kvm_main.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <asm/processor.h>
  42. #include <asm/msr.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static DEFINE_SPINLOCK(kvm_lock);
  49. static LIST_HEAD(vm_list);
  50. static cpumask_t cpus_hardware_enabled;
  51. struct kvm_x86_ops *kvm_x86_ops;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  56. static struct kvm_stats_debugfs_item {
  57. const char *name;
  58. int offset;
  59. struct dentry *dentry;
  60. } debugfs_entries[] = {
  61. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  62. { "pf_guest", STAT_OFFSET(pf_guest) },
  63. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  64. { "invlpg", STAT_OFFSET(invlpg) },
  65. { "exits", STAT_OFFSET(exits) },
  66. { "io_exits", STAT_OFFSET(io_exits) },
  67. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  68. { "signal_exits", STAT_OFFSET(signal_exits) },
  69. { "irq_window", STAT_OFFSET(irq_window_exits) },
  70. { "halt_exits", STAT_OFFSET(halt_exits) },
  71. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  72. { "request_irq", STAT_OFFSET(request_irq_exits) },
  73. { "irq_exits", STAT_OFFSET(irq_exits) },
  74. { "light_exits", STAT_OFFSET(light_exits) },
  75. { "efer_reload", STAT_OFFSET(efer_reload) },
  76. { NULL }
  77. };
  78. static struct dentry *debugfs_dir;
  79. #define MAX_IO_MSRS 256
  80. #define CR0_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  82. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  83. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  84. #define CR4_RESERVED_BITS \
  85. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  86. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  87. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  88. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  89. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  90. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  91. #ifdef CONFIG_X86_64
  92. // LDT or TSS descriptor in the GDT. 16 bytes.
  93. struct segment_descriptor_64 {
  94. struct segment_descriptor s;
  95. u32 base_higher;
  96. u32 pad_zero;
  97. };
  98. #endif
  99. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  100. unsigned long arg);
  101. unsigned long segment_base(u16 selector)
  102. {
  103. struct descriptor_table gdt;
  104. struct segment_descriptor *d;
  105. unsigned long table_base;
  106. typedef unsigned long ul;
  107. unsigned long v;
  108. if (selector == 0)
  109. return 0;
  110. asm ("sgdt %0" : "=m"(gdt));
  111. table_base = gdt.base;
  112. if (selector & 4) { /* from ldt */
  113. u16 ldt_selector;
  114. asm ("sldt %0" : "=g"(ldt_selector));
  115. table_base = segment_base(ldt_selector);
  116. }
  117. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  118. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  119. #ifdef CONFIG_X86_64
  120. if (d->system == 0
  121. && (d->type == 2 || d->type == 9 || d->type == 11))
  122. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  123. #endif
  124. return v;
  125. }
  126. EXPORT_SYMBOL_GPL(segment_base);
  127. static inline int valid_vcpu(int n)
  128. {
  129. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  130. }
  131. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  132. {
  133. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  134. return;
  135. vcpu->guest_fpu_loaded = 1;
  136. fx_save(&vcpu->host_fx_image);
  137. fx_restore(&vcpu->guest_fx_image);
  138. }
  139. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  140. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  141. {
  142. if (!vcpu->guest_fpu_loaded)
  143. return;
  144. vcpu->guest_fpu_loaded = 0;
  145. fx_save(&vcpu->guest_fx_image);
  146. fx_restore(&vcpu->host_fx_image);
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  149. /*
  150. * Switches to specified vcpu, until a matching vcpu_put()
  151. */
  152. static void vcpu_load(struct kvm_vcpu *vcpu)
  153. {
  154. int cpu;
  155. mutex_lock(&vcpu->mutex);
  156. cpu = get_cpu();
  157. preempt_notifier_register(&vcpu->preempt_notifier);
  158. kvm_x86_ops->vcpu_load(vcpu, cpu);
  159. put_cpu();
  160. }
  161. static void vcpu_put(struct kvm_vcpu *vcpu)
  162. {
  163. preempt_disable();
  164. kvm_x86_ops->vcpu_put(vcpu);
  165. preempt_notifier_unregister(&vcpu->preempt_notifier);
  166. preempt_enable();
  167. mutex_unlock(&vcpu->mutex);
  168. }
  169. static void ack_flush(void *_completed)
  170. {
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. int i, cpu;
  175. cpumask_t cpus;
  176. struct kvm_vcpu *vcpu;
  177. cpus_clear(cpus);
  178. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  179. vcpu = kvm->vcpus[i];
  180. if (!vcpu)
  181. continue;
  182. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  183. continue;
  184. cpu = vcpu->cpu;
  185. if (cpu != -1 && cpu != raw_smp_processor_id())
  186. cpu_set(cpu, cpus);
  187. }
  188. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  189. }
  190. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  191. {
  192. struct page *page;
  193. int r;
  194. mutex_init(&vcpu->mutex);
  195. vcpu->cpu = -1;
  196. vcpu->mmu.root_hpa = INVALID_PAGE;
  197. vcpu->kvm = kvm;
  198. vcpu->vcpu_id = id;
  199. if (!irqchip_in_kernel(kvm) || id == 0)
  200. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  201. else
  202. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  203. init_waitqueue_head(&vcpu->wq);
  204. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  205. if (!page) {
  206. r = -ENOMEM;
  207. goto fail;
  208. }
  209. vcpu->run = page_address(page);
  210. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  211. if (!page) {
  212. r = -ENOMEM;
  213. goto fail_free_run;
  214. }
  215. vcpu->pio_data = page_address(page);
  216. r = kvm_mmu_create(vcpu);
  217. if (r < 0)
  218. goto fail_free_pio_data;
  219. return 0;
  220. fail_free_pio_data:
  221. free_page((unsigned long)vcpu->pio_data);
  222. fail_free_run:
  223. free_page((unsigned long)vcpu->run);
  224. fail:
  225. return -ENOMEM;
  226. }
  227. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  228. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  229. {
  230. kvm_mmu_destroy(vcpu);
  231. if (vcpu->apic)
  232. hrtimer_cancel(&vcpu->apic->timer.dev);
  233. kvm_free_apic(vcpu->apic);
  234. free_page((unsigned long)vcpu->pio_data);
  235. free_page((unsigned long)vcpu->run);
  236. }
  237. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  238. static struct kvm *kvm_create_vm(void)
  239. {
  240. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  241. if (!kvm)
  242. return ERR_PTR(-ENOMEM);
  243. kvm_io_bus_init(&kvm->pio_bus);
  244. mutex_init(&kvm->lock);
  245. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  246. kvm_io_bus_init(&kvm->mmio_bus);
  247. spin_lock(&kvm_lock);
  248. list_add(&kvm->vm_list, &vm_list);
  249. spin_unlock(&kvm_lock);
  250. return kvm;
  251. }
  252. /*
  253. * Free any memory in @free but not in @dont.
  254. */
  255. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  256. struct kvm_memory_slot *dont)
  257. {
  258. int i;
  259. if (!dont || free->phys_mem != dont->phys_mem)
  260. if (free->phys_mem) {
  261. for (i = 0; i < free->npages; ++i)
  262. if (free->phys_mem[i])
  263. __free_page(free->phys_mem[i]);
  264. vfree(free->phys_mem);
  265. }
  266. if (!dont || free->rmap != dont->rmap)
  267. vfree(free->rmap);
  268. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  269. vfree(free->dirty_bitmap);
  270. free->phys_mem = NULL;
  271. free->npages = 0;
  272. free->dirty_bitmap = NULL;
  273. }
  274. static void kvm_free_physmem(struct kvm *kvm)
  275. {
  276. int i;
  277. for (i = 0; i < kvm->nmemslots; ++i)
  278. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  279. }
  280. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  281. {
  282. int i;
  283. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  284. if (vcpu->pio.guest_pages[i]) {
  285. __free_page(vcpu->pio.guest_pages[i]);
  286. vcpu->pio.guest_pages[i] = NULL;
  287. }
  288. }
  289. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  290. {
  291. vcpu_load(vcpu);
  292. kvm_mmu_unload(vcpu);
  293. vcpu_put(vcpu);
  294. }
  295. static void kvm_free_vcpus(struct kvm *kvm)
  296. {
  297. unsigned int i;
  298. /*
  299. * Unpin any mmu pages first.
  300. */
  301. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  302. if (kvm->vcpus[i])
  303. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  304. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  305. if (kvm->vcpus[i]) {
  306. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  307. kvm->vcpus[i] = NULL;
  308. }
  309. }
  310. }
  311. static void kvm_destroy_vm(struct kvm *kvm)
  312. {
  313. spin_lock(&kvm_lock);
  314. list_del(&kvm->vm_list);
  315. spin_unlock(&kvm_lock);
  316. kvm_io_bus_destroy(&kvm->pio_bus);
  317. kvm_io_bus_destroy(&kvm->mmio_bus);
  318. kfree(kvm->vpic);
  319. kfree(kvm->vioapic);
  320. kvm_free_vcpus(kvm);
  321. kvm_free_physmem(kvm);
  322. kfree(kvm);
  323. }
  324. static int kvm_vm_release(struct inode *inode, struct file *filp)
  325. {
  326. struct kvm *kvm = filp->private_data;
  327. kvm_destroy_vm(kvm);
  328. return 0;
  329. }
  330. static void inject_gp(struct kvm_vcpu *vcpu)
  331. {
  332. kvm_x86_ops->inject_gp(vcpu, 0);
  333. }
  334. /*
  335. * Load the pae pdptrs. Return true is they are all valid.
  336. */
  337. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  338. {
  339. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  340. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  341. int i;
  342. int ret;
  343. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  344. mutex_lock(&vcpu->kvm->lock);
  345. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  346. offset * sizeof(u64), sizeof(pdpte));
  347. if (ret < 0) {
  348. ret = 0;
  349. goto out;
  350. }
  351. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  352. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  353. ret = 0;
  354. goto out;
  355. }
  356. }
  357. ret = 1;
  358. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  359. out:
  360. mutex_unlock(&vcpu->kvm->lock);
  361. return ret;
  362. }
  363. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  364. {
  365. if (cr0 & CR0_RESERVED_BITS) {
  366. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  367. cr0, vcpu->cr0);
  368. inject_gp(vcpu);
  369. return;
  370. }
  371. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  372. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  373. inject_gp(vcpu);
  374. return;
  375. }
  376. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  377. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  378. "and a clear PE flag\n");
  379. inject_gp(vcpu);
  380. return;
  381. }
  382. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  383. #ifdef CONFIG_X86_64
  384. if ((vcpu->shadow_efer & EFER_LME)) {
  385. int cs_db, cs_l;
  386. if (!is_pae(vcpu)) {
  387. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  388. "in long mode while PAE is disabled\n");
  389. inject_gp(vcpu);
  390. return;
  391. }
  392. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  393. if (cs_l) {
  394. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  395. "in long mode while CS.L == 1\n");
  396. inject_gp(vcpu);
  397. return;
  398. }
  399. } else
  400. #endif
  401. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  402. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  403. "reserved bits\n");
  404. inject_gp(vcpu);
  405. return;
  406. }
  407. }
  408. kvm_x86_ops->set_cr0(vcpu, cr0);
  409. vcpu->cr0 = cr0;
  410. mutex_lock(&vcpu->kvm->lock);
  411. kvm_mmu_reset_context(vcpu);
  412. mutex_unlock(&vcpu->kvm->lock);
  413. return;
  414. }
  415. EXPORT_SYMBOL_GPL(set_cr0);
  416. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  417. {
  418. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  419. }
  420. EXPORT_SYMBOL_GPL(lmsw);
  421. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  422. {
  423. if (cr4 & CR4_RESERVED_BITS) {
  424. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  425. inject_gp(vcpu);
  426. return;
  427. }
  428. if (is_long_mode(vcpu)) {
  429. if (!(cr4 & X86_CR4_PAE)) {
  430. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  431. "in long mode\n");
  432. inject_gp(vcpu);
  433. return;
  434. }
  435. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  436. && !load_pdptrs(vcpu, vcpu->cr3)) {
  437. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  438. inject_gp(vcpu);
  439. return;
  440. }
  441. if (cr4 & X86_CR4_VMXE) {
  442. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  443. inject_gp(vcpu);
  444. return;
  445. }
  446. kvm_x86_ops->set_cr4(vcpu, cr4);
  447. vcpu->cr4 = cr4;
  448. mutex_lock(&vcpu->kvm->lock);
  449. kvm_mmu_reset_context(vcpu);
  450. mutex_unlock(&vcpu->kvm->lock);
  451. }
  452. EXPORT_SYMBOL_GPL(set_cr4);
  453. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  454. {
  455. if (is_long_mode(vcpu)) {
  456. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  457. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  458. inject_gp(vcpu);
  459. return;
  460. }
  461. } else {
  462. if (is_pae(vcpu)) {
  463. if (cr3 & CR3_PAE_RESERVED_BITS) {
  464. printk(KERN_DEBUG
  465. "set_cr3: #GP, reserved bits\n");
  466. inject_gp(vcpu);
  467. return;
  468. }
  469. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  470. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  471. "reserved bits\n");
  472. inject_gp(vcpu);
  473. return;
  474. }
  475. }
  476. /*
  477. * We don't check reserved bits in nonpae mode, because
  478. * this isn't enforced, and VMware depends on this.
  479. */
  480. }
  481. mutex_lock(&vcpu->kvm->lock);
  482. /*
  483. * Does the new cr3 value map to physical memory? (Note, we
  484. * catch an invalid cr3 even in real-mode, because it would
  485. * cause trouble later on when we turn on paging anyway.)
  486. *
  487. * A real CPU would silently accept an invalid cr3 and would
  488. * attempt to use it - with largely undefined (and often hard
  489. * to debug) behavior on the guest side.
  490. */
  491. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  492. inject_gp(vcpu);
  493. else {
  494. vcpu->cr3 = cr3;
  495. vcpu->mmu.new_cr3(vcpu);
  496. }
  497. mutex_unlock(&vcpu->kvm->lock);
  498. }
  499. EXPORT_SYMBOL_GPL(set_cr3);
  500. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  501. {
  502. if (cr8 & CR8_RESERVED_BITS) {
  503. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  504. inject_gp(vcpu);
  505. return;
  506. }
  507. if (irqchip_in_kernel(vcpu->kvm))
  508. kvm_lapic_set_tpr(vcpu, cr8);
  509. else
  510. vcpu->cr8 = cr8;
  511. }
  512. EXPORT_SYMBOL_GPL(set_cr8);
  513. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  514. {
  515. if (irqchip_in_kernel(vcpu->kvm))
  516. return kvm_lapic_get_cr8(vcpu);
  517. else
  518. return vcpu->cr8;
  519. }
  520. EXPORT_SYMBOL_GPL(get_cr8);
  521. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  522. {
  523. if (irqchip_in_kernel(vcpu->kvm))
  524. return vcpu->apic_base;
  525. else
  526. return vcpu->apic_base;
  527. }
  528. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  529. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  530. {
  531. /* TODO: reserve bits check */
  532. if (irqchip_in_kernel(vcpu->kvm))
  533. kvm_lapic_set_base(vcpu, data);
  534. else
  535. vcpu->apic_base = data;
  536. }
  537. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  538. void fx_init(struct kvm_vcpu *vcpu)
  539. {
  540. unsigned after_mxcsr_mask;
  541. /* Initialize guest FPU by resetting ours and saving into guest's */
  542. preempt_disable();
  543. fx_save(&vcpu->host_fx_image);
  544. fpu_init();
  545. fx_save(&vcpu->guest_fx_image);
  546. fx_restore(&vcpu->host_fx_image);
  547. preempt_enable();
  548. vcpu->cr0 |= X86_CR0_ET;
  549. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  550. vcpu->guest_fx_image.mxcsr = 0x1f80;
  551. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  552. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  553. }
  554. EXPORT_SYMBOL_GPL(fx_init);
  555. /*
  556. * Allocate some memory and give it an address in the guest physical address
  557. * space.
  558. *
  559. * Discontiguous memory is allowed, mostly for framebuffers.
  560. */
  561. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  562. struct kvm_memory_region *mem)
  563. {
  564. int r;
  565. gfn_t base_gfn;
  566. unsigned long npages;
  567. unsigned long i;
  568. struct kvm_memory_slot *memslot;
  569. struct kvm_memory_slot old, new;
  570. r = -EINVAL;
  571. /* General sanity checks */
  572. if (mem->memory_size & (PAGE_SIZE - 1))
  573. goto out;
  574. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  575. goto out;
  576. if (mem->slot >= KVM_MEMORY_SLOTS)
  577. goto out;
  578. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  579. goto out;
  580. memslot = &kvm->memslots[mem->slot];
  581. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  582. npages = mem->memory_size >> PAGE_SHIFT;
  583. if (!npages)
  584. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  585. mutex_lock(&kvm->lock);
  586. new = old = *memslot;
  587. new.base_gfn = base_gfn;
  588. new.npages = npages;
  589. new.flags = mem->flags;
  590. /* Disallow changing a memory slot's size. */
  591. r = -EINVAL;
  592. if (npages && old.npages && npages != old.npages)
  593. goto out_unlock;
  594. /* Check for overlaps */
  595. r = -EEXIST;
  596. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  597. struct kvm_memory_slot *s = &kvm->memslots[i];
  598. if (s == memslot)
  599. continue;
  600. if (!((base_gfn + npages <= s->base_gfn) ||
  601. (base_gfn >= s->base_gfn + s->npages)))
  602. goto out_unlock;
  603. }
  604. /* Deallocate if slot is being removed */
  605. if (!npages)
  606. new.phys_mem = NULL;
  607. /* Free page dirty bitmap if unneeded */
  608. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  609. new.dirty_bitmap = NULL;
  610. r = -ENOMEM;
  611. /* Allocate if a slot is being created */
  612. if (npages && !new.phys_mem) {
  613. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  614. if (!new.phys_mem)
  615. goto out_unlock;
  616. new.rmap = vmalloc(npages * sizeof(struct page*));
  617. if (!new.rmap)
  618. goto out_unlock;
  619. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  620. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  621. for (i = 0; i < npages; ++i) {
  622. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  623. | __GFP_ZERO);
  624. if (!new.phys_mem[i])
  625. goto out_unlock;
  626. }
  627. }
  628. /* Allocate page dirty bitmap if needed */
  629. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  630. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  631. new.dirty_bitmap = vmalloc(dirty_bytes);
  632. if (!new.dirty_bitmap)
  633. goto out_unlock;
  634. memset(new.dirty_bitmap, 0, dirty_bytes);
  635. }
  636. if (mem->slot >= kvm->nmemslots)
  637. kvm->nmemslots = mem->slot + 1;
  638. *memslot = new;
  639. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  640. kvm_flush_remote_tlbs(kvm);
  641. mutex_unlock(&kvm->lock);
  642. kvm_free_physmem_slot(&old, &new);
  643. return 0;
  644. out_unlock:
  645. mutex_unlock(&kvm->lock);
  646. kvm_free_physmem_slot(&new, &old);
  647. out:
  648. return r;
  649. }
  650. /*
  651. * Get (and clear) the dirty memory log for a memory slot.
  652. */
  653. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  654. struct kvm_dirty_log *log)
  655. {
  656. struct kvm_memory_slot *memslot;
  657. int r, i;
  658. int n;
  659. unsigned long any = 0;
  660. mutex_lock(&kvm->lock);
  661. r = -EINVAL;
  662. if (log->slot >= KVM_MEMORY_SLOTS)
  663. goto out;
  664. memslot = &kvm->memslots[log->slot];
  665. r = -ENOENT;
  666. if (!memslot->dirty_bitmap)
  667. goto out;
  668. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  669. for (i = 0; !any && i < n/sizeof(long); ++i)
  670. any = memslot->dirty_bitmap[i];
  671. r = -EFAULT;
  672. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  673. goto out;
  674. /* If nothing is dirty, don't bother messing with page tables. */
  675. if (any) {
  676. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  677. kvm_flush_remote_tlbs(kvm);
  678. memset(memslot->dirty_bitmap, 0, n);
  679. }
  680. r = 0;
  681. out:
  682. mutex_unlock(&kvm->lock);
  683. return r;
  684. }
  685. /*
  686. * Set a new alias region. Aliases map a portion of physical memory into
  687. * another portion. This is useful for memory windows, for example the PC
  688. * VGA region.
  689. */
  690. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  691. struct kvm_memory_alias *alias)
  692. {
  693. int r, n;
  694. struct kvm_mem_alias *p;
  695. r = -EINVAL;
  696. /* General sanity checks */
  697. if (alias->memory_size & (PAGE_SIZE - 1))
  698. goto out;
  699. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  700. goto out;
  701. if (alias->slot >= KVM_ALIAS_SLOTS)
  702. goto out;
  703. if (alias->guest_phys_addr + alias->memory_size
  704. < alias->guest_phys_addr)
  705. goto out;
  706. if (alias->target_phys_addr + alias->memory_size
  707. < alias->target_phys_addr)
  708. goto out;
  709. mutex_lock(&kvm->lock);
  710. p = &kvm->aliases[alias->slot];
  711. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  712. p->npages = alias->memory_size >> PAGE_SHIFT;
  713. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  714. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  715. if (kvm->aliases[n - 1].npages)
  716. break;
  717. kvm->naliases = n;
  718. kvm_mmu_zap_all(kvm);
  719. mutex_unlock(&kvm->lock);
  720. return 0;
  721. out:
  722. return r;
  723. }
  724. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  725. {
  726. int r;
  727. r = 0;
  728. switch (chip->chip_id) {
  729. case KVM_IRQCHIP_PIC_MASTER:
  730. memcpy (&chip->chip.pic,
  731. &pic_irqchip(kvm)->pics[0],
  732. sizeof(struct kvm_pic_state));
  733. break;
  734. case KVM_IRQCHIP_PIC_SLAVE:
  735. memcpy (&chip->chip.pic,
  736. &pic_irqchip(kvm)->pics[1],
  737. sizeof(struct kvm_pic_state));
  738. break;
  739. case KVM_IRQCHIP_IOAPIC:
  740. memcpy (&chip->chip.ioapic,
  741. ioapic_irqchip(kvm),
  742. sizeof(struct kvm_ioapic_state));
  743. break;
  744. default:
  745. r = -EINVAL;
  746. break;
  747. }
  748. return r;
  749. }
  750. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  751. {
  752. int r;
  753. r = 0;
  754. switch (chip->chip_id) {
  755. case KVM_IRQCHIP_PIC_MASTER:
  756. memcpy (&pic_irqchip(kvm)->pics[0],
  757. &chip->chip.pic,
  758. sizeof(struct kvm_pic_state));
  759. break;
  760. case KVM_IRQCHIP_PIC_SLAVE:
  761. memcpy (&pic_irqchip(kvm)->pics[1],
  762. &chip->chip.pic,
  763. sizeof(struct kvm_pic_state));
  764. break;
  765. case KVM_IRQCHIP_IOAPIC:
  766. memcpy (ioapic_irqchip(kvm),
  767. &chip->chip.ioapic,
  768. sizeof(struct kvm_ioapic_state));
  769. break;
  770. default:
  771. r = -EINVAL;
  772. break;
  773. }
  774. kvm_pic_update_irq(pic_irqchip(kvm));
  775. return r;
  776. }
  777. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  778. {
  779. int i;
  780. struct kvm_mem_alias *alias;
  781. for (i = 0; i < kvm->naliases; ++i) {
  782. alias = &kvm->aliases[i];
  783. if (gfn >= alias->base_gfn
  784. && gfn < alias->base_gfn + alias->npages)
  785. return alias->target_gfn + gfn - alias->base_gfn;
  786. }
  787. return gfn;
  788. }
  789. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  790. {
  791. int i;
  792. for (i = 0; i < kvm->nmemslots; ++i) {
  793. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  794. if (gfn >= memslot->base_gfn
  795. && gfn < memslot->base_gfn + memslot->npages)
  796. return memslot;
  797. }
  798. return NULL;
  799. }
  800. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  801. {
  802. gfn = unalias_gfn(kvm, gfn);
  803. return __gfn_to_memslot(kvm, gfn);
  804. }
  805. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  806. {
  807. struct kvm_memory_slot *slot;
  808. gfn = unalias_gfn(kvm, gfn);
  809. slot = __gfn_to_memslot(kvm, gfn);
  810. if (!slot)
  811. return NULL;
  812. return slot->phys_mem[gfn - slot->base_gfn];
  813. }
  814. EXPORT_SYMBOL_GPL(gfn_to_page);
  815. static int next_segment(unsigned long len, int offset)
  816. {
  817. if (len > PAGE_SIZE - offset)
  818. return PAGE_SIZE - offset;
  819. else
  820. return len;
  821. }
  822. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  823. int len)
  824. {
  825. void *page_virt;
  826. struct page *page;
  827. page = gfn_to_page(kvm, gfn);
  828. if (!page)
  829. return -EFAULT;
  830. page_virt = kmap_atomic(page, KM_USER0);
  831. memcpy(data, page_virt + offset, len);
  832. kunmap_atomic(page_virt, KM_USER0);
  833. return 0;
  834. }
  835. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  836. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  837. {
  838. gfn_t gfn = gpa >> PAGE_SHIFT;
  839. int seg;
  840. int offset = offset_in_page(gpa);
  841. int ret;
  842. while ((seg = next_segment(len, offset)) != 0) {
  843. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  844. if (ret < 0)
  845. return ret;
  846. offset = 0;
  847. len -= seg;
  848. data += seg;
  849. ++gfn;
  850. }
  851. return 0;
  852. }
  853. EXPORT_SYMBOL_GPL(kvm_read_guest);
  854. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  855. int offset, int len)
  856. {
  857. void *page_virt;
  858. struct page *page;
  859. page = gfn_to_page(kvm, gfn);
  860. if (!page)
  861. return -EFAULT;
  862. page_virt = kmap_atomic(page, KM_USER0);
  863. memcpy(page_virt + offset, data, len);
  864. kunmap_atomic(page_virt, KM_USER0);
  865. mark_page_dirty(kvm, gfn);
  866. return 0;
  867. }
  868. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  869. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  870. unsigned long len)
  871. {
  872. gfn_t gfn = gpa >> PAGE_SHIFT;
  873. int seg;
  874. int offset = offset_in_page(gpa);
  875. int ret;
  876. while ((seg = next_segment(len, offset)) != 0) {
  877. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  878. if (ret < 0)
  879. return ret;
  880. offset = 0;
  881. len -= seg;
  882. data += seg;
  883. ++gfn;
  884. }
  885. return 0;
  886. }
  887. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  888. {
  889. void *page_virt;
  890. struct page *page;
  891. page = gfn_to_page(kvm, gfn);
  892. if (!page)
  893. return -EFAULT;
  894. page_virt = kmap_atomic(page, KM_USER0);
  895. memset(page_virt + offset, 0, len);
  896. kunmap_atomic(page_virt, KM_USER0);
  897. return 0;
  898. }
  899. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  900. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  901. {
  902. gfn_t gfn = gpa >> PAGE_SHIFT;
  903. int seg;
  904. int offset = offset_in_page(gpa);
  905. int ret;
  906. while ((seg = next_segment(len, offset)) != 0) {
  907. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  908. if (ret < 0)
  909. return ret;
  910. offset = 0;
  911. len -= seg;
  912. ++gfn;
  913. }
  914. return 0;
  915. }
  916. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  917. /* WARNING: Does not work on aliased pages. */
  918. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  919. {
  920. struct kvm_memory_slot *memslot;
  921. memslot = __gfn_to_memslot(kvm, gfn);
  922. if (memslot && memslot->dirty_bitmap) {
  923. unsigned long rel_gfn = gfn - memslot->base_gfn;
  924. /* avoid RMW */
  925. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  926. set_bit(rel_gfn, memslot->dirty_bitmap);
  927. }
  928. }
  929. int emulator_read_std(unsigned long addr,
  930. void *val,
  931. unsigned int bytes,
  932. struct kvm_vcpu *vcpu)
  933. {
  934. void *data = val;
  935. while (bytes) {
  936. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  937. unsigned offset = addr & (PAGE_SIZE-1);
  938. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  939. int ret;
  940. if (gpa == UNMAPPED_GVA)
  941. return X86EMUL_PROPAGATE_FAULT;
  942. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  943. if (ret < 0)
  944. return X86EMUL_UNHANDLEABLE;
  945. bytes -= tocopy;
  946. data += tocopy;
  947. addr += tocopy;
  948. }
  949. return X86EMUL_CONTINUE;
  950. }
  951. EXPORT_SYMBOL_GPL(emulator_read_std);
  952. static int emulator_write_std(unsigned long addr,
  953. const void *val,
  954. unsigned int bytes,
  955. struct kvm_vcpu *vcpu)
  956. {
  957. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  958. return X86EMUL_UNHANDLEABLE;
  959. }
  960. /*
  961. * Only apic need an MMIO device hook, so shortcut now..
  962. */
  963. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  964. gpa_t addr)
  965. {
  966. struct kvm_io_device *dev;
  967. if (vcpu->apic) {
  968. dev = &vcpu->apic->dev;
  969. if (dev->in_range(dev, addr))
  970. return dev;
  971. }
  972. return NULL;
  973. }
  974. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  975. gpa_t addr)
  976. {
  977. struct kvm_io_device *dev;
  978. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  979. if (dev == NULL)
  980. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  981. return dev;
  982. }
  983. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  984. gpa_t addr)
  985. {
  986. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  987. }
  988. static int emulator_read_emulated(unsigned long addr,
  989. void *val,
  990. unsigned int bytes,
  991. struct kvm_vcpu *vcpu)
  992. {
  993. struct kvm_io_device *mmio_dev;
  994. gpa_t gpa;
  995. if (vcpu->mmio_read_completed) {
  996. memcpy(val, vcpu->mmio_data, bytes);
  997. vcpu->mmio_read_completed = 0;
  998. return X86EMUL_CONTINUE;
  999. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1000. == X86EMUL_CONTINUE)
  1001. return X86EMUL_CONTINUE;
  1002. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1003. if (gpa == UNMAPPED_GVA)
  1004. return X86EMUL_PROPAGATE_FAULT;
  1005. /*
  1006. * Is this MMIO handled locally?
  1007. */
  1008. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1009. if (mmio_dev) {
  1010. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1011. return X86EMUL_CONTINUE;
  1012. }
  1013. vcpu->mmio_needed = 1;
  1014. vcpu->mmio_phys_addr = gpa;
  1015. vcpu->mmio_size = bytes;
  1016. vcpu->mmio_is_write = 0;
  1017. return X86EMUL_UNHANDLEABLE;
  1018. }
  1019. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1020. const void *val, int bytes)
  1021. {
  1022. int ret;
  1023. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1024. if (ret < 0)
  1025. return 0;
  1026. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1027. return 1;
  1028. }
  1029. static int emulator_write_emulated_onepage(unsigned long addr,
  1030. const void *val,
  1031. unsigned int bytes,
  1032. struct kvm_vcpu *vcpu)
  1033. {
  1034. struct kvm_io_device *mmio_dev;
  1035. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1036. if (gpa == UNMAPPED_GVA) {
  1037. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1038. return X86EMUL_PROPAGATE_FAULT;
  1039. }
  1040. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1041. return X86EMUL_CONTINUE;
  1042. /*
  1043. * Is this MMIO handled locally?
  1044. */
  1045. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1046. if (mmio_dev) {
  1047. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1048. return X86EMUL_CONTINUE;
  1049. }
  1050. vcpu->mmio_needed = 1;
  1051. vcpu->mmio_phys_addr = gpa;
  1052. vcpu->mmio_size = bytes;
  1053. vcpu->mmio_is_write = 1;
  1054. memcpy(vcpu->mmio_data, val, bytes);
  1055. return X86EMUL_CONTINUE;
  1056. }
  1057. int emulator_write_emulated(unsigned long addr,
  1058. const void *val,
  1059. unsigned int bytes,
  1060. struct kvm_vcpu *vcpu)
  1061. {
  1062. /* Crossing a page boundary? */
  1063. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1064. int rc, now;
  1065. now = -addr & ~PAGE_MASK;
  1066. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1067. if (rc != X86EMUL_CONTINUE)
  1068. return rc;
  1069. addr += now;
  1070. val += now;
  1071. bytes -= now;
  1072. }
  1073. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1074. }
  1075. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1076. static int emulator_cmpxchg_emulated(unsigned long addr,
  1077. const void *old,
  1078. const void *new,
  1079. unsigned int bytes,
  1080. struct kvm_vcpu *vcpu)
  1081. {
  1082. static int reported;
  1083. if (!reported) {
  1084. reported = 1;
  1085. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1086. }
  1087. return emulator_write_emulated(addr, new, bytes, vcpu);
  1088. }
  1089. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1090. {
  1091. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1092. }
  1093. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1094. {
  1095. return X86EMUL_CONTINUE;
  1096. }
  1097. int emulate_clts(struct kvm_vcpu *vcpu)
  1098. {
  1099. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1100. return X86EMUL_CONTINUE;
  1101. }
  1102. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1103. {
  1104. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1105. switch (dr) {
  1106. case 0 ... 3:
  1107. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1108. return X86EMUL_CONTINUE;
  1109. default:
  1110. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1111. return X86EMUL_UNHANDLEABLE;
  1112. }
  1113. }
  1114. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1115. {
  1116. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1117. int exception;
  1118. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1119. if (exception) {
  1120. /* FIXME: better handling */
  1121. return X86EMUL_UNHANDLEABLE;
  1122. }
  1123. return X86EMUL_CONTINUE;
  1124. }
  1125. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1126. {
  1127. static int reported;
  1128. u8 opcodes[4];
  1129. unsigned long rip = vcpu->rip;
  1130. unsigned long rip_linear;
  1131. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1132. if (reported)
  1133. return;
  1134. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1135. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1136. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1137. reported = 1;
  1138. }
  1139. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1140. struct x86_emulate_ops emulate_ops = {
  1141. .read_std = emulator_read_std,
  1142. .write_std = emulator_write_std,
  1143. .read_emulated = emulator_read_emulated,
  1144. .write_emulated = emulator_write_emulated,
  1145. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1146. };
  1147. int emulate_instruction(struct kvm_vcpu *vcpu,
  1148. struct kvm_run *run,
  1149. unsigned long cr2,
  1150. u16 error_code,
  1151. int no_decode)
  1152. {
  1153. int r;
  1154. vcpu->mmio_fault_cr2 = cr2;
  1155. kvm_x86_ops->cache_regs(vcpu);
  1156. vcpu->mmio_is_write = 0;
  1157. vcpu->pio.string = 0;
  1158. if (!no_decode) {
  1159. int cs_db, cs_l;
  1160. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1161. vcpu->emulate_ctxt.vcpu = vcpu;
  1162. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1163. vcpu->emulate_ctxt.cr2 = cr2;
  1164. vcpu->emulate_ctxt.mode =
  1165. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1166. ? X86EMUL_MODE_REAL : cs_l
  1167. ? X86EMUL_MODE_PROT64 : cs_db
  1168. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1169. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1170. vcpu->emulate_ctxt.cs_base = 0;
  1171. vcpu->emulate_ctxt.ds_base = 0;
  1172. vcpu->emulate_ctxt.es_base = 0;
  1173. vcpu->emulate_ctxt.ss_base = 0;
  1174. } else {
  1175. vcpu->emulate_ctxt.cs_base =
  1176. get_segment_base(vcpu, VCPU_SREG_CS);
  1177. vcpu->emulate_ctxt.ds_base =
  1178. get_segment_base(vcpu, VCPU_SREG_DS);
  1179. vcpu->emulate_ctxt.es_base =
  1180. get_segment_base(vcpu, VCPU_SREG_ES);
  1181. vcpu->emulate_ctxt.ss_base =
  1182. get_segment_base(vcpu, VCPU_SREG_SS);
  1183. }
  1184. vcpu->emulate_ctxt.gs_base =
  1185. get_segment_base(vcpu, VCPU_SREG_GS);
  1186. vcpu->emulate_ctxt.fs_base =
  1187. get_segment_base(vcpu, VCPU_SREG_FS);
  1188. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1189. if (r) {
  1190. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1191. return EMULATE_DONE;
  1192. return EMULATE_FAIL;
  1193. }
  1194. }
  1195. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1196. if (vcpu->pio.string)
  1197. return EMULATE_DO_MMIO;
  1198. if ((r || vcpu->mmio_is_write) && run) {
  1199. run->exit_reason = KVM_EXIT_MMIO;
  1200. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1201. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1202. run->mmio.len = vcpu->mmio_size;
  1203. run->mmio.is_write = vcpu->mmio_is_write;
  1204. }
  1205. if (r) {
  1206. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1207. return EMULATE_DONE;
  1208. if (!vcpu->mmio_needed) {
  1209. kvm_report_emulation_failure(vcpu, "mmio");
  1210. return EMULATE_FAIL;
  1211. }
  1212. return EMULATE_DO_MMIO;
  1213. }
  1214. kvm_x86_ops->decache_regs(vcpu);
  1215. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1216. if (vcpu->mmio_is_write) {
  1217. vcpu->mmio_needed = 0;
  1218. return EMULATE_DO_MMIO;
  1219. }
  1220. return EMULATE_DONE;
  1221. }
  1222. EXPORT_SYMBOL_GPL(emulate_instruction);
  1223. /*
  1224. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1225. */
  1226. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1227. {
  1228. DECLARE_WAITQUEUE(wait, current);
  1229. add_wait_queue(&vcpu->wq, &wait);
  1230. /*
  1231. * We will block until either an interrupt or a signal wakes us up
  1232. */
  1233. while (!kvm_cpu_has_interrupt(vcpu)
  1234. && !signal_pending(current)
  1235. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1236. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1237. set_current_state(TASK_INTERRUPTIBLE);
  1238. vcpu_put(vcpu);
  1239. schedule();
  1240. vcpu_load(vcpu);
  1241. }
  1242. __set_current_state(TASK_RUNNING);
  1243. remove_wait_queue(&vcpu->wq, &wait);
  1244. }
  1245. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1246. {
  1247. ++vcpu->stat.halt_exits;
  1248. if (irqchip_in_kernel(vcpu->kvm)) {
  1249. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1250. kvm_vcpu_block(vcpu);
  1251. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1252. return -EINTR;
  1253. return 1;
  1254. } else {
  1255. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1256. return 0;
  1257. }
  1258. }
  1259. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1260. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1261. {
  1262. unsigned long nr, a0, a1, a2, a3, ret;
  1263. kvm_x86_ops->cache_regs(vcpu);
  1264. nr = vcpu->regs[VCPU_REGS_RAX];
  1265. a0 = vcpu->regs[VCPU_REGS_RBX];
  1266. a1 = vcpu->regs[VCPU_REGS_RCX];
  1267. a2 = vcpu->regs[VCPU_REGS_RDX];
  1268. a3 = vcpu->regs[VCPU_REGS_RSI];
  1269. if (!is_long_mode(vcpu)) {
  1270. nr &= 0xFFFFFFFF;
  1271. a0 &= 0xFFFFFFFF;
  1272. a1 &= 0xFFFFFFFF;
  1273. a2 &= 0xFFFFFFFF;
  1274. a3 &= 0xFFFFFFFF;
  1275. }
  1276. switch (nr) {
  1277. default:
  1278. ret = -KVM_ENOSYS;
  1279. break;
  1280. }
  1281. vcpu->regs[VCPU_REGS_RAX] = ret;
  1282. kvm_x86_ops->decache_regs(vcpu);
  1283. return 0;
  1284. }
  1285. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1286. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1287. {
  1288. char instruction[3];
  1289. int ret = 0;
  1290. mutex_lock(&vcpu->kvm->lock);
  1291. /*
  1292. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1293. * to ensure that the updated hypercall appears atomically across all
  1294. * VCPUs.
  1295. */
  1296. kvm_mmu_zap_all(vcpu->kvm);
  1297. kvm_x86_ops->cache_regs(vcpu);
  1298. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1299. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1300. != X86EMUL_CONTINUE)
  1301. ret = -EFAULT;
  1302. mutex_unlock(&vcpu->kvm->lock);
  1303. return ret;
  1304. }
  1305. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1306. {
  1307. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1308. }
  1309. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1310. {
  1311. struct descriptor_table dt = { limit, base };
  1312. kvm_x86_ops->set_gdt(vcpu, &dt);
  1313. }
  1314. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1315. {
  1316. struct descriptor_table dt = { limit, base };
  1317. kvm_x86_ops->set_idt(vcpu, &dt);
  1318. }
  1319. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1320. unsigned long *rflags)
  1321. {
  1322. lmsw(vcpu, msw);
  1323. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1324. }
  1325. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1326. {
  1327. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1328. switch (cr) {
  1329. case 0:
  1330. return vcpu->cr0;
  1331. case 2:
  1332. return vcpu->cr2;
  1333. case 3:
  1334. return vcpu->cr3;
  1335. case 4:
  1336. return vcpu->cr4;
  1337. default:
  1338. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1339. return 0;
  1340. }
  1341. }
  1342. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1343. unsigned long *rflags)
  1344. {
  1345. switch (cr) {
  1346. case 0:
  1347. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1348. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1349. break;
  1350. case 2:
  1351. vcpu->cr2 = val;
  1352. break;
  1353. case 3:
  1354. set_cr3(vcpu, val);
  1355. break;
  1356. case 4:
  1357. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1358. break;
  1359. default:
  1360. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1361. }
  1362. }
  1363. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1364. {
  1365. u64 data;
  1366. switch (msr) {
  1367. case 0xc0010010: /* SYSCFG */
  1368. case 0xc0010015: /* HWCR */
  1369. case MSR_IA32_PLATFORM_ID:
  1370. case MSR_IA32_P5_MC_ADDR:
  1371. case MSR_IA32_P5_MC_TYPE:
  1372. case MSR_IA32_MC0_CTL:
  1373. case MSR_IA32_MCG_STATUS:
  1374. case MSR_IA32_MCG_CAP:
  1375. case MSR_IA32_MC0_MISC:
  1376. case MSR_IA32_MC0_MISC+4:
  1377. case MSR_IA32_MC0_MISC+8:
  1378. case MSR_IA32_MC0_MISC+12:
  1379. case MSR_IA32_MC0_MISC+16:
  1380. case MSR_IA32_UCODE_REV:
  1381. case MSR_IA32_PERF_STATUS:
  1382. case MSR_IA32_EBL_CR_POWERON:
  1383. /* MTRR registers */
  1384. case 0xfe:
  1385. case 0x200 ... 0x2ff:
  1386. data = 0;
  1387. break;
  1388. case 0xcd: /* fsb frequency */
  1389. data = 3;
  1390. break;
  1391. case MSR_IA32_APICBASE:
  1392. data = kvm_get_apic_base(vcpu);
  1393. break;
  1394. case MSR_IA32_MISC_ENABLE:
  1395. data = vcpu->ia32_misc_enable_msr;
  1396. break;
  1397. #ifdef CONFIG_X86_64
  1398. case MSR_EFER:
  1399. data = vcpu->shadow_efer;
  1400. break;
  1401. #endif
  1402. default:
  1403. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1404. return 1;
  1405. }
  1406. *pdata = data;
  1407. return 0;
  1408. }
  1409. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1410. /*
  1411. * Reads an msr value (of 'msr_index') into 'pdata'.
  1412. * Returns 0 on success, non-0 otherwise.
  1413. * Assumes vcpu_load() was already called.
  1414. */
  1415. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1416. {
  1417. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1418. }
  1419. #ifdef CONFIG_X86_64
  1420. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1421. {
  1422. if (efer & EFER_RESERVED_BITS) {
  1423. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1424. efer);
  1425. inject_gp(vcpu);
  1426. return;
  1427. }
  1428. if (is_paging(vcpu)
  1429. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1430. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1431. inject_gp(vcpu);
  1432. return;
  1433. }
  1434. kvm_x86_ops->set_efer(vcpu, efer);
  1435. efer &= ~EFER_LMA;
  1436. efer |= vcpu->shadow_efer & EFER_LMA;
  1437. vcpu->shadow_efer = efer;
  1438. }
  1439. #endif
  1440. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1441. {
  1442. switch (msr) {
  1443. #ifdef CONFIG_X86_64
  1444. case MSR_EFER:
  1445. set_efer(vcpu, data);
  1446. break;
  1447. #endif
  1448. case MSR_IA32_MC0_STATUS:
  1449. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1450. __FUNCTION__, data);
  1451. break;
  1452. case MSR_IA32_MCG_STATUS:
  1453. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1454. __FUNCTION__, data);
  1455. break;
  1456. case MSR_IA32_UCODE_REV:
  1457. case MSR_IA32_UCODE_WRITE:
  1458. case 0x200 ... 0x2ff: /* MTRRs */
  1459. break;
  1460. case MSR_IA32_APICBASE:
  1461. kvm_set_apic_base(vcpu, data);
  1462. break;
  1463. case MSR_IA32_MISC_ENABLE:
  1464. vcpu->ia32_misc_enable_msr = data;
  1465. break;
  1466. default:
  1467. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1468. return 1;
  1469. }
  1470. return 0;
  1471. }
  1472. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1473. /*
  1474. * Writes msr value into into the appropriate "register".
  1475. * Returns 0 on success, non-0 otherwise.
  1476. * Assumes vcpu_load() was already called.
  1477. */
  1478. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1479. {
  1480. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1481. }
  1482. void kvm_resched(struct kvm_vcpu *vcpu)
  1483. {
  1484. if (!need_resched())
  1485. return;
  1486. cond_resched();
  1487. }
  1488. EXPORT_SYMBOL_GPL(kvm_resched);
  1489. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1490. {
  1491. int i;
  1492. u32 function;
  1493. struct kvm_cpuid_entry *e, *best;
  1494. kvm_x86_ops->cache_regs(vcpu);
  1495. function = vcpu->regs[VCPU_REGS_RAX];
  1496. vcpu->regs[VCPU_REGS_RAX] = 0;
  1497. vcpu->regs[VCPU_REGS_RBX] = 0;
  1498. vcpu->regs[VCPU_REGS_RCX] = 0;
  1499. vcpu->regs[VCPU_REGS_RDX] = 0;
  1500. best = NULL;
  1501. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1502. e = &vcpu->cpuid_entries[i];
  1503. if (e->function == function) {
  1504. best = e;
  1505. break;
  1506. }
  1507. /*
  1508. * Both basic or both extended?
  1509. */
  1510. if (((e->function ^ function) & 0x80000000) == 0)
  1511. if (!best || e->function > best->function)
  1512. best = e;
  1513. }
  1514. if (best) {
  1515. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1516. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1517. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1518. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1519. }
  1520. kvm_x86_ops->decache_regs(vcpu);
  1521. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1522. }
  1523. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1524. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1525. {
  1526. void *p = vcpu->pio_data;
  1527. void *q;
  1528. unsigned bytes;
  1529. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1530. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1531. PAGE_KERNEL);
  1532. if (!q) {
  1533. free_pio_guest_pages(vcpu);
  1534. return -ENOMEM;
  1535. }
  1536. q += vcpu->pio.guest_page_offset;
  1537. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1538. if (vcpu->pio.in)
  1539. memcpy(q, p, bytes);
  1540. else
  1541. memcpy(p, q, bytes);
  1542. q -= vcpu->pio.guest_page_offset;
  1543. vunmap(q);
  1544. free_pio_guest_pages(vcpu);
  1545. return 0;
  1546. }
  1547. static int complete_pio(struct kvm_vcpu *vcpu)
  1548. {
  1549. struct kvm_pio_request *io = &vcpu->pio;
  1550. long delta;
  1551. int r;
  1552. kvm_x86_ops->cache_regs(vcpu);
  1553. if (!io->string) {
  1554. if (io->in)
  1555. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1556. io->size);
  1557. } else {
  1558. if (io->in) {
  1559. r = pio_copy_data(vcpu);
  1560. if (r) {
  1561. kvm_x86_ops->cache_regs(vcpu);
  1562. return r;
  1563. }
  1564. }
  1565. delta = 1;
  1566. if (io->rep) {
  1567. delta *= io->cur_count;
  1568. /*
  1569. * The size of the register should really depend on
  1570. * current address size.
  1571. */
  1572. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1573. }
  1574. if (io->down)
  1575. delta = -delta;
  1576. delta *= io->size;
  1577. if (io->in)
  1578. vcpu->regs[VCPU_REGS_RDI] += delta;
  1579. else
  1580. vcpu->regs[VCPU_REGS_RSI] += delta;
  1581. }
  1582. kvm_x86_ops->decache_regs(vcpu);
  1583. io->count -= io->cur_count;
  1584. io->cur_count = 0;
  1585. return 0;
  1586. }
  1587. static void kernel_pio(struct kvm_io_device *pio_dev,
  1588. struct kvm_vcpu *vcpu,
  1589. void *pd)
  1590. {
  1591. /* TODO: String I/O for in kernel device */
  1592. mutex_lock(&vcpu->kvm->lock);
  1593. if (vcpu->pio.in)
  1594. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1595. vcpu->pio.size,
  1596. pd);
  1597. else
  1598. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1599. vcpu->pio.size,
  1600. pd);
  1601. mutex_unlock(&vcpu->kvm->lock);
  1602. }
  1603. static void pio_string_write(struct kvm_io_device *pio_dev,
  1604. struct kvm_vcpu *vcpu)
  1605. {
  1606. struct kvm_pio_request *io = &vcpu->pio;
  1607. void *pd = vcpu->pio_data;
  1608. int i;
  1609. mutex_lock(&vcpu->kvm->lock);
  1610. for (i = 0; i < io->cur_count; i++) {
  1611. kvm_iodevice_write(pio_dev, io->port,
  1612. io->size,
  1613. pd);
  1614. pd += io->size;
  1615. }
  1616. mutex_unlock(&vcpu->kvm->lock);
  1617. }
  1618. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1619. int size, unsigned port)
  1620. {
  1621. struct kvm_io_device *pio_dev;
  1622. vcpu->run->exit_reason = KVM_EXIT_IO;
  1623. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1624. vcpu->run->io.size = vcpu->pio.size = size;
  1625. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1626. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1627. vcpu->run->io.port = vcpu->pio.port = port;
  1628. vcpu->pio.in = in;
  1629. vcpu->pio.string = 0;
  1630. vcpu->pio.down = 0;
  1631. vcpu->pio.guest_page_offset = 0;
  1632. vcpu->pio.rep = 0;
  1633. kvm_x86_ops->cache_regs(vcpu);
  1634. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1635. kvm_x86_ops->decache_regs(vcpu);
  1636. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1637. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1638. if (pio_dev) {
  1639. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1640. complete_pio(vcpu);
  1641. return 1;
  1642. }
  1643. return 0;
  1644. }
  1645. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1646. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1647. int size, unsigned long count, int down,
  1648. gva_t address, int rep, unsigned port)
  1649. {
  1650. unsigned now, in_page;
  1651. int i, ret = 0;
  1652. int nr_pages = 1;
  1653. struct page *page;
  1654. struct kvm_io_device *pio_dev;
  1655. vcpu->run->exit_reason = KVM_EXIT_IO;
  1656. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1657. vcpu->run->io.size = vcpu->pio.size = size;
  1658. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1659. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1660. vcpu->run->io.port = vcpu->pio.port = port;
  1661. vcpu->pio.in = in;
  1662. vcpu->pio.string = 1;
  1663. vcpu->pio.down = down;
  1664. vcpu->pio.guest_page_offset = offset_in_page(address);
  1665. vcpu->pio.rep = rep;
  1666. if (!count) {
  1667. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1668. return 1;
  1669. }
  1670. if (!down)
  1671. in_page = PAGE_SIZE - offset_in_page(address);
  1672. else
  1673. in_page = offset_in_page(address) + size;
  1674. now = min(count, (unsigned long)in_page / size);
  1675. if (!now) {
  1676. /*
  1677. * String I/O straddles page boundary. Pin two guest pages
  1678. * so that we satisfy atomicity constraints. Do just one
  1679. * transaction to avoid complexity.
  1680. */
  1681. nr_pages = 2;
  1682. now = 1;
  1683. }
  1684. if (down) {
  1685. /*
  1686. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1687. */
  1688. pr_unimpl(vcpu, "guest string pio down\n");
  1689. inject_gp(vcpu);
  1690. return 1;
  1691. }
  1692. vcpu->run->io.count = now;
  1693. vcpu->pio.cur_count = now;
  1694. if (vcpu->pio.cur_count == vcpu->pio.count)
  1695. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1696. for (i = 0; i < nr_pages; ++i) {
  1697. mutex_lock(&vcpu->kvm->lock);
  1698. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1699. if (page)
  1700. get_page(page);
  1701. vcpu->pio.guest_pages[i] = page;
  1702. mutex_unlock(&vcpu->kvm->lock);
  1703. if (!page) {
  1704. inject_gp(vcpu);
  1705. free_pio_guest_pages(vcpu);
  1706. return 1;
  1707. }
  1708. }
  1709. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1710. if (!vcpu->pio.in) {
  1711. /* string PIO write */
  1712. ret = pio_copy_data(vcpu);
  1713. if (ret >= 0 && pio_dev) {
  1714. pio_string_write(pio_dev, vcpu);
  1715. complete_pio(vcpu);
  1716. if (vcpu->pio.count == 0)
  1717. ret = 1;
  1718. }
  1719. } else if (pio_dev)
  1720. pr_unimpl(vcpu, "no string pio read support yet, "
  1721. "port %x size %d count %ld\n",
  1722. port, size, count);
  1723. return ret;
  1724. }
  1725. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1726. /*
  1727. * Check if userspace requested an interrupt window, and that the
  1728. * interrupt window is open.
  1729. *
  1730. * No need to exit to userspace if we already have an interrupt queued.
  1731. */
  1732. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1733. struct kvm_run *kvm_run)
  1734. {
  1735. return (!vcpu->irq_summary &&
  1736. kvm_run->request_interrupt_window &&
  1737. vcpu->interrupt_window_open &&
  1738. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1739. }
  1740. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1741. struct kvm_run *kvm_run)
  1742. {
  1743. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1744. kvm_run->cr8 = get_cr8(vcpu);
  1745. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1746. if (irqchip_in_kernel(vcpu->kvm))
  1747. kvm_run->ready_for_interrupt_injection = 1;
  1748. else
  1749. kvm_run->ready_for_interrupt_injection =
  1750. (vcpu->interrupt_window_open &&
  1751. vcpu->irq_summary == 0);
  1752. }
  1753. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1754. {
  1755. int r;
  1756. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1757. printk("vcpu %d received sipi with vector # %x\n",
  1758. vcpu->vcpu_id, vcpu->sipi_vector);
  1759. kvm_lapic_reset(vcpu);
  1760. kvm_x86_ops->vcpu_reset(vcpu);
  1761. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1762. }
  1763. preempted:
  1764. if (vcpu->guest_debug.enabled)
  1765. kvm_x86_ops->guest_debug_pre(vcpu);
  1766. again:
  1767. r = kvm_mmu_reload(vcpu);
  1768. if (unlikely(r))
  1769. goto out;
  1770. preempt_disable();
  1771. kvm_x86_ops->prepare_guest_switch(vcpu);
  1772. kvm_load_guest_fpu(vcpu);
  1773. local_irq_disable();
  1774. if (signal_pending(current)) {
  1775. local_irq_enable();
  1776. preempt_enable();
  1777. r = -EINTR;
  1778. kvm_run->exit_reason = KVM_EXIT_INTR;
  1779. ++vcpu->stat.signal_exits;
  1780. goto out;
  1781. }
  1782. if (irqchip_in_kernel(vcpu->kvm))
  1783. kvm_x86_ops->inject_pending_irq(vcpu);
  1784. else if (!vcpu->mmio_read_completed)
  1785. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1786. vcpu->guest_mode = 1;
  1787. kvm_guest_enter();
  1788. if (vcpu->requests)
  1789. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1790. kvm_x86_ops->tlb_flush(vcpu);
  1791. kvm_x86_ops->run(vcpu, kvm_run);
  1792. vcpu->guest_mode = 0;
  1793. local_irq_enable();
  1794. ++vcpu->stat.exits;
  1795. /*
  1796. * We must have an instruction between local_irq_enable() and
  1797. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1798. * the interrupt shadow. The stat.exits increment will do nicely.
  1799. * But we need to prevent reordering, hence this barrier():
  1800. */
  1801. barrier();
  1802. kvm_guest_exit();
  1803. preempt_enable();
  1804. /*
  1805. * Profile KVM exit RIPs:
  1806. */
  1807. if (unlikely(prof_on == KVM_PROFILING)) {
  1808. kvm_x86_ops->cache_regs(vcpu);
  1809. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1810. }
  1811. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1812. if (r > 0) {
  1813. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1814. r = -EINTR;
  1815. kvm_run->exit_reason = KVM_EXIT_INTR;
  1816. ++vcpu->stat.request_irq_exits;
  1817. goto out;
  1818. }
  1819. if (!need_resched()) {
  1820. ++vcpu->stat.light_exits;
  1821. goto again;
  1822. }
  1823. }
  1824. out:
  1825. if (r > 0) {
  1826. kvm_resched(vcpu);
  1827. goto preempted;
  1828. }
  1829. post_kvm_run_save(vcpu, kvm_run);
  1830. return r;
  1831. }
  1832. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1833. {
  1834. int r;
  1835. sigset_t sigsaved;
  1836. vcpu_load(vcpu);
  1837. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1838. kvm_vcpu_block(vcpu);
  1839. vcpu_put(vcpu);
  1840. return -EAGAIN;
  1841. }
  1842. if (vcpu->sigset_active)
  1843. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1844. /* re-sync apic's tpr */
  1845. if (!irqchip_in_kernel(vcpu->kvm))
  1846. set_cr8(vcpu, kvm_run->cr8);
  1847. if (vcpu->pio.cur_count) {
  1848. r = complete_pio(vcpu);
  1849. if (r)
  1850. goto out;
  1851. }
  1852. if (vcpu->mmio_needed) {
  1853. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1854. vcpu->mmio_read_completed = 1;
  1855. vcpu->mmio_needed = 0;
  1856. r = emulate_instruction(vcpu, kvm_run,
  1857. vcpu->mmio_fault_cr2, 0, 1);
  1858. if (r == EMULATE_DO_MMIO) {
  1859. /*
  1860. * Read-modify-write. Back to userspace.
  1861. */
  1862. r = 0;
  1863. goto out;
  1864. }
  1865. }
  1866. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1867. kvm_x86_ops->cache_regs(vcpu);
  1868. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1869. kvm_x86_ops->decache_regs(vcpu);
  1870. }
  1871. r = __vcpu_run(vcpu, kvm_run);
  1872. out:
  1873. if (vcpu->sigset_active)
  1874. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1875. vcpu_put(vcpu);
  1876. return r;
  1877. }
  1878. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1879. struct kvm_regs *regs)
  1880. {
  1881. vcpu_load(vcpu);
  1882. kvm_x86_ops->cache_regs(vcpu);
  1883. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1884. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1885. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1886. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1887. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1888. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1889. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1890. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1891. #ifdef CONFIG_X86_64
  1892. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1893. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1894. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1895. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1896. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1897. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1898. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1899. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1900. #endif
  1901. regs->rip = vcpu->rip;
  1902. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1903. /*
  1904. * Don't leak debug flags in case they were set for guest debugging
  1905. */
  1906. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1907. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1908. vcpu_put(vcpu);
  1909. return 0;
  1910. }
  1911. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1912. struct kvm_regs *regs)
  1913. {
  1914. vcpu_load(vcpu);
  1915. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1916. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1917. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1918. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1919. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1920. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1921. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1922. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1923. #ifdef CONFIG_X86_64
  1924. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1925. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1926. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1927. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1928. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1929. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1930. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1931. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1932. #endif
  1933. vcpu->rip = regs->rip;
  1934. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1935. kvm_x86_ops->decache_regs(vcpu);
  1936. vcpu_put(vcpu);
  1937. return 0;
  1938. }
  1939. static void get_segment(struct kvm_vcpu *vcpu,
  1940. struct kvm_segment *var, int seg)
  1941. {
  1942. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1943. }
  1944. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1945. struct kvm_sregs *sregs)
  1946. {
  1947. struct descriptor_table dt;
  1948. int pending_vec;
  1949. vcpu_load(vcpu);
  1950. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1951. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1952. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1953. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1954. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1955. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1956. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1957. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1958. kvm_x86_ops->get_idt(vcpu, &dt);
  1959. sregs->idt.limit = dt.limit;
  1960. sregs->idt.base = dt.base;
  1961. kvm_x86_ops->get_gdt(vcpu, &dt);
  1962. sregs->gdt.limit = dt.limit;
  1963. sregs->gdt.base = dt.base;
  1964. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1965. sregs->cr0 = vcpu->cr0;
  1966. sregs->cr2 = vcpu->cr2;
  1967. sregs->cr3 = vcpu->cr3;
  1968. sregs->cr4 = vcpu->cr4;
  1969. sregs->cr8 = get_cr8(vcpu);
  1970. sregs->efer = vcpu->shadow_efer;
  1971. sregs->apic_base = kvm_get_apic_base(vcpu);
  1972. if (irqchip_in_kernel(vcpu->kvm)) {
  1973. memset(sregs->interrupt_bitmap, 0,
  1974. sizeof sregs->interrupt_bitmap);
  1975. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1976. if (pending_vec >= 0)
  1977. set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
  1978. } else
  1979. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1980. sizeof sregs->interrupt_bitmap);
  1981. vcpu_put(vcpu);
  1982. return 0;
  1983. }
  1984. static void set_segment(struct kvm_vcpu *vcpu,
  1985. struct kvm_segment *var, int seg)
  1986. {
  1987. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1988. }
  1989. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1990. struct kvm_sregs *sregs)
  1991. {
  1992. int mmu_reset_needed = 0;
  1993. int i, pending_vec, max_bits;
  1994. struct descriptor_table dt;
  1995. vcpu_load(vcpu);
  1996. dt.limit = sregs->idt.limit;
  1997. dt.base = sregs->idt.base;
  1998. kvm_x86_ops->set_idt(vcpu, &dt);
  1999. dt.limit = sregs->gdt.limit;
  2000. dt.base = sregs->gdt.base;
  2001. kvm_x86_ops->set_gdt(vcpu, &dt);
  2002. vcpu->cr2 = sregs->cr2;
  2003. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2004. vcpu->cr3 = sregs->cr3;
  2005. set_cr8(vcpu, sregs->cr8);
  2006. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2007. #ifdef CONFIG_X86_64
  2008. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2009. #endif
  2010. kvm_set_apic_base(vcpu, sregs->apic_base);
  2011. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2012. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2013. vcpu->cr0 = sregs->cr0;
  2014. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2015. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2016. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2017. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2018. load_pdptrs(vcpu, vcpu->cr3);
  2019. if (mmu_reset_needed)
  2020. kvm_mmu_reset_context(vcpu);
  2021. if (!irqchip_in_kernel(vcpu->kvm)) {
  2022. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2023. sizeof vcpu->irq_pending);
  2024. vcpu->irq_summary = 0;
  2025. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2026. if (vcpu->irq_pending[i])
  2027. __set_bit(i, &vcpu->irq_summary);
  2028. } else {
  2029. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2030. pending_vec = find_first_bit(
  2031. (const unsigned long *)sregs->interrupt_bitmap,
  2032. max_bits);
  2033. /* Only pending external irq is handled here */
  2034. if (pending_vec < max_bits) {
  2035. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2036. printk("Set back pending irq %d\n", pending_vec);
  2037. }
  2038. }
  2039. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2040. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2041. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2042. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2043. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2044. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2045. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2046. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2047. vcpu_put(vcpu);
  2048. return 0;
  2049. }
  2050. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2051. {
  2052. struct kvm_segment cs;
  2053. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2054. *db = cs.db;
  2055. *l = cs.l;
  2056. }
  2057. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2058. /*
  2059. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  2060. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  2061. *
  2062. * This list is modified at module load time to reflect the
  2063. * capabilities of the host cpu.
  2064. */
  2065. static u32 msrs_to_save[] = {
  2066. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  2067. MSR_K6_STAR,
  2068. #ifdef CONFIG_X86_64
  2069. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  2070. #endif
  2071. MSR_IA32_TIME_STAMP_COUNTER,
  2072. };
  2073. static unsigned num_msrs_to_save;
  2074. static u32 emulated_msrs[] = {
  2075. MSR_IA32_MISC_ENABLE,
  2076. };
  2077. static __init void kvm_init_msr_list(void)
  2078. {
  2079. u32 dummy[2];
  2080. unsigned i, j;
  2081. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2082. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2083. continue;
  2084. if (j < i)
  2085. msrs_to_save[j] = msrs_to_save[i];
  2086. j++;
  2087. }
  2088. num_msrs_to_save = j;
  2089. }
  2090. /*
  2091. * Adapt set_msr() to msr_io()'s calling convention
  2092. */
  2093. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  2094. {
  2095. return kvm_set_msr(vcpu, index, *data);
  2096. }
  2097. /*
  2098. * Read or write a bunch of msrs. All parameters are kernel addresses.
  2099. *
  2100. * @return number of msrs set successfully.
  2101. */
  2102. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  2103. struct kvm_msr_entry *entries,
  2104. int (*do_msr)(struct kvm_vcpu *vcpu,
  2105. unsigned index, u64 *data))
  2106. {
  2107. int i;
  2108. vcpu_load(vcpu);
  2109. for (i = 0; i < msrs->nmsrs; ++i)
  2110. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  2111. break;
  2112. vcpu_put(vcpu);
  2113. return i;
  2114. }
  2115. /*
  2116. * Read or write a bunch of msrs. Parameters are user addresses.
  2117. *
  2118. * @return number of msrs set successfully.
  2119. */
  2120. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  2121. int (*do_msr)(struct kvm_vcpu *vcpu,
  2122. unsigned index, u64 *data),
  2123. int writeback)
  2124. {
  2125. struct kvm_msrs msrs;
  2126. struct kvm_msr_entry *entries;
  2127. int r, n;
  2128. unsigned size;
  2129. r = -EFAULT;
  2130. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2131. goto out;
  2132. r = -E2BIG;
  2133. if (msrs.nmsrs >= MAX_IO_MSRS)
  2134. goto out;
  2135. r = -ENOMEM;
  2136. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2137. entries = vmalloc(size);
  2138. if (!entries)
  2139. goto out;
  2140. r = -EFAULT;
  2141. if (copy_from_user(entries, user_msrs->entries, size))
  2142. goto out_free;
  2143. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2144. if (r < 0)
  2145. goto out_free;
  2146. r = -EFAULT;
  2147. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2148. goto out_free;
  2149. r = n;
  2150. out_free:
  2151. vfree(entries);
  2152. out:
  2153. return r;
  2154. }
  2155. /*
  2156. * Translate a guest virtual address to a guest physical address.
  2157. */
  2158. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2159. struct kvm_translation *tr)
  2160. {
  2161. unsigned long vaddr = tr->linear_address;
  2162. gpa_t gpa;
  2163. vcpu_load(vcpu);
  2164. mutex_lock(&vcpu->kvm->lock);
  2165. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2166. tr->physical_address = gpa;
  2167. tr->valid = gpa != UNMAPPED_GVA;
  2168. tr->writeable = 1;
  2169. tr->usermode = 0;
  2170. mutex_unlock(&vcpu->kvm->lock);
  2171. vcpu_put(vcpu);
  2172. return 0;
  2173. }
  2174. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2175. struct kvm_interrupt *irq)
  2176. {
  2177. if (irq->irq < 0 || irq->irq >= 256)
  2178. return -EINVAL;
  2179. if (irqchip_in_kernel(vcpu->kvm))
  2180. return -ENXIO;
  2181. vcpu_load(vcpu);
  2182. set_bit(irq->irq, vcpu->irq_pending);
  2183. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2184. vcpu_put(vcpu);
  2185. return 0;
  2186. }
  2187. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2188. struct kvm_debug_guest *dbg)
  2189. {
  2190. int r;
  2191. vcpu_load(vcpu);
  2192. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2193. vcpu_put(vcpu);
  2194. return r;
  2195. }
  2196. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2197. unsigned long address,
  2198. int *type)
  2199. {
  2200. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2201. unsigned long pgoff;
  2202. struct page *page;
  2203. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2204. if (pgoff == 0)
  2205. page = virt_to_page(vcpu->run);
  2206. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2207. page = virt_to_page(vcpu->pio_data);
  2208. else
  2209. return NOPAGE_SIGBUS;
  2210. get_page(page);
  2211. if (type != NULL)
  2212. *type = VM_FAULT_MINOR;
  2213. return page;
  2214. }
  2215. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2216. .nopage = kvm_vcpu_nopage,
  2217. };
  2218. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2219. {
  2220. vma->vm_ops = &kvm_vcpu_vm_ops;
  2221. return 0;
  2222. }
  2223. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2224. {
  2225. struct kvm_vcpu *vcpu = filp->private_data;
  2226. fput(vcpu->kvm->filp);
  2227. return 0;
  2228. }
  2229. static struct file_operations kvm_vcpu_fops = {
  2230. .release = kvm_vcpu_release,
  2231. .unlocked_ioctl = kvm_vcpu_ioctl,
  2232. .compat_ioctl = kvm_vcpu_ioctl,
  2233. .mmap = kvm_vcpu_mmap,
  2234. };
  2235. /*
  2236. * Allocates an inode for the vcpu.
  2237. */
  2238. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2239. {
  2240. int fd, r;
  2241. struct inode *inode;
  2242. struct file *file;
  2243. r = anon_inode_getfd(&fd, &inode, &file,
  2244. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2245. if (r)
  2246. return r;
  2247. atomic_inc(&vcpu->kvm->filp->f_count);
  2248. return fd;
  2249. }
  2250. /*
  2251. * Creates some virtual cpus. Good luck creating more than one.
  2252. */
  2253. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2254. {
  2255. int r;
  2256. struct kvm_vcpu *vcpu;
  2257. if (!valid_vcpu(n))
  2258. return -EINVAL;
  2259. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2260. if (IS_ERR(vcpu))
  2261. return PTR_ERR(vcpu);
  2262. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2263. /* We do fxsave: this must be aligned. */
  2264. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2265. vcpu_load(vcpu);
  2266. r = kvm_mmu_setup(vcpu);
  2267. vcpu_put(vcpu);
  2268. if (r < 0)
  2269. goto free_vcpu;
  2270. mutex_lock(&kvm->lock);
  2271. if (kvm->vcpus[n]) {
  2272. r = -EEXIST;
  2273. mutex_unlock(&kvm->lock);
  2274. goto mmu_unload;
  2275. }
  2276. kvm->vcpus[n] = vcpu;
  2277. mutex_unlock(&kvm->lock);
  2278. /* Now it's all set up, let userspace reach it */
  2279. r = create_vcpu_fd(vcpu);
  2280. if (r < 0)
  2281. goto unlink;
  2282. return r;
  2283. unlink:
  2284. mutex_lock(&kvm->lock);
  2285. kvm->vcpus[n] = NULL;
  2286. mutex_unlock(&kvm->lock);
  2287. mmu_unload:
  2288. vcpu_load(vcpu);
  2289. kvm_mmu_unload(vcpu);
  2290. vcpu_put(vcpu);
  2291. free_vcpu:
  2292. kvm_x86_ops->vcpu_free(vcpu);
  2293. return r;
  2294. }
  2295. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2296. {
  2297. u64 efer;
  2298. int i;
  2299. struct kvm_cpuid_entry *e, *entry;
  2300. rdmsrl(MSR_EFER, efer);
  2301. entry = NULL;
  2302. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2303. e = &vcpu->cpuid_entries[i];
  2304. if (e->function == 0x80000001) {
  2305. entry = e;
  2306. break;
  2307. }
  2308. }
  2309. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2310. entry->edx &= ~(1 << 20);
  2311. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2312. }
  2313. }
  2314. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2315. struct kvm_cpuid *cpuid,
  2316. struct kvm_cpuid_entry __user *entries)
  2317. {
  2318. int r;
  2319. r = -E2BIG;
  2320. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2321. goto out;
  2322. r = -EFAULT;
  2323. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2324. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2325. goto out;
  2326. vcpu->cpuid_nent = cpuid->nent;
  2327. cpuid_fix_nx_cap(vcpu);
  2328. return 0;
  2329. out:
  2330. return r;
  2331. }
  2332. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2333. {
  2334. if (sigset) {
  2335. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2336. vcpu->sigset_active = 1;
  2337. vcpu->sigset = *sigset;
  2338. } else
  2339. vcpu->sigset_active = 0;
  2340. return 0;
  2341. }
  2342. /*
  2343. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2344. * we have asm/x86/processor.h
  2345. */
  2346. struct fxsave {
  2347. u16 cwd;
  2348. u16 swd;
  2349. u16 twd;
  2350. u16 fop;
  2351. u64 rip;
  2352. u64 rdp;
  2353. u32 mxcsr;
  2354. u32 mxcsr_mask;
  2355. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2356. #ifdef CONFIG_X86_64
  2357. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2358. #else
  2359. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2360. #endif
  2361. };
  2362. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2363. {
  2364. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2365. vcpu_load(vcpu);
  2366. memcpy(fpu->fpr, fxsave->st_space, 128);
  2367. fpu->fcw = fxsave->cwd;
  2368. fpu->fsw = fxsave->swd;
  2369. fpu->ftwx = fxsave->twd;
  2370. fpu->last_opcode = fxsave->fop;
  2371. fpu->last_ip = fxsave->rip;
  2372. fpu->last_dp = fxsave->rdp;
  2373. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2374. vcpu_put(vcpu);
  2375. return 0;
  2376. }
  2377. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2378. {
  2379. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2380. vcpu_load(vcpu);
  2381. memcpy(fxsave->st_space, fpu->fpr, 128);
  2382. fxsave->cwd = fpu->fcw;
  2383. fxsave->swd = fpu->fsw;
  2384. fxsave->twd = fpu->ftwx;
  2385. fxsave->fop = fpu->last_opcode;
  2386. fxsave->rip = fpu->last_ip;
  2387. fxsave->rdp = fpu->last_dp;
  2388. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2389. vcpu_put(vcpu);
  2390. return 0;
  2391. }
  2392. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2393. struct kvm_lapic_state *s)
  2394. {
  2395. vcpu_load(vcpu);
  2396. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  2397. vcpu_put(vcpu);
  2398. return 0;
  2399. }
  2400. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2401. struct kvm_lapic_state *s)
  2402. {
  2403. vcpu_load(vcpu);
  2404. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  2405. kvm_apic_post_state_restore(vcpu);
  2406. vcpu_put(vcpu);
  2407. return 0;
  2408. }
  2409. static long kvm_vcpu_ioctl(struct file *filp,
  2410. unsigned int ioctl, unsigned long arg)
  2411. {
  2412. struct kvm_vcpu *vcpu = filp->private_data;
  2413. void __user *argp = (void __user *)arg;
  2414. int r = -EINVAL;
  2415. switch (ioctl) {
  2416. case KVM_RUN:
  2417. r = -EINVAL;
  2418. if (arg)
  2419. goto out;
  2420. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2421. break;
  2422. case KVM_GET_REGS: {
  2423. struct kvm_regs kvm_regs;
  2424. memset(&kvm_regs, 0, sizeof kvm_regs);
  2425. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2426. if (r)
  2427. goto out;
  2428. r = -EFAULT;
  2429. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2430. goto out;
  2431. r = 0;
  2432. break;
  2433. }
  2434. case KVM_SET_REGS: {
  2435. struct kvm_regs kvm_regs;
  2436. r = -EFAULT;
  2437. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2438. goto out;
  2439. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2440. if (r)
  2441. goto out;
  2442. r = 0;
  2443. break;
  2444. }
  2445. case KVM_GET_SREGS: {
  2446. struct kvm_sregs kvm_sregs;
  2447. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2448. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2449. if (r)
  2450. goto out;
  2451. r = -EFAULT;
  2452. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2453. goto out;
  2454. r = 0;
  2455. break;
  2456. }
  2457. case KVM_SET_SREGS: {
  2458. struct kvm_sregs kvm_sregs;
  2459. r = -EFAULT;
  2460. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2461. goto out;
  2462. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2463. if (r)
  2464. goto out;
  2465. r = 0;
  2466. break;
  2467. }
  2468. case KVM_TRANSLATE: {
  2469. struct kvm_translation tr;
  2470. r = -EFAULT;
  2471. if (copy_from_user(&tr, argp, sizeof tr))
  2472. goto out;
  2473. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2474. if (r)
  2475. goto out;
  2476. r = -EFAULT;
  2477. if (copy_to_user(argp, &tr, sizeof tr))
  2478. goto out;
  2479. r = 0;
  2480. break;
  2481. }
  2482. case KVM_INTERRUPT: {
  2483. struct kvm_interrupt irq;
  2484. r = -EFAULT;
  2485. if (copy_from_user(&irq, argp, sizeof irq))
  2486. goto out;
  2487. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2488. if (r)
  2489. goto out;
  2490. r = 0;
  2491. break;
  2492. }
  2493. case KVM_DEBUG_GUEST: {
  2494. struct kvm_debug_guest dbg;
  2495. r = -EFAULT;
  2496. if (copy_from_user(&dbg, argp, sizeof dbg))
  2497. goto out;
  2498. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2499. if (r)
  2500. goto out;
  2501. r = 0;
  2502. break;
  2503. }
  2504. case KVM_GET_MSRS:
  2505. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2506. break;
  2507. case KVM_SET_MSRS:
  2508. r = msr_io(vcpu, argp, do_set_msr, 0);
  2509. break;
  2510. case KVM_SET_CPUID: {
  2511. struct kvm_cpuid __user *cpuid_arg = argp;
  2512. struct kvm_cpuid cpuid;
  2513. r = -EFAULT;
  2514. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2515. goto out;
  2516. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2517. if (r)
  2518. goto out;
  2519. break;
  2520. }
  2521. case KVM_SET_SIGNAL_MASK: {
  2522. struct kvm_signal_mask __user *sigmask_arg = argp;
  2523. struct kvm_signal_mask kvm_sigmask;
  2524. sigset_t sigset, *p;
  2525. p = NULL;
  2526. if (argp) {
  2527. r = -EFAULT;
  2528. if (copy_from_user(&kvm_sigmask, argp,
  2529. sizeof kvm_sigmask))
  2530. goto out;
  2531. r = -EINVAL;
  2532. if (kvm_sigmask.len != sizeof sigset)
  2533. goto out;
  2534. r = -EFAULT;
  2535. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2536. sizeof sigset))
  2537. goto out;
  2538. p = &sigset;
  2539. }
  2540. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2541. break;
  2542. }
  2543. case KVM_GET_FPU: {
  2544. struct kvm_fpu fpu;
  2545. memset(&fpu, 0, sizeof fpu);
  2546. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2547. if (r)
  2548. goto out;
  2549. r = -EFAULT;
  2550. if (copy_to_user(argp, &fpu, sizeof fpu))
  2551. goto out;
  2552. r = 0;
  2553. break;
  2554. }
  2555. case KVM_SET_FPU: {
  2556. struct kvm_fpu fpu;
  2557. r = -EFAULT;
  2558. if (copy_from_user(&fpu, argp, sizeof fpu))
  2559. goto out;
  2560. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2561. if (r)
  2562. goto out;
  2563. r = 0;
  2564. break;
  2565. }
  2566. case KVM_GET_LAPIC: {
  2567. struct kvm_lapic_state lapic;
  2568. memset(&lapic, 0, sizeof lapic);
  2569. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  2570. if (r)
  2571. goto out;
  2572. r = -EFAULT;
  2573. if (copy_to_user(argp, &lapic, sizeof lapic))
  2574. goto out;
  2575. r = 0;
  2576. break;
  2577. }
  2578. case KVM_SET_LAPIC: {
  2579. struct kvm_lapic_state lapic;
  2580. r = -EFAULT;
  2581. if (copy_from_user(&lapic, argp, sizeof lapic))
  2582. goto out;
  2583. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  2584. if (r)
  2585. goto out;
  2586. r = 0;
  2587. break;
  2588. }
  2589. default:
  2590. ;
  2591. }
  2592. out:
  2593. return r;
  2594. }
  2595. static long kvm_vm_ioctl(struct file *filp,
  2596. unsigned int ioctl, unsigned long arg)
  2597. {
  2598. struct kvm *kvm = filp->private_data;
  2599. void __user *argp = (void __user *)arg;
  2600. int r = -EINVAL;
  2601. switch (ioctl) {
  2602. case KVM_CREATE_VCPU:
  2603. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2604. if (r < 0)
  2605. goto out;
  2606. break;
  2607. case KVM_SET_MEMORY_REGION: {
  2608. struct kvm_memory_region kvm_mem;
  2609. r = -EFAULT;
  2610. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2611. goto out;
  2612. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2613. if (r)
  2614. goto out;
  2615. break;
  2616. }
  2617. case KVM_GET_DIRTY_LOG: {
  2618. struct kvm_dirty_log log;
  2619. r = -EFAULT;
  2620. if (copy_from_user(&log, argp, sizeof log))
  2621. goto out;
  2622. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2623. if (r)
  2624. goto out;
  2625. break;
  2626. }
  2627. case KVM_SET_MEMORY_ALIAS: {
  2628. struct kvm_memory_alias alias;
  2629. r = -EFAULT;
  2630. if (copy_from_user(&alias, argp, sizeof alias))
  2631. goto out;
  2632. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2633. if (r)
  2634. goto out;
  2635. break;
  2636. }
  2637. case KVM_CREATE_IRQCHIP:
  2638. r = -ENOMEM;
  2639. kvm->vpic = kvm_create_pic(kvm);
  2640. if (kvm->vpic) {
  2641. r = kvm_ioapic_init(kvm);
  2642. if (r) {
  2643. kfree(kvm->vpic);
  2644. kvm->vpic = NULL;
  2645. goto out;
  2646. }
  2647. }
  2648. else
  2649. goto out;
  2650. break;
  2651. case KVM_IRQ_LINE: {
  2652. struct kvm_irq_level irq_event;
  2653. r = -EFAULT;
  2654. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2655. goto out;
  2656. if (irqchip_in_kernel(kvm)) {
  2657. mutex_lock(&kvm->lock);
  2658. if (irq_event.irq < 16)
  2659. kvm_pic_set_irq(pic_irqchip(kvm),
  2660. irq_event.irq,
  2661. irq_event.level);
  2662. kvm_ioapic_set_irq(kvm->vioapic,
  2663. irq_event.irq,
  2664. irq_event.level);
  2665. mutex_unlock(&kvm->lock);
  2666. r = 0;
  2667. }
  2668. break;
  2669. }
  2670. case KVM_GET_IRQCHIP: {
  2671. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2672. struct kvm_irqchip chip;
  2673. r = -EFAULT;
  2674. if (copy_from_user(&chip, argp, sizeof chip))
  2675. goto out;
  2676. r = -ENXIO;
  2677. if (!irqchip_in_kernel(kvm))
  2678. goto out;
  2679. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2680. if (r)
  2681. goto out;
  2682. r = -EFAULT;
  2683. if (copy_to_user(argp, &chip, sizeof chip))
  2684. goto out;
  2685. r = 0;
  2686. break;
  2687. }
  2688. case KVM_SET_IRQCHIP: {
  2689. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2690. struct kvm_irqchip chip;
  2691. r = -EFAULT;
  2692. if (copy_from_user(&chip, argp, sizeof chip))
  2693. goto out;
  2694. r = -ENXIO;
  2695. if (!irqchip_in_kernel(kvm))
  2696. goto out;
  2697. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2698. if (r)
  2699. goto out;
  2700. r = 0;
  2701. break;
  2702. }
  2703. default:
  2704. ;
  2705. }
  2706. out:
  2707. return r;
  2708. }
  2709. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2710. unsigned long address,
  2711. int *type)
  2712. {
  2713. struct kvm *kvm = vma->vm_file->private_data;
  2714. unsigned long pgoff;
  2715. struct page *page;
  2716. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2717. page = gfn_to_page(kvm, pgoff);
  2718. if (!page)
  2719. return NOPAGE_SIGBUS;
  2720. get_page(page);
  2721. if (type != NULL)
  2722. *type = VM_FAULT_MINOR;
  2723. return page;
  2724. }
  2725. static struct vm_operations_struct kvm_vm_vm_ops = {
  2726. .nopage = kvm_vm_nopage,
  2727. };
  2728. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2729. {
  2730. vma->vm_ops = &kvm_vm_vm_ops;
  2731. return 0;
  2732. }
  2733. static struct file_operations kvm_vm_fops = {
  2734. .release = kvm_vm_release,
  2735. .unlocked_ioctl = kvm_vm_ioctl,
  2736. .compat_ioctl = kvm_vm_ioctl,
  2737. .mmap = kvm_vm_mmap,
  2738. };
  2739. static int kvm_dev_ioctl_create_vm(void)
  2740. {
  2741. int fd, r;
  2742. struct inode *inode;
  2743. struct file *file;
  2744. struct kvm *kvm;
  2745. kvm = kvm_create_vm();
  2746. if (IS_ERR(kvm))
  2747. return PTR_ERR(kvm);
  2748. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2749. if (r) {
  2750. kvm_destroy_vm(kvm);
  2751. return r;
  2752. }
  2753. kvm->filp = file;
  2754. return fd;
  2755. }
  2756. static long kvm_dev_ioctl(struct file *filp,
  2757. unsigned int ioctl, unsigned long arg)
  2758. {
  2759. void __user *argp = (void __user *)arg;
  2760. long r = -EINVAL;
  2761. switch (ioctl) {
  2762. case KVM_GET_API_VERSION:
  2763. r = -EINVAL;
  2764. if (arg)
  2765. goto out;
  2766. r = KVM_API_VERSION;
  2767. break;
  2768. case KVM_CREATE_VM:
  2769. r = -EINVAL;
  2770. if (arg)
  2771. goto out;
  2772. r = kvm_dev_ioctl_create_vm();
  2773. break;
  2774. case KVM_GET_MSR_INDEX_LIST: {
  2775. struct kvm_msr_list __user *user_msr_list = argp;
  2776. struct kvm_msr_list msr_list;
  2777. unsigned n;
  2778. r = -EFAULT;
  2779. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2780. goto out;
  2781. n = msr_list.nmsrs;
  2782. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2783. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2784. goto out;
  2785. r = -E2BIG;
  2786. if (n < num_msrs_to_save)
  2787. goto out;
  2788. r = -EFAULT;
  2789. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2790. num_msrs_to_save * sizeof(u32)))
  2791. goto out;
  2792. if (copy_to_user(user_msr_list->indices
  2793. + num_msrs_to_save * sizeof(u32),
  2794. &emulated_msrs,
  2795. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2796. goto out;
  2797. r = 0;
  2798. break;
  2799. }
  2800. case KVM_CHECK_EXTENSION: {
  2801. int ext = (long)argp;
  2802. switch (ext) {
  2803. case KVM_CAP_IRQCHIP:
  2804. case KVM_CAP_HLT:
  2805. r = 1;
  2806. break;
  2807. default:
  2808. r = 0;
  2809. break;
  2810. }
  2811. break;
  2812. }
  2813. case KVM_GET_VCPU_MMAP_SIZE:
  2814. r = -EINVAL;
  2815. if (arg)
  2816. goto out;
  2817. r = 2 * PAGE_SIZE;
  2818. break;
  2819. default:
  2820. ;
  2821. }
  2822. out:
  2823. return r;
  2824. }
  2825. static struct file_operations kvm_chardev_ops = {
  2826. .unlocked_ioctl = kvm_dev_ioctl,
  2827. .compat_ioctl = kvm_dev_ioctl,
  2828. };
  2829. static struct miscdevice kvm_dev = {
  2830. KVM_MINOR,
  2831. "kvm",
  2832. &kvm_chardev_ops,
  2833. };
  2834. /*
  2835. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2836. * cached on it.
  2837. */
  2838. static void decache_vcpus_on_cpu(int cpu)
  2839. {
  2840. struct kvm *vm;
  2841. struct kvm_vcpu *vcpu;
  2842. int i;
  2843. spin_lock(&kvm_lock);
  2844. list_for_each_entry(vm, &vm_list, vm_list)
  2845. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2846. vcpu = vm->vcpus[i];
  2847. if (!vcpu)
  2848. continue;
  2849. /*
  2850. * If the vcpu is locked, then it is running on some
  2851. * other cpu and therefore it is not cached on the
  2852. * cpu in question.
  2853. *
  2854. * If it's not locked, check the last cpu it executed
  2855. * on.
  2856. */
  2857. if (mutex_trylock(&vcpu->mutex)) {
  2858. if (vcpu->cpu == cpu) {
  2859. kvm_x86_ops->vcpu_decache(vcpu);
  2860. vcpu->cpu = -1;
  2861. }
  2862. mutex_unlock(&vcpu->mutex);
  2863. }
  2864. }
  2865. spin_unlock(&kvm_lock);
  2866. }
  2867. static void hardware_enable(void *junk)
  2868. {
  2869. int cpu = raw_smp_processor_id();
  2870. if (cpu_isset(cpu, cpus_hardware_enabled))
  2871. return;
  2872. cpu_set(cpu, cpus_hardware_enabled);
  2873. kvm_x86_ops->hardware_enable(NULL);
  2874. }
  2875. static void hardware_disable(void *junk)
  2876. {
  2877. int cpu = raw_smp_processor_id();
  2878. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2879. return;
  2880. cpu_clear(cpu, cpus_hardware_enabled);
  2881. decache_vcpus_on_cpu(cpu);
  2882. kvm_x86_ops->hardware_disable(NULL);
  2883. }
  2884. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2885. void *v)
  2886. {
  2887. int cpu = (long)v;
  2888. switch (val) {
  2889. case CPU_DYING:
  2890. case CPU_DYING_FROZEN:
  2891. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2892. cpu);
  2893. hardware_disable(NULL);
  2894. break;
  2895. case CPU_UP_CANCELED:
  2896. case CPU_UP_CANCELED_FROZEN:
  2897. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2898. cpu);
  2899. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2900. break;
  2901. case CPU_ONLINE:
  2902. case CPU_ONLINE_FROZEN:
  2903. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2904. cpu);
  2905. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2906. break;
  2907. }
  2908. return NOTIFY_OK;
  2909. }
  2910. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2911. void *v)
  2912. {
  2913. if (val == SYS_RESTART) {
  2914. /*
  2915. * Some (well, at least mine) BIOSes hang on reboot if
  2916. * in vmx root mode.
  2917. */
  2918. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2919. on_each_cpu(hardware_disable, NULL, 0, 1);
  2920. }
  2921. return NOTIFY_OK;
  2922. }
  2923. static struct notifier_block kvm_reboot_notifier = {
  2924. .notifier_call = kvm_reboot,
  2925. .priority = 0,
  2926. };
  2927. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2928. {
  2929. memset(bus, 0, sizeof(*bus));
  2930. }
  2931. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2932. {
  2933. int i;
  2934. for (i = 0; i < bus->dev_count; i++) {
  2935. struct kvm_io_device *pos = bus->devs[i];
  2936. kvm_iodevice_destructor(pos);
  2937. }
  2938. }
  2939. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2940. {
  2941. int i;
  2942. for (i = 0; i < bus->dev_count; i++) {
  2943. struct kvm_io_device *pos = bus->devs[i];
  2944. if (pos->in_range(pos, addr))
  2945. return pos;
  2946. }
  2947. return NULL;
  2948. }
  2949. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2950. {
  2951. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2952. bus->devs[bus->dev_count++] = dev;
  2953. }
  2954. static struct notifier_block kvm_cpu_notifier = {
  2955. .notifier_call = kvm_cpu_hotplug,
  2956. .priority = 20, /* must be > scheduler priority */
  2957. };
  2958. static u64 stat_get(void *_offset)
  2959. {
  2960. unsigned offset = (long)_offset;
  2961. u64 total = 0;
  2962. struct kvm *kvm;
  2963. struct kvm_vcpu *vcpu;
  2964. int i;
  2965. spin_lock(&kvm_lock);
  2966. list_for_each_entry(kvm, &vm_list, vm_list)
  2967. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2968. vcpu = kvm->vcpus[i];
  2969. if (vcpu)
  2970. total += *(u32 *)((void *)vcpu + offset);
  2971. }
  2972. spin_unlock(&kvm_lock);
  2973. return total;
  2974. }
  2975. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2976. static __init void kvm_init_debug(void)
  2977. {
  2978. struct kvm_stats_debugfs_item *p;
  2979. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2980. for (p = debugfs_entries; p->name; ++p)
  2981. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2982. (void *)(long)p->offset,
  2983. &stat_fops);
  2984. }
  2985. static void kvm_exit_debug(void)
  2986. {
  2987. struct kvm_stats_debugfs_item *p;
  2988. for (p = debugfs_entries; p->name; ++p)
  2989. debugfs_remove(p->dentry);
  2990. debugfs_remove(debugfs_dir);
  2991. }
  2992. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2993. {
  2994. hardware_disable(NULL);
  2995. return 0;
  2996. }
  2997. static int kvm_resume(struct sys_device *dev)
  2998. {
  2999. hardware_enable(NULL);
  3000. return 0;
  3001. }
  3002. static struct sysdev_class kvm_sysdev_class = {
  3003. .name = "kvm",
  3004. .suspend = kvm_suspend,
  3005. .resume = kvm_resume,
  3006. };
  3007. static struct sys_device kvm_sysdev = {
  3008. .id = 0,
  3009. .cls = &kvm_sysdev_class,
  3010. };
  3011. hpa_t bad_page_address;
  3012. static inline
  3013. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  3014. {
  3015. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  3016. }
  3017. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  3018. {
  3019. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3020. kvm_x86_ops->vcpu_load(vcpu, cpu);
  3021. }
  3022. static void kvm_sched_out(struct preempt_notifier *pn,
  3023. struct task_struct *next)
  3024. {
  3025. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3026. kvm_x86_ops->vcpu_put(vcpu);
  3027. }
  3028. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  3029. struct module *module)
  3030. {
  3031. int r;
  3032. int cpu;
  3033. if (kvm_x86_ops) {
  3034. printk(KERN_ERR "kvm: already loaded the other module\n");
  3035. return -EEXIST;
  3036. }
  3037. if (!ops->cpu_has_kvm_support()) {
  3038. printk(KERN_ERR "kvm: no hardware support\n");
  3039. return -EOPNOTSUPP;
  3040. }
  3041. if (ops->disabled_by_bios()) {
  3042. printk(KERN_ERR "kvm: disabled by bios\n");
  3043. return -EOPNOTSUPP;
  3044. }
  3045. kvm_x86_ops = ops;
  3046. r = kvm_x86_ops->hardware_setup();
  3047. if (r < 0)
  3048. goto out;
  3049. for_each_online_cpu(cpu) {
  3050. smp_call_function_single(cpu,
  3051. kvm_x86_ops->check_processor_compatibility,
  3052. &r, 0, 1);
  3053. if (r < 0)
  3054. goto out_free_0;
  3055. }
  3056. on_each_cpu(hardware_enable, NULL, 0, 1);
  3057. r = register_cpu_notifier(&kvm_cpu_notifier);
  3058. if (r)
  3059. goto out_free_1;
  3060. register_reboot_notifier(&kvm_reboot_notifier);
  3061. r = sysdev_class_register(&kvm_sysdev_class);
  3062. if (r)
  3063. goto out_free_2;
  3064. r = sysdev_register(&kvm_sysdev);
  3065. if (r)
  3066. goto out_free_3;
  3067. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  3068. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  3069. __alignof__(struct kvm_vcpu), 0, 0);
  3070. if (!kvm_vcpu_cache) {
  3071. r = -ENOMEM;
  3072. goto out_free_4;
  3073. }
  3074. kvm_chardev_ops.owner = module;
  3075. r = misc_register(&kvm_dev);
  3076. if (r) {
  3077. printk (KERN_ERR "kvm: misc device register failed\n");
  3078. goto out_free;
  3079. }
  3080. kvm_preempt_ops.sched_in = kvm_sched_in;
  3081. kvm_preempt_ops.sched_out = kvm_sched_out;
  3082. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3083. return 0;
  3084. out_free:
  3085. kmem_cache_destroy(kvm_vcpu_cache);
  3086. out_free_4:
  3087. sysdev_unregister(&kvm_sysdev);
  3088. out_free_3:
  3089. sysdev_class_unregister(&kvm_sysdev_class);
  3090. out_free_2:
  3091. unregister_reboot_notifier(&kvm_reboot_notifier);
  3092. unregister_cpu_notifier(&kvm_cpu_notifier);
  3093. out_free_1:
  3094. on_each_cpu(hardware_disable, NULL, 0, 1);
  3095. out_free_0:
  3096. kvm_x86_ops->hardware_unsetup();
  3097. out:
  3098. kvm_x86_ops = NULL;
  3099. return r;
  3100. }
  3101. void kvm_exit_x86(void)
  3102. {
  3103. misc_deregister(&kvm_dev);
  3104. kmem_cache_destroy(kvm_vcpu_cache);
  3105. sysdev_unregister(&kvm_sysdev);
  3106. sysdev_class_unregister(&kvm_sysdev_class);
  3107. unregister_reboot_notifier(&kvm_reboot_notifier);
  3108. unregister_cpu_notifier(&kvm_cpu_notifier);
  3109. on_each_cpu(hardware_disable, NULL, 0, 1);
  3110. kvm_x86_ops->hardware_unsetup();
  3111. kvm_x86_ops = NULL;
  3112. }
  3113. static __init int kvm_init(void)
  3114. {
  3115. static struct page *bad_page;
  3116. int r;
  3117. r = kvm_mmu_module_init();
  3118. if (r)
  3119. goto out4;
  3120. kvm_init_debug();
  3121. kvm_init_msr_list();
  3122. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  3123. r = -ENOMEM;
  3124. goto out;
  3125. }
  3126. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  3127. memset(__va(bad_page_address), 0, PAGE_SIZE);
  3128. return 0;
  3129. out:
  3130. kvm_exit_debug();
  3131. kvm_mmu_module_exit();
  3132. out4:
  3133. return r;
  3134. }
  3135. static __exit void kvm_exit(void)
  3136. {
  3137. kvm_exit_debug();
  3138. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  3139. kvm_mmu_module_exit();
  3140. }
  3141. module_init(kvm_init)
  3142. module_exit(kvm_exit)
  3143. EXPORT_SYMBOL_GPL(kvm_init_x86);
  3144. EXPORT_SYMBOL_GPL(kvm_exit_x86);