wmi.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <linux/if_arp.h>
  18. #include "wil6210.h"
  19. #include "txrx.h"
  20. #include "wmi.h"
  21. #include "trace.h"
  22. /**
  23. * WMI event receiving - theory of operations
  24. *
  25. * When firmware about to report WMI event, it fills memory area
  26. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  27. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  28. *
  29. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  30. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  31. * and handles events within the @wmi_event_worker. Every event get detached
  32. * from list, processed and deleted.
  33. *
  34. * Purpose for this mechanism is to release IRQ thread; otherwise,
  35. * if WMI event handling involves another WMI command flow, this 2-nd flow
  36. * won't be completed because of blocked IRQ thread.
  37. */
  38. /**
  39. * Addressing - theory of operations
  40. *
  41. * There are several buses present on the WIL6210 card.
  42. * Same memory areas are visible at different address on
  43. * the different busses. There are 3 main bus masters:
  44. * - MAC CPU (ucode)
  45. * - User CPU (firmware)
  46. * - AHB (host)
  47. *
  48. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  49. * AHB addresses starting from 0x880000
  50. *
  51. * Internally, firmware uses addresses that allows faster access but
  52. * are invisible from the host. To read from these addresses, alternative
  53. * AHB address must be used.
  54. *
  55. * Memory mapping
  56. * Linker address PCI/Host address
  57. * 0x880000 .. 0xa80000 2Mb BAR0
  58. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  59. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  60. */
  61. /**
  62. * @fw_mapping provides memory remapping table
  63. */
  64. static const struct {
  65. u32 from; /* linker address - from, inclusive */
  66. u32 to; /* linker address - to, exclusive */
  67. u32 host; /* PCI/Host address - BAR0 + 0x880000 */
  68. } fw_mapping[] = {
  69. {0x000000, 0x040000, 0x8c0000}, /* FW code RAM 256k */
  70. {0x800000, 0x808000, 0x900000}, /* FW data RAM 32k */
  71. {0x840000, 0x860000, 0x908000}, /* peripheral data RAM 128k/96k used */
  72. {0x880000, 0x88a000, 0x880000}, /* various RGF */
  73. {0x8c0000, 0x949000, 0x8c0000}, /* trivial mapping for upper area */
  74. /*
  75. * 920000..930000 ucode code RAM
  76. * 930000..932000 ucode data RAM
  77. * 932000..949000 back-door debug data
  78. */
  79. };
  80. /**
  81. * return AHB address for given firmware/ucode internal (linker) address
  82. * @x - internal address
  83. * If address have no valid AHB mapping, return 0
  84. */
  85. static u32 wmi_addr_remap(u32 x)
  86. {
  87. uint i;
  88. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  89. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  90. return x + fw_mapping[i].host - fw_mapping[i].from;
  91. }
  92. return 0;
  93. }
  94. /**
  95. * Check address validity for WMI buffer; remap if needed
  96. * @ptr - internal (linker) fw/ucode address
  97. *
  98. * Valid buffer should be DWORD aligned
  99. *
  100. * return address for accessing buffer from the host;
  101. * if buffer is not valid, return NULL.
  102. */
  103. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  104. {
  105. u32 off;
  106. u32 ptr = le32_to_cpu(ptr_);
  107. if (ptr % 4)
  108. return NULL;
  109. ptr = wmi_addr_remap(ptr);
  110. if (ptr < WIL6210_FW_HOST_OFF)
  111. return NULL;
  112. off = HOSTADDR(ptr);
  113. if (off > WIL6210_MEM_SIZE - 4)
  114. return NULL;
  115. return wil->csr + off;
  116. }
  117. /**
  118. * Check address validity
  119. */
  120. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  121. {
  122. u32 off;
  123. if (ptr % 4)
  124. return NULL;
  125. if (ptr < WIL6210_FW_HOST_OFF)
  126. return NULL;
  127. off = HOSTADDR(ptr);
  128. if (off > WIL6210_MEM_SIZE - 4)
  129. return NULL;
  130. return wil->csr + off;
  131. }
  132. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  133. struct wil6210_mbox_hdr *hdr)
  134. {
  135. void __iomem *src = wmi_buffer(wil, ptr);
  136. if (!src)
  137. return -EINVAL;
  138. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  139. return 0;
  140. }
  141. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  142. {
  143. struct {
  144. struct wil6210_mbox_hdr hdr;
  145. struct wil6210_mbox_hdr_wmi wmi;
  146. } __packed cmd = {
  147. .hdr = {
  148. .type = WIL_MBOX_HDR_TYPE_WMI,
  149. .flags = 0,
  150. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  151. },
  152. .wmi = {
  153. .id = cpu_to_le16(cmdid),
  154. .info1 = 0,
  155. },
  156. };
  157. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  158. struct wil6210_mbox_ring_desc d_head;
  159. u32 next_head;
  160. void __iomem *dst;
  161. void __iomem *head = wmi_addr(wil, r->head);
  162. uint retry;
  163. if (sizeof(cmd) + len > r->entry_size) {
  164. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  165. (int)(sizeof(cmd) + len), r->entry_size);
  166. return -ERANGE;
  167. }
  168. might_sleep();
  169. if (!test_bit(wil_status_fwready, &wil->status)) {
  170. wil_err(wil, "FW not ready\n");
  171. return -EAGAIN;
  172. }
  173. if (!head) {
  174. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  175. return -EINVAL;
  176. }
  177. /* read Tx head till it is not busy */
  178. for (retry = 5; retry > 0; retry--) {
  179. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  180. if (d_head.sync == 0)
  181. break;
  182. msleep(20);
  183. }
  184. if (d_head.sync != 0) {
  185. wil_err(wil, "WMI head busy\n");
  186. return -EBUSY;
  187. }
  188. /* next head */
  189. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  190. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  191. /* wait till FW finish with previous command */
  192. for (retry = 5; retry > 0; retry--) {
  193. r->tail = ioread32(wil->csr + HOST_MBOX +
  194. offsetof(struct wil6210_mbox_ctl, tx.tail));
  195. if (next_head != r->tail)
  196. break;
  197. msleep(20);
  198. }
  199. if (next_head == r->tail) {
  200. wil_err(wil, "WMI ring full\n");
  201. return -EBUSY;
  202. }
  203. dst = wmi_buffer(wil, d_head.addr);
  204. if (!dst) {
  205. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  206. le32_to_cpu(d_head.addr));
  207. return -EINVAL;
  208. }
  209. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  210. /* set command */
  211. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  212. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  213. sizeof(cmd), true);
  214. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  215. len, true);
  216. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  217. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  218. /* mark entry as full */
  219. iowrite32(1, wil->csr + HOSTADDR(r->head) +
  220. offsetof(struct wil6210_mbox_ring_desc, sync));
  221. /* advance next ptr */
  222. iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
  223. offsetof(struct wil6210_mbox_ctl, tx.head));
  224. trace_wil6210_wmi_cmd(cmdid, buf, len);
  225. /* interrupt to FW */
  226. iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
  227. return 0;
  228. }
  229. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  230. {
  231. int rc;
  232. mutex_lock(&wil->wmi_mutex);
  233. rc = __wmi_send(wil, cmdid, buf, len);
  234. mutex_unlock(&wil->wmi_mutex);
  235. return rc;
  236. }
  237. /*=== Event handlers ===*/
  238. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  239. {
  240. struct net_device *ndev = wil_to_ndev(wil);
  241. struct wireless_dev *wdev = wil->wdev;
  242. struct wmi_ready_event *evt = d;
  243. wil->fw_version = le32_to_cpu(evt->sw_version);
  244. wil->n_mids = evt->numof_additional_mids;
  245. wil_dbg_wmi(wil, "FW ver. %d; MAC %pM; %d MID's\n", wil->fw_version,
  246. evt->mac, wil->n_mids);
  247. if (!is_valid_ether_addr(ndev->dev_addr)) {
  248. memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
  249. memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
  250. }
  251. snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
  252. "%d", wil->fw_version);
  253. }
  254. static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
  255. int len)
  256. {
  257. wil_dbg_wmi(wil, "WMI: FW ready\n");
  258. set_bit(wil_status_fwready, &wil->status);
  259. /* reuse wmi_ready for the firmware ready indication */
  260. complete(&wil->wmi_ready);
  261. }
  262. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  263. {
  264. struct wmi_rx_mgmt_packet_event *data = d;
  265. struct wiphy *wiphy = wil_to_wiphy(wil);
  266. struct ieee80211_mgmt *rx_mgmt_frame =
  267. (struct ieee80211_mgmt *)data->payload;
  268. int ch_no = data->info.channel+1;
  269. u32 freq = ieee80211_channel_to_frequency(ch_no,
  270. IEEE80211_BAND_60GHZ);
  271. struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
  272. /* TODO convert LE to CPU */
  273. s32 signal = 0; /* TODO */
  274. __le16 fc = rx_mgmt_frame->frame_control;
  275. u32 d_len = le32_to_cpu(data->info.len);
  276. u16 d_status = le16_to_cpu(data->info.status);
  277. wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d\n",
  278. data->info.channel, data->info.mcs, data->info.snr);
  279. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  280. le16_to_cpu(fc));
  281. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  282. data->info.qid, data->info.mid, data->info.cid);
  283. if (!channel) {
  284. wil_err(wil, "Frame on unsupported channel\n");
  285. return;
  286. }
  287. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  288. struct cfg80211_bss *bss;
  289. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  290. d_len, signal, GFP_KERNEL);
  291. if (bss) {
  292. wil_dbg_wmi(wil, "Added BSS %pM\n",
  293. rx_mgmt_frame->bssid);
  294. cfg80211_put_bss(wiphy, bss);
  295. } else {
  296. wil_err(wil, "cfg80211_inform_bss() failed\n");
  297. }
  298. } else {
  299. cfg80211_rx_mgmt(wil->wdev, freq, signal,
  300. (void *)rx_mgmt_frame, d_len, 0, GFP_KERNEL);
  301. }
  302. }
  303. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  304. void *d, int len)
  305. {
  306. if (wil->scan_request) {
  307. struct wmi_scan_complete_event *data = d;
  308. bool aborted = (data->status != 0);
  309. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  310. cfg80211_scan_done(wil->scan_request, aborted);
  311. wil->scan_request = NULL;
  312. } else {
  313. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  314. }
  315. }
  316. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  317. {
  318. struct net_device *ndev = wil_to_ndev(wil);
  319. struct wireless_dev *wdev = wil->wdev;
  320. struct wmi_connect_event *evt = d;
  321. int ch; /* channel number */
  322. struct station_info sinfo;
  323. u8 *assoc_req_ie, *assoc_resp_ie;
  324. size_t assoc_req_ielen, assoc_resp_ielen;
  325. /* capinfo(u16) + listen_interval(u16) + IEs */
  326. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  327. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  328. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  329. if (len < sizeof(*evt)) {
  330. wil_err(wil, "Connect event too short : %d bytes\n", len);
  331. return;
  332. }
  333. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  334. evt->assoc_resp_len) {
  335. wil_err(wil,
  336. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  337. len, (int)sizeof(*evt), evt->beacon_ie_len,
  338. evt->assoc_req_len, evt->assoc_resp_len);
  339. return;
  340. }
  341. ch = evt->channel + 1;
  342. wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
  343. evt->bssid, ch, evt->cid);
  344. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  345. evt->assoc_info, len - sizeof(*evt), true);
  346. /* figure out IE's */
  347. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  348. assoc_req_ie_offset];
  349. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  350. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  351. assoc_req_ie = NULL;
  352. assoc_req_ielen = 0;
  353. }
  354. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  355. evt->assoc_req_len +
  356. assoc_resp_ie_offset];
  357. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  358. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  359. assoc_resp_ie = NULL;
  360. assoc_resp_ielen = 0;
  361. }
  362. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  363. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  364. if (!test_bit(wil_status_fwconnecting, &wil->status)) {
  365. wil_err(wil, "Not in connecting state\n");
  366. return;
  367. }
  368. del_timer_sync(&wil->connect_timer);
  369. cfg80211_connect_result(ndev, evt->bssid,
  370. assoc_req_ie, assoc_req_ielen,
  371. assoc_resp_ie, assoc_resp_ielen,
  372. WLAN_STATUS_SUCCESS, GFP_KERNEL);
  373. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  374. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  375. memset(&sinfo, 0, sizeof(sinfo));
  376. sinfo.generation = wil->sinfo_gen++;
  377. if (assoc_req_ie) {
  378. sinfo.assoc_req_ies = assoc_req_ie;
  379. sinfo.assoc_req_ies_len = assoc_req_ielen;
  380. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  381. }
  382. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  383. }
  384. clear_bit(wil_status_fwconnecting, &wil->status);
  385. set_bit(wil_status_fwconnected, &wil->status);
  386. /* FIXME FW can transmit only ucast frames to peer */
  387. /* FIXME real ring_id instead of hard coded 0 */
  388. memcpy(wil->dst_addr[0], evt->bssid, ETH_ALEN);
  389. wil->pending_connect_cid = evt->cid;
  390. queue_work(wil->wmi_wq_conn, &wil->connect_worker);
  391. }
  392. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  393. void *d, int len)
  394. {
  395. struct wmi_disconnect_event *evt = d;
  396. wil_dbg_wmi(wil, "Disconnect %pM reason %d proto %d wmi\n",
  397. evt->bssid,
  398. evt->protocol_reason_status, evt->disconnect_reason);
  399. wil->sinfo_gen++;
  400. wil6210_disconnect(wil, evt->bssid);
  401. }
  402. static void wmi_evt_notify(struct wil6210_priv *wil, int id, void *d, int len)
  403. {
  404. struct wmi_notify_req_done_event *evt = d;
  405. if (len < sizeof(*evt)) {
  406. wil_err(wil, "Short NOTIFY event\n");
  407. return;
  408. }
  409. wil->stats.tsf = le64_to_cpu(evt->tsf);
  410. wil->stats.snr = le32_to_cpu(evt->snr_val);
  411. wil->stats.bf_mcs = le16_to_cpu(evt->bf_mcs);
  412. wil->stats.my_rx_sector = le16_to_cpu(evt->my_rx_sector);
  413. wil->stats.my_tx_sector = le16_to_cpu(evt->my_tx_sector);
  414. wil->stats.peer_rx_sector = le16_to_cpu(evt->other_rx_sector);
  415. wil->stats.peer_tx_sector = le16_to_cpu(evt->other_tx_sector);
  416. wil_dbg_wmi(wil, "Link status, MCS %d TSF 0x%016llx\n"
  417. "BF status 0x%08x SNR 0x%08x\n"
  418. "Tx Tpt %d goodput %d Rx goodput %d\n"
  419. "Sectors(rx:tx) my %d:%d peer %d:%d\n",
  420. wil->stats.bf_mcs, wil->stats.tsf, evt->status,
  421. wil->stats.snr, le32_to_cpu(evt->tx_tpt),
  422. le32_to_cpu(evt->tx_goodput), le32_to_cpu(evt->rx_goodput),
  423. wil->stats.my_rx_sector, wil->stats.my_tx_sector,
  424. wil->stats.peer_rx_sector, wil->stats.peer_tx_sector);
  425. }
  426. /*
  427. * Firmware reports EAPOL frame using WME event.
  428. * Reconstruct Ethernet frame and deliver it via normal Rx
  429. */
  430. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  431. void *d, int len)
  432. {
  433. struct net_device *ndev = wil_to_ndev(wil);
  434. struct wmi_eapol_rx_event *evt = d;
  435. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  436. int sz = eapol_len + ETH_HLEN;
  437. struct sk_buff *skb;
  438. struct ethhdr *eth;
  439. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  440. evt->src_mac);
  441. if (eapol_len > 196) { /* TODO: revisit size limit */
  442. wil_err(wil, "EAPOL too large\n");
  443. return;
  444. }
  445. skb = alloc_skb(sz, GFP_KERNEL);
  446. if (!skb) {
  447. wil_err(wil, "Failed to allocate skb\n");
  448. return;
  449. }
  450. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  451. memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
  452. memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
  453. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  454. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  455. skb->protocol = eth_type_trans(skb, ndev);
  456. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  457. ndev->stats.rx_packets++;
  458. ndev->stats.rx_bytes += skb->len;
  459. } else {
  460. ndev->stats.rx_dropped++;
  461. }
  462. }
  463. static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
  464. {
  465. struct net_device *ndev = wil_to_ndev(wil);
  466. struct wmi_data_port_open_event *evt = d;
  467. wil_dbg_wmi(wil, "Link UP for CID %d\n", evt->cid);
  468. netif_carrier_on(ndev);
  469. }
  470. static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
  471. {
  472. struct net_device *ndev = wil_to_ndev(wil);
  473. struct wmi_wbe_link_down_event *evt = d;
  474. wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
  475. evt->cid, le32_to_cpu(evt->reason));
  476. netif_carrier_off(ndev);
  477. }
  478. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  479. int len)
  480. {
  481. struct wmi_vring_ba_status_event *evt = d;
  482. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
  483. evt->ringid, evt->status ? "N/A" : "OK", evt->agg_wsize,
  484. __le16_to_cpu(evt->ba_timeout));
  485. }
  486. static const struct {
  487. int eventid;
  488. void (*handler)(struct wil6210_priv *wil, int eventid,
  489. void *data, int data_len);
  490. } wmi_evt_handlers[] = {
  491. {WMI_READY_EVENTID, wmi_evt_ready},
  492. {WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
  493. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  494. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  495. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  496. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  497. {WMI_NOTIFY_REQ_DONE_EVENTID, wmi_evt_notify},
  498. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  499. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
  500. {WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
  501. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  502. };
  503. /*
  504. * Run in IRQ context
  505. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  506. * that will be eventually handled by the @wmi_event_worker in the thread
  507. * context of thread "wil6210_wmi"
  508. */
  509. void wmi_recv_cmd(struct wil6210_priv *wil)
  510. {
  511. struct wil6210_mbox_ring_desc d_tail;
  512. struct wil6210_mbox_hdr hdr;
  513. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  514. struct pending_wmi_event *evt;
  515. u8 *cmd;
  516. void __iomem *src;
  517. ulong flags;
  518. if (!test_bit(wil_status_reset_done, &wil->status)) {
  519. wil_err(wil, "Reset not completed\n");
  520. return;
  521. }
  522. for (;;) {
  523. u16 len;
  524. r->head = ioread32(wil->csr + HOST_MBOX +
  525. offsetof(struct wil6210_mbox_ctl, rx.head));
  526. if (r->tail == r->head)
  527. return;
  528. /* read cmd from tail */
  529. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  530. sizeof(struct wil6210_mbox_ring_desc));
  531. if (d_tail.sync == 0) {
  532. wil_err(wil, "Mbox evt not owned by FW?\n");
  533. return;
  534. }
  535. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  536. wil_err(wil, "Mbox evt at 0x%08x?\n",
  537. le32_to_cpu(d_tail.addr));
  538. return;
  539. }
  540. len = le16_to_cpu(hdr.len);
  541. src = wmi_buffer(wil, d_tail.addr) +
  542. sizeof(struct wil6210_mbox_hdr);
  543. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  544. event.wmi) + len, 4),
  545. GFP_KERNEL);
  546. if (!evt)
  547. return;
  548. evt->event.hdr = hdr;
  549. cmd = (void *)&evt->event.wmi;
  550. wil_memcpy_fromio_32(cmd, src, len);
  551. /* mark entry as empty */
  552. iowrite32(0, wil->csr + HOSTADDR(r->tail) +
  553. offsetof(struct wil6210_mbox_ring_desc, sync));
  554. /* indicate */
  555. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  556. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  557. hdr.flags);
  558. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  559. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  560. u16 id = le16_to_cpu(evt->event.wmi.id);
  561. wil_dbg_wmi(wil, "WMI event 0x%04x\n", id);
  562. trace_wil6210_wmi_event(id, &evt->event.wmi, len);
  563. }
  564. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  565. &evt->event.hdr, sizeof(hdr) + len, true);
  566. /* advance tail */
  567. r->tail = r->base + ((r->tail - r->base +
  568. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  569. iowrite32(r->tail, wil->csr + HOST_MBOX +
  570. offsetof(struct wil6210_mbox_ctl, rx.tail));
  571. /* add to the pending list */
  572. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  573. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  574. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  575. {
  576. int q = queue_work(wil->wmi_wq,
  577. &wil->wmi_event_worker);
  578. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  579. }
  580. }
  581. }
  582. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  583. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  584. {
  585. int rc;
  586. int remain;
  587. mutex_lock(&wil->wmi_mutex);
  588. rc = __wmi_send(wil, cmdid, buf, len);
  589. if (rc)
  590. goto out;
  591. wil->reply_id = reply_id;
  592. wil->reply_buf = reply;
  593. wil->reply_size = reply_size;
  594. remain = wait_for_completion_timeout(&wil->wmi_ready,
  595. msecs_to_jiffies(to_msec));
  596. if (0 == remain) {
  597. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  598. cmdid, reply_id, to_msec);
  599. rc = -ETIME;
  600. } else {
  601. wil_dbg_wmi(wil,
  602. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  603. cmdid, reply_id,
  604. to_msec - jiffies_to_msecs(remain));
  605. }
  606. wil->reply_id = 0;
  607. wil->reply_buf = NULL;
  608. wil->reply_size = 0;
  609. out:
  610. mutex_unlock(&wil->wmi_mutex);
  611. return rc;
  612. }
  613. int wmi_echo(struct wil6210_priv *wil)
  614. {
  615. struct wmi_echo_cmd cmd = {
  616. .value = cpu_to_le32(0x12345678),
  617. };
  618. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  619. WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
  620. }
  621. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  622. {
  623. struct wmi_set_mac_address_cmd cmd;
  624. memcpy(cmd.mac, addr, ETH_ALEN);
  625. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  626. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  627. }
  628. int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype, u8 chan)
  629. {
  630. int rc;
  631. struct wmi_pcp_start_cmd cmd = {
  632. .bcon_interval = cpu_to_le16(bi),
  633. .network_type = wmi_nettype,
  634. .disable_sec_offload = 1,
  635. .channel = chan - 1,
  636. };
  637. struct {
  638. struct wil6210_mbox_hdr_wmi wmi;
  639. struct wmi_pcp_started_event evt;
  640. } __packed reply;
  641. if (!wil->secure_pcp)
  642. cmd.disable_sec = 1;
  643. /*
  644. * Processing time may be huge, in case of secure AP it takes about
  645. * 3500ms for FW to start AP
  646. */
  647. rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
  648. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  649. if (rc)
  650. return rc;
  651. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  652. rc = -EINVAL;
  653. return rc;
  654. }
  655. int wmi_pcp_stop(struct wil6210_priv *wil)
  656. {
  657. return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
  658. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  659. }
  660. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  661. {
  662. struct wmi_set_ssid_cmd cmd = {
  663. .ssid_len = cpu_to_le32(ssid_len),
  664. };
  665. if (ssid_len > sizeof(cmd.ssid))
  666. return -EINVAL;
  667. memcpy(cmd.ssid, ssid, ssid_len);
  668. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  669. }
  670. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  671. {
  672. int rc;
  673. struct {
  674. struct wil6210_mbox_hdr_wmi wmi;
  675. struct wmi_set_ssid_cmd cmd;
  676. } __packed reply;
  677. int len; /* reply.cmd.ssid_len in CPU order */
  678. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  679. &reply, sizeof(reply), 20);
  680. if (rc)
  681. return rc;
  682. len = le32_to_cpu(reply.cmd.ssid_len);
  683. if (len > sizeof(reply.cmd.ssid))
  684. return -EINVAL;
  685. *ssid_len = len;
  686. memcpy(ssid, reply.cmd.ssid, len);
  687. return 0;
  688. }
  689. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  690. {
  691. struct wmi_set_pcp_channel_cmd cmd = {
  692. .channel = channel - 1,
  693. };
  694. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  695. }
  696. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  697. {
  698. int rc;
  699. struct {
  700. struct wil6210_mbox_hdr_wmi wmi;
  701. struct wmi_set_pcp_channel_cmd cmd;
  702. } __packed reply;
  703. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  704. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  705. if (rc)
  706. return rc;
  707. if (reply.cmd.channel > 3)
  708. return -EINVAL;
  709. *channel = reply.cmd.channel + 1;
  710. return 0;
  711. }
  712. int wmi_p2p_cfg(struct wil6210_priv *wil, int channel)
  713. {
  714. struct wmi_p2p_cfg_cmd cmd = {
  715. .discovery_mode = WMI_DISCOVERY_MODE_NON_OFFLOAD,
  716. .channel = channel - 1,
  717. };
  718. return wmi_send(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd));
  719. }
  720. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  721. const void *mac_addr)
  722. {
  723. struct wmi_delete_cipher_key_cmd cmd = {
  724. .key_index = key_index,
  725. };
  726. if (mac_addr)
  727. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  728. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  729. }
  730. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  731. const void *mac_addr, int key_len, const void *key)
  732. {
  733. struct wmi_add_cipher_key_cmd cmd = {
  734. .key_index = key_index,
  735. .key_usage = WMI_KEY_USE_PAIRWISE,
  736. .key_len = key_len,
  737. };
  738. if (!key || (key_len > sizeof(cmd.key)))
  739. return -EINVAL;
  740. memcpy(cmd.key, key, key_len);
  741. if (mac_addr)
  742. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  743. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  744. }
  745. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  746. {
  747. int rc;
  748. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  749. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  750. if (!cmd)
  751. return -ENOMEM;
  752. cmd->mgmt_frm_type = type;
  753. /* BUG: FW API define ieLen as u8. Will fix FW */
  754. cmd->ie_len = cpu_to_le16(ie_len);
  755. memcpy(cmd->ie_info, ie, ie_len);
  756. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  757. kfree(cmd);
  758. return rc;
  759. }
  760. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  761. {
  762. struct wireless_dev *wdev = wil->wdev;
  763. struct net_device *ndev = wil_to_ndev(wil);
  764. struct wmi_cfg_rx_chain_cmd cmd = {
  765. .action = WMI_RX_CHAIN_ADD,
  766. .rx_sw_ring = {
  767. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  768. .ring_mem_base = cpu_to_le64(vring->pa),
  769. .ring_size = cpu_to_le16(vring->size),
  770. },
  771. .mid = 0, /* TODO - what is it? */
  772. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  773. };
  774. struct {
  775. struct wil6210_mbox_hdr_wmi wmi;
  776. struct wmi_cfg_rx_chain_done_event evt;
  777. } __packed evt;
  778. int rc;
  779. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  780. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  781. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  782. if (ch)
  783. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  784. cmd.sniffer_cfg.phy_info_mode =
  785. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  786. cmd.sniffer_cfg.phy_support =
  787. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  788. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  789. }
  790. /* typical time for secure PCP is 840ms */
  791. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  792. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  793. if (rc)
  794. return rc;
  795. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  796. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  797. le32_to_cpu(evt.evt.status), vring->hwtail);
  798. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  799. rc = -EINVAL;
  800. return rc;
  801. }
  802. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_m, u32 *t_r)
  803. {
  804. int rc;
  805. struct wmi_temp_sense_cmd cmd = {
  806. .measure_marlon_m_en = cpu_to_le32(!!t_m),
  807. .measure_marlon_r_en = cpu_to_le32(!!t_r),
  808. };
  809. struct {
  810. struct wil6210_mbox_hdr_wmi wmi;
  811. struct wmi_temp_sense_done_event evt;
  812. } __packed reply;
  813. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
  814. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  815. if (rc)
  816. return rc;
  817. if (t_m)
  818. *t_m = le32_to_cpu(reply.evt.marlon_m_t1000);
  819. if (t_r)
  820. *t_r = le32_to_cpu(reply.evt.marlon_r_t1000);
  821. return 0;
  822. }
  823. void wmi_event_flush(struct wil6210_priv *wil)
  824. {
  825. struct pending_wmi_event *evt, *t;
  826. wil_dbg_wmi(wil, "%s()\n", __func__);
  827. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  828. list_del(&evt->list);
  829. kfree(evt);
  830. }
  831. }
  832. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  833. void *d, int len)
  834. {
  835. uint i;
  836. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  837. if (wmi_evt_handlers[i].eventid == id) {
  838. wmi_evt_handlers[i].handler(wil, id, d, len);
  839. return true;
  840. }
  841. }
  842. return false;
  843. }
  844. static void wmi_event_handle(struct wil6210_priv *wil,
  845. struct wil6210_mbox_hdr *hdr)
  846. {
  847. u16 len = le16_to_cpu(hdr->len);
  848. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  849. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  850. struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
  851. void *evt_data = (void *)(&wmi[1]);
  852. u16 id = le16_to_cpu(wmi->id);
  853. /* check if someone waits for this event */
  854. if (wil->reply_id && wil->reply_id == id) {
  855. if (wil->reply_buf) {
  856. memcpy(wil->reply_buf, wmi,
  857. min(len, wil->reply_size));
  858. } else {
  859. wmi_evt_call_handler(wil, id, evt_data,
  860. len - sizeof(*wmi));
  861. }
  862. wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
  863. complete(&wil->wmi_ready);
  864. return;
  865. }
  866. /* unsolicited event */
  867. /* search for handler */
  868. if (!wmi_evt_call_handler(wil, id, evt_data,
  869. len - sizeof(*wmi))) {
  870. wil_err(wil, "Unhandled event 0x%04x\n", id);
  871. }
  872. } else {
  873. wil_err(wil, "Unknown event type\n");
  874. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  875. hdr, sizeof(*hdr) + len, true);
  876. }
  877. }
  878. /*
  879. * Retrieve next WMI event from the pending list
  880. */
  881. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  882. {
  883. ulong flags;
  884. struct list_head *ret = NULL;
  885. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  886. if (!list_empty(&wil->pending_wmi_ev)) {
  887. ret = wil->pending_wmi_ev.next;
  888. list_del(ret);
  889. }
  890. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  891. return ret;
  892. }
  893. /*
  894. * Handler for the WMI events
  895. */
  896. void wmi_event_worker(struct work_struct *work)
  897. {
  898. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  899. wmi_event_worker);
  900. struct pending_wmi_event *evt;
  901. struct list_head *lh;
  902. while ((lh = next_wmi_ev(wil)) != NULL) {
  903. evt = list_entry(lh, struct pending_wmi_event, list);
  904. wmi_event_handle(wil, &evt->event.hdr);
  905. kfree(evt);
  906. }
  907. }