sched.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060
  1. /*
  2. * linux/net/sunrpc/sched.c
  3. *
  4. * Scheduling for synchronous and asynchronous RPC requests.
  5. *
  6. * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
  7. *
  8. * TCP NFS related read + write fixes
  9. * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10. */
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/slab.h>
  15. #include <linux/mempool.h>
  16. #include <linux/smp.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/mutex.h>
  19. #include <linux/sunrpc/clnt.h>
  20. #include "sunrpc.h"
  21. #ifdef RPC_DEBUG
  22. #define RPCDBG_FACILITY RPCDBG_SCHED
  23. #define RPC_TASK_MAGIC_ID 0xf00baa
  24. #endif
  25. /*
  26. * RPC slabs and memory pools
  27. */
  28. #define RPC_BUFFER_MAXSIZE (2048)
  29. #define RPC_BUFFER_POOLSIZE (8)
  30. #define RPC_TASK_POOLSIZE (8)
  31. static struct kmem_cache *rpc_task_slabp __read_mostly;
  32. static struct kmem_cache *rpc_buffer_slabp __read_mostly;
  33. static mempool_t *rpc_task_mempool __read_mostly;
  34. static mempool_t *rpc_buffer_mempool __read_mostly;
  35. static void rpc_async_schedule(struct work_struct *);
  36. static void rpc_release_task(struct rpc_task *task);
  37. static void __rpc_queue_timer_fn(unsigned long ptr);
  38. /*
  39. * RPC tasks sit here while waiting for conditions to improve.
  40. */
  41. static struct rpc_wait_queue delay_queue;
  42. /*
  43. * rpciod-related stuff
  44. */
  45. struct workqueue_struct *rpciod_workqueue;
  46. /*
  47. * Disable the timer for a given RPC task. Should be called with
  48. * queue->lock and bh_disabled in order to avoid races within
  49. * rpc_run_timer().
  50. */
  51. static void
  52. __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  53. {
  54. if (task->tk_timeout == 0)
  55. return;
  56. dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  57. task->tk_timeout = 0;
  58. list_del(&task->u.tk_wait.timer_list);
  59. if (list_empty(&queue->timer_list.list))
  60. del_timer(&queue->timer_list.timer);
  61. }
  62. static void
  63. rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  64. {
  65. queue->timer_list.expires = expires;
  66. mod_timer(&queue->timer_list.timer, expires);
  67. }
  68. /*
  69. * Set up a timer for the current task.
  70. */
  71. static void
  72. __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  73. {
  74. if (!task->tk_timeout)
  75. return;
  76. dprintk("RPC: %5u setting alarm for %lu ms\n",
  77. task->tk_pid, task->tk_timeout * 1000 / HZ);
  78. task->u.tk_wait.expires = jiffies + task->tk_timeout;
  79. if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  80. rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  81. list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  82. }
  83. /*
  84. * Add new request to a priority queue.
  85. */
  86. static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
  87. {
  88. struct list_head *q;
  89. struct rpc_task *t;
  90. INIT_LIST_HEAD(&task->u.tk_wait.links);
  91. q = &queue->tasks[task->tk_priority];
  92. if (unlikely(task->tk_priority > queue->maxpriority))
  93. q = &queue->tasks[queue->maxpriority];
  94. list_for_each_entry(t, q, u.tk_wait.list) {
  95. if (t->tk_owner == task->tk_owner) {
  96. list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
  97. return;
  98. }
  99. }
  100. list_add_tail(&task->u.tk_wait.list, q);
  101. }
  102. /*
  103. * Add new request to wait queue.
  104. *
  105. * Swapper tasks always get inserted at the head of the queue.
  106. * This should avoid many nasty memory deadlocks and hopefully
  107. * improve overall performance.
  108. * Everyone else gets appended to the queue to ensure proper FIFO behavior.
  109. */
  110. static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  111. {
  112. BUG_ON (RPC_IS_QUEUED(task));
  113. if (RPC_IS_PRIORITY(queue))
  114. __rpc_add_wait_queue_priority(queue, task);
  115. else if (RPC_IS_SWAPPER(task))
  116. list_add(&task->u.tk_wait.list, &queue->tasks[0]);
  117. else
  118. list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
  119. task->tk_waitqueue = queue;
  120. queue->qlen++;
  121. rpc_set_queued(task);
  122. dprintk("RPC: %5u added to queue %p \"%s\"\n",
  123. task->tk_pid, queue, rpc_qname(queue));
  124. }
  125. /*
  126. * Remove request from a priority queue.
  127. */
  128. static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
  129. {
  130. struct rpc_task *t;
  131. if (!list_empty(&task->u.tk_wait.links)) {
  132. t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
  133. list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
  134. list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
  135. }
  136. }
  137. /*
  138. * Remove request from queue.
  139. * Note: must be called with spin lock held.
  140. */
  141. static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  142. {
  143. __rpc_disable_timer(queue, task);
  144. if (RPC_IS_PRIORITY(queue))
  145. __rpc_remove_wait_queue_priority(task);
  146. list_del(&task->u.tk_wait.list);
  147. queue->qlen--;
  148. dprintk("RPC: %5u removed from queue %p \"%s\"\n",
  149. task->tk_pid, queue, rpc_qname(queue));
  150. }
  151. static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
  152. {
  153. queue->priority = priority;
  154. queue->count = 1 << (priority * 2);
  155. }
  156. static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
  157. {
  158. queue->owner = pid;
  159. queue->nr = RPC_BATCH_COUNT;
  160. }
  161. static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
  162. {
  163. rpc_set_waitqueue_priority(queue, queue->maxpriority);
  164. rpc_set_waitqueue_owner(queue, 0);
  165. }
  166. static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
  167. {
  168. int i;
  169. spin_lock_init(&queue->lock);
  170. for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
  171. INIT_LIST_HEAD(&queue->tasks[i]);
  172. queue->maxpriority = nr_queues - 1;
  173. rpc_reset_waitqueue_priority(queue);
  174. queue->qlen = 0;
  175. setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
  176. INIT_LIST_HEAD(&queue->timer_list.list);
  177. #ifdef RPC_DEBUG
  178. queue->name = qname;
  179. #endif
  180. }
  181. void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  182. {
  183. __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
  184. }
  185. EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
  186. void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  187. {
  188. __rpc_init_priority_wait_queue(queue, qname, 1);
  189. }
  190. EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
  191. void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
  192. {
  193. del_timer_sync(&queue->timer_list.timer);
  194. }
  195. EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
  196. static int rpc_wait_bit_killable(void *word)
  197. {
  198. if (fatal_signal_pending(current))
  199. return -ERESTARTSYS;
  200. schedule();
  201. return 0;
  202. }
  203. #ifdef RPC_DEBUG
  204. static void rpc_task_set_debuginfo(struct rpc_task *task)
  205. {
  206. static atomic_t rpc_pid;
  207. task->tk_magic = RPC_TASK_MAGIC_ID;
  208. task->tk_pid = atomic_inc_return(&rpc_pid);
  209. }
  210. #else
  211. static inline void rpc_task_set_debuginfo(struct rpc_task *task)
  212. {
  213. }
  214. #endif
  215. static void rpc_set_active(struct rpc_task *task)
  216. {
  217. struct rpc_clnt *clnt;
  218. if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
  219. return;
  220. rpc_task_set_debuginfo(task);
  221. /* Add to global list of all tasks */
  222. clnt = task->tk_client;
  223. if (clnt != NULL) {
  224. spin_lock(&clnt->cl_lock);
  225. list_add_tail(&task->tk_task, &clnt->cl_tasks);
  226. spin_unlock(&clnt->cl_lock);
  227. }
  228. }
  229. /*
  230. * Mark an RPC call as having completed by clearing the 'active' bit
  231. */
  232. static void rpc_mark_complete_task(struct rpc_task *task)
  233. {
  234. smp_mb__before_clear_bit();
  235. clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  236. smp_mb__after_clear_bit();
  237. wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
  238. }
  239. /*
  240. * Allow callers to wait for completion of an RPC call
  241. */
  242. int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
  243. {
  244. if (action == NULL)
  245. action = rpc_wait_bit_killable;
  246. return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
  247. action, TASK_KILLABLE);
  248. }
  249. EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
  250. /*
  251. * Make an RPC task runnable.
  252. *
  253. * Note: If the task is ASYNC, this must be called with
  254. * the spinlock held to protect the wait queue operation.
  255. */
  256. static void rpc_make_runnable(struct rpc_task *task)
  257. {
  258. rpc_clear_queued(task);
  259. if (rpc_test_and_set_running(task))
  260. return;
  261. if (RPC_IS_ASYNC(task)) {
  262. int status;
  263. INIT_WORK(&task->u.tk_work, rpc_async_schedule);
  264. status = queue_work(rpciod_workqueue, &task->u.tk_work);
  265. if (status < 0) {
  266. printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
  267. task->tk_status = status;
  268. return;
  269. }
  270. } else
  271. wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
  272. }
  273. /*
  274. * Prepare for sleeping on a wait queue.
  275. * By always appending tasks to the list we ensure FIFO behavior.
  276. * NB: An RPC task will only receive interrupt-driven events as long
  277. * as it's on a wait queue.
  278. */
  279. static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  280. rpc_action action)
  281. {
  282. dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
  283. task->tk_pid, rpc_qname(q), jiffies);
  284. if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
  285. printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
  286. return;
  287. }
  288. __rpc_add_wait_queue(q, task);
  289. BUG_ON(task->tk_callback != NULL);
  290. task->tk_callback = action;
  291. __rpc_add_timer(q, task);
  292. }
  293. void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  294. rpc_action action)
  295. {
  296. /* Mark the task as being activated if so needed */
  297. rpc_set_active(task);
  298. /*
  299. * Protect the queue operations.
  300. */
  301. spin_lock_bh(&q->lock);
  302. __rpc_sleep_on(q, task, action);
  303. spin_unlock_bh(&q->lock);
  304. }
  305. EXPORT_SYMBOL_GPL(rpc_sleep_on);
  306. /**
  307. * __rpc_do_wake_up_task - wake up a single rpc_task
  308. * @queue: wait queue
  309. * @task: task to be woken up
  310. *
  311. * Caller must hold queue->lock, and have cleared the task queued flag.
  312. */
  313. static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  314. {
  315. dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
  316. task->tk_pid, jiffies);
  317. #ifdef RPC_DEBUG
  318. BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
  319. #endif
  320. /* Has the task been executed yet? If not, we cannot wake it up! */
  321. if (!RPC_IS_ACTIVATED(task)) {
  322. printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
  323. return;
  324. }
  325. __rpc_remove_wait_queue(queue, task);
  326. rpc_make_runnable(task);
  327. dprintk("RPC: __rpc_wake_up_task done\n");
  328. }
  329. /*
  330. * Wake up a queued task while the queue lock is being held
  331. */
  332. static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
  333. {
  334. if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
  335. __rpc_do_wake_up_task(queue, task);
  336. }
  337. /*
  338. * Tests whether rpc queue is empty
  339. */
  340. int rpc_queue_empty(struct rpc_wait_queue *queue)
  341. {
  342. int res;
  343. spin_lock_bh(&queue->lock);
  344. res = queue->qlen;
  345. spin_unlock_bh(&queue->lock);
  346. return (res == 0);
  347. }
  348. EXPORT_SYMBOL_GPL(rpc_queue_empty);
  349. /*
  350. * Wake up a task on a specific queue
  351. */
  352. void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  353. {
  354. spin_lock_bh(&queue->lock);
  355. rpc_wake_up_task_queue_locked(queue, task);
  356. spin_unlock_bh(&queue->lock);
  357. }
  358. EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
  359. /*
  360. * Wake up the specified task
  361. */
  362. static void rpc_wake_up_task(struct rpc_task *task)
  363. {
  364. rpc_wake_up_queued_task(task->tk_waitqueue, task);
  365. }
  366. /*
  367. * Wake up the next task on a priority queue.
  368. */
  369. static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
  370. {
  371. struct list_head *q;
  372. struct rpc_task *task;
  373. /*
  374. * Service a batch of tasks from a single owner.
  375. */
  376. q = &queue->tasks[queue->priority];
  377. if (!list_empty(q)) {
  378. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  379. if (queue->owner == task->tk_owner) {
  380. if (--queue->nr)
  381. goto out;
  382. list_move_tail(&task->u.tk_wait.list, q);
  383. }
  384. /*
  385. * Check if we need to switch queues.
  386. */
  387. if (--queue->count)
  388. goto new_owner;
  389. }
  390. /*
  391. * Service the next queue.
  392. */
  393. do {
  394. if (q == &queue->tasks[0])
  395. q = &queue->tasks[queue->maxpriority];
  396. else
  397. q = q - 1;
  398. if (!list_empty(q)) {
  399. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  400. goto new_queue;
  401. }
  402. } while (q != &queue->tasks[queue->priority]);
  403. rpc_reset_waitqueue_priority(queue);
  404. return NULL;
  405. new_queue:
  406. rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
  407. new_owner:
  408. rpc_set_waitqueue_owner(queue, task->tk_owner);
  409. out:
  410. rpc_wake_up_task_queue_locked(queue, task);
  411. return task;
  412. }
  413. /*
  414. * Wake up the next task on the wait queue.
  415. */
  416. struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
  417. {
  418. struct rpc_task *task = NULL;
  419. dprintk("RPC: wake_up_next(%p \"%s\")\n",
  420. queue, rpc_qname(queue));
  421. spin_lock_bh(&queue->lock);
  422. if (RPC_IS_PRIORITY(queue))
  423. task = __rpc_wake_up_next_priority(queue);
  424. else {
  425. task_for_first(task, &queue->tasks[0])
  426. rpc_wake_up_task_queue_locked(queue, task);
  427. }
  428. spin_unlock_bh(&queue->lock);
  429. return task;
  430. }
  431. EXPORT_SYMBOL_GPL(rpc_wake_up_next);
  432. /**
  433. * rpc_wake_up - wake up all rpc_tasks
  434. * @queue: rpc_wait_queue on which the tasks are sleeping
  435. *
  436. * Grabs queue->lock
  437. */
  438. void rpc_wake_up(struct rpc_wait_queue *queue)
  439. {
  440. struct rpc_task *task, *next;
  441. struct list_head *head;
  442. spin_lock_bh(&queue->lock);
  443. head = &queue->tasks[queue->maxpriority];
  444. for (;;) {
  445. list_for_each_entry_safe(task, next, head, u.tk_wait.list)
  446. rpc_wake_up_task_queue_locked(queue, task);
  447. if (head == &queue->tasks[0])
  448. break;
  449. head--;
  450. }
  451. spin_unlock_bh(&queue->lock);
  452. }
  453. EXPORT_SYMBOL_GPL(rpc_wake_up);
  454. /**
  455. * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
  456. * @queue: rpc_wait_queue on which the tasks are sleeping
  457. * @status: status value to set
  458. *
  459. * Grabs queue->lock
  460. */
  461. void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
  462. {
  463. struct rpc_task *task, *next;
  464. struct list_head *head;
  465. spin_lock_bh(&queue->lock);
  466. head = &queue->tasks[queue->maxpriority];
  467. for (;;) {
  468. list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
  469. task->tk_status = status;
  470. rpc_wake_up_task_queue_locked(queue, task);
  471. }
  472. if (head == &queue->tasks[0])
  473. break;
  474. head--;
  475. }
  476. spin_unlock_bh(&queue->lock);
  477. }
  478. EXPORT_SYMBOL_GPL(rpc_wake_up_status);
  479. static void __rpc_queue_timer_fn(unsigned long ptr)
  480. {
  481. struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
  482. struct rpc_task *task, *n;
  483. unsigned long expires, now, timeo;
  484. spin_lock(&queue->lock);
  485. expires = now = jiffies;
  486. list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
  487. timeo = task->u.tk_wait.expires;
  488. if (time_after_eq(now, timeo)) {
  489. dprintk("RPC: %5u timeout\n", task->tk_pid);
  490. task->tk_status = -ETIMEDOUT;
  491. rpc_wake_up_task_queue_locked(queue, task);
  492. continue;
  493. }
  494. if (expires == now || time_after(expires, timeo))
  495. expires = timeo;
  496. }
  497. if (!list_empty(&queue->timer_list.list))
  498. rpc_set_queue_timer(queue, expires);
  499. spin_unlock(&queue->lock);
  500. }
  501. static void __rpc_atrun(struct rpc_task *task)
  502. {
  503. task->tk_status = 0;
  504. }
  505. /*
  506. * Run a task at a later time
  507. */
  508. void rpc_delay(struct rpc_task *task, unsigned long delay)
  509. {
  510. task->tk_timeout = delay;
  511. rpc_sleep_on(&delay_queue, task, __rpc_atrun);
  512. }
  513. EXPORT_SYMBOL_GPL(rpc_delay);
  514. /*
  515. * Helper to call task->tk_ops->rpc_call_prepare
  516. */
  517. void rpc_prepare_task(struct rpc_task *task)
  518. {
  519. task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
  520. }
  521. /*
  522. * Helper that calls task->tk_ops->rpc_call_done if it exists
  523. */
  524. void rpc_exit_task(struct rpc_task *task)
  525. {
  526. task->tk_action = NULL;
  527. if (task->tk_ops->rpc_call_done != NULL) {
  528. task->tk_ops->rpc_call_done(task, task->tk_calldata);
  529. if (task->tk_action != NULL) {
  530. WARN_ON(RPC_ASSASSINATED(task));
  531. /* Always release the RPC slot and buffer memory */
  532. xprt_release(task);
  533. }
  534. }
  535. }
  536. EXPORT_SYMBOL_GPL(rpc_exit_task);
  537. void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
  538. {
  539. if (ops->rpc_release != NULL)
  540. ops->rpc_release(calldata);
  541. }
  542. /*
  543. * This is the RPC `scheduler' (or rather, the finite state machine).
  544. */
  545. static void __rpc_execute(struct rpc_task *task)
  546. {
  547. struct rpc_wait_queue *queue;
  548. int task_is_async = RPC_IS_ASYNC(task);
  549. int status = 0;
  550. dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
  551. task->tk_pid, task->tk_flags);
  552. BUG_ON(RPC_IS_QUEUED(task));
  553. for (;;) {
  554. /*
  555. * Execute any pending callback.
  556. */
  557. if (task->tk_callback) {
  558. void (*save_callback)(struct rpc_task *);
  559. /*
  560. * We set tk_callback to NULL before calling it,
  561. * in case it sets the tk_callback field itself:
  562. */
  563. save_callback = task->tk_callback;
  564. task->tk_callback = NULL;
  565. save_callback(task);
  566. }
  567. /*
  568. * Perform the next FSM step.
  569. * tk_action may be NULL when the task has been killed
  570. * by someone else.
  571. */
  572. if (!RPC_IS_QUEUED(task)) {
  573. if (task->tk_action == NULL)
  574. break;
  575. task->tk_action(task);
  576. }
  577. /*
  578. * Lockless check for whether task is sleeping or not.
  579. */
  580. if (!RPC_IS_QUEUED(task))
  581. continue;
  582. /*
  583. * The queue->lock protects against races with
  584. * rpc_make_runnable().
  585. *
  586. * Note that once we clear RPC_TASK_RUNNING on an asynchronous
  587. * rpc_task, rpc_make_runnable() can assign it to a
  588. * different workqueue. We therefore cannot assume that the
  589. * rpc_task pointer may still be dereferenced.
  590. */
  591. queue = task->tk_waitqueue;
  592. spin_lock_bh(&queue->lock);
  593. if (!RPC_IS_QUEUED(task)) {
  594. spin_unlock_bh(&queue->lock);
  595. continue;
  596. }
  597. rpc_clear_running(task);
  598. spin_unlock_bh(&queue->lock);
  599. if (task_is_async)
  600. return;
  601. /* sync task: sleep here */
  602. dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
  603. status = out_of_line_wait_on_bit(&task->tk_runstate,
  604. RPC_TASK_QUEUED, rpc_wait_bit_killable,
  605. TASK_KILLABLE);
  606. if (status == -ERESTARTSYS) {
  607. /*
  608. * When a sync task receives a signal, it exits with
  609. * -ERESTARTSYS. In order to catch any callbacks that
  610. * clean up after sleeping on some queue, we don't
  611. * break the loop here, but go around once more.
  612. */
  613. dprintk("RPC: %5u got signal\n", task->tk_pid);
  614. task->tk_flags |= RPC_TASK_KILLED;
  615. rpc_exit(task, -ERESTARTSYS);
  616. rpc_wake_up_task(task);
  617. }
  618. rpc_set_running(task);
  619. dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
  620. }
  621. dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
  622. task->tk_status);
  623. /* Release all resources associated with the task */
  624. rpc_release_task(task);
  625. }
  626. /*
  627. * User-visible entry point to the scheduler.
  628. *
  629. * This may be called recursively if e.g. an async NFS task updates
  630. * the attributes and finds that dirty pages must be flushed.
  631. * NOTE: Upon exit of this function the task is guaranteed to be
  632. * released. In particular note that tk_release() will have
  633. * been called, so your task memory may have been freed.
  634. */
  635. void rpc_execute(struct rpc_task *task)
  636. {
  637. rpc_set_active(task);
  638. rpc_set_running(task);
  639. __rpc_execute(task);
  640. }
  641. static void rpc_async_schedule(struct work_struct *work)
  642. {
  643. __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
  644. }
  645. /**
  646. * rpc_malloc - allocate an RPC buffer
  647. * @task: RPC task that will use this buffer
  648. * @size: requested byte size
  649. *
  650. * To prevent rpciod from hanging, this allocator never sleeps,
  651. * returning NULL if the request cannot be serviced immediately.
  652. * The caller can arrange to sleep in a way that is safe for rpciod.
  653. *
  654. * Most requests are 'small' (under 2KiB) and can be serviced from a
  655. * mempool, ensuring that NFS reads and writes can always proceed,
  656. * and that there is good locality of reference for these buffers.
  657. *
  658. * In order to avoid memory starvation triggering more writebacks of
  659. * NFS requests, we avoid using GFP_KERNEL.
  660. */
  661. void *rpc_malloc(struct rpc_task *task, size_t size)
  662. {
  663. struct rpc_buffer *buf;
  664. gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
  665. size += sizeof(struct rpc_buffer);
  666. if (size <= RPC_BUFFER_MAXSIZE)
  667. buf = mempool_alloc(rpc_buffer_mempool, gfp);
  668. else
  669. buf = kmalloc(size, gfp);
  670. if (!buf)
  671. return NULL;
  672. buf->len = size;
  673. dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
  674. task->tk_pid, size, buf);
  675. return &buf->data;
  676. }
  677. EXPORT_SYMBOL_GPL(rpc_malloc);
  678. /**
  679. * rpc_free - free buffer allocated via rpc_malloc
  680. * @buffer: buffer to free
  681. *
  682. */
  683. void rpc_free(void *buffer)
  684. {
  685. size_t size;
  686. struct rpc_buffer *buf;
  687. if (!buffer)
  688. return;
  689. buf = container_of(buffer, struct rpc_buffer, data);
  690. size = buf->len;
  691. dprintk("RPC: freeing buffer of size %zu at %p\n",
  692. size, buf);
  693. if (size <= RPC_BUFFER_MAXSIZE)
  694. mempool_free(buf, rpc_buffer_mempool);
  695. else
  696. kfree(buf);
  697. }
  698. EXPORT_SYMBOL_GPL(rpc_free);
  699. /*
  700. * Creation and deletion of RPC task structures
  701. */
  702. static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
  703. {
  704. memset(task, 0, sizeof(*task));
  705. atomic_set(&task->tk_count, 1);
  706. task->tk_flags = task_setup_data->flags;
  707. task->tk_ops = task_setup_data->callback_ops;
  708. task->tk_calldata = task_setup_data->callback_data;
  709. INIT_LIST_HEAD(&task->tk_task);
  710. /* Initialize retry counters */
  711. task->tk_garb_retry = 2;
  712. task->tk_cred_retry = 2;
  713. task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
  714. task->tk_owner = current->tgid;
  715. /* Initialize workqueue for async tasks */
  716. task->tk_workqueue = task_setup_data->workqueue;
  717. task->tk_client = task_setup_data->rpc_client;
  718. if (task->tk_client != NULL) {
  719. kref_get(&task->tk_client->cl_kref);
  720. if (task->tk_client->cl_softrtry)
  721. task->tk_flags |= RPC_TASK_SOFT;
  722. }
  723. if (task->tk_ops->rpc_call_prepare != NULL)
  724. task->tk_action = rpc_prepare_task;
  725. if (task_setup_data->rpc_message != NULL) {
  726. task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
  727. task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
  728. task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
  729. /* Bind the user cred */
  730. rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
  731. if (task->tk_action == NULL)
  732. rpc_call_start(task);
  733. }
  734. /* starting timestamp */
  735. task->tk_start = jiffies;
  736. dprintk("RPC: new task initialized, procpid %u\n",
  737. task_pid_nr(current));
  738. }
  739. static struct rpc_task *
  740. rpc_alloc_task(void)
  741. {
  742. return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
  743. }
  744. /*
  745. * Create a new task for the specified client.
  746. */
  747. struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
  748. {
  749. struct rpc_task *task = setup_data->task;
  750. unsigned short flags = 0;
  751. if (task == NULL) {
  752. task = rpc_alloc_task();
  753. if (task == NULL) {
  754. rpc_release_calldata(setup_data->callback_ops,
  755. setup_data->callback_data);
  756. return ERR_PTR(-ENOMEM);
  757. }
  758. flags = RPC_TASK_DYNAMIC;
  759. }
  760. rpc_init_task(task, setup_data);
  761. if (task->tk_status < 0) {
  762. int err = task->tk_status;
  763. rpc_put_task(task);
  764. return ERR_PTR(err);
  765. }
  766. task->tk_flags |= flags;
  767. dprintk("RPC: allocated task %p\n", task);
  768. return task;
  769. }
  770. static void rpc_free_task(struct rpc_task *task)
  771. {
  772. const struct rpc_call_ops *tk_ops = task->tk_ops;
  773. void *calldata = task->tk_calldata;
  774. if (task->tk_flags & RPC_TASK_DYNAMIC) {
  775. dprintk("RPC: %5u freeing task\n", task->tk_pid);
  776. mempool_free(task, rpc_task_mempool);
  777. }
  778. rpc_release_calldata(tk_ops, calldata);
  779. }
  780. static void rpc_async_release(struct work_struct *work)
  781. {
  782. rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
  783. }
  784. void rpc_put_task(struct rpc_task *task)
  785. {
  786. if (!atomic_dec_and_test(&task->tk_count))
  787. return;
  788. /* Release resources */
  789. if (task->tk_rqstp)
  790. xprt_release(task);
  791. if (task->tk_msg.rpc_cred)
  792. rpcauth_unbindcred(task);
  793. if (task->tk_client) {
  794. rpc_release_client(task->tk_client);
  795. task->tk_client = NULL;
  796. }
  797. if (task->tk_workqueue != NULL) {
  798. INIT_WORK(&task->u.tk_work, rpc_async_release);
  799. queue_work(task->tk_workqueue, &task->u.tk_work);
  800. } else
  801. rpc_free_task(task);
  802. }
  803. EXPORT_SYMBOL_GPL(rpc_put_task);
  804. static void rpc_release_task(struct rpc_task *task)
  805. {
  806. #ifdef RPC_DEBUG
  807. BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
  808. #endif
  809. dprintk("RPC: %5u release task\n", task->tk_pid);
  810. if (!list_empty(&task->tk_task)) {
  811. struct rpc_clnt *clnt = task->tk_client;
  812. /* Remove from client task list */
  813. spin_lock(&clnt->cl_lock);
  814. list_del(&task->tk_task);
  815. spin_unlock(&clnt->cl_lock);
  816. }
  817. BUG_ON (RPC_IS_QUEUED(task));
  818. #ifdef RPC_DEBUG
  819. task->tk_magic = 0;
  820. #endif
  821. /* Wake up anyone who is waiting for task completion */
  822. rpc_mark_complete_task(task);
  823. rpc_put_task(task);
  824. }
  825. /*
  826. * Kill all tasks for the given client.
  827. * XXX: kill their descendants as well?
  828. */
  829. void rpc_killall_tasks(struct rpc_clnt *clnt)
  830. {
  831. struct rpc_task *rovr;
  832. if (list_empty(&clnt->cl_tasks))
  833. return;
  834. dprintk("RPC: killing all tasks for client %p\n", clnt);
  835. /*
  836. * Spin lock all_tasks to prevent changes...
  837. */
  838. spin_lock(&clnt->cl_lock);
  839. list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
  840. if (! RPC_IS_ACTIVATED(rovr))
  841. continue;
  842. if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
  843. rovr->tk_flags |= RPC_TASK_KILLED;
  844. rpc_exit(rovr, -EIO);
  845. rpc_wake_up_task(rovr);
  846. }
  847. }
  848. spin_unlock(&clnt->cl_lock);
  849. }
  850. EXPORT_SYMBOL_GPL(rpc_killall_tasks);
  851. int rpciod_up(void)
  852. {
  853. return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
  854. }
  855. void rpciod_down(void)
  856. {
  857. module_put(THIS_MODULE);
  858. }
  859. /*
  860. * Start up the rpciod workqueue.
  861. */
  862. static int rpciod_start(void)
  863. {
  864. struct workqueue_struct *wq;
  865. /*
  866. * Create the rpciod thread and wait for it to start.
  867. */
  868. dprintk("RPC: creating workqueue rpciod\n");
  869. wq = create_workqueue("rpciod");
  870. rpciod_workqueue = wq;
  871. return rpciod_workqueue != NULL;
  872. }
  873. static void rpciod_stop(void)
  874. {
  875. struct workqueue_struct *wq = NULL;
  876. if (rpciod_workqueue == NULL)
  877. return;
  878. dprintk("RPC: destroying workqueue rpciod\n");
  879. wq = rpciod_workqueue;
  880. rpciod_workqueue = NULL;
  881. destroy_workqueue(wq);
  882. }
  883. void
  884. rpc_destroy_mempool(void)
  885. {
  886. rpciod_stop();
  887. if (rpc_buffer_mempool)
  888. mempool_destroy(rpc_buffer_mempool);
  889. if (rpc_task_mempool)
  890. mempool_destroy(rpc_task_mempool);
  891. if (rpc_task_slabp)
  892. kmem_cache_destroy(rpc_task_slabp);
  893. if (rpc_buffer_slabp)
  894. kmem_cache_destroy(rpc_buffer_slabp);
  895. rpc_destroy_wait_queue(&delay_queue);
  896. }
  897. int
  898. rpc_init_mempool(void)
  899. {
  900. /*
  901. * The following is not strictly a mempool initialisation,
  902. * but there is no harm in doing it here
  903. */
  904. rpc_init_wait_queue(&delay_queue, "delayq");
  905. if (!rpciod_start())
  906. goto err_nomem;
  907. rpc_task_slabp = kmem_cache_create("rpc_tasks",
  908. sizeof(struct rpc_task),
  909. 0, SLAB_HWCACHE_ALIGN,
  910. NULL);
  911. if (!rpc_task_slabp)
  912. goto err_nomem;
  913. rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
  914. RPC_BUFFER_MAXSIZE,
  915. 0, SLAB_HWCACHE_ALIGN,
  916. NULL);
  917. if (!rpc_buffer_slabp)
  918. goto err_nomem;
  919. rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
  920. rpc_task_slabp);
  921. if (!rpc_task_mempool)
  922. goto err_nomem;
  923. rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
  924. rpc_buffer_slabp);
  925. if (!rpc_buffer_mempool)
  926. goto err_nomem;
  927. return 0;
  928. err_nomem:
  929. rpc_destroy_mempool();
  930. return -ENOMEM;
  931. }