flexcan.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151
  1. /*
  2. * flexcan.c - FLEXCAN CAN controller driver
  3. *
  4. * Copyright (c) 2005-2006 Varma Electronics Oy
  5. * Copyright (c) 2009 Sascha Hauer, Pengutronix
  6. * Copyright (c) 2010 Marc Kleine-Budde, Pengutronix
  7. *
  8. * Based on code originally by Andrey Volkov <avolkov@varma-el.com>
  9. *
  10. * LICENCE:
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation version 2.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. */
  21. #include <linux/netdevice.h>
  22. #include <linux/can.h>
  23. #include <linux/can/dev.h>
  24. #include <linux/can/error.h>
  25. #include <linux/can/platform/flexcan.h>
  26. #include <linux/clk.h>
  27. #include <linux/delay.h>
  28. #include <linux/if_arp.h>
  29. #include <linux/if_ether.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/io.h>
  32. #include <linux/kernel.h>
  33. #include <linux/list.h>
  34. #include <linux/module.h>
  35. #include <linux/of.h>
  36. #include <linux/of_device.h>
  37. #include <linux/platform_device.h>
  38. #include <linux/pinctrl/consumer.h>
  39. #define DRV_NAME "flexcan"
  40. /* 8 for RX fifo and 2 error handling */
  41. #define FLEXCAN_NAPI_WEIGHT (8 + 2)
  42. /* FLEXCAN module configuration register (CANMCR) bits */
  43. #define FLEXCAN_MCR_MDIS BIT(31)
  44. #define FLEXCAN_MCR_FRZ BIT(30)
  45. #define FLEXCAN_MCR_FEN BIT(29)
  46. #define FLEXCAN_MCR_HALT BIT(28)
  47. #define FLEXCAN_MCR_NOT_RDY BIT(27)
  48. #define FLEXCAN_MCR_WAK_MSK BIT(26)
  49. #define FLEXCAN_MCR_SOFTRST BIT(25)
  50. #define FLEXCAN_MCR_FRZ_ACK BIT(24)
  51. #define FLEXCAN_MCR_SUPV BIT(23)
  52. #define FLEXCAN_MCR_SLF_WAK BIT(22)
  53. #define FLEXCAN_MCR_WRN_EN BIT(21)
  54. #define FLEXCAN_MCR_LPM_ACK BIT(20)
  55. #define FLEXCAN_MCR_WAK_SRC BIT(19)
  56. #define FLEXCAN_MCR_DOZE BIT(18)
  57. #define FLEXCAN_MCR_SRX_DIS BIT(17)
  58. #define FLEXCAN_MCR_BCC BIT(16)
  59. #define FLEXCAN_MCR_LPRIO_EN BIT(13)
  60. #define FLEXCAN_MCR_AEN BIT(12)
  61. #define FLEXCAN_MCR_MAXMB(x) ((x) & 0xf)
  62. #define FLEXCAN_MCR_IDAM_A (0 << 8)
  63. #define FLEXCAN_MCR_IDAM_B (1 << 8)
  64. #define FLEXCAN_MCR_IDAM_C (2 << 8)
  65. #define FLEXCAN_MCR_IDAM_D (3 << 8)
  66. /* FLEXCAN control register (CANCTRL) bits */
  67. #define FLEXCAN_CTRL_PRESDIV(x) (((x) & 0xff) << 24)
  68. #define FLEXCAN_CTRL_RJW(x) (((x) & 0x03) << 22)
  69. #define FLEXCAN_CTRL_PSEG1(x) (((x) & 0x07) << 19)
  70. #define FLEXCAN_CTRL_PSEG2(x) (((x) & 0x07) << 16)
  71. #define FLEXCAN_CTRL_BOFF_MSK BIT(15)
  72. #define FLEXCAN_CTRL_ERR_MSK BIT(14)
  73. #define FLEXCAN_CTRL_CLK_SRC BIT(13)
  74. #define FLEXCAN_CTRL_LPB BIT(12)
  75. #define FLEXCAN_CTRL_TWRN_MSK BIT(11)
  76. #define FLEXCAN_CTRL_RWRN_MSK BIT(10)
  77. #define FLEXCAN_CTRL_SMP BIT(7)
  78. #define FLEXCAN_CTRL_BOFF_REC BIT(6)
  79. #define FLEXCAN_CTRL_TSYN BIT(5)
  80. #define FLEXCAN_CTRL_LBUF BIT(4)
  81. #define FLEXCAN_CTRL_LOM BIT(3)
  82. #define FLEXCAN_CTRL_PROPSEG(x) ((x) & 0x07)
  83. #define FLEXCAN_CTRL_ERR_BUS (FLEXCAN_CTRL_ERR_MSK)
  84. #define FLEXCAN_CTRL_ERR_STATE \
  85. (FLEXCAN_CTRL_TWRN_MSK | FLEXCAN_CTRL_RWRN_MSK | \
  86. FLEXCAN_CTRL_BOFF_MSK)
  87. #define FLEXCAN_CTRL_ERR_ALL \
  88. (FLEXCAN_CTRL_ERR_BUS | FLEXCAN_CTRL_ERR_STATE)
  89. /* FLEXCAN error and status register (ESR) bits */
  90. #define FLEXCAN_ESR_TWRN_INT BIT(17)
  91. #define FLEXCAN_ESR_RWRN_INT BIT(16)
  92. #define FLEXCAN_ESR_BIT1_ERR BIT(15)
  93. #define FLEXCAN_ESR_BIT0_ERR BIT(14)
  94. #define FLEXCAN_ESR_ACK_ERR BIT(13)
  95. #define FLEXCAN_ESR_CRC_ERR BIT(12)
  96. #define FLEXCAN_ESR_FRM_ERR BIT(11)
  97. #define FLEXCAN_ESR_STF_ERR BIT(10)
  98. #define FLEXCAN_ESR_TX_WRN BIT(9)
  99. #define FLEXCAN_ESR_RX_WRN BIT(8)
  100. #define FLEXCAN_ESR_IDLE BIT(7)
  101. #define FLEXCAN_ESR_TXRX BIT(6)
  102. #define FLEXCAN_EST_FLT_CONF_SHIFT (4)
  103. #define FLEXCAN_ESR_FLT_CONF_MASK (0x3 << FLEXCAN_EST_FLT_CONF_SHIFT)
  104. #define FLEXCAN_ESR_FLT_CONF_ACTIVE (0x0 << FLEXCAN_EST_FLT_CONF_SHIFT)
  105. #define FLEXCAN_ESR_FLT_CONF_PASSIVE (0x1 << FLEXCAN_EST_FLT_CONF_SHIFT)
  106. #define FLEXCAN_ESR_BOFF_INT BIT(2)
  107. #define FLEXCAN_ESR_ERR_INT BIT(1)
  108. #define FLEXCAN_ESR_WAK_INT BIT(0)
  109. #define FLEXCAN_ESR_ERR_BUS \
  110. (FLEXCAN_ESR_BIT1_ERR | FLEXCAN_ESR_BIT0_ERR | \
  111. FLEXCAN_ESR_ACK_ERR | FLEXCAN_ESR_CRC_ERR | \
  112. FLEXCAN_ESR_FRM_ERR | FLEXCAN_ESR_STF_ERR)
  113. #define FLEXCAN_ESR_ERR_STATE \
  114. (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | FLEXCAN_ESR_BOFF_INT)
  115. #define FLEXCAN_ESR_ERR_ALL \
  116. (FLEXCAN_ESR_ERR_BUS | FLEXCAN_ESR_ERR_STATE)
  117. #define FLEXCAN_ESR_ALL_INT \
  118. (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | \
  119. FLEXCAN_ESR_BOFF_INT | FLEXCAN_ESR_ERR_INT)
  120. /* FLEXCAN interrupt flag register (IFLAG) bits */
  121. #define FLEXCAN_TX_BUF_ID 8
  122. #define FLEXCAN_IFLAG_BUF(x) BIT(x)
  123. #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7)
  124. #define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6)
  125. #define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5)
  126. #define FLEXCAN_IFLAG_DEFAULT \
  127. (FLEXCAN_IFLAG_RX_FIFO_OVERFLOW | FLEXCAN_IFLAG_RX_FIFO_AVAILABLE | \
  128. FLEXCAN_IFLAG_BUF(FLEXCAN_TX_BUF_ID))
  129. /* FLEXCAN message buffers */
  130. #define FLEXCAN_MB_CNT_CODE(x) (((x) & 0xf) << 24)
  131. #define FLEXCAN_MB_CNT_SRR BIT(22)
  132. #define FLEXCAN_MB_CNT_IDE BIT(21)
  133. #define FLEXCAN_MB_CNT_RTR BIT(20)
  134. #define FLEXCAN_MB_CNT_LENGTH(x) (((x) & 0xf) << 16)
  135. #define FLEXCAN_MB_CNT_TIMESTAMP(x) ((x) & 0xffff)
  136. #define FLEXCAN_MB_CODE_MASK (0xf0ffffff)
  137. /* Structure of the message buffer */
  138. struct flexcan_mb {
  139. u32 can_ctrl;
  140. u32 can_id;
  141. u32 data[2];
  142. };
  143. /* Structure of the hardware registers */
  144. struct flexcan_regs {
  145. u32 mcr; /* 0x00 */
  146. u32 ctrl; /* 0x04 */
  147. u32 timer; /* 0x08 */
  148. u32 _reserved1; /* 0x0c */
  149. u32 rxgmask; /* 0x10 */
  150. u32 rx14mask; /* 0x14 */
  151. u32 rx15mask; /* 0x18 */
  152. u32 ecr; /* 0x1c */
  153. u32 esr; /* 0x20 */
  154. u32 imask2; /* 0x24 */
  155. u32 imask1; /* 0x28 */
  156. u32 iflag2; /* 0x2c */
  157. u32 iflag1; /* 0x30 */
  158. u32 crl2; /* 0x34 */
  159. u32 esr2; /* 0x38 */
  160. u32 imeur; /* 0x3c */
  161. u32 lrfr; /* 0x40 */
  162. u32 crcr; /* 0x44 */
  163. u32 rxfgmask; /* 0x48 */
  164. u32 rxfir; /* 0x4c */
  165. u32 _reserved3[12];
  166. struct flexcan_mb cantxfg[64];
  167. };
  168. struct flexcan_devtype_data {
  169. u32 hw_ver; /* hardware controller version */
  170. };
  171. struct flexcan_priv {
  172. struct can_priv can;
  173. struct net_device *dev;
  174. struct napi_struct napi;
  175. void __iomem *base;
  176. u32 reg_esr;
  177. u32 reg_ctrl_default;
  178. struct clk *clk;
  179. struct flexcan_platform_data *pdata;
  180. const struct flexcan_devtype_data *devtype_data;
  181. };
  182. static struct flexcan_devtype_data fsl_p1010_devtype_data = {
  183. .hw_ver = 3,
  184. };
  185. static struct flexcan_devtype_data fsl_imx6q_devtype_data = {
  186. .hw_ver = 10,
  187. };
  188. static const struct can_bittiming_const flexcan_bittiming_const = {
  189. .name = DRV_NAME,
  190. .tseg1_min = 4,
  191. .tseg1_max = 16,
  192. .tseg2_min = 2,
  193. .tseg2_max = 8,
  194. .sjw_max = 4,
  195. .brp_min = 1,
  196. .brp_max = 256,
  197. .brp_inc = 1,
  198. };
  199. /*
  200. * Abstract off the read/write for arm versus ppc.
  201. */
  202. #if defined(__BIG_ENDIAN)
  203. static inline u32 flexcan_read(void __iomem *addr)
  204. {
  205. return in_be32(addr);
  206. }
  207. static inline void flexcan_write(u32 val, void __iomem *addr)
  208. {
  209. out_be32(addr, val);
  210. }
  211. #else
  212. static inline u32 flexcan_read(void __iomem *addr)
  213. {
  214. return readl(addr);
  215. }
  216. static inline void flexcan_write(u32 val, void __iomem *addr)
  217. {
  218. writel(val, addr);
  219. }
  220. #endif
  221. /*
  222. * Swtich transceiver on or off
  223. */
  224. static void flexcan_transceiver_switch(const struct flexcan_priv *priv, int on)
  225. {
  226. if (priv->pdata && priv->pdata->transceiver_switch)
  227. priv->pdata->transceiver_switch(on);
  228. }
  229. static inline int flexcan_has_and_handle_berr(const struct flexcan_priv *priv,
  230. u32 reg_esr)
  231. {
  232. return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  233. (reg_esr & FLEXCAN_ESR_ERR_BUS);
  234. }
  235. static inline void flexcan_chip_enable(struct flexcan_priv *priv)
  236. {
  237. struct flexcan_regs __iomem *regs = priv->base;
  238. u32 reg;
  239. reg = flexcan_read(&regs->mcr);
  240. reg &= ~FLEXCAN_MCR_MDIS;
  241. flexcan_write(reg, &regs->mcr);
  242. udelay(10);
  243. }
  244. static inline void flexcan_chip_disable(struct flexcan_priv *priv)
  245. {
  246. struct flexcan_regs __iomem *regs = priv->base;
  247. u32 reg;
  248. reg = flexcan_read(&regs->mcr);
  249. reg |= FLEXCAN_MCR_MDIS;
  250. flexcan_write(reg, &regs->mcr);
  251. }
  252. static int flexcan_get_berr_counter(const struct net_device *dev,
  253. struct can_berr_counter *bec)
  254. {
  255. const struct flexcan_priv *priv = netdev_priv(dev);
  256. struct flexcan_regs __iomem *regs = priv->base;
  257. u32 reg = flexcan_read(&regs->ecr);
  258. bec->txerr = (reg >> 0) & 0xff;
  259. bec->rxerr = (reg >> 8) & 0xff;
  260. return 0;
  261. }
  262. static int flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev)
  263. {
  264. const struct flexcan_priv *priv = netdev_priv(dev);
  265. struct flexcan_regs __iomem *regs = priv->base;
  266. struct can_frame *cf = (struct can_frame *)skb->data;
  267. u32 can_id;
  268. u32 ctrl = FLEXCAN_MB_CNT_CODE(0xc) | (cf->can_dlc << 16);
  269. if (can_dropped_invalid_skb(dev, skb))
  270. return NETDEV_TX_OK;
  271. netif_stop_queue(dev);
  272. if (cf->can_id & CAN_EFF_FLAG) {
  273. can_id = cf->can_id & CAN_EFF_MASK;
  274. ctrl |= FLEXCAN_MB_CNT_IDE | FLEXCAN_MB_CNT_SRR;
  275. } else {
  276. can_id = (cf->can_id & CAN_SFF_MASK) << 18;
  277. }
  278. if (cf->can_id & CAN_RTR_FLAG)
  279. ctrl |= FLEXCAN_MB_CNT_RTR;
  280. if (cf->can_dlc > 0) {
  281. u32 data = be32_to_cpup((__be32 *)&cf->data[0]);
  282. flexcan_write(data, &regs->cantxfg[FLEXCAN_TX_BUF_ID].data[0]);
  283. }
  284. if (cf->can_dlc > 3) {
  285. u32 data = be32_to_cpup((__be32 *)&cf->data[4]);
  286. flexcan_write(data, &regs->cantxfg[FLEXCAN_TX_BUF_ID].data[1]);
  287. }
  288. can_put_echo_skb(skb, dev, 0);
  289. flexcan_write(can_id, &regs->cantxfg[FLEXCAN_TX_BUF_ID].can_id);
  290. flexcan_write(ctrl, &regs->cantxfg[FLEXCAN_TX_BUF_ID].can_ctrl);
  291. return NETDEV_TX_OK;
  292. }
  293. static void do_bus_err(struct net_device *dev,
  294. struct can_frame *cf, u32 reg_esr)
  295. {
  296. struct flexcan_priv *priv = netdev_priv(dev);
  297. int rx_errors = 0, tx_errors = 0;
  298. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  299. if (reg_esr & FLEXCAN_ESR_BIT1_ERR) {
  300. netdev_dbg(dev, "BIT1_ERR irq\n");
  301. cf->data[2] |= CAN_ERR_PROT_BIT1;
  302. tx_errors = 1;
  303. }
  304. if (reg_esr & FLEXCAN_ESR_BIT0_ERR) {
  305. netdev_dbg(dev, "BIT0_ERR irq\n");
  306. cf->data[2] |= CAN_ERR_PROT_BIT0;
  307. tx_errors = 1;
  308. }
  309. if (reg_esr & FLEXCAN_ESR_ACK_ERR) {
  310. netdev_dbg(dev, "ACK_ERR irq\n");
  311. cf->can_id |= CAN_ERR_ACK;
  312. cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
  313. tx_errors = 1;
  314. }
  315. if (reg_esr & FLEXCAN_ESR_CRC_ERR) {
  316. netdev_dbg(dev, "CRC_ERR irq\n");
  317. cf->data[2] |= CAN_ERR_PROT_BIT;
  318. cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
  319. rx_errors = 1;
  320. }
  321. if (reg_esr & FLEXCAN_ESR_FRM_ERR) {
  322. netdev_dbg(dev, "FRM_ERR irq\n");
  323. cf->data[2] |= CAN_ERR_PROT_FORM;
  324. rx_errors = 1;
  325. }
  326. if (reg_esr & FLEXCAN_ESR_STF_ERR) {
  327. netdev_dbg(dev, "STF_ERR irq\n");
  328. cf->data[2] |= CAN_ERR_PROT_STUFF;
  329. rx_errors = 1;
  330. }
  331. priv->can.can_stats.bus_error++;
  332. if (rx_errors)
  333. dev->stats.rx_errors++;
  334. if (tx_errors)
  335. dev->stats.tx_errors++;
  336. }
  337. static int flexcan_poll_bus_err(struct net_device *dev, u32 reg_esr)
  338. {
  339. struct sk_buff *skb;
  340. struct can_frame *cf;
  341. skb = alloc_can_err_skb(dev, &cf);
  342. if (unlikely(!skb))
  343. return 0;
  344. do_bus_err(dev, cf, reg_esr);
  345. netif_receive_skb(skb);
  346. dev->stats.rx_packets++;
  347. dev->stats.rx_bytes += cf->can_dlc;
  348. return 1;
  349. }
  350. static void do_state(struct net_device *dev,
  351. struct can_frame *cf, enum can_state new_state)
  352. {
  353. struct flexcan_priv *priv = netdev_priv(dev);
  354. struct can_berr_counter bec;
  355. flexcan_get_berr_counter(dev, &bec);
  356. switch (priv->can.state) {
  357. case CAN_STATE_ERROR_ACTIVE:
  358. /*
  359. * from: ERROR_ACTIVE
  360. * to : ERROR_WARNING, ERROR_PASSIVE, BUS_OFF
  361. * => : there was a warning int
  362. */
  363. if (new_state >= CAN_STATE_ERROR_WARNING &&
  364. new_state <= CAN_STATE_BUS_OFF) {
  365. netdev_dbg(dev, "Error Warning IRQ\n");
  366. priv->can.can_stats.error_warning++;
  367. cf->can_id |= CAN_ERR_CRTL;
  368. cf->data[1] = (bec.txerr > bec.rxerr) ?
  369. CAN_ERR_CRTL_TX_WARNING :
  370. CAN_ERR_CRTL_RX_WARNING;
  371. }
  372. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  373. /*
  374. * from: ERROR_ACTIVE, ERROR_WARNING
  375. * to : ERROR_PASSIVE, BUS_OFF
  376. * => : error passive int
  377. */
  378. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  379. new_state <= CAN_STATE_BUS_OFF) {
  380. netdev_dbg(dev, "Error Passive IRQ\n");
  381. priv->can.can_stats.error_passive++;
  382. cf->can_id |= CAN_ERR_CRTL;
  383. cf->data[1] = (bec.txerr > bec.rxerr) ?
  384. CAN_ERR_CRTL_TX_PASSIVE :
  385. CAN_ERR_CRTL_RX_PASSIVE;
  386. }
  387. break;
  388. case CAN_STATE_BUS_OFF:
  389. netdev_err(dev, "BUG! "
  390. "hardware recovered automatically from BUS_OFF\n");
  391. break;
  392. default:
  393. break;
  394. }
  395. /* process state changes depending on the new state */
  396. switch (new_state) {
  397. case CAN_STATE_ERROR_ACTIVE:
  398. netdev_dbg(dev, "Error Active\n");
  399. cf->can_id |= CAN_ERR_PROT;
  400. cf->data[2] = CAN_ERR_PROT_ACTIVE;
  401. break;
  402. case CAN_STATE_BUS_OFF:
  403. cf->can_id |= CAN_ERR_BUSOFF;
  404. can_bus_off(dev);
  405. break;
  406. default:
  407. break;
  408. }
  409. }
  410. static int flexcan_poll_state(struct net_device *dev, u32 reg_esr)
  411. {
  412. struct flexcan_priv *priv = netdev_priv(dev);
  413. struct sk_buff *skb;
  414. struct can_frame *cf;
  415. enum can_state new_state;
  416. int flt;
  417. flt = reg_esr & FLEXCAN_ESR_FLT_CONF_MASK;
  418. if (likely(flt == FLEXCAN_ESR_FLT_CONF_ACTIVE)) {
  419. if (likely(!(reg_esr & (FLEXCAN_ESR_TX_WRN |
  420. FLEXCAN_ESR_RX_WRN))))
  421. new_state = CAN_STATE_ERROR_ACTIVE;
  422. else
  423. new_state = CAN_STATE_ERROR_WARNING;
  424. } else if (unlikely(flt == FLEXCAN_ESR_FLT_CONF_PASSIVE))
  425. new_state = CAN_STATE_ERROR_PASSIVE;
  426. else
  427. new_state = CAN_STATE_BUS_OFF;
  428. /* state hasn't changed */
  429. if (likely(new_state == priv->can.state))
  430. return 0;
  431. skb = alloc_can_err_skb(dev, &cf);
  432. if (unlikely(!skb))
  433. return 0;
  434. do_state(dev, cf, new_state);
  435. priv->can.state = new_state;
  436. netif_receive_skb(skb);
  437. dev->stats.rx_packets++;
  438. dev->stats.rx_bytes += cf->can_dlc;
  439. return 1;
  440. }
  441. static void flexcan_read_fifo(const struct net_device *dev,
  442. struct can_frame *cf)
  443. {
  444. const struct flexcan_priv *priv = netdev_priv(dev);
  445. struct flexcan_regs __iomem *regs = priv->base;
  446. struct flexcan_mb __iomem *mb = &regs->cantxfg[0];
  447. u32 reg_ctrl, reg_id;
  448. reg_ctrl = flexcan_read(&mb->can_ctrl);
  449. reg_id = flexcan_read(&mb->can_id);
  450. if (reg_ctrl & FLEXCAN_MB_CNT_IDE)
  451. cf->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG;
  452. else
  453. cf->can_id = (reg_id >> 18) & CAN_SFF_MASK;
  454. if (reg_ctrl & FLEXCAN_MB_CNT_RTR)
  455. cf->can_id |= CAN_RTR_FLAG;
  456. cf->can_dlc = get_can_dlc((reg_ctrl >> 16) & 0xf);
  457. *(__be32 *)(cf->data + 0) = cpu_to_be32(flexcan_read(&mb->data[0]));
  458. *(__be32 *)(cf->data + 4) = cpu_to_be32(flexcan_read(&mb->data[1]));
  459. /* mark as read */
  460. flexcan_write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->iflag1);
  461. flexcan_read(&regs->timer);
  462. }
  463. static int flexcan_read_frame(struct net_device *dev)
  464. {
  465. struct net_device_stats *stats = &dev->stats;
  466. struct can_frame *cf;
  467. struct sk_buff *skb;
  468. skb = alloc_can_skb(dev, &cf);
  469. if (unlikely(!skb)) {
  470. stats->rx_dropped++;
  471. return 0;
  472. }
  473. flexcan_read_fifo(dev, cf);
  474. netif_receive_skb(skb);
  475. stats->rx_packets++;
  476. stats->rx_bytes += cf->can_dlc;
  477. return 1;
  478. }
  479. static int flexcan_poll(struct napi_struct *napi, int quota)
  480. {
  481. struct net_device *dev = napi->dev;
  482. const struct flexcan_priv *priv = netdev_priv(dev);
  483. struct flexcan_regs __iomem *regs = priv->base;
  484. u32 reg_iflag1, reg_esr;
  485. int work_done = 0;
  486. /*
  487. * The error bits are cleared on read,
  488. * use saved value from irq handler.
  489. */
  490. reg_esr = flexcan_read(&regs->esr) | priv->reg_esr;
  491. /* handle state changes */
  492. work_done += flexcan_poll_state(dev, reg_esr);
  493. /* handle RX-FIFO */
  494. reg_iflag1 = flexcan_read(&regs->iflag1);
  495. while (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE &&
  496. work_done < quota) {
  497. work_done += flexcan_read_frame(dev);
  498. reg_iflag1 = flexcan_read(&regs->iflag1);
  499. }
  500. /* report bus errors */
  501. if (flexcan_has_and_handle_berr(priv, reg_esr) && work_done < quota)
  502. work_done += flexcan_poll_bus_err(dev, reg_esr);
  503. if (work_done < quota) {
  504. napi_complete(napi);
  505. /* enable IRQs */
  506. flexcan_write(FLEXCAN_IFLAG_DEFAULT, &regs->imask1);
  507. flexcan_write(priv->reg_ctrl_default, &regs->ctrl);
  508. }
  509. return work_done;
  510. }
  511. static irqreturn_t flexcan_irq(int irq, void *dev_id)
  512. {
  513. struct net_device *dev = dev_id;
  514. struct net_device_stats *stats = &dev->stats;
  515. struct flexcan_priv *priv = netdev_priv(dev);
  516. struct flexcan_regs __iomem *regs = priv->base;
  517. u32 reg_iflag1, reg_esr;
  518. reg_iflag1 = flexcan_read(&regs->iflag1);
  519. reg_esr = flexcan_read(&regs->esr);
  520. /* ACK all bus error and state change IRQ sources */
  521. if (reg_esr & FLEXCAN_ESR_ALL_INT)
  522. flexcan_write(reg_esr & FLEXCAN_ESR_ALL_INT, &regs->esr);
  523. /*
  524. * schedule NAPI in case of:
  525. * - rx IRQ
  526. * - state change IRQ
  527. * - bus error IRQ and bus error reporting is activated
  528. */
  529. if ((reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) ||
  530. (reg_esr & FLEXCAN_ESR_ERR_STATE) ||
  531. flexcan_has_and_handle_berr(priv, reg_esr)) {
  532. /*
  533. * The error bits are cleared on read,
  534. * save them for later use.
  535. */
  536. priv->reg_esr = reg_esr & FLEXCAN_ESR_ERR_BUS;
  537. flexcan_write(FLEXCAN_IFLAG_DEFAULT &
  538. ~FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->imask1);
  539. flexcan_write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL,
  540. &regs->ctrl);
  541. napi_schedule(&priv->napi);
  542. }
  543. /* FIFO overflow */
  544. if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) {
  545. flexcan_write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW, &regs->iflag1);
  546. dev->stats.rx_over_errors++;
  547. dev->stats.rx_errors++;
  548. }
  549. /* transmission complete interrupt */
  550. if (reg_iflag1 & (1 << FLEXCAN_TX_BUF_ID)) {
  551. stats->tx_bytes += can_get_echo_skb(dev, 0);
  552. stats->tx_packets++;
  553. flexcan_write((1 << FLEXCAN_TX_BUF_ID), &regs->iflag1);
  554. netif_wake_queue(dev);
  555. }
  556. return IRQ_HANDLED;
  557. }
  558. static void flexcan_set_bittiming(struct net_device *dev)
  559. {
  560. const struct flexcan_priv *priv = netdev_priv(dev);
  561. const struct can_bittiming *bt = &priv->can.bittiming;
  562. struct flexcan_regs __iomem *regs = priv->base;
  563. u32 reg;
  564. reg = flexcan_read(&regs->ctrl);
  565. reg &= ~(FLEXCAN_CTRL_PRESDIV(0xff) |
  566. FLEXCAN_CTRL_RJW(0x3) |
  567. FLEXCAN_CTRL_PSEG1(0x7) |
  568. FLEXCAN_CTRL_PSEG2(0x7) |
  569. FLEXCAN_CTRL_PROPSEG(0x7) |
  570. FLEXCAN_CTRL_LPB |
  571. FLEXCAN_CTRL_SMP |
  572. FLEXCAN_CTRL_LOM);
  573. reg |= FLEXCAN_CTRL_PRESDIV(bt->brp - 1) |
  574. FLEXCAN_CTRL_PSEG1(bt->phase_seg1 - 1) |
  575. FLEXCAN_CTRL_PSEG2(bt->phase_seg2 - 1) |
  576. FLEXCAN_CTRL_RJW(bt->sjw - 1) |
  577. FLEXCAN_CTRL_PROPSEG(bt->prop_seg - 1);
  578. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  579. reg |= FLEXCAN_CTRL_LPB;
  580. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  581. reg |= FLEXCAN_CTRL_LOM;
  582. if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  583. reg |= FLEXCAN_CTRL_SMP;
  584. netdev_info(dev, "writing ctrl=0x%08x\n", reg);
  585. flexcan_write(reg, &regs->ctrl);
  586. /* print chip status */
  587. netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x\n", __func__,
  588. flexcan_read(&regs->mcr), flexcan_read(&regs->ctrl));
  589. }
  590. /*
  591. * flexcan_chip_start
  592. *
  593. * this functions is entered with clocks enabled
  594. *
  595. */
  596. static int flexcan_chip_start(struct net_device *dev)
  597. {
  598. struct flexcan_priv *priv = netdev_priv(dev);
  599. struct flexcan_regs __iomem *regs = priv->base;
  600. unsigned int i;
  601. int err;
  602. u32 reg_mcr, reg_ctrl;
  603. /* enable module */
  604. flexcan_chip_enable(priv);
  605. /* soft reset */
  606. flexcan_write(FLEXCAN_MCR_SOFTRST, &regs->mcr);
  607. udelay(10);
  608. reg_mcr = flexcan_read(&regs->mcr);
  609. if (reg_mcr & FLEXCAN_MCR_SOFTRST) {
  610. netdev_err(dev, "Failed to softreset can module (mcr=0x%08x)\n",
  611. reg_mcr);
  612. err = -ENODEV;
  613. goto out;
  614. }
  615. flexcan_set_bittiming(dev);
  616. /*
  617. * MCR
  618. *
  619. * enable freeze
  620. * enable fifo
  621. * halt now
  622. * only supervisor access
  623. * enable warning int
  624. * choose format C
  625. * disable local echo
  626. *
  627. */
  628. reg_mcr = flexcan_read(&regs->mcr);
  629. reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_FEN | FLEXCAN_MCR_HALT |
  630. FLEXCAN_MCR_SUPV | FLEXCAN_MCR_WRN_EN |
  631. FLEXCAN_MCR_IDAM_C | FLEXCAN_MCR_SRX_DIS;
  632. netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr);
  633. flexcan_write(reg_mcr, &regs->mcr);
  634. /*
  635. * CTRL
  636. *
  637. * disable timer sync feature
  638. *
  639. * disable auto busoff recovery
  640. * transmit lowest buffer first
  641. *
  642. * enable tx and rx warning interrupt
  643. * enable bus off interrupt
  644. * (== FLEXCAN_CTRL_ERR_STATE)
  645. *
  646. * _note_: we enable the "error interrupt"
  647. * (FLEXCAN_CTRL_ERR_MSK), too. Otherwise we don't get any
  648. * warning or bus passive interrupts.
  649. */
  650. reg_ctrl = flexcan_read(&regs->ctrl);
  651. reg_ctrl &= ~FLEXCAN_CTRL_TSYN;
  652. reg_ctrl |= FLEXCAN_CTRL_BOFF_REC | FLEXCAN_CTRL_LBUF |
  653. FLEXCAN_CTRL_ERR_STATE | FLEXCAN_CTRL_ERR_MSK;
  654. /* save for later use */
  655. priv->reg_ctrl_default = reg_ctrl;
  656. netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl);
  657. flexcan_write(reg_ctrl, &regs->ctrl);
  658. for (i = 0; i < ARRAY_SIZE(regs->cantxfg); i++) {
  659. flexcan_write(0, &regs->cantxfg[i].can_ctrl);
  660. flexcan_write(0, &regs->cantxfg[i].can_id);
  661. flexcan_write(0, &regs->cantxfg[i].data[0]);
  662. flexcan_write(0, &regs->cantxfg[i].data[1]);
  663. /* put MB into rx queue */
  664. flexcan_write(FLEXCAN_MB_CNT_CODE(0x4),
  665. &regs->cantxfg[i].can_ctrl);
  666. }
  667. /* acceptance mask/acceptance code (accept everything) */
  668. flexcan_write(0x0, &regs->rxgmask);
  669. flexcan_write(0x0, &regs->rx14mask);
  670. flexcan_write(0x0, &regs->rx15mask);
  671. if (priv->devtype_data->hw_ver >= 10)
  672. flexcan_write(0x0, &regs->rxfgmask);
  673. flexcan_transceiver_switch(priv, 1);
  674. /* synchronize with the can bus */
  675. reg_mcr = flexcan_read(&regs->mcr);
  676. reg_mcr &= ~FLEXCAN_MCR_HALT;
  677. flexcan_write(reg_mcr, &regs->mcr);
  678. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  679. /* enable FIFO interrupts */
  680. flexcan_write(FLEXCAN_IFLAG_DEFAULT, &regs->imask1);
  681. /* print chip status */
  682. netdev_dbg(dev, "%s: reading mcr=0x%08x ctrl=0x%08x\n", __func__,
  683. flexcan_read(&regs->mcr), flexcan_read(&regs->ctrl));
  684. return 0;
  685. out:
  686. flexcan_chip_disable(priv);
  687. return err;
  688. }
  689. /*
  690. * flexcan_chip_stop
  691. *
  692. * this functions is entered with clocks enabled
  693. *
  694. */
  695. static void flexcan_chip_stop(struct net_device *dev)
  696. {
  697. struct flexcan_priv *priv = netdev_priv(dev);
  698. struct flexcan_regs __iomem *regs = priv->base;
  699. u32 reg;
  700. /* Disable all interrupts */
  701. flexcan_write(0, &regs->imask1);
  702. /* Disable + halt module */
  703. reg = flexcan_read(&regs->mcr);
  704. reg |= FLEXCAN_MCR_MDIS | FLEXCAN_MCR_HALT;
  705. flexcan_write(reg, &regs->mcr);
  706. flexcan_transceiver_switch(priv, 0);
  707. priv->can.state = CAN_STATE_STOPPED;
  708. return;
  709. }
  710. static int flexcan_open(struct net_device *dev)
  711. {
  712. struct flexcan_priv *priv = netdev_priv(dev);
  713. int err;
  714. clk_prepare_enable(priv->clk);
  715. err = open_candev(dev);
  716. if (err)
  717. goto out;
  718. err = request_irq(dev->irq, flexcan_irq, IRQF_SHARED, dev->name, dev);
  719. if (err)
  720. goto out_close;
  721. /* start chip and queuing */
  722. err = flexcan_chip_start(dev);
  723. if (err)
  724. goto out_close;
  725. napi_enable(&priv->napi);
  726. netif_start_queue(dev);
  727. return 0;
  728. out_close:
  729. close_candev(dev);
  730. out:
  731. clk_disable_unprepare(priv->clk);
  732. return err;
  733. }
  734. static int flexcan_close(struct net_device *dev)
  735. {
  736. struct flexcan_priv *priv = netdev_priv(dev);
  737. netif_stop_queue(dev);
  738. napi_disable(&priv->napi);
  739. flexcan_chip_stop(dev);
  740. free_irq(dev->irq, dev);
  741. clk_disable_unprepare(priv->clk);
  742. close_candev(dev);
  743. return 0;
  744. }
  745. static int flexcan_set_mode(struct net_device *dev, enum can_mode mode)
  746. {
  747. int err;
  748. switch (mode) {
  749. case CAN_MODE_START:
  750. err = flexcan_chip_start(dev);
  751. if (err)
  752. return err;
  753. netif_wake_queue(dev);
  754. break;
  755. default:
  756. return -EOPNOTSUPP;
  757. }
  758. return 0;
  759. }
  760. static const struct net_device_ops flexcan_netdev_ops = {
  761. .ndo_open = flexcan_open,
  762. .ndo_stop = flexcan_close,
  763. .ndo_start_xmit = flexcan_start_xmit,
  764. };
  765. static int __devinit register_flexcandev(struct net_device *dev)
  766. {
  767. struct flexcan_priv *priv = netdev_priv(dev);
  768. struct flexcan_regs __iomem *regs = priv->base;
  769. u32 reg, err;
  770. clk_prepare_enable(priv->clk);
  771. /* select "bus clock", chip must be disabled */
  772. flexcan_chip_disable(priv);
  773. reg = flexcan_read(&regs->ctrl);
  774. reg |= FLEXCAN_CTRL_CLK_SRC;
  775. flexcan_write(reg, &regs->ctrl);
  776. flexcan_chip_enable(priv);
  777. /* set freeze, halt and activate FIFO, restrict register access */
  778. reg = flexcan_read(&regs->mcr);
  779. reg |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT |
  780. FLEXCAN_MCR_FEN | FLEXCAN_MCR_SUPV;
  781. flexcan_write(reg, &regs->mcr);
  782. /*
  783. * Currently we only support newer versions of this core
  784. * featuring a RX FIFO. Older cores found on some Coldfire
  785. * derivates are not yet supported.
  786. */
  787. reg = flexcan_read(&regs->mcr);
  788. if (!(reg & FLEXCAN_MCR_FEN)) {
  789. netdev_err(dev, "Could not enable RX FIFO, unsupported core\n");
  790. err = -ENODEV;
  791. goto out;
  792. }
  793. err = register_candev(dev);
  794. out:
  795. /* disable core and turn off clocks */
  796. flexcan_chip_disable(priv);
  797. clk_disable_unprepare(priv->clk);
  798. return err;
  799. }
  800. static void __devexit unregister_flexcandev(struct net_device *dev)
  801. {
  802. unregister_candev(dev);
  803. }
  804. static const struct of_device_id flexcan_of_match[] = {
  805. { .compatible = "fsl,p1010-flexcan", .data = &fsl_p1010_devtype_data, },
  806. { .compatible = "fsl,imx6q-flexcan", .data = &fsl_imx6q_devtype_data, },
  807. { /* sentinel */ },
  808. };
  809. static const struct platform_device_id flexcan_id_table[] = {
  810. { .name = "flexcan", .driver_data = (kernel_ulong_t)&fsl_p1010_devtype_data, },
  811. { /* sentinel */ },
  812. };
  813. static int __devinit flexcan_probe(struct platform_device *pdev)
  814. {
  815. const struct of_device_id *of_id;
  816. const struct flexcan_devtype_data *devtype_data;
  817. struct net_device *dev;
  818. struct flexcan_priv *priv;
  819. struct resource *mem;
  820. struct clk *clk = NULL;
  821. struct pinctrl *pinctrl;
  822. void __iomem *base;
  823. resource_size_t mem_size;
  824. int err, irq;
  825. u32 clock_freq = 0;
  826. pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
  827. if (IS_ERR(pinctrl))
  828. return PTR_ERR(pinctrl);
  829. if (pdev->dev.of_node)
  830. of_property_read_u32(pdev->dev.of_node,
  831. "clock-frequency", &clock_freq);
  832. if (!clock_freq) {
  833. clk = clk_get(&pdev->dev, NULL);
  834. if (IS_ERR(clk)) {
  835. dev_err(&pdev->dev, "no clock defined\n");
  836. err = PTR_ERR(clk);
  837. goto failed_clock;
  838. }
  839. clock_freq = clk_get_rate(clk);
  840. }
  841. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  842. irq = platform_get_irq(pdev, 0);
  843. if (!mem || irq <= 0) {
  844. err = -ENODEV;
  845. goto failed_get;
  846. }
  847. mem_size = resource_size(mem);
  848. if (!request_mem_region(mem->start, mem_size, pdev->name)) {
  849. err = -EBUSY;
  850. goto failed_get;
  851. }
  852. base = ioremap(mem->start, mem_size);
  853. if (!base) {
  854. err = -ENOMEM;
  855. goto failed_map;
  856. }
  857. dev = alloc_candev(sizeof(struct flexcan_priv), 1);
  858. if (!dev) {
  859. err = -ENOMEM;
  860. goto failed_alloc;
  861. }
  862. of_id = of_match_device(flexcan_of_match, &pdev->dev);
  863. if (of_id) {
  864. devtype_data = of_id->data;
  865. } else if (pdev->id_entry->driver_data) {
  866. devtype_data = (struct flexcan_devtype_data *)
  867. pdev->id_entry->driver_data;
  868. } else {
  869. err = -ENODEV;
  870. goto failed_devtype;
  871. }
  872. dev->netdev_ops = &flexcan_netdev_ops;
  873. dev->irq = irq;
  874. dev->flags |= IFF_ECHO;
  875. priv = netdev_priv(dev);
  876. priv->can.clock.freq = clock_freq;
  877. priv->can.bittiming_const = &flexcan_bittiming_const;
  878. priv->can.do_set_mode = flexcan_set_mode;
  879. priv->can.do_get_berr_counter = flexcan_get_berr_counter;
  880. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  881. CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_3_SAMPLES |
  882. CAN_CTRLMODE_BERR_REPORTING;
  883. priv->base = base;
  884. priv->dev = dev;
  885. priv->clk = clk;
  886. priv->pdata = pdev->dev.platform_data;
  887. priv->devtype_data = devtype_data;
  888. netif_napi_add(dev, &priv->napi, flexcan_poll, FLEXCAN_NAPI_WEIGHT);
  889. dev_set_drvdata(&pdev->dev, dev);
  890. SET_NETDEV_DEV(dev, &pdev->dev);
  891. err = register_flexcandev(dev);
  892. if (err) {
  893. dev_err(&pdev->dev, "registering netdev failed\n");
  894. goto failed_register;
  895. }
  896. dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%d)\n",
  897. priv->base, dev->irq);
  898. return 0;
  899. failed_register:
  900. failed_devtype:
  901. free_candev(dev);
  902. failed_alloc:
  903. iounmap(base);
  904. failed_map:
  905. release_mem_region(mem->start, mem_size);
  906. failed_get:
  907. if (clk)
  908. clk_put(clk);
  909. failed_clock:
  910. return err;
  911. }
  912. static int __devexit flexcan_remove(struct platform_device *pdev)
  913. {
  914. struct net_device *dev = platform_get_drvdata(pdev);
  915. struct flexcan_priv *priv = netdev_priv(dev);
  916. struct resource *mem;
  917. unregister_flexcandev(dev);
  918. platform_set_drvdata(pdev, NULL);
  919. iounmap(priv->base);
  920. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  921. release_mem_region(mem->start, resource_size(mem));
  922. if (priv->clk)
  923. clk_put(priv->clk);
  924. free_candev(dev);
  925. return 0;
  926. }
  927. #ifdef CONFIG_PM
  928. static int flexcan_suspend(struct platform_device *pdev, pm_message_t state)
  929. {
  930. struct net_device *dev = platform_get_drvdata(pdev);
  931. struct flexcan_priv *priv = netdev_priv(dev);
  932. flexcan_chip_disable(priv);
  933. if (netif_running(dev)) {
  934. netif_stop_queue(dev);
  935. netif_device_detach(dev);
  936. }
  937. priv->can.state = CAN_STATE_SLEEPING;
  938. return 0;
  939. }
  940. static int flexcan_resume(struct platform_device *pdev)
  941. {
  942. struct net_device *dev = platform_get_drvdata(pdev);
  943. struct flexcan_priv *priv = netdev_priv(dev);
  944. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  945. if (netif_running(dev)) {
  946. netif_device_attach(dev);
  947. netif_start_queue(dev);
  948. }
  949. flexcan_chip_enable(priv);
  950. return 0;
  951. }
  952. #else
  953. #define flexcan_suspend NULL
  954. #define flexcan_resume NULL
  955. #endif
  956. static struct platform_driver flexcan_driver = {
  957. .driver = {
  958. .name = DRV_NAME,
  959. .owner = THIS_MODULE,
  960. .of_match_table = flexcan_of_match,
  961. },
  962. .probe = flexcan_probe,
  963. .remove = __devexit_p(flexcan_remove),
  964. .suspend = flexcan_suspend,
  965. .resume = flexcan_resume,
  966. .id_table = flexcan_id_table,
  967. };
  968. module_platform_driver(flexcan_driver);
  969. MODULE_AUTHOR("Sascha Hauer <kernel@pengutronix.de>, "
  970. "Marc Kleine-Budde <kernel@pengutronix.de>");
  971. MODULE_LICENSE("GPL v2");
  972. MODULE_DESCRIPTION("CAN port driver for flexcan based chip");