
  5414. sd->parent = p;
  5415. p->child = sd;
  5416. cpu_to_core_group(i, cpu_map, &sd->groups);
  5417. #endif
  5418. #ifdef CONFIG_SCHED_SMT
  5419. p = sd;
  5420. sd = &per_cpu(cpu_domains, i);
  5421. *sd = SD_SIBLING_INIT;
  5422. sd->span = per_cpu(cpu_sibling_map, i);
  5423. cpus_and(sd->span, sd->span, *cpu_map);
  5424. sd->parent = p;
  5425. p->child = sd;
  5426. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5427. #endif
  5428. }
  5429. #ifdef CONFIG_SCHED_SMT
  5430. /* Set up CPU (sibling) groups */
  5431. for_each_cpu_mask(i, *cpu_map) {
  5432. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5433. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5434. if (i != first_cpu(this_sibling_map))
  5435. continue;
  5436. init_sched_build_groups(this_sibling_map, cpu_map,
  5437. &cpu_to_cpu_group);
  5438. }
  5439. #endif
  5440. #ifdef CONFIG_SCHED_MC
  5441. /* Set up multi-core groups */
  5442. for_each_cpu_mask(i, *cpu_map) {
  5443. cpumask_t this_core_map = cpu_coregroup_map(i);
  5444. cpus_and(this_core_map, this_core_map, *cpu_map);
  5445. if (i != first_cpu(this_core_map))
  5446. continue;
  5447. init_sched_build_groups(this_core_map, cpu_map,
  5448. &cpu_to_core_group);
  5449. }
  5450. #endif
  5451. /* Set up physical groups */
  5452. for (i = 0; i < MAX_NUMNODES; i++) {
  5453. cpumask_t nodemask = node_to_cpumask(i);
  5454. cpus_and(nodemask, nodemask, *cpu_map);
  5455. if (cpus_empty(nodemask))
  5456. continue;
  5457. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5458. }
  5459. #ifdef CONFIG_NUMA
  5460. /* Set up node groups */
  5461. if (sd_allnodes)
  5462. init_sched_build_groups(*cpu_map, cpu_map,
  5463. &cpu_to_allnodes_group);
  5464. for (i = 0; i < MAX_NUMNODES; i++) {
  5465. /* Set up node groups */
  5466. struct sched_group *sg, *prev;
  5467. cpumask_t nodemask = node_to_cpumask(i);
  5468. cpumask_t domainspan;
  5469. cpumask_t covered = CPU_MASK_NONE;
  5470. int j;
  5471. cpus_and(nodemask, nodemask, *cpu_map);
  5472. if (cpus_empty(nodemask)) {
  5473. sched_group_nodes[i] = NULL;
  5474. continue;
  5475. }
  5476. domainspan = sched_domain_node_span(i);
  5477. cpus_and(domainspan, domainspan, *cpu_map);
  5478. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5479. if (!sg) {
  5480. printk(KERN_WARNING "Can not alloc domain group for "
  5481. "node %d\n", i);
  5482. goto error;
  5483. }
  5484. sched_group_nodes[i] = sg;
  5485. for_each_cpu_mask(j, nodemask) {
  5486. struct sched_domain *sd;
  5487. sd = &per_cpu(node_domains, j);
  5488. sd->groups = sg;
  5489. }
  5490. sg->__cpu_power = 0;
  5491. sg->cpumask = nodemask;
  5492. sg->next = sg;
  5493. cpus_or(covered, covered, nodemask);
  5494. prev = sg;
  5495. for (j = 0; j < MAX_NUMNODES; j++) {
  5496. cpumask_t tmp, notcovered;
  5497. int n = (i + j) % MAX_NUMNODES;
  5498. cpus_complement(notcovered, covered);
  5499. cpus_and(tmp, notcovered, *cpu_map);
  5500. cpus_and(tmp, tmp, domainspan);
  5501. if (cpus_empty(tmp))
  5502. break;
  5503. nodemask = node_to_cpumask(n);
  5504. cpus_and(tmp, tmp, nodemask);
  5505. if (cpus_empty(tmp))
  5506. continue;
  5507. sg = kmalloc_node(sizeof(struct sched_group),
  5508. GFP_KERNEL, i);
  5509. if (!sg) {
  5510. printk(KERN_WARNING
  5511. "Can not alloc domain group for node %d\n", j);
  5512. goto error;
  5513. }
  5514. sg->__cpu_power = 0;
  5515. sg->cpumask = tmp;
  5516. sg->next = prev->next;
  5517. cpus_or(covered, covered, tmp);
  5518. prev->next = sg;
  5519. prev = sg;
  5520. }
  5521. }
  5522. #endif
  5523. /* Calculate CPU power for physical packages and nodes */
  5524. #ifdef CONFIG_SCHED_SMT
  5525. for_each_cpu_mask(i, *cpu_map) {
  5526. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5527. init_sched_groups_power(i, sd);
  5528. }
  5529. #endif
  5530. #ifdef CONFIG_SCHED_MC
  5531. for_each_cpu_mask(i, *cpu_map) {
  5532. struct sched_domain *sd = &per_cpu(core_domains, i);
  5533. init_sched_groups_power(i, sd);
  5534. }
  5535. #endif
  5536. for_each_cpu_mask(i, *cpu_map) {
  5537. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5538. init_sched_groups_power(i, sd);
  5539. }
  5540. #ifdef CONFIG_NUMA
  5541. for (i = 0; i < MAX_NUMNODES; i++)
  5542. init_numa_sched_groups_power(sched_group_nodes[i]);
  5543. if (sd_allnodes) {
  5544. struct sched_group *sg;
  5545. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5546. init_numa_sched_groups_power(sg);
  5547. }
  5548. #endif
  5549. /* Attach the domains */
  5550. for_each_cpu_mask(i, *cpu_map) {
  5551. struct sched_domain *sd;
  5552. #ifdef CONFIG_SCHED_SMT
  5553. sd = &per_cpu(cpu_domains, i);
  5554. #elif defined(CONFIG_SCHED_MC)
  5555. sd = &per_cpu(core_domains, i);
  5556. #else
  5557. sd = &per_cpu(phys_domains, i);
  5558. #endif
  5559. cpu_attach_domain(sd, i);
  5560. }
  5561. return 0;
  5562. #ifdef CONFIG_NUMA
  5563. error:
  5564. free_sched_groups(cpu_map);
  5565. return -ENOMEM;
  5566. #endif
  5567. }
  5568. static cpumask_t *doms_cur; /* current sched domains */
  5569. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5570. /*
  5571. * Special case: If a kmalloc of a doms_cur partition (array of
  5572. * cpumask_t) fails, then fallback to a single sched domain,
  5573. * as determined by the single cpumask_t fallback_doms.
  5574. */
  5575. static cpumask_t fallback_doms;
  5576. /*
  5577. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5578. * For now this just excludes isolated cpus, but could be used to
  5579. * exclude other special cases in the future.
  5580. */
  5581. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5582. {
  5583. int err;
  5584. ndoms_cur = 1;
  5585. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5586. if (!doms_cur)
  5587. doms_cur = &fallback_doms;
  5588. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5589. err = build_sched_domains(doms_cur);
  5590. register_sched_domain_sysctl();
  5591. return err;
  5592. }
  5593. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5594. {
  5595. free_sched_groups(cpu_map);
  5596. }
  5597. /*
  5598. * Detach sched domains from a group of cpus specified in cpu_map
  5599. * These cpus will now be attached to the NULL domain
  5600. */
  5601. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5602. {
  5603. int i;
  5604. unregister_sched_domain_sysctl();
  5605. for_each_cpu_mask(i, *cpu_map)
  5606. cpu_attach_domain(NULL, i);
  5607. synchronize_sched();
  5608. arch_destroy_sched_domains(cpu_map);
  5609. }
  5610. /*
  5611. * Partition sched domains as specified by the 'ndoms_new'
  5612. * cpumasks in the array doms_new[] of cpumasks. This compares
  5613. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5614. * It destroys each deleted domain and builds each new domain.
  5615. *
  5616. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5617. * The masks don't intersect (don't overlap.) We should setup one
  5618. * sched domain for each mask. CPUs not in any of the cpumasks will
  5619. * not be load balanced. If the same cpumask appears both in the
  5620. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5621. * it as it is.
  5622. *
  5623. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5624. * ownership of it and will kfree it when done with it. If the caller
  5625. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5626. * and partition_sched_domains() will fallback to the single partition
  5627. * 'fallback_doms'.
  5628. *
  5629. * Call with hotplug lock held
  5630. */
  5631. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5632. {
  5633. int i, j;
  5634. /* always unregister in case we don't destroy any domains */
  5635. unregister_sched_domain_sysctl();
  5636. if (doms_new == NULL) {
  5637. ndoms_new = 1;
  5638. doms_new = &fallback_doms;
  5639. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5640. }
  5641. /* Destroy deleted domains */
  5642. for (i = 0; i < ndoms_cur; i++) {
  5643. for (j = 0; j < ndoms_new; j++) {
  5644. if (cpus_equal(doms_cur[i], doms_new[j]))
  5645. goto match1;
  5646. }
  5647. /* no match - a current sched domain not in new doms_new[] */
  5648. detach_destroy_domains(doms_cur + i);
  5649. match1:
  5650. ;
  5651. }
  5652. /* Build new domains */
  5653. for (i = 0; i < ndoms_new; i++) {
  5654. for (j = 0; j < ndoms_cur; j++) {
  5655. if (cpus_equal(doms_new[i], doms_cur[j]))
  5656. goto match2;
  5657. }
  5658. /* no match - add a new doms_new */
  5659. build_sched_domains(doms_new + i);
  5660. match2:
  5661. ;
  5662. }
  5663. /* Remember the new sched domains */
  5664. if (doms_cur != &fallback_doms)
  5665. kfree(doms_cur);
  5666. doms_cur = doms_new;
  5667. ndoms_cur = ndoms_new;
  5668. register_sched_domain_sysctl();
  5669. }
  5670. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5671. static int arch_reinit_sched_domains(void)
  5672. {
  5673. int err;
  5674. mutex_lock(&sched_hotcpu_mutex);
  5675. detach_destroy_domains(&cpu_online_map);
  5676. err = arch_init_sched_domains(&cpu_online_map);
  5677. mutex_unlock(&sched_hotcpu_mutex);
  5678. return err;
  5679. }
  5680. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5681. {
  5682. int ret;
  5683. if (buf[0] != '0' && buf[0] != '1')
  5684. return -EINVAL;
  5685. if (smt)
  5686. sched_smt_power_savings = (buf[0] == '1');
  5687. else
  5688. sched_mc_power_savings = (buf[0] == '1');
  5689. ret = arch_reinit_sched_domains();
  5690. return ret ? ret : count;
  5691. }
  5692. #ifdef CONFIG_SCHED_MC
  5693. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5694. {
  5695. return sprintf(page, "%u\n", sched_mc_power_savings);
  5696. }
  5697. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5698. const char *buf, size_t count)
  5699. {
  5700. return sched_power_savings_store(buf, count, 0);
  5701. }
  5702. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5703. sched_mc_power_savings_store);
  5704. #endif
  5705. #ifdef CONFIG_SCHED_SMT
  5706. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5707. {
  5708. return sprintf(page, "%u\n", sched_smt_power_savings);
  5709. }
  5710. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5711. const char *buf, size_t count)
  5712. {
  5713. return sched_power_savings_store(buf, count, 1);
  5714. }
  5715. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5716. sched_smt_power_savings_store);
  5717. #endif
  5718. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5719. {
  5720. int err = 0;
  5721. #ifdef CONFIG_SCHED_SMT
  5722. if (smt_capable())
  5723. err = sysfs_create_file(&cls->kset.kobj,
  5724. &attr_sched_smt_power_savings.attr);
  5725. #endif
  5726. #ifdef CONFIG_SCHED_MC
  5727. if (!err && mc_capable())
  5728. err = sysfs_create_file(&cls->kset.kobj,
  5729. &attr_sched_mc_power_savings.attr);
  5730. #endif
  5731. return err;
  5732. }
  5733. #endif
  5734. /*
  5735. * Force a reinitialization of the sched domains hierarchy. The domains
  5736. * and groups cannot be updated in place without racing with the balancing
  5737. * code, so we temporarily attach all running cpus to the NULL domain
  5738. * which will prevent rebalancing while the sched domains are recalculated.
  5739. */
  5740. static int update_sched_domains(struct notifier_block *nfb,
  5741. unsigned long action, void *hcpu)
  5742. {
  5743. switch (action) {
  5744. case CPU_UP_PREPARE:
  5745. case CPU_UP_PREPARE_FROZEN:
  5746. case CPU_DOWN_PREPARE:
  5747. case CPU_DOWN_PREPARE_FROZEN:
  5748. detach_destroy_domains(&cpu_online_map);
  5749. return NOTIFY_OK;
  5750. case CPU_UP_CANCELED:
  5751. case CPU_UP_CANCELED_FROZEN:
  5752. case CPU_DOWN_FAILED:
  5753. case CPU_DOWN_FAILED_FROZEN:
  5754. case CPU_ONLINE:
  5755. case CPU_ONLINE_FROZEN:
  5756. case CPU_DEAD:
  5757. case CPU_DEAD_FROZEN:
  5758. /*
  5759. * Fall through and re-initialise the domains.
  5760. */
  5761. break;
  5762. default:
  5763. return NOTIFY_DONE;
  5764. }
  5765. /* The hotplug lock is already held by cpu_up/cpu_down */
  5766. arch_init_sched_domains(&cpu_online_map);
  5767. return NOTIFY_OK;
  5768. }
  5769. void __init sched_init_smp(void)
  5770. {
  5771. cpumask_t non_isolated_cpus;
  5772. mutex_lock(&sched_hotcpu_mutex);
  5773. arch_init_sched_domains(&cpu_online_map);
  5774. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5775. if (cpus_empty(non_isolated_cpus))
  5776. cpu_set(smp_processor_id(), non_isolated_cpus);
  5777. mutex_unlock(&sched_hotcpu_mutex);
  5778. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5779. hotcpu_notifier(update_sched_domains, 0);
  5780. /* Move init over to a non-isolated CPU */
  5781. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5782. BUG();
  5783. sched_init_granularity();
  5784. }
  5785. #else
  5786. void __init sched_init_smp(void)
  5787. {
  5788. sched_init_granularity();
  5789. }
  5790. #endif /* CONFIG_SMP */
  5791. int in_sched_functions(unsigned long addr)
  5792. {
  5793. /* Linker adds these: start and end of __sched functions */
  5794. extern char __sched_text_start[], __sched_text_end[];
  5795. return in_lock_functions(addr) ||
  5796. (addr >= (unsigned long)__sched_text_start
  5797. && addr < (unsigned long)__sched_text_end);
  5798. }
  5799. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5800. {
  5801. cfs_rq->tasks_timeline = RB_ROOT;
  5802. #ifdef CONFIG_FAIR_GROUP_SCHED
  5803. cfs_rq->rq = rq;
  5804. #endif
  5805. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5806. }
  5807. void __init sched_init(void)
  5808. {
  5809. int highest_cpu = 0;
  5810. int i, j;
  5811. for_each_possible_cpu(i) {
  5812. struct rt_prio_array *array;
  5813. struct rq *rq;
  5814. rq = cpu_rq(i);
  5815. spin_lock_init(&rq->lock);
  5816. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5817. rq->nr_running = 0;
  5818. rq->clock = 1;
  5819. init_cfs_rq(&rq->cfs, rq);
  5820. #ifdef CONFIG_FAIR_GROUP_SCHED
  5821. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5822. {
  5823. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5824. struct sched_entity *se =
  5825. &per_cpu(init_sched_entity, i);
  5826. init_cfs_rq_p[i] = cfs_rq;
  5827. init_cfs_rq(cfs_rq, rq);
  5828. cfs_rq->tg = &init_task_group;
  5829. list_add(&cfs_rq->leaf_cfs_rq_list,
  5830. &rq->leaf_cfs_rq_list);
  5831. init_sched_entity_p[i] = se;
  5832. se->cfs_rq = &rq->cfs;
  5833. se->my_q = cfs_rq;
  5834. se->load.weight = init_task_group_load;
  5835. se->load.inv_weight =
  5836. div64_64(1ULL<<32, init_task_group_load);
  5837. se->parent = NULL;
  5838. }
  5839. init_task_group.shares = init_task_group_load;
  5840. spin_lock_init(&init_task_group.lock);
  5841. #endif
  5842. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5843. rq->cpu_load[j] = 0;
  5844. #ifdef CONFIG_SMP
  5845. rq->sd = NULL;
  5846. rq->active_balance = 0;
  5847. rq->next_balance = jiffies;
  5848. rq->push_cpu = 0;
  5849. rq->cpu = i;
  5850. rq->migration_thread = NULL;
  5851. INIT_LIST_HEAD(&rq->migration_queue);
  5852. #endif
  5853. atomic_set(&rq->nr_iowait, 0);
  5854. array = &rq->rt.active;
  5855. for (j = 0; j < MAX_RT_PRIO; j++) {
  5856. INIT_LIST_HEAD(array->queue + j);
  5857. __clear_bit(j, array->bitmap);
  5858. }
  5859. highest_cpu = i;
  5860. /* delimiter for bitsearch: */
  5861. __set_bit(MAX_RT_PRIO, array->bitmap);
  5862. }
  5863. set_load_weight(&init_task);
  5864. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5865. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5866. #endif
  5867. #ifdef CONFIG_SMP
  5868. nr_cpu_ids = highest_cpu + 1;
  5869. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5870. #endif
  5871. #ifdef CONFIG_RT_MUTEXES
  5872. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5873. #endif
  5874. /*
  5875. * The boot idle thread does lazy MMU switching as well:
  5876. */
  5877. atomic_inc(&init_mm.mm_count);
  5878. enter_lazy_tlb(&init_mm, current);
  5879. /*
  5880. * Make us the idle thread. Technically, schedule() should not be
  5881. * called from this thread, however somewhere below it might be,
  5882. * but because we are the idle thread, we just pick up running again
  5883. * when this runqueue becomes "idle".
  5884. */
  5885. init_idle(current, smp_processor_id());
  5886. /*
  5887. * During early bootup we pretend to be a normal task:
  5888. */
  5889. current->sched_class = &fair_sched_class;
  5890. }
  5891. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5892. void __might_sleep(char *file, int line)
  5893. {
  5894. #ifdef in_atomic
  5895. static unsigned long prev_jiffy; /* ratelimiting */
  5896. if ((in_atomic() || irqs_disabled()) &&
  5897. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5898. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5899. return;
  5900. prev_jiffy = jiffies;
  5901. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5902. " context at %s:%d\n", file, line);
  5903. printk("in_atomic():%d, irqs_disabled():%d\n",
  5904. in_atomic(), irqs_disabled());
  5905. debug_show_held_locks(current);
  5906. if (irqs_disabled())
  5907. print_irqtrace_events(current);
  5908. dump_stack();
  5909. }
  5910. #endif
  5911. }
  5912. EXPORT_SYMBOL(__might_sleep);
  5913. #endif
  5914. #ifdef CONFIG_MAGIC_SYSRQ
  5915. static void normalize_task(struct rq *rq, struct task_struct *p)
  5916. {
  5917. int on_rq;
  5918. update_rq_clock(rq);
  5919. on_rq = p->se.on_rq;
  5920. if (on_rq)
  5921. deactivate_task(rq, p, 0);
  5922. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5923. if (on_rq) {
  5924. activate_task(rq, p, 0);
  5925. resched_task(rq->curr);
  5926. }
  5927. }
  5928. void normalize_rt_tasks(void)
  5929. {
  5930. struct task_struct *g, *p;
  5931. unsigned long flags;
  5932. struct rq *rq;
  5933. read_lock_irq(&tasklist_lock);
  5934. do_each_thread(g, p) {
  5935. /*
  5936. * Only normalize user tasks:
  5937. */
  5938. if (!p->mm)
  5939. continue;
  5940. p->se.exec_start = 0;
  5941. #ifdef CONFIG_SCHEDSTATS
  5942. p->se.wait_start = 0;
  5943. p->se.sleep_start = 0;
  5944. p->se.block_start = 0;
  5945. #endif
  5946. task_rq(p)->clock = 0;
  5947. if (!rt_task(p)) {
  5948. /*
  5949. * Renice negative nice level userspace
  5950. * tasks back to 0:
  5951. */
  5952. if (TASK_NICE(p) < 0 && p->mm)
  5953. set_user_nice(p, 0);
  5954. continue;
  5955. }
  5956. spin_lock_irqsave(&p->pi_lock, flags);
  5957. rq = __task_rq_lock(p);
  5958. normalize_task(rq, p);
  5959. __task_rq_unlock(rq);
  5960. spin_unlock_irqrestore(&p->pi_lock, flags);
  5961. } while_each_thread(g, p);
  5962. read_unlock_irq(&tasklist_lock);
  5963. }
  5964. #endif /* CONFIG_MAGIC_SYSRQ */
  5965. #ifdef CONFIG_IA64
  5966. /*
  5967. * These functions are only useful for the IA64 MCA handling.
  5968. *
  5969. * They can only be called when the whole system has been
  5970. * stopped - every CPU needs to be quiescent, and no scheduling
  5971. * activity can take place. Using them for anything else would
  5972. * be a serious bug, and as a result, they aren't even visible
  5973. * under any other configuration.
  5974. */
  5975. /**
  5976. * curr_task - return the current task for a given cpu.
  5977. * @cpu: the processor in question.
  5978. *
  5979. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5980. */
  5981. struct task_struct *curr_task(int cpu)
  5982. {
  5983. return cpu_curr(cpu);
  5984. }
  5985. /**
  5986. * set_curr_task - set the current task for a given cpu.
  5987. * @cpu: the processor in question.
  5988. * @p: the task pointer to set.
  5989. *
  5990. * Description: This function must only be used when non-maskable interrupts
  5991. * are serviced on a separate stack. It allows the architecture to switch the
  5992. * notion of the current task on a cpu in a non-blocking manner. This function
  5993. * must be called with all CPU's synchronized, and interrupts disabled, the
  5994. * and caller must save the original value of the current task (see
  5995. * curr_task() above) and restore that value before reenabling interrupts and
  5996. * re-starting the system.
  5997. *
  5998. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5999. */
  6000. void set_curr_task(int cpu, struct task_struct *p)
  6001. {
  6002. cpu_curr(cpu) = p;
  6003. }
  6004. #endif
  6005. #ifdef CONFIG_FAIR_GROUP_SCHED
  6006. /* allocate runqueue etc for a new task group */
  6007. struct task_group *sched_create_group(void)
  6008. {
  6009. struct task_group *tg;
  6010. struct cfs_rq *cfs_rq;
  6011. struct sched_entity *se;
  6012. struct rq *rq;
  6013. int i;
  6014. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6015. if (!tg)
  6016. return ERR_PTR(-ENOMEM);
  6017. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6018. if (!tg->cfs_rq)
  6019. goto err;
  6020. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6021. if (!tg->se)
  6022. goto err;
  6023. for_each_possible_cpu(i) {
  6024. rq = cpu_rq(i);
  6025. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6026. cpu_to_node(i));
  6027. if (!cfs_rq)
  6028. goto err;
  6029. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6030. cpu_to_node(i));
  6031. if (!se)
  6032. goto err;
  6033. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6034. memset(se, 0, sizeof(struct sched_entity));
  6035. tg->cfs_rq[i] = cfs_rq;
  6036. init_cfs_rq(cfs_rq, rq);
  6037. cfs_rq->tg = tg;
  6038. tg->se[i] = se;
  6039. se->cfs_rq = &rq->cfs;
  6040. se->my_q = cfs_rq;
  6041. se->load.weight = NICE_0_LOAD;
  6042. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6043. se->parent = NULL;
  6044. }
  6045. for_each_possible_cpu(i) {
  6046. rq = cpu_rq(i);
  6047. cfs_rq = tg->cfs_rq[i];
  6048. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6049. }
  6050. tg->shares = NICE_0_LOAD;
  6051. spin_lock_init(&tg->lock);
  6052. return tg;
  6053. err:
  6054. for_each_possible_cpu(i) {
  6055. if (tg->cfs_rq)
  6056. kfree(tg->cfs_rq[i]);
  6057. if (tg->se)
  6058. kfree(tg->se[i]);
  6059. }
  6060. kfree(tg->cfs_rq);
  6061. kfree(tg->se);
  6062. kfree(tg);
  6063. return ERR_PTR(-ENOMEM);
  6064. }
  6065. /* rcu callback to free various structures associated with a task group */
  6066. static void free_sched_group(struct rcu_head *rhp)
  6067. {
  6068. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6069. struct cfs_rq *cfs_rq;
  6070. struct sched_entity *se;
  6071. int i;
  6072. /* now it should be safe to free those cfs_rqs */
  6073. for_each_possible_cpu(i) {
  6074. cfs_rq = tg->cfs_rq[i];
  6075. kfree(cfs_rq);
  6076. se = tg->se[i];
  6077. kfree(se);
  6078. }
  6079. kfree(tg->cfs_rq);
  6080. kfree(tg->se);
  6081. kfree(tg);
  6082. }
  6083. /* Destroy runqueue etc associated with a task group */
  6084. void sched_destroy_group(struct task_group *tg)
  6085. {
  6086. struct cfs_rq *cfs_rq = NULL;
  6087. int i;
  6088. for_each_possible_cpu(i) {
  6089. cfs_rq = tg->cfs_rq[i];
  6090. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6091. }
  6092. BUG_ON(!cfs_rq);
  6093. /* wait for possible concurrent references to cfs_rqs complete */
  6094. call_rcu(&tg->rcu, free_sched_group);
  6095. }
  6096. /* change task's runqueue when it moves between groups.
  6097. * The caller of this function should have put the task in its new group
  6098. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6099. * reflect its new group.
  6100. */
  6101. void sched_move_task(struct task_struct *tsk)
  6102. {
  6103. int on_rq, running;
  6104. unsigned long flags;
  6105. struct rq *rq;
  6106. rq = task_rq_lock(tsk, &flags);
  6107. if (tsk->sched_class != &fair_sched_class)
  6108. goto done;
  6109. update_rq_clock(rq);
  6110. running = task_running(rq, tsk);
  6111. on_rq = tsk->se.on_rq;
  6112. if (on_rq) {
  6113. dequeue_task(rq, tsk, 0);
  6114. if (unlikely(running))
  6115. tsk->sched_class->put_prev_task(rq, tsk);
  6116. }
  6117. set_task_cfs_rq(tsk);
  6118. if (on_rq) {
  6119. if (unlikely(running))
  6120. tsk->sched_class->set_curr_task(rq);
  6121. enqueue_task(rq, tsk, 0);
  6122. }
  6123. done:
  6124. task_rq_unlock(rq, &flags);
  6125. }
  6126. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6127. {
  6128. struct cfs_rq *cfs_rq = se->cfs_rq;
  6129. struct rq *rq = cfs_rq->rq;
  6130. int on_rq;
  6131. spin_lock_irq(&rq->lock);
  6132. on_rq = se->on_rq;
  6133. if (on_rq)
  6134. dequeue_entity(cfs_rq, se, 0);
  6135. se->load.weight = shares;
  6136. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6137. if (on_rq)
  6138. enqueue_entity(cfs_rq, se, 0);
  6139. spin_unlock_irq(&rq->lock);
  6140. }
  6141. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6142. {
  6143. int i;
  6144. spin_lock(&tg->lock);
  6145. if (tg->shares == shares)
  6146. goto done;
  6147. tg->shares = shares;
  6148. for_each_possible_cpu(i)
  6149. set_se_shares(tg->se[i], shares);
  6150. done:
  6151. spin_unlock(&tg->lock);
  6152. return 0;
  6153. }
  6154. unsigned long sched_group_shares(struct task_group *tg)
  6155. {
  6156. return tg->shares;
  6157. }
  6158. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6159. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6160. /* return corresponding task_group object of a cgroup */
  6161. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6162. {
  6163. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6164. struct task_group, css);
  6165. }
  6166. static struct cgroup_subsys_state *
  6167. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6168. {
  6169. struct task_group *tg;
  6170. if (!cgrp->parent) {
  6171. /* This is early initialization for the top cgroup */
  6172. init_task_group.css.cgroup = cgrp;
  6173. return &init_task_group.css;
  6174. }
  6175. /* we support only 1-level deep hierarchical scheduler atm */
  6176. if (cgrp->parent->parent)
  6177. return ERR_PTR(-EINVAL);
  6178. tg = sched_create_group();
  6179. if (IS_ERR(tg))
  6180. return ERR_PTR(-ENOMEM);
  6181. /* Bind the cgroup to task_group object we just created */
  6182. tg->css.cgroup = cgrp;
  6183. return &tg->css;
  6184. }
  6185. static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
  6186. struct cgroup *cgrp)
  6187. {
  6188. struct task_group *tg = cgroup_tg(cgrp);
  6189. sched_destroy_group(tg);
  6190. }
  6191. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
  6192. struct cgroup *cgrp, struct task_struct *tsk)
  6193. {
  6194. /* We don't support RT-tasks being in separate groups */
  6195. if (tsk->sched_class != &fair_sched_class)
  6196. return -EINVAL;
  6197. return 0;
  6198. }
  6199. static void
  6200. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6201. struct cgroup *old_cont, struct task_struct *tsk)
  6202. {
  6203. sched_move_task(tsk);
  6204. }
  6205. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6206. u64 shareval)
  6207. {
  6208. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6209. }
  6210. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6211. {
  6212. struct task_group *tg = cgroup_tg(cgrp);
  6213. return (u64) tg->shares;
  6214. }
  6215. static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
  6216. {
  6217. struct task_group *tg = cgroup_tg(cgrp);
  6218. unsigned long flags;
  6219. u64 res = 0;
  6220. int i;
  6221. for_each_possible_cpu(i) {
  6222. /*
  6223. * Lock to prevent races with updating 64-bit counters
  6224. * on 32-bit arches.
  6225. */
  6226. spin_lock_irqsave(&cpu_rq(i)->lock, flags);
  6227. res += tg->se[i]->sum_exec_runtime;
  6228. spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
  6229. }
  6230. /* Convert from ns to ms */
  6231. do_div(res, 1000000);
  6232. return res;
  6233. }
  6234. static struct cftype cpu_files[] = {
  6235. {
  6236. .name = "shares",
  6237. .read_uint = cpu_shares_read_uint,
  6238. .write_uint = cpu_shares_write_uint,
  6239. },
  6240. {
  6241. .name = "usage",
  6242. .read_uint = cpu_usage_read,
  6243. },
  6244. };
  6245. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6246. {
  6247. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6248. }
  6249. struct cgroup_subsys cpu_cgroup_subsys = {
  6250. .name = "cpu",
  6251. .create = cpu_cgroup_create,
  6252. .destroy = cpu_cgroup_destroy,
  6253. .can_attach = cpu_cgroup_can_attach,
  6254. .attach = cpu_cgroup_attach,
  6255. .populate = cpu_cgroup_populate,
  6256. .subsys_id = cpu_cgroup_subsys_id,
  6257. .early_init = 1,
  6258. };
  6259. #endif /* CONFIG_FAIR_CGROUP_SCHED */