smp.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/profile.h>
  22. #include <linux/lmb.h>
  23. #include <asm/head.h>
  24. #include <asm/ptrace.h>
  25. #include <asm/atomic.h>
  26. #include <asm/tlbflush.h>
  27. #include <asm/mmu_context.h>
  28. #include <asm/cpudata.h>
  29. #include <asm/hvtramp.h>
  30. #include <asm/io.h>
  31. #include <asm/timer.h>
  32. #include <asm/irq.h>
  33. #include <asm/irq_regs.h>
  34. #include <asm/page.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/oplib.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/starfire.h>
  39. #include <asm/tlb.h>
  40. #include <asm/sections.h>
  41. #include <asm/prom.h>
  42. #include <asm/mdesc.h>
  43. #include <asm/ldc.h>
  44. #include <asm/hypervisor.h>
  45. int sparc64_multi_core __read_mostly;
  46. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
  47. cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
  48. DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  49. cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  50. { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  51. EXPORT_SYMBOL(cpu_possible_map);
  52. EXPORT_SYMBOL(cpu_online_map);
  53. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  54. EXPORT_SYMBOL(cpu_core_map);
  55. static cpumask_t smp_commenced_mask;
  56. void smp_info(struct seq_file *m)
  57. {
  58. int i;
  59. seq_printf(m, "State:\n");
  60. for_each_online_cpu(i)
  61. seq_printf(m, "CPU%d:\t\tonline\n", i);
  62. }
  63. void smp_bogo(struct seq_file *m)
  64. {
  65. int i;
  66. for_each_online_cpu(i)
  67. seq_printf(m,
  68. "Cpu%dClkTck\t: %016lx\n",
  69. i, cpu_data(i).clock_tick);
  70. }
  71. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
  72. extern void setup_sparc64_timer(void);
  73. static volatile unsigned long callin_flag = 0;
  74. void __cpuinit smp_callin(void)
  75. {
  76. int cpuid = hard_smp_processor_id();
  77. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  78. if (tlb_type == hypervisor)
  79. sun4v_ktsb_register();
  80. __flush_tlb_all();
  81. setup_sparc64_timer();
  82. if (cheetah_pcache_forced_on)
  83. cheetah_enable_pcache();
  84. local_irq_enable();
  85. callin_flag = 1;
  86. __asm__ __volatile__("membar #Sync\n\t"
  87. "flush %%g6" : : : "memory");
  88. /* Clear this or we will die instantly when we
  89. * schedule back to this idler...
  90. */
  91. current_thread_info()->new_child = 0;
  92. /* Attach to the address space of init_task. */
  93. atomic_inc(&init_mm.mm_count);
  94. current->active_mm = &init_mm;
  95. while (!cpu_isset(cpuid, smp_commenced_mask))
  96. rmb();
  97. spin_lock(&call_lock);
  98. cpu_set(cpuid, cpu_online_map);
  99. spin_unlock(&call_lock);
  100. /* idle thread is expected to have preempt disabled */
  101. preempt_disable();
  102. }
  103. void cpu_panic(void)
  104. {
  105. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  106. panic("SMP bolixed\n");
  107. }
  108. /* This tick register synchronization scheme is taken entirely from
  109. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  110. *
  111. * The only change I've made is to rework it so that the master
  112. * initiates the synchonization instead of the slave. -DaveM
  113. */
  114. #define MASTER 0
  115. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  116. #define NUM_ROUNDS 64 /* magic value */
  117. #define NUM_ITERS 5 /* likewise */
  118. static DEFINE_SPINLOCK(itc_sync_lock);
  119. static unsigned long go[SLAVE + 1];
  120. #define DEBUG_TICK_SYNC 0
  121. static inline long get_delta (long *rt, long *master)
  122. {
  123. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  124. unsigned long tcenter, t0, t1, tm;
  125. unsigned long i;
  126. for (i = 0; i < NUM_ITERS; i++) {
  127. t0 = tick_ops->get_tick();
  128. go[MASTER] = 1;
  129. membar_storeload();
  130. while (!(tm = go[SLAVE]))
  131. rmb();
  132. go[SLAVE] = 0;
  133. wmb();
  134. t1 = tick_ops->get_tick();
  135. if (t1 - t0 < best_t1 - best_t0)
  136. best_t0 = t0, best_t1 = t1, best_tm = tm;
  137. }
  138. *rt = best_t1 - best_t0;
  139. *master = best_tm - best_t0;
  140. /* average best_t0 and best_t1 without overflow: */
  141. tcenter = (best_t0/2 + best_t1/2);
  142. if (best_t0 % 2 + best_t1 % 2 == 2)
  143. tcenter++;
  144. return tcenter - best_tm;
  145. }
  146. void smp_synchronize_tick_client(void)
  147. {
  148. long i, delta, adj, adjust_latency = 0, done = 0;
  149. unsigned long flags, rt, master_time_stamp, bound;
  150. #if DEBUG_TICK_SYNC
  151. struct {
  152. long rt; /* roundtrip time */
  153. long master; /* master's timestamp */
  154. long diff; /* difference between midpoint and master's timestamp */
  155. long lat; /* estimate of itc adjustment latency */
  156. } t[NUM_ROUNDS];
  157. #endif
  158. go[MASTER] = 1;
  159. while (go[MASTER])
  160. rmb();
  161. local_irq_save(flags);
  162. {
  163. for (i = 0; i < NUM_ROUNDS; i++) {
  164. delta = get_delta(&rt, &master_time_stamp);
  165. if (delta == 0) {
  166. done = 1; /* let's lock on to this... */
  167. bound = rt;
  168. }
  169. if (!done) {
  170. if (i > 0) {
  171. adjust_latency += -delta;
  172. adj = -delta + adjust_latency/4;
  173. } else
  174. adj = -delta;
  175. tick_ops->add_tick(adj);
  176. }
  177. #if DEBUG_TICK_SYNC
  178. t[i].rt = rt;
  179. t[i].master = master_time_stamp;
  180. t[i].diff = delta;
  181. t[i].lat = adjust_latency/4;
  182. #endif
  183. }
  184. }
  185. local_irq_restore(flags);
  186. #if DEBUG_TICK_SYNC
  187. for (i = 0; i < NUM_ROUNDS; i++)
  188. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  189. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  190. #endif
  191. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
  192. "(last diff %ld cycles, maxerr %lu cycles)\n",
  193. smp_processor_id(), delta, rt);
  194. }
  195. static void smp_start_sync_tick_client(int cpu);
  196. static void smp_synchronize_one_tick(int cpu)
  197. {
  198. unsigned long flags, i;
  199. go[MASTER] = 0;
  200. smp_start_sync_tick_client(cpu);
  201. /* wait for client to be ready */
  202. while (!go[MASTER])
  203. rmb();
  204. /* now let the client proceed into his loop */
  205. go[MASTER] = 0;
  206. membar_storeload();
  207. spin_lock_irqsave(&itc_sync_lock, flags);
  208. {
  209. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  210. while (!go[MASTER])
  211. rmb();
  212. go[MASTER] = 0;
  213. wmb();
  214. go[SLAVE] = tick_ops->get_tick();
  215. membar_storeload();
  216. }
  217. }
  218. spin_unlock_irqrestore(&itc_sync_lock, flags);
  219. }
  220. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  221. /* XXX Put this in some common place. XXX */
  222. static unsigned long kimage_addr_to_ra(void *p)
  223. {
  224. unsigned long val = (unsigned long) p;
  225. return kern_base + (val - KERNBASE);
  226. }
  227. static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
  228. {
  229. extern unsigned long sparc64_ttable_tl0;
  230. extern unsigned long kern_locked_tte_data;
  231. struct hvtramp_descr *hdesc;
  232. unsigned long trampoline_ra;
  233. struct trap_per_cpu *tb;
  234. u64 tte_vaddr, tte_data;
  235. unsigned long hv_err;
  236. int i;
  237. hdesc = kzalloc(sizeof(*hdesc) +
  238. (sizeof(struct hvtramp_mapping) *
  239. num_kernel_image_mappings - 1),
  240. GFP_KERNEL);
  241. if (!hdesc) {
  242. printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
  243. "hvtramp_descr.\n");
  244. return;
  245. }
  246. hdesc->cpu = cpu;
  247. hdesc->num_mappings = num_kernel_image_mappings;
  248. tb = &trap_block[cpu];
  249. tb->hdesc = hdesc;
  250. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  251. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  252. hdesc->thread_reg = thread_reg;
  253. tte_vaddr = (unsigned long) KERNBASE;
  254. tte_data = kern_locked_tte_data;
  255. for (i = 0; i < hdesc->num_mappings; i++) {
  256. hdesc->maps[i].vaddr = tte_vaddr;
  257. hdesc->maps[i].tte = tte_data;
  258. tte_vaddr += 0x400000;
  259. tte_data += 0x400000;
  260. }
  261. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  262. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  263. kimage_addr_to_ra(&sparc64_ttable_tl0),
  264. __pa(hdesc));
  265. if (hv_err)
  266. printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
  267. "gives error %lu\n", hv_err);
  268. }
  269. #endif
  270. extern unsigned long sparc64_cpu_startup;
  271. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  272. * 32-bits (I think) so to be safe we have it read the pointer
  273. * contained here so we work on >4GB machines. -DaveM
  274. */
  275. static struct thread_info *cpu_new_thread = NULL;
  276. static int __devinit smp_boot_one_cpu(unsigned int cpu)
  277. {
  278. struct trap_per_cpu *tb = &trap_block[cpu];
  279. unsigned long entry =
  280. (unsigned long)(&sparc64_cpu_startup);
  281. unsigned long cookie =
  282. (unsigned long)(&cpu_new_thread);
  283. struct task_struct *p;
  284. int timeout, ret;
  285. p = fork_idle(cpu);
  286. if (IS_ERR(p))
  287. return PTR_ERR(p);
  288. callin_flag = 0;
  289. cpu_new_thread = task_thread_info(p);
  290. if (tlb_type == hypervisor) {
  291. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  292. if (ldom_domaining_enabled)
  293. ldom_startcpu_cpuid(cpu,
  294. (unsigned long) cpu_new_thread);
  295. else
  296. #endif
  297. prom_startcpu_cpuid(cpu, entry, cookie);
  298. } else {
  299. struct device_node *dp = of_find_node_by_cpuid(cpu);
  300. prom_startcpu(dp->node, entry, cookie);
  301. }
  302. for (timeout = 0; timeout < 50000; timeout++) {
  303. if (callin_flag)
  304. break;
  305. udelay(100);
  306. }
  307. if (callin_flag) {
  308. ret = 0;
  309. } else {
  310. printk("Processor %d is stuck.\n", cpu);
  311. ret = -ENODEV;
  312. }
  313. cpu_new_thread = NULL;
  314. if (tb->hdesc) {
  315. kfree(tb->hdesc);
  316. tb->hdesc = NULL;
  317. }
  318. return ret;
  319. }
  320. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  321. {
  322. u64 result, target;
  323. int stuck, tmp;
  324. if (this_is_starfire) {
  325. /* map to real upaid */
  326. cpu = (((cpu & 0x3c) << 1) |
  327. ((cpu & 0x40) >> 4) |
  328. (cpu & 0x3));
  329. }
  330. target = (cpu << 14) | 0x70;
  331. again:
  332. /* Ok, this is the real Spitfire Errata #54.
  333. * One must read back from a UDB internal register
  334. * after writes to the UDB interrupt dispatch, but
  335. * before the membar Sync for that write.
  336. * So we use the high UDB control register (ASI 0x7f,
  337. * ADDR 0x20) for the dummy read. -DaveM
  338. */
  339. tmp = 0x40;
  340. __asm__ __volatile__(
  341. "wrpr %1, %2, %%pstate\n\t"
  342. "stxa %4, [%0] %3\n\t"
  343. "stxa %5, [%0+%8] %3\n\t"
  344. "add %0, %8, %0\n\t"
  345. "stxa %6, [%0+%8] %3\n\t"
  346. "membar #Sync\n\t"
  347. "stxa %%g0, [%7] %3\n\t"
  348. "membar #Sync\n\t"
  349. "mov 0x20, %%g1\n\t"
  350. "ldxa [%%g1] 0x7f, %%g0\n\t"
  351. "membar #Sync"
  352. : "=r" (tmp)
  353. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  354. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  355. "r" (0x10), "0" (tmp)
  356. : "g1");
  357. /* NOTE: PSTATE_IE is still clear. */
  358. stuck = 100000;
  359. do {
  360. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  361. : "=r" (result)
  362. : "i" (ASI_INTR_DISPATCH_STAT));
  363. if (result == 0) {
  364. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  365. : : "r" (pstate));
  366. return;
  367. }
  368. stuck -= 1;
  369. if (stuck == 0)
  370. break;
  371. } while (result & 0x1);
  372. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  373. : : "r" (pstate));
  374. if (stuck == 0) {
  375. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  376. smp_processor_id(), result);
  377. } else {
  378. udelay(2);
  379. goto again;
  380. }
  381. }
  382. static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
  383. {
  384. u64 pstate;
  385. int i;
  386. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  387. for_each_cpu_mask_nr(i, *mask)
  388. spitfire_xcall_helper(data0, data1, data2, pstate, i);
  389. }
  390. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  391. * packet, but we have no use for that. However we do take advantage of
  392. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  393. */
  394. static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask_p)
  395. {
  396. u64 pstate, ver, busy_mask;
  397. int nack_busy_id, is_jbus, need_more;
  398. cpumask_t mask;
  399. if (cpus_empty(*mask_p))
  400. return;
  401. mask = *mask_p;
  402. /* Unfortunately, someone at Sun had the brilliant idea to make the
  403. * busy/nack fields hard-coded by ITID number for this Ultra-III
  404. * derivative processor.
  405. */
  406. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  407. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  408. (ver >> 32) == __SERRANO_ID);
  409. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  410. retry:
  411. need_more = 0;
  412. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  413. : : "r" (pstate), "i" (PSTATE_IE));
  414. /* Setup the dispatch data registers. */
  415. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  416. "stxa %1, [%4] %6\n\t"
  417. "stxa %2, [%5] %6\n\t"
  418. "membar #Sync\n\t"
  419. : /* no outputs */
  420. : "r" (data0), "r" (data1), "r" (data2),
  421. "r" (0x40), "r" (0x50), "r" (0x60),
  422. "i" (ASI_INTR_W));
  423. nack_busy_id = 0;
  424. busy_mask = 0;
  425. {
  426. int i;
  427. for_each_cpu_mask_nr(i, mask) {
  428. u64 target = (i << 14) | 0x70;
  429. if (is_jbus) {
  430. busy_mask |= (0x1UL << (i * 2));
  431. } else {
  432. target |= (nack_busy_id << 24);
  433. busy_mask |= (0x1UL <<
  434. (nack_busy_id * 2));
  435. }
  436. __asm__ __volatile__(
  437. "stxa %%g0, [%0] %1\n\t"
  438. "membar #Sync\n\t"
  439. : /* no outputs */
  440. : "r" (target), "i" (ASI_INTR_W));
  441. nack_busy_id++;
  442. if (nack_busy_id == 32) {
  443. need_more = 1;
  444. break;
  445. }
  446. }
  447. }
  448. /* Now, poll for completion. */
  449. {
  450. u64 dispatch_stat, nack_mask;
  451. long stuck;
  452. stuck = 100000 * nack_busy_id;
  453. nack_mask = busy_mask << 1;
  454. do {
  455. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  456. : "=r" (dispatch_stat)
  457. : "i" (ASI_INTR_DISPATCH_STAT));
  458. if (!(dispatch_stat & (busy_mask | nack_mask))) {
  459. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  460. : : "r" (pstate));
  461. if (unlikely(need_more)) {
  462. int i, cnt = 0;
  463. for_each_cpu_mask_nr(i, mask) {
  464. cpu_clear(i, mask);
  465. cnt++;
  466. if (cnt == 32)
  467. break;
  468. }
  469. goto retry;
  470. }
  471. return;
  472. }
  473. if (!--stuck)
  474. break;
  475. } while (dispatch_stat & busy_mask);
  476. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  477. : : "r" (pstate));
  478. if (dispatch_stat & busy_mask) {
  479. /* Busy bits will not clear, continue instead
  480. * of freezing up on this cpu.
  481. */
  482. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  483. smp_processor_id(), dispatch_stat);
  484. } else {
  485. int i, this_busy_nack = 0;
  486. /* Delay some random time with interrupts enabled
  487. * to prevent deadlock.
  488. */
  489. udelay(2 * nack_busy_id);
  490. /* Clear out the mask bits for cpus which did not
  491. * NACK us.
  492. */
  493. for_each_cpu_mask_nr(i, mask) {
  494. u64 check_mask;
  495. if (is_jbus)
  496. check_mask = (0x2UL << (2*i));
  497. else
  498. check_mask = (0x2UL <<
  499. this_busy_nack);
  500. if ((dispatch_stat & check_mask) == 0)
  501. cpu_clear(i, mask);
  502. this_busy_nack += 2;
  503. if (this_busy_nack == 64)
  504. break;
  505. }
  506. goto retry;
  507. }
  508. }
  509. }
  510. /* Multi-cpu list version. */
  511. static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
  512. {
  513. int cnt, retries, this_cpu, prev_sent, i;
  514. unsigned long flags, status;
  515. cpumask_t error_mask;
  516. struct trap_per_cpu *tb;
  517. u16 *cpu_list;
  518. u64 *mondo;
  519. if (cpus_empty(*mask))
  520. return;
  521. /* We have to do this whole thing with interrupts fully disabled.
  522. * Otherwise if we send an xcall from interrupt context it will
  523. * corrupt both our mondo block and cpu list state.
  524. *
  525. * One consequence of this is that we cannot use timeout mechanisms
  526. * that depend upon interrupts being delivered locally. So, for
  527. * example, we cannot sample jiffies and expect it to advance.
  528. *
  529. * Fortunately, udelay() uses %stick/%tick so we can use that.
  530. */
  531. local_irq_save(flags);
  532. this_cpu = smp_processor_id();
  533. tb = &trap_block[this_cpu];
  534. mondo = __va(tb->cpu_mondo_block_pa);
  535. mondo[0] = data0;
  536. mondo[1] = data1;
  537. mondo[2] = data2;
  538. wmb();
  539. cpu_list = __va(tb->cpu_list_pa);
  540. /* Setup the initial cpu list. */
  541. cnt = 0;
  542. for_each_cpu_mask_nr(i, *mask)
  543. cpu_list[cnt++] = i;
  544. cpus_clear(error_mask);
  545. retries = 0;
  546. prev_sent = 0;
  547. do {
  548. int forward_progress, n_sent;
  549. status = sun4v_cpu_mondo_send(cnt,
  550. tb->cpu_list_pa,
  551. tb->cpu_mondo_block_pa);
  552. /* HV_EOK means all cpus received the xcall, we're done. */
  553. if (likely(status == HV_EOK))
  554. break;
  555. /* First, see if we made any forward progress.
  556. *
  557. * The hypervisor indicates successful sends by setting
  558. * cpu list entries to the value 0xffff.
  559. */
  560. n_sent = 0;
  561. for (i = 0; i < cnt; i++) {
  562. if (likely(cpu_list[i] == 0xffff))
  563. n_sent++;
  564. }
  565. forward_progress = 0;
  566. if (n_sent > prev_sent)
  567. forward_progress = 1;
  568. prev_sent = n_sent;
  569. /* If we get a HV_ECPUERROR, then one or more of the cpus
  570. * in the list are in error state. Use the cpu_state()
  571. * hypervisor call to find out which cpus are in error state.
  572. */
  573. if (unlikely(status == HV_ECPUERROR)) {
  574. for (i = 0; i < cnt; i++) {
  575. long err;
  576. u16 cpu;
  577. cpu = cpu_list[i];
  578. if (cpu == 0xffff)
  579. continue;
  580. err = sun4v_cpu_state(cpu);
  581. if (err >= 0 &&
  582. err == HV_CPU_STATE_ERROR) {
  583. cpu_list[i] = 0xffff;
  584. cpu_set(cpu, error_mask);
  585. }
  586. }
  587. } else if (unlikely(status != HV_EWOULDBLOCK))
  588. goto fatal_mondo_error;
  589. /* Don't bother rewriting the CPU list, just leave the
  590. * 0xffff and non-0xffff entries in there and the
  591. * hypervisor will do the right thing.
  592. *
  593. * Only advance timeout state if we didn't make any
  594. * forward progress.
  595. */
  596. if (unlikely(!forward_progress)) {
  597. if (unlikely(++retries > 10000))
  598. goto fatal_mondo_timeout;
  599. /* Delay a little bit to let other cpus catch up
  600. * on their cpu mondo queue work.
  601. */
  602. udelay(2 * cnt);
  603. }
  604. } while (1);
  605. local_irq_restore(flags);
  606. if (unlikely(!cpus_empty(error_mask)))
  607. goto fatal_mondo_cpu_error;
  608. return;
  609. fatal_mondo_cpu_error:
  610. printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
  611. "were in error state\n",
  612. this_cpu);
  613. printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
  614. for_each_cpu_mask_nr(i, error_mask)
  615. printk("%d ", i);
  616. printk("]\n");
  617. return;
  618. fatal_mondo_timeout:
  619. local_irq_restore(flags);
  620. printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
  621. " progress after %d retries.\n",
  622. this_cpu, retries);
  623. goto dump_cpu_list_and_out;
  624. fatal_mondo_error:
  625. local_irq_restore(flags);
  626. printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
  627. this_cpu, status);
  628. printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
  629. "mondo_block_pa(%lx)\n",
  630. this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
  631. dump_cpu_list_and_out:
  632. printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
  633. for (i = 0; i < cnt; i++)
  634. printk("%u ", cpu_list[i]);
  635. printk("]\n");
  636. }
  637. static void (*xcall_deliver)(u64, u64, u64, const cpumask_t *);
  638. /* Send cross call to all processors mentioned in MASK
  639. * except self.
  640. */
  641. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
  642. {
  643. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  644. int this_cpu = get_cpu();
  645. cpus_and(mask, mask, cpu_online_map);
  646. cpu_clear(this_cpu, mask);
  647. xcall_deliver(data0, data1, data2, &mask);
  648. /* NOTE: Caller runs local copy on master. */
  649. put_cpu();
  650. }
  651. extern unsigned long xcall_sync_tick;
  652. static void smp_start_sync_tick_client(int cpu)
  653. {
  654. cpumask_t mask = cpumask_of_cpu(cpu);
  655. smp_cross_call_masked(&xcall_sync_tick,
  656. 0, 0, 0, mask);
  657. }
  658. extern unsigned long xcall_call_function;
  659. void arch_send_call_function_ipi(cpumask_t mask)
  660. {
  661. xcall_deliver((u64) &xcall_call_function, 0, 0, &mask);
  662. }
  663. extern unsigned long xcall_call_function_single;
  664. void arch_send_call_function_single_ipi(int cpu)
  665. {
  666. xcall_deliver((u64) &xcall_call_function_single, 0, 0,
  667. &cpumask_of_cpu(cpu));
  668. }
  669. /* Send cross call to all processors except self. */
  670. #define smp_cross_call(func, ctx, data1, data2) \
  671. smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
  672. void smp_call_function_client(int irq, struct pt_regs *regs)
  673. {
  674. clear_softint(1 << irq);
  675. generic_smp_call_function_interrupt();
  676. }
  677. void smp_call_function_single_client(int irq, struct pt_regs *regs)
  678. {
  679. clear_softint(1 << irq);
  680. generic_smp_call_function_single_interrupt();
  681. }
  682. static void tsb_sync(void *info)
  683. {
  684. struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
  685. struct mm_struct *mm = info;
  686. /* It is not valid to test "currrent->active_mm == mm" here.
  687. *
  688. * The value of "current" is not changed atomically with
  689. * switch_mm(). But that's OK, we just need to check the
  690. * current cpu's trap block PGD physical address.
  691. */
  692. if (tp->pgd_paddr == __pa(mm->pgd))
  693. tsb_context_switch(mm);
  694. }
  695. void smp_tsb_sync(struct mm_struct *mm)
  696. {
  697. smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
  698. }
  699. extern unsigned long xcall_flush_tlb_mm;
  700. extern unsigned long xcall_flush_tlb_pending;
  701. extern unsigned long xcall_flush_tlb_kernel_range;
  702. #ifdef CONFIG_MAGIC_SYSRQ
  703. extern unsigned long xcall_fetch_glob_regs;
  704. #endif
  705. extern unsigned long xcall_receive_signal;
  706. extern unsigned long xcall_new_mmu_context_version;
  707. #ifdef CONFIG_KGDB
  708. extern unsigned long xcall_kgdb_capture;
  709. #endif
  710. #ifdef DCACHE_ALIASING_POSSIBLE
  711. extern unsigned long xcall_flush_dcache_page_cheetah;
  712. #endif
  713. extern unsigned long xcall_flush_dcache_page_spitfire;
  714. #ifdef CONFIG_DEBUG_DCFLUSH
  715. extern atomic_t dcpage_flushes;
  716. extern atomic_t dcpage_flushes_xcall;
  717. #endif
  718. static inline void __local_flush_dcache_page(struct page *page)
  719. {
  720. #ifdef DCACHE_ALIASING_POSSIBLE
  721. __flush_dcache_page(page_address(page),
  722. ((tlb_type == spitfire) &&
  723. page_mapping(page) != NULL));
  724. #else
  725. if (page_mapping(page) != NULL &&
  726. tlb_type == spitfire)
  727. __flush_icache_page(__pa(page_address(page)));
  728. #endif
  729. }
  730. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  731. {
  732. cpumask_t mask = cpumask_of_cpu(cpu);
  733. int this_cpu;
  734. if (tlb_type == hypervisor)
  735. return;
  736. #ifdef CONFIG_DEBUG_DCFLUSH
  737. atomic_inc(&dcpage_flushes);
  738. #endif
  739. this_cpu = get_cpu();
  740. if (cpu == this_cpu) {
  741. __local_flush_dcache_page(page);
  742. } else if (cpu_online(cpu)) {
  743. void *pg_addr = page_address(page);
  744. u64 data0 = 0;
  745. if (tlb_type == spitfire) {
  746. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  747. if (page_mapping(page) != NULL)
  748. data0 |= ((u64)1 << 32);
  749. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  750. #ifdef DCACHE_ALIASING_POSSIBLE
  751. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  752. #endif
  753. }
  754. if (data0) {
  755. xcall_deliver(data0, __pa(pg_addr),
  756. (u64) pg_addr, &mask);
  757. #ifdef CONFIG_DEBUG_DCFLUSH
  758. atomic_inc(&dcpage_flushes_xcall);
  759. #endif
  760. }
  761. }
  762. put_cpu();
  763. }
  764. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  765. {
  766. cpumask_t mask = cpu_online_map;
  767. void *pg_addr;
  768. int this_cpu;
  769. u64 data0;
  770. if (tlb_type == hypervisor)
  771. return;
  772. this_cpu = get_cpu();
  773. cpu_clear(this_cpu, mask);
  774. #ifdef CONFIG_DEBUG_DCFLUSH
  775. atomic_inc(&dcpage_flushes);
  776. #endif
  777. if (cpus_empty(mask))
  778. goto flush_self;
  779. data0 = 0;
  780. pg_addr = page_address(page);
  781. if (tlb_type == spitfire) {
  782. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  783. if (page_mapping(page) != NULL)
  784. data0 |= ((u64)1 << 32);
  785. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  786. #ifdef DCACHE_ALIASING_POSSIBLE
  787. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  788. #endif
  789. }
  790. if (data0) {
  791. xcall_deliver(data0, __pa(pg_addr),
  792. (u64) pg_addr, &mask);
  793. #ifdef CONFIG_DEBUG_DCFLUSH
  794. atomic_inc(&dcpage_flushes_xcall);
  795. #endif
  796. }
  797. flush_self:
  798. __local_flush_dcache_page(page);
  799. put_cpu();
  800. }
  801. void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
  802. {
  803. struct mm_struct *mm;
  804. unsigned long flags;
  805. clear_softint(1 << irq);
  806. /* See if we need to allocate a new TLB context because
  807. * the version of the one we are using is now out of date.
  808. */
  809. mm = current->active_mm;
  810. if (unlikely(!mm || (mm == &init_mm)))
  811. return;
  812. spin_lock_irqsave(&mm->context.lock, flags);
  813. if (unlikely(!CTX_VALID(mm->context)))
  814. get_new_mmu_context(mm);
  815. spin_unlock_irqrestore(&mm->context.lock, flags);
  816. load_secondary_context(mm);
  817. __flush_tlb_mm(CTX_HWBITS(mm->context),
  818. SECONDARY_CONTEXT);
  819. }
  820. void smp_new_mmu_context_version(void)
  821. {
  822. smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
  823. }
  824. #ifdef CONFIG_KGDB
  825. void kgdb_roundup_cpus(unsigned long flags)
  826. {
  827. smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
  828. }
  829. #endif
  830. #ifdef CONFIG_MAGIC_SYSRQ
  831. void smp_fetch_global_regs(void)
  832. {
  833. smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
  834. }
  835. #endif
  836. /* We know that the window frames of the user have been flushed
  837. * to the stack before we get here because all callers of us
  838. * are flush_tlb_*() routines, and these run after flush_cache_*()
  839. * which performs the flushw.
  840. *
  841. * The SMP TLB coherency scheme we use works as follows:
  842. *
  843. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  844. * space has (potentially) executed on, this is the heuristic
  845. * we use to avoid doing cross calls.
  846. *
  847. * Also, for flushing from kswapd and also for clones, we
  848. * use cpu_vm_mask as the list of cpus to make run the TLB.
  849. *
  850. * 2) TLB context numbers are shared globally across all processors
  851. * in the system, this allows us to play several games to avoid
  852. * cross calls.
  853. *
  854. * One invariant is that when a cpu switches to a process, and
  855. * that processes tsk->active_mm->cpu_vm_mask does not have the
  856. * current cpu's bit set, that tlb context is flushed locally.
  857. *
  858. * If the address space is non-shared (ie. mm->count == 1) we avoid
  859. * cross calls when we want to flush the currently running process's
  860. * tlb state. This is done by clearing all cpu bits except the current
  861. * processor's in current->active_mm->cpu_vm_mask and performing the
  862. * flush locally only. This will force any subsequent cpus which run
  863. * this task to flush the context from the local tlb if the process
  864. * migrates to another cpu (again).
  865. *
  866. * 3) For shared address spaces (threads) and swapping we bite the
  867. * bullet for most cases and perform the cross call (but only to
  868. * the cpus listed in cpu_vm_mask).
  869. *
  870. * The performance gain from "optimizing" away the cross call for threads is
  871. * questionable (in theory the big win for threads is the massive sharing of
  872. * address space state across processors).
  873. */
  874. /* This currently is only used by the hugetlb arch pre-fault
  875. * hook on UltraSPARC-III+ and later when changing the pagesize
  876. * bits of the context register for an address space.
  877. */
  878. void smp_flush_tlb_mm(struct mm_struct *mm)
  879. {
  880. u32 ctx = CTX_HWBITS(mm->context);
  881. int cpu = get_cpu();
  882. if (atomic_read(&mm->mm_users) == 1) {
  883. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  884. goto local_flush_and_out;
  885. }
  886. smp_cross_call_masked(&xcall_flush_tlb_mm,
  887. ctx, 0, 0,
  888. mm->cpu_vm_mask);
  889. local_flush_and_out:
  890. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  891. put_cpu();
  892. }
  893. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  894. {
  895. u32 ctx = CTX_HWBITS(mm->context);
  896. int cpu = get_cpu();
  897. if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
  898. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  899. else
  900. smp_cross_call_masked(&xcall_flush_tlb_pending,
  901. ctx, nr, (unsigned long) vaddrs,
  902. mm->cpu_vm_mask);
  903. __flush_tlb_pending(ctx, nr, vaddrs);
  904. put_cpu();
  905. }
  906. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  907. {
  908. start &= PAGE_MASK;
  909. end = PAGE_ALIGN(end);
  910. if (start != end) {
  911. smp_cross_call(&xcall_flush_tlb_kernel_range,
  912. 0, start, end);
  913. __flush_tlb_kernel_range(start, end);
  914. }
  915. }
  916. /* CPU capture. */
  917. /* #define CAPTURE_DEBUG */
  918. extern unsigned long xcall_capture;
  919. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  920. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  921. static unsigned long penguins_are_doing_time;
  922. void smp_capture(void)
  923. {
  924. int result = atomic_add_ret(1, &smp_capture_depth);
  925. if (result == 1) {
  926. int ncpus = num_online_cpus();
  927. #ifdef CAPTURE_DEBUG
  928. printk("CPU[%d]: Sending penguins to jail...",
  929. smp_processor_id());
  930. #endif
  931. penguins_are_doing_time = 1;
  932. membar_storestore_loadstore();
  933. atomic_inc(&smp_capture_registry);
  934. smp_cross_call(&xcall_capture, 0, 0, 0);
  935. while (atomic_read(&smp_capture_registry) != ncpus)
  936. rmb();
  937. #ifdef CAPTURE_DEBUG
  938. printk("done\n");
  939. #endif
  940. }
  941. }
  942. void smp_release(void)
  943. {
  944. if (atomic_dec_and_test(&smp_capture_depth)) {
  945. #ifdef CAPTURE_DEBUG
  946. printk("CPU[%d]: Giving pardon to "
  947. "imprisoned penguins\n",
  948. smp_processor_id());
  949. #endif
  950. penguins_are_doing_time = 0;
  951. membar_storeload_storestore();
  952. atomic_dec(&smp_capture_registry);
  953. }
  954. }
  955. /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
  956. * can service tlb flush xcalls...
  957. */
  958. extern void prom_world(int);
  959. void smp_penguin_jailcell(int irq, struct pt_regs *regs)
  960. {
  961. clear_softint(1 << irq);
  962. preempt_disable();
  963. __asm__ __volatile__("flushw");
  964. prom_world(1);
  965. atomic_inc(&smp_capture_registry);
  966. membar_storeload_storestore();
  967. while (penguins_are_doing_time)
  968. rmb();
  969. atomic_dec(&smp_capture_registry);
  970. prom_world(0);
  971. preempt_enable();
  972. }
  973. /* /proc/profile writes can call this, don't __init it please. */
  974. int setup_profiling_timer(unsigned int multiplier)
  975. {
  976. return -EINVAL;
  977. }
  978. void __init smp_prepare_cpus(unsigned int max_cpus)
  979. {
  980. }
  981. void __devinit smp_prepare_boot_cpu(void)
  982. {
  983. }
  984. void __init smp_setup_processor_id(void)
  985. {
  986. if (tlb_type == spitfire)
  987. xcall_deliver = spitfire_xcall_deliver;
  988. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  989. xcall_deliver = cheetah_xcall_deliver;
  990. else
  991. xcall_deliver = hypervisor_xcall_deliver;
  992. }
  993. void __devinit smp_fill_in_sib_core_maps(void)
  994. {
  995. unsigned int i;
  996. for_each_present_cpu(i) {
  997. unsigned int j;
  998. cpus_clear(cpu_core_map[i]);
  999. if (cpu_data(i).core_id == 0) {
  1000. cpu_set(i, cpu_core_map[i]);
  1001. continue;
  1002. }
  1003. for_each_present_cpu(j) {
  1004. if (cpu_data(i).core_id ==
  1005. cpu_data(j).core_id)
  1006. cpu_set(j, cpu_core_map[i]);
  1007. }
  1008. }
  1009. for_each_present_cpu(i) {
  1010. unsigned int j;
  1011. cpus_clear(per_cpu(cpu_sibling_map, i));
  1012. if (cpu_data(i).proc_id == -1) {
  1013. cpu_set(i, per_cpu(cpu_sibling_map, i));
  1014. continue;
  1015. }
  1016. for_each_present_cpu(j) {
  1017. if (cpu_data(i).proc_id ==
  1018. cpu_data(j).proc_id)
  1019. cpu_set(j, per_cpu(cpu_sibling_map, i));
  1020. }
  1021. }
  1022. }
  1023. int __cpuinit __cpu_up(unsigned int cpu)
  1024. {
  1025. int ret = smp_boot_one_cpu(cpu);
  1026. if (!ret) {
  1027. cpu_set(cpu, smp_commenced_mask);
  1028. while (!cpu_isset(cpu, cpu_online_map))
  1029. mb();
  1030. if (!cpu_isset(cpu, cpu_online_map)) {
  1031. ret = -ENODEV;
  1032. } else {
  1033. /* On SUN4V, writes to %tick and %stick are
  1034. * not allowed.
  1035. */
  1036. if (tlb_type != hypervisor)
  1037. smp_synchronize_one_tick(cpu);
  1038. }
  1039. }
  1040. return ret;
  1041. }
  1042. #ifdef CONFIG_HOTPLUG_CPU
  1043. void cpu_play_dead(void)
  1044. {
  1045. int cpu = smp_processor_id();
  1046. unsigned long pstate;
  1047. idle_task_exit();
  1048. if (tlb_type == hypervisor) {
  1049. struct trap_per_cpu *tb = &trap_block[cpu];
  1050. sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
  1051. tb->cpu_mondo_pa, 0);
  1052. sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
  1053. tb->dev_mondo_pa, 0);
  1054. sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
  1055. tb->resum_mondo_pa, 0);
  1056. sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
  1057. tb->nonresum_mondo_pa, 0);
  1058. }
  1059. cpu_clear(cpu, smp_commenced_mask);
  1060. membar_safe("#Sync");
  1061. local_irq_disable();
  1062. __asm__ __volatile__(
  1063. "rdpr %%pstate, %0\n\t"
  1064. "wrpr %0, %1, %%pstate"
  1065. : "=r" (pstate)
  1066. : "i" (PSTATE_IE));
  1067. while (1)
  1068. barrier();
  1069. }
  1070. int __cpu_disable(void)
  1071. {
  1072. int cpu = smp_processor_id();
  1073. cpuinfo_sparc *c;
  1074. int i;
  1075. for_each_cpu_mask(i, cpu_core_map[cpu])
  1076. cpu_clear(cpu, cpu_core_map[i]);
  1077. cpus_clear(cpu_core_map[cpu]);
  1078. for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
  1079. cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
  1080. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  1081. c = &cpu_data(cpu);
  1082. c->core_id = 0;
  1083. c->proc_id = -1;
  1084. spin_lock(&call_lock);
  1085. cpu_clear(cpu, cpu_online_map);
  1086. spin_unlock(&call_lock);
  1087. smp_wmb();
  1088. /* Make sure no interrupts point to this cpu. */
  1089. fixup_irqs();
  1090. local_irq_enable();
  1091. mdelay(1);
  1092. local_irq_disable();
  1093. return 0;
  1094. }
  1095. void __cpu_die(unsigned int cpu)
  1096. {
  1097. int i;
  1098. for (i = 0; i < 100; i++) {
  1099. smp_rmb();
  1100. if (!cpu_isset(cpu, smp_commenced_mask))
  1101. break;
  1102. msleep(100);
  1103. }
  1104. if (cpu_isset(cpu, smp_commenced_mask)) {
  1105. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  1106. } else {
  1107. #if defined(CONFIG_SUN_LDOMS)
  1108. unsigned long hv_err;
  1109. int limit = 100;
  1110. do {
  1111. hv_err = sun4v_cpu_stop(cpu);
  1112. if (hv_err == HV_EOK) {
  1113. cpu_clear(cpu, cpu_present_map);
  1114. break;
  1115. }
  1116. } while (--limit > 0);
  1117. if (limit <= 0) {
  1118. printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
  1119. hv_err);
  1120. }
  1121. #endif
  1122. }
  1123. }
  1124. #endif
  1125. void __init smp_cpus_done(unsigned int max_cpus)
  1126. {
  1127. }
  1128. void smp_send_reschedule(int cpu)
  1129. {
  1130. xcall_deliver((u64) &xcall_receive_signal, 0, 0,
  1131. &cpumask_of_cpu(cpu));
  1132. }
  1133. void smp_receive_signal_client(int irq, struct pt_regs *regs)
  1134. {
  1135. clear_softint(1 << irq);
  1136. }
  1137. /* This is a nop because we capture all other cpus
  1138. * anyways when making the PROM active.
  1139. */
  1140. void smp_send_stop(void)
  1141. {
  1142. }
  1143. unsigned long __per_cpu_base __read_mostly;
  1144. unsigned long __per_cpu_shift __read_mostly;
  1145. EXPORT_SYMBOL(__per_cpu_base);
  1146. EXPORT_SYMBOL(__per_cpu_shift);
  1147. void __init real_setup_per_cpu_areas(void)
  1148. {
  1149. unsigned long paddr, goal, size, i;
  1150. char *ptr;
  1151. /* Copy section for each CPU (we discard the original) */
  1152. goal = PERCPU_ENOUGH_ROOM;
  1153. __per_cpu_shift = PAGE_SHIFT;
  1154. for (size = PAGE_SIZE; size < goal; size <<= 1UL)
  1155. __per_cpu_shift++;
  1156. paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
  1157. if (!paddr) {
  1158. prom_printf("Cannot allocate per-cpu memory.\n");
  1159. prom_halt();
  1160. }
  1161. ptr = __va(paddr);
  1162. __per_cpu_base = ptr - __per_cpu_start;
  1163. for (i = 0; i < NR_CPUS; i++, ptr += size)
  1164. memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
  1165. /* Setup %g5 for the boot cpu. */
  1166. __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
  1167. }