fault.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629
  1. /*
  2. * linux/arch/i386/mm/fault.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. */
  6. #include <linux/signal.h>
  7. #include <linux/sched.h>
  8. #include <linux/kernel.h>
  9. #include <linux/errno.h>
  10. #include <linux/string.h>
  11. #include <linux/types.h>
  12. #include <linux/ptrace.h>
  13. #include <linux/mman.h>
  14. #include <linux/mm.h>
  15. #include <linux/smp.h>
  16. #include <linux/smp_lock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/init.h>
  19. #include <linux/tty.h>
  20. #include <linux/vt_kern.h> /* For unblank_screen() */
  21. #include <linux/highmem.h>
  22. #include <linux/module.h>
  23. #include <linux/kprobes.h>
  24. #include <asm/system.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/desc.h>
  27. #include <asm/kdebug.h>
  28. extern void die(const char *,struct pt_regs *,long);
  29. /*
  30. * Unlock any spinlocks which will prevent us from getting the
  31. * message out
  32. */
  33. void bust_spinlocks(int yes)
  34. {
  35. int loglevel_save = console_loglevel;
  36. if (yes) {
  37. oops_in_progress = 1;
  38. return;
  39. }
  40. #ifdef CONFIG_VT
  41. unblank_screen();
  42. #endif
  43. oops_in_progress = 0;
  44. /*
  45. * OK, the message is on the console. Now we call printk()
  46. * without oops_in_progress set so that printk will give klogd
  47. * a poke. Hold onto your hats...
  48. */
  49. console_loglevel = 15; /* NMI oopser may have shut the console up */
  50. printk(" ");
  51. console_loglevel = loglevel_save;
  52. }
  53. /*
  54. * Return EIP plus the CS segment base. The segment limit is also
  55. * adjusted, clamped to the kernel/user address space (whichever is
  56. * appropriate), and returned in *eip_limit.
  57. *
  58. * The segment is checked, because it might have been changed by another
  59. * task between the original faulting instruction and here.
  60. *
  61. * If CS is no longer a valid code segment, or if EIP is beyond the
  62. * limit, or if it is a kernel address when CS is not a kernel segment,
  63. * then the returned value will be greater than *eip_limit.
  64. *
  65. * This is slow, but is very rarely executed.
  66. */
  67. static inline unsigned long get_segment_eip(struct pt_regs *regs,
  68. unsigned long *eip_limit)
  69. {
  70. unsigned long eip = regs->eip;
  71. unsigned seg = regs->xcs & 0xffff;
  72. u32 seg_ar, seg_limit, base, *desc;
  73. /* Unlikely, but must come before segment checks. */
  74. if (unlikely(regs->eflags & VM_MASK)) {
  75. base = seg << 4;
  76. *eip_limit = base + 0xffff;
  77. return base + (eip & 0xffff);
  78. }
  79. /* The standard kernel/user address space limit. */
  80. *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg;
  81. /* By far the most common cases. */
  82. if (likely(seg == __USER_CS || seg == __KERNEL_CS))
  83. return eip;
  84. /* Check the segment exists, is within the current LDT/GDT size,
  85. that kernel/user (ring 0..3) has the appropriate privilege,
  86. that it's a code segment, and get the limit. */
  87. __asm__ ("larl %3,%0; lsll %3,%1"
  88. : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
  89. if ((~seg_ar & 0x9800) || eip > seg_limit) {
  90. *eip_limit = 0;
  91. return 1; /* So that returned eip > *eip_limit. */
  92. }
  93. /* Get the GDT/LDT descriptor base.
  94. When you look for races in this code remember that
  95. LDT and other horrors are only used in user space. */
  96. if (seg & (1<<2)) {
  97. /* Must lock the LDT while reading it. */
  98. down(&current->mm->context.sem);
  99. desc = current->mm->context.ldt;
  100. desc = (void *)desc + (seg & ~7);
  101. } else {
  102. /* Must disable preemption while reading the GDT. */
  103. desc = (u32 *)get_cpu_gdt_table(get_cpu());
  104. desc = (void *)desc + (seg & ~7);
  105. }
  106. /* Decode the code segment base from the descriptor */
  107. base = get_desc_base((unsigned long *)desc);
  108. if (seg & (1<<2)) {
  109. up(&current->mm->context.sem);
  110. } else
  111. put_cpu();
  112. /* Adjust EIP and segment limit, and clamp at the kernel limit.
  113. It's legitimate for segments to wrap at 0xffffffff. */
  114. seg_limit += base;
  115. if (seg_limit < *eip_limit && seg_limit >= base)
  116. *eip_limit = seg_limit;
  117. return eip + base;
  118. }
  119. /*
  120. * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  121. * Check that here and ignore it.
  122. */
  123. static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
  124. {
  125. unsigned long limit;
  126. unsigned long instr = get_segment_eip (regs, &limit);
  127. int scan_more = 1;
  128. int prefetch = 0;
  129. int i;
  130. for (i = 0; scan_more && i < 15; i++) {
  131. unsigned char opcode;
  132. unsigned char instr_hi;
  133. unsigned char instr_lo;
  134. if (instr > limit)
  135. break;
  136. if (__get_user(opcode, (unsigned char __user *) instr))
  137. break;
  138. instr_hi = opcode & 0xf0;
  139. instr_lo = opcode & 0x0f;
  140. instr++;
  141. switch (instr_hi) {
  142. case 0x20:
  143. case 0x30:
  144. /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
  145. scan_more = ((instr_lo & 7) == 0x6);
  146. break;
  147. case 0x60:
  148. /* 0x64 thru 0x67 are valid prefixes in all modes. */
  149. scan_more = (instr_lo & 0xC) == 0x4;
  150. break;
  151. case 0xF0:
  152. /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
  153. scan_more = !instr_lo || (instr_lo>>1) == 1;
  154. break;
  155. case 0x00:
  156. /* Prefetch instruction is 0x0F0D or 0x0F18 */
  157. scan_more = 0;
  158. if (instr > limit)
  159. break;
  160. if (__get_user(opcode, (unsigned char __user *) instr))
  161. break;
  162. prefetch = (instr_lo == 0xF) &&
  163. (opcode == 0x0D || opcode == 0x18);
  164. break;
  165. default:
  166. scan_more = 0;
  167. break;
  168. }
  169. }
  170. return prefetch;
  171. }
  172. static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
  173. unsigned long error_code)
  174. {
  175. if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
  176. boot_cpu_data.x86 >= 6)) {
  177. /* Catch an obscure case of prefetch inside an NX page. */
  178. if (nx_enabled && (error_code & 16))
  179. return 0;
  180. return __is_prefetch(regs, addr);
  181. }
  182. return 0;
  183. }
  184. static noinline void force_sig_info_fault(int si_signo, int si_code,
  185. unsigned long address, struct task_struct *tsk)
  186. {
  187. siginfo_t info;
  188. info.si_signo = si_signo;
  189. info.si_errno = 0;
  190. info.si_code = si_code;
  191. info.si_addr = (void __user *)address;
  192. force_sig_info(si_signo, &info, tsk);
  193. }
  194. fastcall void do_invalid_op(struct pt_regs *, unsigned long);
  195. static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
  196. {
  197. unsigned index = pgd_index(address);
  198. pgd_t *pgd_k;
  199. pud_t *pud, *pud_k;
  200. pmd_t *pmd, *pmd_k;
  201. pgd += index;
  202. pgd_k = init_mm.pgd + index;
  203. if (!pgd_present(*pgd_k))
  204. return NULL;
  205. /*
  206. * set_pgd(pgd, *pgd_k); here would be useless on PAE
  207. * and redundant with the set_pmd() on non-PAE. As would
  208. * set_pud.
  209. */
  210. pud = pud_offset(pgd, address);
  211. pud_k = pud_offset(pgd_k, address);
  212. if (!pud_present(*pud_k))
  213. return NULL;
  214. pmd = pmd_offset(pud, address);
  215. pmd_k = pmd_offset(pud_k, address);
  216. if (!pmd_present(*pmd_k))
  217. return NULL;
  218. if (!pmd_present(*pmd))
  219. set_pmd(pmd, *pmd_k);
  220. else
  221. BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
  222. return pmd_k;
  223. }
  224. /*
  225. * Handle a fault on the vmalloc or module mapping area
  226. *
  227. * This assumes no large pages in there.
  228. */
  229. static inline int vmalloc_fault(unsigned long address)
  230. {
  231. unsigned long pgd_paddr;
  232. pmd_t *pmd_k;
  233. pte_t *pte_k;
  234. /*
  235. * Synchronize this task's top level page-table
  236. * with the 'reference' page table.
  237. *
  238. * Do _not_ use "current" here. We might be inside
  239. * an interrupt in the middle of a task switch..
  240. */
  241. pgd_paddr = read_cr3();
  242. pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
  243. if (!pmd_k)
  244. return -1;
  245. pte_k = pte_offset_kernel(pmd_k, address);
  246. if (!pte_present(*pte_k))
  247. return -1;
  248. return 0;
  249. }
  250. /*
  251. * This routine handles page faults. It determines the address,
  252. * and the problem, and then passes it off to one of the appropriate
  253. * routines.
  254. *
  255. * error_code:
  256. * bit 0 == 0 means no page found, 1 means protection fault
  257. * bit 1 == 0 means read, 1 means write
  258. * bit 2 == 0 means kernel, 1 means user-mode
  259. * bit 3 == 1 means use of reserved bit detected
  260. * bit 4 == 1 means fault was an instruction fetch
  261. */
  262. fastcall void __kprobes do_page_fault(struct pt_regs *regs,
  263. unsigned long error_code)
  264. {
  265. struct task_struct *tsk;
  266. struct mm_struct *mm;
  267. struct vm_area_struct * vma;
  268. unsigned long address;
  269. unsigned long page;
  270. int write, si_code;
  271. /* get the address */
  272. address = read_cr2();
  273. tsk = current;
  274. si_code = SEGV_MAPERR;
  275. /*
  276. * We fault-in kernel-space virtual memory on-demand. The
  277. * 'reference' page table is init_mm.pgd.
  278. *
  279. * NOTE! We MUST NOT take any locks for this case. We may
  280. * be in an interrupt or a critical region, and should
  281. * only copy the information from the master page table,
  282. * nothing more.
  283. *
  284. * This verifies that the fault happens in kernel space
  285. * (error_code & 4) == 0, and that the fault was not a
  286. * protection error (error_code & 9) == 0.
  287. */
  288. if (unlikely(address >= TASK_SIZE)) {
  289. if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
  290. return;
  291. if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
  292. SIGSEGV) == NOTIFY_STOP)
  293. return;
  294. /*
  295. * Don't take the mm semaphore here. If we fixup a prefetch
  296. * fault we could otherwise deadlock.
  297. */
  298. goto bad_area_nosemaphore;
  299. }
  300. if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
  301. SIGSEGV) == NOTIFY_STOP)
  302. return;
  303. /* It's safe to allow irq's after cr2 has been saved and the vmalloc
  304. fault has been handled. */
  305. if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
  306. local_irq_enable();
  307. mm = tsk->mm;
  308. /*
  309. * If we're in an interrupt, have no user context or are running in an
  310. * atomic region then we must not take the fault..
  311. */
  312. if (in_atomic() || !mm)
  313. goto bad_area_nosemaphore;
  314. /* When running in the kernel we expect faults to occur only to
  315. * addresses in user space. All other faults represent errors in the
  316. * kernel and should generate an OOPS. Unfortunatly, in the case of an
  317. * erroneous fault occuring in a code path which already holds mmap_sem
  318. * we will deadlock attempting to validate the fault against the
  319. * address space. Luckily the kernel only validly references user
  320. * space from well defined areas of code, which are listed in the
  321. * exceptions table.
  322. *
  323. * As the vast majority of faults will be valid we will only perform
  324. * the source reference check when there is a possibilty of a deadlock.
  325. * Attempt to lock the address space, if we cannot we then validate the
  326. * source. If this is invalid we can skip the address space check,
  327. * thus avoiding the deadlock.
  328. */
  329. if (!down_read_trylock(&mm->mmap_sem)) {
  330. if ((error_code & 4) == 0 &&
  331. !search_exception_tables(regs->eip))
  332. goto bad_area_nosemaphore;
  333. down_read(&mm->mmap_sem);
  334. }
  335. vma = find_vma(mm, address);
  336. if (!vma)
  337. goto bad_area;
  338. if (vma->vm_start <= address)
  339. goto good_area;
  340. if (!(vma->vm_flags & VM_GROWSDOWN))
  341. goto bad_area;
  342. if (error_code & 4) {
  343. /*
  344. * Accessing the stack below %esp is always a bug.
  345. * The large cushion allows instructions like enter
  346. * and pusha to work. ("enter $65535,$31" pushes
  347. * 32 pointers and then decrements %esp by 65535.)
  348. */
  349. if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
  350. goto bad_area;
  351. }
  352. if (expand_stack(vma, address))
  353. goto bad_area;
  354. /*
  355. * Ok, we have a good vm_area for this memory access, so
  356. * we can handle it..
  357. */
  358. good_area:
  359. si_code = SEGV_ACCERR;
  360. write = 0;
  361. switch (error_code & 3) {
  362. default: /* 3: write, present */
  363. #ifdef TEST_VERIFY_AREA
  364. if (regs->cs == KERNEL_CS)
  365. printk("WP fault at %08lx\n", regs->eip);
  366. #endif
  367. /* fall through */
  368. case 2: /* write, not present */
  369. if (!(vma->vm_flags & VM_WRITE))
  370. goto bad_area;
  371. write++;
  372. break;
  373. case 1: /* read, present */
  374. goto bad_area;
  375. case 0: /* read, not present */
  376. if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
  377. goto bad_area;
  378. }
  379. survive:
  380. /*
  381. * If for any reason at all we couldn't handle the fault,
  382. * make sure we exit gracefully rather than endlessly redo
  383. * the fault.
  384. */
  385. switch (handle_mm_fault(mm, vma, address, write)) {
  386. case VM_FAULT_MINOR:
  387. tsk->min_flt++;
  388. break;
  389. case VM_FAULT_MAJOR:
  390. tsk->maj_flt++;
  391. break;
  392. case VM_FAULT_SIGBUS:
  393. goto do_sigbus;
  394. case VM_FAULT_OOM:
  395. goto out_of_memory;
  396. default:
  397. BUG();
  398. }
  399. /*
  400. * Did it hit the DOS screen memory VA from vm86 mode?
  401. */
  402. if (regs->eflags & VM_MASK) {
  403. unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
  404. if (bit < 32)
  405. tsk->thread.screen_bitmap |= 1 << bit;
  406. }
  407. up_read(&mm->mmap_sem);
  408. return;
  409. /*
  410. * Something tried to access memory that isn't in our memory map..
  411. * Fix it, but check if it's kernel or user first..
  412. */
  413. bad_area:
  414. up_read(&mm->mmap_sem);
  415. bad_area_nosemaphore:
  416. /* User mode accesses just cause a SIGSEGV */
  417. if (error_code & 4) {
  418. /*
  419. * Valid to do another page fault here because this one came
  420. * from user space.
  421. */
  422. if (is_prefetch(regs, address, error_code))
  423. return;
  424. tsk->thread.cr2 = address;
  425. /* Kernel addresses are always protection faults */
  426. tsk->thread.error_code = error_code | (address >= TASK_SIZE);
  427. tsk->thread.trap_no = 14;
  428. force_sig_info_fault(SIGSEGV, si_code, address, tsk);
  429. return;
  430. }
  431. #ifdef CONFIG_X86_F00F_BUG
  432. /*
  433. * Pentium F0 0F C7 C8 bug workaround.
  434. */
  435. if (boot_cpu_data.f00f_bug) {
  436. unsigned long nr;
  437. nr = (address - idt_descr.address) >> 3;
  438. if (nr == 6) {
  439. do_invalid_op(regs, 0);
  440. return;
  441. }
  442. }
  443. #endif
  444. no_context:
  445. /* Are we prepared to handle this kernel fault? */
  446. if (fixup_exception(regs))
  447. return;
  448. /*
  449. * Valid to do another page fault here, because if this fault
  450. * had been triggered by is_prefetch fixup_exception would have
  451. * handled it.
  452. */
  453. if (is_prefetch(regs, address, error_code))
  454. return;
  455. /*
  456. * Oops. The kernel tried to access some bad page. We'll have to
  457. * terminate things with extreme prejudice.
  458. */
  459. bust_spinlocks(1);
  460. if (oops_may_print()) {
  461. #ifdef CONFIG_X86_PAE
  462. if (error_code & 16) {
  463. pte_t *pte = lookup_address(address);
  464. if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
  465. printk(KERN_CRIT "kernel tried to execute "
  466. "NX-protected page - exploit attempt? "
  467. "(uid: %d)\n", current->uid);
  468. }
  469. #endif
  470. if (address < PAGE_SIZE)
  471. printk(KERN_ALERT "BUG: unable to handle kernel NULL "
  472. "pointer dereference");
  473. else
  474. printk(KERN_ALERT "BUG: unable to handle kernel paging"
  475. " request");
  476. printk(" at virtual address %08lx\n",address);
  477. printk(KERN_ALERT " printing eip:\n");
  478. printk("%08lx\n", regs->eip);
  479. }
  480. page = read_cr3();
  481. page = ((unsigned long *) __va(page))[address >> 22];
  482. if (oops_may_print())
  483. printk(KERN_ALERT "*pde = %08lx\n", page);
  484. /*
  485. * We must not directly access the pte in the highpte
  486. * case, the page table might be allocated in highmem.
  487. * And lets rather not kmap-atomic the pte, just in case
  488. * it's allocated already.
  489. */
  490. #ifndef CONFIG_HIGHPTE
  491. if ((page & 1) && oops_may_print()) {
  492. page &= PAGE_MASK;
  493. address &= 0x003ff000;
  494. page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
  495. printk(KERN_ALERT "*pte = %08lx\n", page);
  496. }
  497. #endif
  498. tsk->thread.cr2 = address;
  499. tsk->thread.trap_no = 14;
  500. tsk->thread.error_code = error_code;
  501. die("Oops", regs, error_code);
  502. bust_spinlocks(0);
  503. do_exit(SIGKILL);
  504. /*
  505. * We ran out of memory, or some other thing happened to us that made
  506. * us unable to handle the page fault gracefully.
  507. */
  508. out_of_memory:
  509. up_read(&mm->mmap_sem);
  510. if (tsk->pid == 1) {
  511. yield();
  512. down_read(&mm->mmap_sem);
  513. goto survive;
  514. }
  515. printk("VM: killing process %s\n", tsk->comm);
  516. if (error_code & 4)
  517. do_exit(SIGKILL);
  518. goto no_context;
  519. do_sigbus:
  520. up_read(&mm->mmap_sem);
  521. /* Kernel mode? Handle exceptions or die */
  522. if (!(error_code & 4))
  523. goto no_context;
  524. /* User space => ok to do another page fault */
  525. if (is_prefetch(regs, address, error_code))
  526. return;
  527. tsk->thread.cr2 = address;
  528. tsk->thread.error_code = error_code;
  529. tsk->thread.trap_no = 14;
  530. force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
  531. }
  532. #ifndef CONFIG_X86_PAE
  533. void vmalloc_sync_all(void)
  534. {
  535. /*
  536. * Note that races in the updates of insync and start aren't
  537. * problematic: insync can only get set bits added, and updates to
  538. * start are only improving performance (without affecting correctness
  539. * if undone).
  540. */
  541. static DECLARE_BITMAP(insync, PTRS_PER_PGD);
  542. static unsigned long start = TASK_SIZE;
  543. unsigned long address;
  544. BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
  545. for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
  546. if (!test_bit(pgd_index(address), insync)) {
  547. unsigned long flags;
  548. struct page *page;
  549. spin_lock_irqsave(&pgd_lock, flags);
  550. for (page = pgd_list; page; page =
  551. (struct page *)page->index)
  552. if (!vmalloc_sync_one(page_address(page),
  553. address)) {
  554. BUG_ON(page != pgd_list);
  555. break;
  556. }
  557. spin_unlock_irqrestore(&pgd_lock, flags);
  558. if (!page)
  559. set_bit(pgd_index(address), insync);
  560. }
  561. if (address == start && test_bit(pgd_index(address), insync))
  562. start = address + PGDIR_SIZE;
  563. }
  564. }
  565. #endif