disk-io.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include "compat.h"
  29. #include "crc32c.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "ref-cache.h"
  39. #include "tree-log.h"
  40. #include "free-space-cache.h"
  41. static struct extent_io_ops btree_extent_io_ops;
  42. static void end_workqueue_fn(struct btrfs_work *work);
  43. /*
  44. * end_io_wq structs are used to do processing in task context when an IO is
  45. * complete. This is used during reads to verify checksums, and it is used
  46. * by writes to insert metadata for new file extents after IO is complete.
  47. */
  48. struct end_io_wq {
  49. struct bio *bio;
  50. bio_end_io_t *end_io;
  51. void *private;
  52. struct btrfs_fs_info *info;
  53. int error;
  54. int metadata;
  55. struct list_head list;
  56. struct btrfs_work work;
  57. };
  58. /*
  59. * async submit bios are used to offload expensive checksumming
  60. * onto the worker threads. They checksum file and metadata bios
  61. * just before they are sent down the IO stack.
  62. */
  63. struct async_submit_bio {
  64. struct inode *inode;
  65. struct bio *bio;
  66. struct list_head list;
  67. extent_submit_bio_hook_t *submit_bio_start;
  68. extent_submit_bio_hook_t *submit_bio_done;
  69. int rw;
  70. int mirror_num;
  71. unsigned long bio_flags;
  72. struct btrfs_work work;
  73. };
  74. /* These are used to set the lockdep class on the extent buffer locks.
  75. * The class is set by the readpage_end_io_hook after the buffer has
  76. * passed csum validation but before the pages are unlocked.
  77. *
  78. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  79. * allocated blocks.
  80. *
  81. * The class is based on the level in the tree block, which allows lockdep
  82. * to know that lower nodes nest inside the locks of higher nodes.
  83. *
  84. * We also add a check to make sure the highest level of the tree is
  85. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  86. * code needs update as well.
  87. */
  88. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  89. # if BTRFS_MAX_LEVEL != 8
  90. # error
  91. # endif
  92. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  93. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  94. /* leaf */
  95. "btrfs-extent-00",
  96. "btrfs-extent-01",
  97. "btrfs-extent-02",
  98. "btrfs-extent-03",
  99. "btrfs-extent-04",
  100. "btrfs-extent-05",
  101. "btrfs-extent-06",
  102. "btrfs-extent-07",
  103. /* highest possible level */
  104. "btrfs-extent-08",
  105. };
  106. #endif
  107. /*
  108. * extents on the btree inode are pretty simple, there's one extent
  109. * that covers the entire device
  110. */
  111. static struct extent_map *btree_get_extent(struct inode *inode,
  112. struct page *page, size_t page_offset, u64 start, u64 len,
  113. int create)
  114. {
  115. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  116. struct extent_map *em;
  117. int ret;
  118. spin_lock(&em_tree->lock);
  119. em = lookup_extent_mapping(em_tree, start, len);
  120. if (em) {
  121. em->bdev =
  122. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  123. spin_unlock(&em_tree->lock);
  124. goto out;
  125. }
  126. spin_unlock(&em_tree->lock);
  127. em = alloc_extent_map(GFP_NOFS);
  128. if (!em) {
  129. em = ERR_PTR(-ENOMEM);
  130. goto out;
  131. }
  132. em->start = 0;
  133. em->len = (u64)-1;
  134. em->block_len = (u64)-1;
  135. em->block_start = 0;
  136. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  137. spin_lock(&em_tree->lock);
  138. ret = add_extent_mapping(em_tree, em);
  139. if (ret == -EEXIST) {
  140. u64 failed_start = em->start;
  141. u64 failed_len = em->len;
  142. free_extent_map(em);
  143. em = lookup_extent_mapping(em_tree, start, len);
  144. if (em) {
  145. ret = 0;
  146. } else {
  147. em = lookup_extent_mapping(em_tree, failed_start,
  148. failed_len);
  149. ret = -EIO;
  150. }
  151. } else if (ret) {
  152. free_extent_map(em);
  153. em = NULL;
  154. }
  155. spin_unlock(&em_tree->lock);
  156. if (ret)
  157. em = ERR_PTR(ret);
  158. out:
  159. return em;
  160. }
  161. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  162. {
  163. return btrfs_crc32c(seed, data, len);
  164. }
  165. void btrfs_csum_final(u32 crc, char *result)
  166. {
  167. *(__le32 *)result = ~cpu_to_le32(crc);
  168. }
  169. /*
  170. * compute the csum for a btree block, and either verify it or write it
  171. * into the csum field of the block.
  172. */
  173. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  174. int verify)
  175. {
  176. u16 csum_size =
  177. btrfs_super_csum_size(&root->fs_info->super_copy);
  178. char *result = NULL;
  179. unsigned long len;
  180. unsigned long cur_len;
  181. unsigned long offset = BTRFS_CSUM_SIZE;
  182. char *map_token = NULL;
  183. char *kaddr;
  184. unsigned long map_start;
  185. unsigned long map_len;
  186. int err;
  187. u32 crc = ~(u32)0;
  188. unsigned long inline_result;
  189. len = buf->len - offset;
  190. while (len > 0) {
  191. err = map_private_extent_buffer(buf, offset, 32,
  192. &map_token, &kaddr,
  193. &map_start, &map_len, KM_USER0);
  194. if (err)
  195. return 1;
  196. cur_len = min(len, map_len - (offset - map_start));
  197. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  198. crc, cur_len);
  199. len -= cur_len;
  200. offset += cur_len;
  201. unmap_extent_buffer(buf, map_token, KM_USER0);
  202. }
  203. if (csum_size > sizeof(inline_result)) {
  204. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  205. if (!result)
  206. return 1;
  207. } else {
  208. result = (char *)&inline_result;
  209. }
  210. btrfs_csum_final(crc, result);
  211. if (verify) {
  212. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  213. u32 val;
  214. u32 found = 0;
  215. memcpy(&found, result, csum_size);
  216. read_extent_buffer(buf, &val, 0, csum_size);
  217. if (printk_ratelimit()) {
  218. printk(KERN_INFO "btrfs: %s checksum verify "
  219. "failed on %llu wanted %X found %X "
  220. "level %d\n",
  221. root->fs_info->sb->s_id,
  222. (unsigned long long)buf->start, val, found,
  223. btrfs_header_level(buf));
  224. }
  225. if (result != (char *)&inline_result)
  226. kfree(result);
  227. return 1;
  228. }
  229. } else {
  230. write_extent_buffer(buf, result, 0, csum_size);
  231. }
  232. if (result != (char *)&inline_result)
  233. kfree(result);
  234. return 0;
  235. }
  236. /*
  237. * we can't consider a given block up to date unless the transid of the
  238. * block matches the transid in the parent node's pointer. This is how we
  239. * detect blocks that either didn't get written at all or got written
  240. * in the wrong place.
  241. */
  242. static int verify_parent_transid(struct extent_io_tree *io_tree,
  243. struct extent_buffer *eb, u64 parent_transid)
  244. {
  245. int ret;
  246. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  247. return 0;
  248. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  249. if (extent_buffer_uptodate(io_tree, eb) &&
  250. btrfs_header_generation(eb) == parent_transid) {
  251. ret = 0;
  252. goto out;
  253. }
  254. if (printk_ratelimit()) {
  255. printk("parent transid verify failed on %llu wanted %llu "
  256. "found %llu\n",
  257. (unsigned long long)eb->start,
  258. (unsigned long long)parent_transid,
  259. (unsigned long long)btrfs_header_generation(eb));
  260. }
  261. ret = 1;
  262. clear_extent_buffer_uptodate(io_tree, eb);
  263. out:
  264. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  265. GFP_NOFS);
  266. return ret;
  267. }
  268. /*
  269. * helper to read a given tree block, doing retries as required when
  270. * the checksums don't match and we have alternate mirrors to try.
  271. */
  272. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  273. struct extent_buffer *eb,
  274. u64 start, u64 parent_transid)
  275. {
  276. struct extent_io_tree *io_tree;
  277. int ret;
  278. int num_copies = 0;
  279. int mirror_num = 0;
  280. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  281. while (1) {
  282. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  283. btree_get_extent, mirror_num);
  284. if (!ret &&
  285. !verify_parent_transid(io_tree, eb, parent_transid))
  286. return ret;
  287. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  288. eb->start, eb->len);
  289. if (num_copies == 1)
  290. return ret;
  291. mirror_num++;
  292. if (mirror_num > num_copies)
  293. return ret;
  294. }
  295. return -EIO;
  296. }
  297. /*
  298. * checksum a dirty tree block before IO. This has extra checks to make sure
  299. * we only fill in the checksum field in the first page of a multi-page block
  300. */
  301. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  302. {
  303. struct extent_io_tree *tree;
  304. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  305. u64 found_start;
  306. int found_level;
  307. unsigned long len;
  308. struct extent_buffer *eb;
  309. int ret;
  310. tree = &BTRFS_I(page->mapping->host)->io_tree;
  311. if (page->private == EXTENT_PAGE_PRIVATE)
  312. goto out;
  313. if (!page->private)
  314. goto out;
  315. len = page->private >> 2;
  316. WARN_ON(len == 0);
  317. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  318. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  319. btrfs_header_generation(eb));
  320. BUG_ON(ret);
  321. found_start = btrfs_header_bytenr(eb);
  322. if (found_start != start) {
  323. WARN_ON(1);
  324. goto err;
  325. }
  326. if (eb->first_page != page) {
  327. WARN_ON(1);
  328. goto err;
  329. }
  330. if (!PageUptodate(page)) {
  331. WARN_ON(1);
  332. goto err;
  333. }
  334. found_level = btrfs_header_level(eb);
  335. csum_tree_block(root, eb, 0);
  336. err:
  337. free_extent_buffer(eb);
  338. out:
  339. return 0;
  340. }
  341. static int check_tree_block_fsid(struct btrfs_root *root,
  342. struct extent_buffer *eb)
  343. {
  344. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  345. u8 fsid[BTRFS_UUID_SIZE];
  346. int ret = 1;
  347. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  348. BTRFS_FSID_SIZE);
  349. while (fs_devices) {
  350. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  351. ret = 0;
  352. break;
  353. }
  354. fs_devices = fs_devices->seed;
  355. }
  356. return ret;
  357. }
  358. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  359. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  360. {
  361. lockdep_set_class_and_name(&eb->lock,
  362. &btrfs_eb_class[level],
  363. btrfs_eb_name[level]);
  364. }
  365. #endif
  366. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  367. struct extent_state *state)
  368. {
  369. struct extent_io_tree *tree;
  370. u64 found_start;
  371. int found_level;
  372. unsigned long len;
  373. struct extent_buffer *eb;
  374. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  375. int ret = 0;
  376. tree = &BTRFS_I(page->mapping->host)->io_tree;
  377. if (page->private == EXTENT_PAGE_PRIVATE)
  378. goto out;
  379. if (!page->private)
  380. goto out;
  381. len = page->private >> 2;
  382. WARN_ON(len == 0);
  383. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  384. found_start = btrfs_header_bytenr(eb);
  385. if (found_start != start) {
  386. if (printk_ratelimit()) {
  387. printk(KERN_INFO "btrfs bad tree block start "
  388. "%llu %llu\n",
  389. (unsigned long long)found_start,
  390. (unsigned long long)eb->start);
  391. }
  392. ret = -EIO;
  393. goto err;
  394. }
  395. if (eb->first_page != page) {
  396. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  397. eb->first_page->index, page->index);
  398. WARN_ON(1);
  399. ret = -EIO;
  400. goto err;
  401. }
  402. if (check_tree_block_fsid(root, eb)) {
  403. if (printk_ratelimit()) {
  404. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  405. (unsigned long long)eb->start);
  406. }
  407. ret = -EIO;
  408. goto err;
  409. }
  410. found_level = btrfs_header_level(eb);
  411. btrfs_set_buffer_lockdep_class(eb, found_level);
  412. ret = csum_tree_block(root, eb, 1);
  413. if (ret)
  414. ret = -EIO;
  415. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  416. end = eb->start + end - 1;
  417. err:
  418. free_extent_buffer(eb);
  419. out:
  420. return ret;
  421. }
  422. static void end_workqueue_bio(struct bio *bio, int err)
  423. {
  424. struct end_io_wq *end_io_wq = bio->bi_private;
  425. struct btrfs_fs_info *fs_info;
  426. fs_info = end_io_wq->info;
  427. end_io_wq->error = err;
  428. end_io_wq->work.func = end_workqueue_fn;
  429. end_io_wq->work.flags = 0;
  430. if (bio->bi_rw & (1 << BIO_RW)) {
  431. if (end_io_wq->metadata)
  432. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  433. &end_io_wq->work);
  434. else
  435. btrfs_queue_worker(&fs_info->endio_write_workers,
  436. &end_io_wq->work);
  437. } else {
  438. if (end_io_wq->metadata)
  439. btrfs_queue_worker(&fs_info->endio_meta_workers,
  440. &end_io_wq->work);
  441. else
  442. btrfs_queue_worker(&fs_info->endio_workers,
  443. &end_io_wq->work);
  444. }
  445. }
  446. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  447. int metadata)
  448. {
  449. struct end_io_wq *end_io_wq;
  450. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  451. if (!end_io_wq)
  452. return -ENOMEM;
  453. end_io_wq->private = bio->bi_private;
  454. end_io_wq->end_io = bio->bi_end_io;
  455. end_io_wq->info = info;
  456. end_io_wq->error = 0;
  457. end_io_wq->bio = bio;
  458. end_io_wq->metadata = metadata;
  459. bio->bi_private = end_io_wq;
  460. bio->bi_end_io = end_workqueue_bio;
  461. return 0;
  462. }
  463. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  464. {
  465. unsigned long limit = min_t(unsigned long,
  466. info->workers.max_workers,
  467. info->fs_devices->open_devices);
  468. return 256 * limit;
  469. }
  470. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  471. {
  472. return atomic_read(&info->nr_async_bios) >
  473. btrfs_async_submit_limit(info);
  474. }
  475. static void run_one_async_start(struct btrfs_work *work)
  476. {
  477. struct btrfs_fs_info *fs_info;
  478. struct async_submit_bio *async;
  479. async = container_of(work, struct async_submit_bio, work);
  480. fs_info = BTRFS_I(async->inode)->root->fs_info;
  481. async->submit_bio_start(async->inode, async->rw, async->bio,
  482. async->mirror_num, async->bio_flags);
  483. }
  484. static void run_one_async_done(struct btrfs_work *work)
  485. {
  486. struct btrfs_fs_info *fs_info;
  487. struct async_submit_bio *async;
  488. int limit;
  489. async = container_of(work, struct async_submit_bio, work);
  490. fs_info = BTRFS_I(async->inode)->root->fs_info;
  491. limit = btrfs_async_submit_limit(fs_info);
  492. limit = limit * 2 / 3;
  493. atomic_dec(&fs_info->nr_async_submits);
  494. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  495. waitqueue_active(&fs_info->async_submit_wait))
  496. wake_up(&fs_info->async_submit_wait);
  497. async->submit_bio_done(async->inode, async->rw, async->bio,
  498. async->mirror_num, async->bio_flags);
  499. }
  500. static void run_one_async_free(struct btrfs_work *work)
  501. {
  502. struct async_submit_bio *async;
  503. async = container_of(work, struct async_submit_bio, work);
  504. kfree(async);
  505. }
  506. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  507. int rw, struct bio *bio, int mirror_num,
  508. unsigned long bio_flags,
  509. extent_submit_bio_hook_t *submit_bio_start,
  510. extent_submit_bio_hook_t *submit_bio_done)
  511. {
  512. struct async_submit_bio *async;
  513. async = kmalloc(sizeof(*async), GFP_NOFS);
  514. if (!async)
  515. return -ENOMEM;
  516. async->inode = inode;
  517. async->rw = rw;
  518. async->bio = bio;
  519. async->mirror_num = mirror_num;
  520. async->submit_bio_start = submit_bio_start;
  521. async->submit_bio_done = submit_bio_done;
  522. async->work.func = run_one_async_start;
  523. async->work.ordered_func = run_one_async_done;
  524. async->work.ordered_free = run_one_async_free;
  525. async->work.flags = 0;
  526. async->bio_flags = bio_flags;
  527. atomic_inc(&fs_info->nr_async_submits);
  528. if (rw & (1 << BIO_RW_SYNCIO))
  529. btrfs_set_work_high_prio(&async->work);
  530. btrfs_queue_worker(&fs_info->workers, &async->work);
  531. while (atomic_read(&fs_info->async_submit_draining) &&
  532. atomic_read(&fs_info->nr_async_submits)) {
  533. wait_event(fs_info->async_submit_wait,
  534. (atomic_read(&fs_info->nr_async_submits) == 0));
  535. }
  536. return 0;
  537. }
  538. static int btree_csum_one_bio(struct bio *bio)
  539. {
  540. struct bio_vec *bvec = bio->bi_io_vec;
  541. int bio_index = 0;
  542. struct btrfs_root *root;
  543. WARN_ON(bio->bi_vcnt <= 0);
  544. while (bio_index < bio->bi_vcnt) {
  545. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  546. csum_dirty_buffer(root, bvec->bv_page);
  547. bio_index++;
  548. bvec++;
  549. }
  550. return 0;
  551. }
  552. static int __btree_submit_bio_start(struct inode *inode, int rw,
  553. struct bio *bio, int mirror_num,
  554. unsigned long bio_flags)
  555. {
  556. /*
  557. * when we're called for a write, we're already in the async
  558. * submission context. Just jump into btrfs_map_bio
  559. */
  560. btree_csum_one_bio(bio);
  561. return 0;
  562. }
  563. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  564. int mirror_num, unsigned long bio_flags)
  565. {
  566. /*
  567. * when we're called for a write, we're already in the async
  568. * submission context. Just jump into btrfs_map_bio
  569. */
  570. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  571. }
  572. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  573. int mirror_num, unsigned long bio_flags)
  574. {
  575. int ret;
  576. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  577. bio, 1);
  578. BUG_ON(ret);
  579. if (!(rw & (1 << BIO_RW))) {
  580. /*
  581. * called for a read, do the setup so that checksum validation
  582. * can happen in the async kernel threads
  583. */
  584. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  585. mirror_num, 0);
  586. }
  587. /*
  588. * kthread helpers are used to submit writes so that checksumming
  589. * can happen in parallel across all CPUs
  590. */
  591. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  592. inode, rw, bio, mirror_num, 0,
  593. __btree_submit_bio_start,
  594. __btree_submit_bio_done);
  595. }
  596. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  597. {
  598. struct extent_io_tree *tree;
  599. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  600. struct extent_buffer *eb;
  601. int was_dirty;
  602. tree = &BTRFS_I(page->mapping->host)->io_tree;
  603. if (!(current->flags & PF_MEMALLOC)) {
  604. return extent_write_full_page(tree, page,
  605. btree_get_extent, wbc);
  606. }
  607. redirty_page_for_writepage(wbc, page);
  608. eb = btrfs_find_tree_block(root, page_offset(page),
  609. PAGE_CACHE_SIZE);
  610. WARN_ON(!eb);
  611. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  612. if (!was_dirty) {
  613. spin_lock(&root->fs_info->delalloc_lock);
  614. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  615. spin_unlock(&root->fs_info->delalloc_lock);
  616. }
  617. free_extent_buffer(eb);
  618. unlock_page(page);
  619. return 0;
  620. }
  621. static int btree_writepages(struct address_space *mapping,
  622. struct writeback_control *wbc)
  623. {
  624. struct extent_io_tree *tree;
  625. tree = &BTRFS_I(mapping->host)->io_tree;
  626. if (wbc->sync_mode == WB_SYNC_NONE) {
  627. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  628. u64 num_dirty;
  629. unsigned long thresh = 32 * 1024 * 1024;
  630. if (wbc->for_kupdate)
  631. return 0;
  632. /* this is a bit racy, but that's ok */
  633. num_dirty = root->fs_info->dirty_metadata_bytes;
  634. if (num_dirty < thresh)
  635. return 0;
  636. }
  637. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  638. }
  639. static int btree_readpage(struct file *file, struct page *page)
  640. {
  641. struct extent_io_tree *tree;
  642. tree = &BTRFS_I(page->mapping->host)->io_tree;
  643. return extent_read_full_page(tree, page, btree_get_extent);
  644. }
  645. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  646. {
  647. struct extent_io_tree *tree;
  648. struct extent_map_tree *map;
  649. int ret;
  650. if (PageWriteback(page) || PageDirty(page))
  651. return 0;
  652. tree = &BTRFS_I(page->mapping->host)->io_tree;
  653. map = &BTRFS_I(page->mapping->host)->extent_tree;
  654. ret = try_release_extent_state(map, tree, page, gfp_flags);
  655. if (!ret)
  656. return 0;
  657. ret = try_release_extent_buffer(tree, page);
  658. if (ret == 1) {
  659. ClearPagePrivate(page);
  660. set_page_private(page, 0);
  661. page_cache_release(page);
  662. }
  663. return ret;
  664. }
  665. static void btree_invalidatepage(struct page *page, unsigned long offset)
  666. {
  667. struct extent_io_tree *tree;
  668. tree = &BTRFS_I(page->mapping->host)->io_tree;
  669. extent_invalidatepage(tree, page, offset);
  670. btree_releasepage(page, GFP_NOFS);
  671. if (PagePrivate(page)) {
  672. printk(KERN_WARNING "btrfs warning page private not zero "
  673. "on page %llu\n", (unsigned long long)page_offset(page));
  674. ClearPagePrivate(page);
  675. set_page_private(page, 0);
  676. page_cache_release(page);
  677. }
  678. }
  679. static struct address_space_operations btree_aops = {
  680. .readpage = btree_readpage,
  681. .writepage = btree_writepage,
  682. .writepages = btree_writepages,
  683. .releasepage = btree_releasepage,
  684. .invalidatepage = btree_invalidatepage,
  685. .sync_page = block_sync_page,
  686. };
  687. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  688. u64 parent_transid)
  689. {
  690. struct extent_buffer *buf = NULL;
  691. struct inode *btree_inode = root->fs_info->btree_inode;
  692. int ret = 0;
  693. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  694. if (!buf)
  695. return 0;
  696. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  697. buf, 0, 0, btree_get_extent, 0);
  698. free_extent_buffer(buf);
  699. return ret;
  700. }
  701. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  702. u64 bytenr, u32 blocksize)
  703. {
  704. struct inode *btree_inode = root->fs_info->btree_inode;
  705. struct extent_buffer *eb;
  706. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  707. bytenr, blocksize, GFP_NOFS);
  708. return eb;
  709. }
  710. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  711. u64 bytenr, u32 blocksize)
  712. {
  713. struct inode *btree_inode = root->fs_info->btree_inode;
  714. struct extent_buffer *eb;
  715. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  716. bytenr, blocksize, NULL, GFP_NOFS);
  717. return eb;
  718. }
  719. int btrfs_write_tree_block(struct extent_buffer *buf)
  720. {
  721. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  722. buf->start + buf->len - 1, WB_SYNC_ALL);
  723. }
  724. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  725. {
  726. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  727. buf->start, buf->start + buf->len - 1);
  728. }
  729. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  730. u32 blocksize, u64 parent_transid)
  731. {
  732. struct extent_buffer *buf = NULL;
  733. struct inode *btree_inode = root->fs_info->btree_inode;
  734. struct extent_io_tree *io_tree;
  735. int ret;
  736. io_tree = &BTRFS_I(btree_inode)->io_tree;
  737. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  738. if (!buf)
  739. return NULL;
  740. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  741. if (ret == 0)
  742. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  743. else
  744. WARN_ON(1);
  745. return buf;
  746. }
  747. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  748. struct extent_buffer *buf)
  749. {
  750. struct inode *btree_inode = root->fs_info->btree_inode;
  751. if (btrfs_header_generation(buf) ==
  752. root->fs_info->running_transaction->transid) {
  753. btrfs_assert_tree_locked(buf);
  754. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  755. spin_lock(&root->fs_info->delalloc_lock);
  756. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  757. root->fs_info->dirty_metadata_bytes -= buf->len;
  758. else
  759. WARN_ON(1);
  760. spin_unlock(&root->fs_info->delalloc_lock);
  761. }
  762. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  763. btrfs_set_lock_blocking(buf);
  764. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  765. buf);
  766. }
  767. return 0;
  768. }
  769. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  770. u32 stripesize, struct btrfs_root *root,
  771. struct btrfs_fs_info *fs_info,
  772. u64 objectid)
  773. {
  774. root->node = NULL;
  775. root->commit_root = NULL;
  776. root->ref_tree = NULL;
  777. root->sectorsize = sectorsize;
  778. root->nodesize = nodesize;
  779. root->leafsize = leafsize;
  780. root->stripesize = stripesize;
  781. root->ref_cows = 0;
  782. root->track_dirty = 0;
  783. root->fs_info = fs_info;
  784. root->objectid = objectid;
  785. root->last_trans = 0;
  786. root->highest_inode = 0;
  787. root->last_inode_alloc = 0;
  788. root->name = NULL;
  789. root->in_sysfs = 0;
  790. INIT_LIST_HEAD(&root->dirty_list);
  791. INIT_LIST_HEAD(&root->orphan_list);
  792. INIT_LIST_HEAD(&root->dead_list);
  793. spin_lock_init(&root->node_lock);
  794. spin_lock_init(&root->list_lock);
  795. mutex_init(&root->objectid_mutex);
  796. mutex_init(&root->log_mutex);
  797. init_waitqueue_head(&root->log_writer_wait);
  798. init_waitqueue_head(&root->log_commit_wait[0]);
  799. init_waitqueue_head(&root->log_commit_wait[1]);
  800. atomic_set(&root->log_commit[0], 0);
  801. atomic_set(&root->log_commit[1], 0);
  802. atomic_set(&root->log_writers, 0);
  803. root->log_batch = 0;
  804. root->log_transid = 0;
  805. extent_io_tree_init(&root->dirty_log_pages,
  806. fs_info->btree_inode->i_mapping, GFP_NOFS);
  807. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  808. root->ref_tree = &root->ref_tree_struct;
  809. memset(&root->root_key, 0, sizeof(root->root_key));
  810. memset(&root->root_item, 0, sizeof(root->root_item));
  811. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  812. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  813. root->defrag_trans_start = fs_info->generation;
  814. init_completion(&root->kobj_unregister);
  815. root->defrag_running = 0;
  816. root->defrag_level = 0;
  817. root->root_key.objectid = objectid;
  818. root->anon_super.s_root = NULL;
  819. root->anon_super.s_dev = 0;
  820. INIT_LIST_HEAD(&root->anon_super.s_list);
  821. INIT_LIST_HEAD(&root->anon_super.s_instances);
  822. init_rwsem(&root->anon_super.s_umount);
  823. return 0;
  824. }
  825. static int find_and_setup_root(struct btrfs_root *tree_root,
  826. struct btrfs_fs_info *fs_info,
  827. u64 objectid,
  828. struct btrfs_root *root)
  829. {
  830. int ret;
  831. u32 blocksize;
  832. u64 generation;
  833. __setup_root(tree_root->nodesize, tree_root->leafsize,
  834. tree_root->sectorsize, tree_root->stripesize,
  835. root, fs_info, objectid);
  836. ret = btrfs_find_last_root(tree_root, objectid,
  837. &root->root_item, &root->root_key);
  838. BUG_ON(ret);
  839. generation = btrfs_root_generation(&root->root_item);
  840. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  841. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  842. blocksize, generation);
  843. BUG_ON(!root->node);
  844. return 0;
  845. }
  846. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  847. struct btrfs_fs_info *fs_info)
  848. {
  849. struct extent_buffer *eb;
  850. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  851. u64 start = 0;
  852. u64 end = 0;
  853. int ret;
  854. if (!log_root_tree)
  855. return 0;
  856. while (1) {
  857. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  858. 0, &start, &end, EXTENT_DIRTY);
  859. if (ret)
  860. break;
  861. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  862. start, end, GFP_NOFS);
  863. }
  864. eb = fs_info->log_root_tree->node;
  865. WARN_ON(btrfs_header_level(eb) != 0);
  866. WARN_ON(btrfs_header_nritems(eb) != 0);
  867. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  868. eb->start, eb->len);
  869. BUG_ON(ret);
  870. free_extent_buffer(eb);
  871. kfree(fs_info->log_root_tree);
  872. fs_info->log_root_tree = NULL;
  873. return 0;
  874. }
  875. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  876. struct btrfs_fs_info *fs_info)
  877. {
  878. struct btrfs_root *root;
  879. struct btrfs_root *tree_root = fs_info->tree_root;
  880. struct extent_buffer *leaf;
  881. root = kzalloc(sizeof(*root), GFP_NOFS);
  882. if (!root)
  883. return ERR_PTR(-ENOMEM);
  884. __setup_root(tree_root->nodesize, tree_root->leafsize,
  885. tree_root->sectorsize, tree_root->stripesize,
  886. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  887. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  888. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  889. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  890. /*
  891. * log trees do not get reference counted because they go away
  892. * before a real commit is actually done. They do store pointers
  893. * to file data extents, and those reference counts still get
  894. * updated (along with back refs to the log tree).
  895. */
  896. root->ref_cows = 0;
  897. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  898. 0, BTRFS_TREE_LOG_OBJECTID,
  899. trans->transid, 0, 0, 0);
  900. if (IS_ERR(leaf)) {
  901. kfree(root);
  902. return ERR_CAST(leaf);
  903. }
  904. root->node = leaf;
  905. btrfs_set_header_nritems(root->node, 0);
  906. btrfs_set_header_level(root->node, 0);
  907. btrfs_set_header_bytenr(root->node, root->node->start);
  908. btrfs_set_header_generation(root->node, trans->transid);
  909. btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
  910. write_extent_buffer(root->node, root->fs_info->fsid,
  911. (unsigned long)btrfs_header_fsid(root->node),
  912. BTRFS_FSID_SIZE);
  913. btrfs_mark_buffer_dirty(root->node);
  914. btrfs_tree_unlock(root->node);
  915. return root;
  916. }
  917. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  918. struct btrfs_fs_info *fs_info)
  919. {
  920. struct btrfs_root *log_root;
  921. log_root = alloc_log_tree(trans, fs_info);
  922. if (IS_ERR(log_root))
  923. return PTR_ERR(log_root);
  924. WARN_ON(fs_info->log_root_tree);
  925. fs_info->log_root_tree = log_root;
  926. return 0;
  927. }
  928. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  929. struct btrfs_root *root)
  930. {
  931. struct btrfs_root *log_root;
  932. struct btrfs_inode_item *inode_item;
  933. log_root = alloc_log_tree(trans, root->fs_info);
  934. if (IS_ERR(log_root))
  935. return PTR_ERR(log_root);
  936. log_root->last_trans = trans->transid;
  937. log_root->root_key.offset = root->root_key.objectid;
  938. inode_item = &log_root->root_item.inode;
  939. inode_item->generation = cpu_to_le64(1);
  940. inode_item->size = cpu_to_le64(3);
  941. inode_item->nlink = cpu_to_le32(1);
  942. inode_item->nbytes = cpu_to_le64(root->leafsize);
  943. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  944. btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
  945. btrfs_set_root_generation(&log_root->root_item, trans->transid);
  946. WARN_ON(root->log_root);
  947. root->log_root = log_root;
  948. root->log_transid = 0;
  949. return 0;
  950. }
  951. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  952. struct btrfs_key *location)
  953. {
  954. struct btrfs_root *root;
  955. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  956. struct btrfs_path *path;
  957. struct extent_buffer *l;
  958. u64 highest_inode;
  959. u64 generation;
  960. u32 blocksize;
  961. int ret = 0;
  962. root = kzalloc(sizeof(*root), GFP_NOFS);
  963. if (!root)
  964. return ERR_PTR(-ENOMEM);
  965. if (location->offset == (u64)-1) {
  966. ret = find_and_setup_root(tree_root, fs_info,
  967. location->objectid, root);
  968. if (ret) {
  969. kfree(root);
  970. return ERR_PTR(ret);
  971. }
  972. goto insert;
  973. }
  974. __setup_root(tree_root->nodesize, tree_root->leafsize,
  975. tree_root->sectorsize, tree_root->stripesize,
  976. root, fs_info, location->objectid);
  977. path = btrfs_alloc_path();
  978. BUG_ON(!path);
  979. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  980. if (ret != 0) {
  981. if (ret > 0)
  982. ret = -ENOENT;
  983. goto out;
  984. }
  985. l = path->nodes[0];
  986. read_extent_buffer(l, &root->root_item,
  987. btrfs_item_ptr_offset(l, path->slots[0]),
  988. sizeof(root->root_item));
  989. memcpy(&root->root_key, location, sizeof(*location));
  990. ret = 0;
  991. out:
  992. btrfs_release_path(root, path);
  993. btrfs_free_path(path);
  994. if (ret) {
  995. kfree(root);
  996. return ERR_PTR(ret);
  997. }
  998. generation = btrfs_root_generation(&root->root_item);
  999. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1000. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1001. blocksize, generation);
  1002. BUG_ON(!root->node);
  1003. insert:
  1004. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1005. root->ref_cows = 1;
  1006. ret = btrfs_find_highest_inode(root, &highest_inode);
  1007. if (ret == 0) {
  1008. root->highest_inode = highest_inode;
  1009. root->last_inode_alloc = highest_inode;
  1010. }
  1011. }
  1012. return root;
  1013. }
  1014. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1015. u64 root_objectid)
  1016. {
  1017. struct btrfs_root *root;
  1018. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1019. return fs_info->tree_root;
  1020. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1021. return fs_info->extent_root;
  1022. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1023. (unsigned long)root_objectid);
  1024. return root;
  1025. }
  1026. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1027. struct btrfs_key *location)
  1028. {
  1029. struct btrfs_root *root;
  1030. int ret;
  1031. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1032. return fs_info->tree_root;
  1033. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1034. return fs_info->extent_root;
  1035. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1036. return fs_info->chunk_root;
  1037. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1038. return fs_info->dev_root;
  1039. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1040. return fs_info->csum_root;
  1041. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1042. (unsigned long)location->objectid);
  1043. if (root)
  1044. return root;
  1045. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1046. if (IS_ERR(root))
  1047. return root;
  1048. set_anon_super(&root->anon_super, NULL);
  1049. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1050. (unsigned long)root->root_key.objectid,
  1051. root);
  1052. if (ret) {
  1053. free_extent_buffer(root->node);
  1054. kfree(root);
  1055. return ERR_PTR(ret);
  1056. }
  1057. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1058. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1059. root->root_key.objectid, root);
  1060. BUG_ON(ret);
  1061. btrfs_orphan_cleanup(root);
  1062. }
  1063. return root;
  1064. }
  1065. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1066. struct btrfs_key *location,
  1067. const char *name, int namelen)
  1068. {
  1069. struct btrfs_root *root;
  1070. int ret;
  1071. root = btrfs_read_fs_root_no_name(fs_info, location);
  1072. if (!root)
  1073. return NULL;
  1074. if (root->in_sysfs)
  1075. return root;
  1076. ret = btrfs_set_root_name(root, name, namelen);
  1077. if (ret) {
  1078. free_extent_buffer(root->node);
  1079. kfree(root);
  1080. return ERR_PTR(ret);
  1081. }
  1082. #if 0
  1083. ret = btrfs_sysfs_add_root(root);
  1084. if (ret) {
  1085. free_extent_buffer(root->node);
  1086. kfree(root->name);
  1087. kfree(root);
  1088. return ERR_PTR(ret);
  1089. }
  1090. #endif
  1091. root->in_sysfs = 1;
  1092. return root;
  1093. }
  1094. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1095. {
  1096. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1097. int ret = 0;
  1098. struct btrfs_device *device;
  1099. struct backing_dev_info *bdi;
  1100. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1101. if (!device->bdev)
  1102. continue;
  1103. bdi = blk_get_backing_dev_info(device->bdev);
  1104. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1105. ret = 1;
  1106. break;
  1107. }
  1108. }
  1109. return ret;
  1110. }
  1111. /*
  1112. * this unplugs every device on the box, and it is only used when page
  1113. * is null
  1114. */
  1115. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1116. {
  1117. struct btrfs_device *device;
  1118. struct btrfs_fs_info *info;
  1119. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1120. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1121. if (!device->bdev)
  1122. continue;
  1123. bdi = blk_get_backing_dev_info(device->bdev);
  1124. if (bdi->unplug_io_fn)
  1125. bdi->unplug_io_fn(bdi, page);
  1126. }
  1127. }
  1128. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1129. {
  1130. struct inode *inode;
  1131. struct extent_map_tree *em_tree;
  1132. struct extent_map *em;
  1133. struct address_space *mapping;
  1134. u64 offset;
  1135. /* the generic O_DIRECT read code does this */
  1136. if (1 || !page) {
  1137. __unplug_io_fn(bdi, page);
  1138. return;
  1139. }
  1140. /*
  1141. * page->mapping may change at any time. Get a consistent copy
  1142. * and use that for everything below
  1143. */
  1144. smp_mb();
  1145. mapping = page->mapping;
  1146. if (!mapping)
  1147. return;
  1148. inode = mapping->host;
  1149. /*
  1150. * don't do the expensive searching for a small number of
  1151. * devices
  1152. */
  1153. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1154. __unplug_io_fn(bdi, page);
  1155. return;
  1156. }
  1157. offset = page_offset(page);
  1158. em_tree = &BTRFS_I(inode)->extent_tree;
  1159. spin_lock(&em_tree->lock);
  1160. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1161. spin_unlock(&em_tree->lock);
  1162. if (!em) {
  1163. __unplug_io_fn(bdi, page);
  1164. return;
  1165. }
  1166. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1167. free_extent_map(em);
  1168. __unplug_io_fn(bdi, page);
  1169. return;
  1170. }
  1171. offset = offset - em->start;
  1172. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1173. em->block_start + offset, page);
  1174. free_extent_map(em);
  1175. }
  1176. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1177. {
  1178. bdi_init(bdi);
  1179. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1180. bdi->state = 0;
  1181. bdi->capabilities = default_backing_dev_info.capabilities;
  1182. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1183. bdi->unplug_io_data = info;
  1184. bdi->congested_fn = btrfs_congested_fn;
  1185. bdi->congested_data = info;
  1186. return 0;
  1187. }
  1188. static int bio_ready_for_csum(struct bio *bio)
  1189. {
  1190. u64 length = 0;
  1191. u64 buf_len = 0;
  1192. u64 start = 0;
  1193. struct page *page;
  1194. struct extent_io_tree *io_tree = NULL;
  1195. struct btrfs_fs_info *info = NULL;
  1196. struct bio_vec *bvec;
  1197. int i;
  1198. int ret;
  1199. bio_for_each_segment(bvec, bio, i) {
  1200. page = bvec->bv_page;
  1201. if (page->private == EXTENT_PAGE_PRIVATE) {
  1202. length += bvec->bv_len;
  1203. continue;
  1204. }
  1205. if (!page->private) {
  1206. length += bvec->bv_len;
  1207. continue;
  1208. }
  1209. length = bvec->bv_len;
  1210. buf_len = page->private >> 2;
  1211. start = page_offset(page) + bvec->bv_offset;
  1212. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1213. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1214. }
  1215. /* are we fully contained in this bio? */
  1216. if (buf_len <= length)
  1217. return 1;
  1218. ret = extent_range_uptodate(io_tree, start + length,
  1219. start + buf_len - 1);
  1220. return ret;
  1221. }
  1222. /*
  1223. * called by the kthread helper functions to finally call the bio end_io
  1224. * functions. This is where read checksum verification actually happens
  1225. */
  1226. static void end_workqueue_fn(struct btrfs_work *work)
  1227. {
  1228. struct bio *bio;
  1229. struct end_io_wq *end_io_wq;
  1230. struct btrfs_fs_info *fs_info;
  1231. int error;
  1232. end_io_wq = container_of(work, struct end_io_wq, work);
  1233. bio = end_io_wq->bio;
  1234. fs_info = end_io_wq->info;
  1235. /* metadata bio reads are special because the whole tree block must
  1236. * be checksummed at once. This makes sure the entire block is in
  1237. * ram and up to date before trying to verify things. For
  1238. * blocksize <= pagesize, it is basically a noop
  1239. */
  1240. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1241. !bio_ready_for_csum(bio)) {
  1242. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1243. &end_io_wq->work);
  1244. return;
  1245. }
  1246. error = end_io_wq->error;
  1247. bio->bi_private = end_io_wq->private;
  1248. bio->bi_end_io = end_io_wq->end_io;
  1249. kfree(end_io_wq);
  1250. bio_endio(bio, error);
  1251. }
  1252. static int cleaner_kthread(void *arg)
  1253. {
  1254. struct btrfs_root *root = arg;
  1255. do {
  1256. smp_mb();
  1257. if (root->fs_info->closing)
  1258. break;
  1259. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1260. mutex_lock(&root->fs_info->cleaner_mutex);
  1261. btrfs_clean_old_snapshots(root);
  1262. mutex_unlock(&root->fs_info->cleaner_mutex);
  1263. if (freezing(current)) {
  1264. refrigerator();
  1265. } else {
  1266. smp_mb();
  1267. if (root->fs_info->closing)
  1268. break;
  1269. set_current_state(TASK_INTERRUPTIBLE);
  1270. schedule();
  1271. __set_current_state(TASK_RUNNING);
  1272. }
  1273. } while (!kthread_should_stop());
  1274. return 0;
  1275. }
  1276. static int transaction_kthread(void *arg)
  1277. {
  1278. struct btrfs_root *root = arg;
  1279. struct btrfs_trans_handle *trans;
  1280. struct btrfs_transaction *cur;
  1281. unsigned long now;
  1282. unsigned long delay;
  1283. int ret;
  1284. do {
  1285. smp_mb();
  1286. if (root->fs_info->closing)
  1287. break;
  1288. delay = HZ * 30;
  1289. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1290. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1291. mutex_lock(&root->fs_info->trans_mutex);
  1292. cur = root->fs_info->running_transaction;
  1293. if (!cur) {
  1294. mutex_unlock(&root->fs_info->trans_mutex);
  1295. goto sleep;
  1296. }
  1297. now = get_seconds();
  1298. if (now < cur->start_time || now - cur->start_time < 30) {
  1299. mutex_unlock(&root->fs_info->trans_mutex);
  1300. delay = HZ * 5;
  1301. goto sleep;
  1302. }
  1303. mutex_unlock(&root->fs_info->trans_mutex);
  1304. trans = btrfs_start_transaction(root, 1);
  1305. ret = btrfs_commit_transaction(trans, root);
  1306. sleep:
  1307. wake_up_process(root->fs_info->cleaner_kthread);
  1308. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1309. if (freezing(current)) {
  1310. refrigerator();
  1311. } else {
  1312. if (root->fs_info->closing)
  1313. break;
  1314. set_current_state(TASK_INTERRUPTIBLE);
  1315. schedule_timeout(delay);
  1316. __set_current_state(TASK_RUNNING);
  1317. }
  1318. } while (!kthread_should_stop());
  1319. return 0;
  1320. }
  1321. struct btrfs_root *open_ctree(struct super_block *sb,
  1322. struct btrfs_fs_devices *fs_devices,
  1323. char *options)
  1324. {
  1325. u32 sectorsize;
  1326. u32 nodesize;
  1327. u32 leafsize;
  1328. u32 blocksize;
  1329. u32 stripesize;
  1330. u64 generation;
  1331. u64 features;
  1332. struct btrfs_key location;
  1333. struct buffer_head *bh;
  1334. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1335. GFP_NOFS);
  1336. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1337. GFP_NOFS);
  1338. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1339. GFP_NOFS);
  1340. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1341. GFP_NOFS);
  1342. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1343. GFP_NOFS);
  1344. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1345. GFP_NOFS);
  1346. struct btrfs_root *log_tree_root;
  1347. int ret;
  1348. int err = -EINVAL;
  1349. struct btrfs_super_block *disk_super;
  1350. if (!extent_root || !tree_root || !fs_info ||
  1351. !chunk_root || !dev_root || !csum_root) {
  1352. err = -ENOMEM;
  1353. goto fail;
  1354. }
  1355. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1356. INIT_LIST_HEAD(&fs_info->trans_list);
  1357. INIT_LIST_HEAD(&fs_info->dead_roots);
  1358. INIT_LIST_HEAD(&fs_info->hashers);
  1359. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1360. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1361. spin_lock_init(&fs_info->delalloc_lock);
  1362. spin_lock_init(&fs_info->new_trans_lock);
  1363. spin_lock_init(&fs_info->ref_cache_lock);
  1364. init_completion(&fs_info->kobj_unregister);
  1365. fs_info->tree_root = tree_root;
  1366. fs_info->extent_root = extent_root;
  1367. fs_info->csum_root = csum_root;
  1368. fs_info->chunk_root = chunk_root;
  1369. fs_info->dev_root = dev_root;
  1370. fs_info->fs_devices = fs_devices;
  1371. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1372. INIT_LIST_HEAD(&fs_info->space_info);
  1373. btrfs_mapping_init(&fs_info->mapping_tree);
  1374. atomic_set(&fs_info->nr_async_submits, 0);
  1375. atomic_set(&fs_info->async_delalloc_pages, 0);
  1376. atomic_set(&fs_info->async_submit_draining, 0);
  1377. atomic_set(&fs_info->nr_async_bios, 0);
  1378. atomic_set(&fs_info->throttles, 0);
  1379. atomic_set(&fs_info->throttle_gen, 0);
  1380. fs_info->sb = sb;
  1381. fs_info->max_extent = (u64)-1;
  1382. fs_info->max_inline = 8192 * 1024;
  1383. setup_bdi(fs_info, &fs_info->bdi);
  1384. fs_info->btree_inode = new_inode(sb);
  1385. fs_info->btree_inode->i_ino = 1;
  1386. fs_info->btree_inode->i_nlink = 1;
  1387. fs_info->metadata_ratio = 8;
  1388. fs_info->thread_pool_size = min_t(unsigned long,
  1389. num_online_cpus() + 2, 8);
  1390. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1391. spin_lock_init(&fs_info->ordered_extent_lock);
  1392. sb->s_blocksize = 4096;
  1393. sb->s_blocksize_bits = blksize_bits(4096);
  1394. /*
  1395. * we set the i_size on the btree inode to the max possible int.
  1396. * the real end of the address space is determined by all of
  1397. * the devices in the system
  1398. */
  1399. fs_info->btree_inode->i_size = OFFSET_MAX;
  1400. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1401. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1402. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1403. fs_info->btree_inode->i_mapping,
  1404. GFP_NOFS);
  1405. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1406. GFP_NOFS);
  1407. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1408. spin_lock_init(&fs_info->block_group_cache_lock);
  1409. fs_info->block_group_cache_tree.rb_node = NULL;
  1410. extent_io_tree_init(&fs_info->pinned_extents,
  1411. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1412. fs_info->do_barriers = 1;
  1413. INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
  1414. btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
  1415. btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
  1416. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1417. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1418. sizeof(struct btrfs_key));
  1419. insert_inode_hash(fs_info->btree_inode);
  1420. mutex_init(&fs_info->trans_mutex);
  1421. mutex_init(&fs_info->ordered_operations_mutex);
  1422. mutex_init(&fs_info->tree_log_mutex);
  1423. mutex_init(&fs_info->drop_mutex);
  1424. mutex_init(&fs_info->chunk_mutex);
  1425. mutex_init(&fs_info->transaction_kthread_mutex);
  1426. mutex_init(&fs_info->cleaner_mutex);
  1427. mutex_init(&fs_info->volume_mutex);
  1428. mutex_init(&fs_info->tree_reloc_mutex);
  1429. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1430. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1431. init_waitqueue_head(&fs_info->transaction_throttle);
  1432. init_waitqueue_head(&fs_info->transaction_wait);
  1433. init_waitqueue_head(&fs_info->async_submit_wait);
  1434. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1435. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1436. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1437. if (!bh)
  1438. goto fail_iput;
  1439. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1440. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1441. sizeof(fs_info->super_for_commit));
  1442. brelse(bh);
  1443. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1444. disk_super = &fs_info->super_copy;
  1445. if (!btrfs_super_root(disk_super))
  1446. goto fail_iput;
  1447. ret = btrfs_parse_options(tree_root, options);
  1448. if (ret) {
  1449. err = ret;
  1450. goto fail_iput;
  1451. }
  1452. features = btrfs_super_incompat_flags(disk_super) &
  1453. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1454. if (features) {
  1455. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1456. "unsupported optional features (%Lx).\n",
  1457. features);
  1458. err = -EINVAL;
  1459. goto fail_iput;
  1460. }
  1461. features = btrfs_super_compat_ro_flags(disk_super) &
  1462. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1463. if (!(sb->s_flags & MS_RDONLY) && features) {
  1464. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1465. "unsupported option features (%Lx).\n",
  1466. features);
  1467. err = -EINVAL;
  1468. goto fail_iput;
  1469. }
  1470. /*
  1471. * we need to start all the end_io workers up front because the
  1472. * queue work function gets called at interrupt time, and so it
  1473. * cannot dynamically grow.
  1474. */
  1475. btrfs_init_workers(&fs_info->workers, "worker",
  1476. fs_info->thread_pool_size);
  1477. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1478. fs_info->thread_pool_size);
  1479. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1480. min_t(u64, fs_devices->num_devices,
  1481. fs_info->thread_pool_size));
  1482. /* a higher idle thresh on the submit workers makes it much more
  1483. * likely that bios will be send down in a sane order to the
  1484. * devices
  1485. */
  1486. fs_info->submit_workers.idle_thresh = 64;
  1487. fs_info->workers.idle_thresh = 16;
  1488. fs_info->workers.ordered = 1;
  1489. fs_info->delalloc_workers.idle_thresh = 2;
  1490. fs_info->delalloc_workers.ordered = 1;
  1491. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1492. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1493. fs_info->thread_pool_size);
  1494. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1495. fs_info->thread_pool_size);
  1496. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1497. "endio-meta-write", fs_info->thread_pool_size);
  1498. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1499. fs_info->thread_pool_size);
  1500. /*
  1501. * endios are largely parallel and should have a very
  1502. * low idle thresh
  1503. */
  1504. fs_info->endio_workers.idle_thresh = 4;
  1505. fs_info->endio_meta_workers.idle_thresh = 4;
  1506. fs_info->endio_write_workers.idle_thresh = 64;
  1507. fs_info->endio_meta_write_workers.idle_thresh = 64;
  1508. btrfs_start_workers(&fs_info->workers, 1);
  1509. btrfs_start_workers(&fs_info->submit_workers, 1);
  1510. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1511. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1512. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1513. btrfs_start_workers(&fs_info->endio_meta_workers,
  1514. fs_info->thread_pool_size);
  1515. btrfs_start_workers(&fs_info->endio_meta_write_workers,
  1516. fs_info->thread_pool_size);
  1517. btrfs_start_workers(&fs_info->endio_write_workers,
  1518. fs_info->thread_pool_size);
  1519. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1520. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1521. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1522. nodesize = btrfs_super_nodesize(disk_super);
  1523. leafsize = btrfs_super_leafsize(disk_super);
  1524. sectorsize = btrfs_super_sectorsize(disk_super);
  1525. stripesize = btrfs_super_stripesize(disk_super);
  1526. tree_root->nodesize = nodesize;
  1527. tree_root->leafsize = leafsize;
  1528. tree_root->sectorsize = sectorsize;
  1529. tree_root->stripesize = stripesize;
  1530. sb->s_blocksize = sectorsize;
  1531. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1532. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1533. sizeof(disk_super->magic))) {
  1534. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1535. goto fail_sb_buffer;
  1536. }
  1537. mutex_lock(&fs_info->chunk_mutex);
  1538. ret = btrfs_read_sys_array(tree_root);
  1539. mutex_unlock(&fs_info->chunk_mutex);
  1540. if (ret) {
  1541. printk(KERN_WARNING "btrfs: failed to read the system "
  1542. "array on %s\n", sb->s_id);
  1543. goto fail_sys_array;
  1544. }
  1545. blocksize = btrfs_level_size(tree_root,
  1546. btrfs_super_chunk_root_level(disk_super));
  1547. generation = btrfs_super_chunk_root_generation(disk_super);
  1548. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1549. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1550. chunk_root->node = read_tree_block(chunk_root,
  1551. btrfs_super_chunk_root(disk_super),
  1552. blocksize, generation);
  1553. BUG_ON(!chunk_root->node);
  1554. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1555. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1556. BTRFS_UUID_SIZE);
  1557. mutex_lock(&fs_info->chunk_mutex);
  1558. ret = btrfs_read_chunk_tree(chunk_root);
  1559. mutex_unlock(&fs_info->chunk_mutex);
  1560. if (ret) {
  1561. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1562. sb->s_id);
  1563. goto fail_chunk_root;
  1564. }
  1565. btrfs_close_extra_devices(fs_devices);
  1566. blocksize = btrfs_level_size(tree_root,
  1567. btrfs_super_root_level(disk_super));
  1568. generation = btrfs_super_generation(disk_super);
  1569. tree_root->node = read_tree_block(tree_root,
  1570. btrfs_super_root(disk_super),
  1571. blocksize, generation);
  1572. if (!tree_root->node)
  1573. goto fail_chunk_root;
  1574. ret = find_and_setup_root(tree_root, fs_info,
  1575. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1576. if (ret)
  1577. goto fail_tree_root;
  1578. extent_root->track_dirty = 1;
  1579. ret = find_and_setup_root(tree_root, fs_info,
  1580. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1581. dev_root->track_dirty = 1;
  1582. if (ret)
  1583. goto fail_extent_root;
  1584. ret = find_and_setup_root(tree_root, fs_info,
  1585. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1586. if (ret)
  1587. goto fail_extent_root;
  1588. csum_root->track_dirty = 1;
  1589. btrfs_read_block_groups(extent_root);
  1590. fs_info->generation = generation;
  1591. fs_info->last_trans_committed = generation;
  1592. fs_info->data_alloc_profile = (u64)-1;
  1593. fs_info->metadata_alloc_profile = (u64)-1;
  1594. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1595. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1596. "btrfs-cleaner");
  1597. if (IS_ERR(fs_info->cleaner_kthread))
  1598. goto fail_csum_root;
  1599. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1600. tree_root,
  1601. "btrfs-transaction");
  1602. if (IS_ERR(fs_info->transaction_kthread))
  1603. goto fail_cleaner;
  1604. if (btrfs_super_log_root(disk_super) != 0) {
  1605. u64 bytenr = btrfs_super_log_root(disk_super);
  1606. if (fs_devices->rw_devices == 0) {
  1607. printk(KERN_WARNING "Btrfs log replay required "
  1608. "on RO media\n");
  1609. err = -EIO;
  1610. goto fail_trans_kthread;
  1611. }
  1612. blocksize =
  1613. btrfs_level_size(tree_root,
  1614. btrfs_super_log_root_level(disk_super));
  1615. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1616. GFP_NOFS);
  1617. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1618. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1619. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1620. blocksize,
  1621. generation + 1);
  1622. ret = btrfs_recover_log_trees(log_tree_root);
  1623. BUG_ON(ret);
  1624. if (sb->s_flags & MS_RDONLY) {
  1625. ret = btrfs_commit_super(tree_root);
  1626. BUG_ON(ret);
  1627. }
  1628. }
  1629. if (!(sb->s_flags & MS_RDONLY)) {
  1630. ret = btrfs_cleanup_reloc_trees(tree_root);
  1631. BUG_ON(ret);
  1632. }
  1633. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1634. location.type = BTRFS_ROOT_ITEM_KEY;
  1635. location.offset = (u64)-1;
  1636. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1637. if (!fs_info->fs_root)
  1638. goto fail_trans_kthread;
  1639. return tree_root;
  1640. fail_trans_kthread:
  1641. kthread_stop(fs_info->transaction_kthread);
  1642. fail_cleaner:
  1643. kthread_stop(fs_info->cleaner_kthread);
  1644. /*
  1645. * make sure we're done with the btree inode before we stop our
  1646. * kthreads
  1647. */
  1648. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1649. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1650. fail_csum_root:
  1651. free_extent_buffer(csum_root->node);
  1652. fail_extent_root:
  1653. free_extent_buffer(extent_root->node);
  1654. fail_tree_root:
  1655. free_extent_buffer(tree_root->node);
  1656. fail_chunk_root:
  1657. free_extent_buffer(chunk_root->node);
  1658. fail_sys_array:
  1659. free_extent_buffer(dev_root->node);
  1660. fail_sb_buffer:
  1661. btrfs_stop_workers(&fs_info->fixup_workers);
  1662. btrfs_stop_workers(&fs_info->delalloc_workers);
  1663. btrfs_stop_workers(&fs_info->workers);
  1664. btrfs_stop_workers(&fs_info->endio_workers);
  1665. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1666. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1667. btrfs_stop_workers(&fs_info->endio_write_workers);
  1668. btrfs_stop_workers(&fs_info->submit_workers);
  1669. fail_iput:
  1670. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1671. iput(fs_info->btree_inode);
  1672. btrfs_close_devices(fs_info->fs_devices);
  1673. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1674. bdi_destroy(&fs_info->bdi);
  1675. fail:
  1676. kfree(extent_root);
  1677. kfree(tree_root);
  1678. kfree(fs_info);
  1679. kfree(chunk_root);
  1680. kfree(dev_root);
  1681. kfree(csum_root);
  1682. return ERR_PTR(err);
  1683. }
  1684. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1685. {
  1686. char b[BDEVNAME_SIZE];
  1687. if (uptodate) {
  1688. set_buffer_uptodate(bh);
  1689. } else {
  1690. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1691. printk(KERN_WARNING "lost page write due to "
  1692. "I/O error on %s\n",
  1693. bdevname(bh->b_bdev, b));
  1694. }
  1695. /* note, we dont' set_buffer_write_io_error because we have
  1696. * our own ways of dealing with the IO errors
  1697. */
  1698. clear_buffer_uptodate(bh);
  1699. }
  1700. unlock_buffer(bh);
  1701. put_bh(bh);
  1702. }
  1703. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1704. {
  1705. struct buffer_head *bh;
  1706. struct buffer_head *latest = NULL;
  1707. struct btrfs_super_block *super;
  1708. int i;
  1709. u64 transid = 0;
  1710. u64 bytenr;
  1711. /* we would like to check all the supers, but that would make
  1712. * a btrfs mount succeed after a mkfs from a different FS.
  1713. * So, we need to add a special mount option to scan for
  1714. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1715. */
  1716. for (i = 0; i < 1; i++) {
  1717. bytenr = btrfs_sb_offset(i);
  1718. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1719. break;
  1720. bh = __bread(bdev, bytenr / 4096, 4096);
  1721. if (!bh)
  1722. continue;
  1723. super = (struct btrfs_super_block *)bh->b_data;
  1724. if (btrfs_super_bytenr(super) != bytenr ||
  1725. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1726. sizeof(super->magic))) {
  1727. brelse(bh);
  1728. continue;
  1729. }
  1730. if (!latest || btrfs_super_generation(super) > transid) {
  1731. brelse(latest);
  1732. latest = bh;
  1733. transid = btrfs_super_generation(super);
  1734. } else {
  1735. brelse(bh);
  1736. }
  1737. }
  1738. return latest;
  1739. }
  1740. static int write_dev_supers(struct btrfs_device *device,
  1741. struct btrfs_super_block *sb,
  1742. int do_barriers, int wait, int max_mirrors)
  1743. {
  1744. struct buffer_head *bh;
  1745. int i;
  1746. int ret;
  1747. int errors = 0;
  1748. u32 crc;
  1749. u64 bytenr;
  1750. int last_barrier = 0;
  1751. if (max_mirrors == 0)
  1752. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1753. /* make sure only the last submit_bh does a barrier */
  1754. if (do_barriers) {
  1755. for (i = 0; i < max_mirrors; i++) {
  1756. bytenr = btrfs_sb_offset(i);
  1757. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1758. device->total_bytes)
  1759. break;
  1760. last_barrier = i;
  1761. }
  1762. }
  1763. for (i = 0; i < max_mirrors; i++) {
  1764. bytenr = btrfs_sb_offset(i);
  1765. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1766. break;
  1767. if (wait) {
  1768. bh = __find_get_block(device->bdev, bytenr / 4096,
  1769. BTRFS_SUPER_INFO_SIZE);
  1770. BUG_ON(!bh);
  1771. brelse(bh);
  1772. wait_on_buffer(bh);
  1773. if (buffer_uptodate(bh)) {
  1774. brelse(bh);
  1775. continue;
  1776. }
  1777. } else {
  1778. btrfs_set_super_bytenr(sb, bytenr);
  1779. crc = ~(u32)0;
  1780. crc = btrfs_csum_data(NULL, (char *)sb +
  1781. BTRFS_CSUM_SIZE, crc,
  1782. BTRFS_SUPER_INFO_SIZE -
  1783. BTRFS_CSUM_SIZE);
  1784. btrfs_csum_final(crc, sb->csum);
  1785. bh = __getblk(device->bdev, bytenr / 4096,
  1786. BTRFS_SUPER_INFO_SIZE);
  1787. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1788. set_buffer_uptodate(bh);
  1789. get_bh(bh);
  1790. lock_buffer(bh);
  1791. bh->b_end_io = btrfs_end_buffer_write_sync;
  1792. }
  1793. if (i == last_barrier && do_barriers && device->barriers) {
  1794. ret = submit_bh(WRITE_BARRIER, bh);
  1795. if (ret == -EOPNOTSUPP) {
  1796. printk("btrfs: disabling barriers on dev %s\n",
  1797. device->name);
  1798. set_buffer_uptodate(bh);
  1799. device->barriers = 0;
  1800. get_bh(bh);
  1801. lock_buffer(bh);
  1802. ret = submit_bh(WRITE_SYNC, bh);
  1803. }
  1804. } else {
  1805. ret = submit_bh(WRITE_SYNC, bh);
  1806. }
  1807. if (!ret && wait) {
  1808. wait_on_buffer(bh);
  1809. if (!buffer_uptodate(bh))
  1810. errors++;
  1811. } else if (ret) {
  1812. errors++;
  1813. }
  1814. if (wait)
  1815. brelse(bh);
  1816. }
  1817. return errors < i ? 0 : -1;
  1818. }
  1819. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1820. {
  1821. struct list_head *head = &root->fs_info->fs_devices->devices;
  1822. struct btrfs_device *dev;
  1823. struct btrfs_super_block *sb;
  1824. struct btrfs_dev_item *dev_item;
  1825. int ret;
  1826. int do_barriers;
  1827. int max_errors;
  1828. int total_errors = 0;
  1829. u64 flags;
  1830. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1831. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1832. sb = &root->fs_info->super_for_commit;
  1833. dev_item = &sb->dev_item;
  1834. list_for_each_entry(dev, head, dev_list) {
  1835. if (!dev->bdev) {
  1836. total_errors++;
  1837. continue;
  1838. }
  1839. if (!dev->in_fs_metadata || !dev->writeable)
  1840. continue;
  1841. btrfs_set_stack_device_generation(dev_item, 0);
  1842. btrfs_set_stack_device_type(dev_item, dev->type);
  1843. btrfs_set_stack_device_id(dev_item, dev->devid);
  1844. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1845. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1846. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1847. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1848. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1849. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1850. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1851. flags = btrfs_super_flags(sb);
  1852. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1853. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1854. if (ret)
  1855. total_errors++;
  1856. }
  1857. if (total_errors > max_errors) {
  1858. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1859. total_errors);
  1860. BUG();
  1861. }
  1862. total_errors = 0;
  1863. list_for_each_entry(dev, head, dev_list) {
  1864. if (!dev->bdev)
  1865. continue;
  1866. if (!dev->in_fs_metadata || !dev->writeable)
  1867. continue;
  1868. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1869. if (ret)
  1870. total_errors++;
  1871. }
  1872. if (total_errors > max_errors) {
  1873. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1874. total_errors);
  1875. BUG();
  1876. }
  1877. return 0;
  1878. }
  1879. int write_ctree_super(struct btrfs_trans_handle *trans,
  1880. struct btrfs_root *root, int max_mirrors)
  1881. {
  1882. int ret;
  1883. ret = write_all_supers(root, max_mirrors);
  1884. return ret;
  1885. }
  1886. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1887. {
  1888. radix_tree_delete(&fs_info->fs_roots_radix,
  1889. (unsigned long)root->root_key.objectid);
  1890. if (root->anon_super.s_dev) {
  1891. down_write(&root->anon_super.s_umount);
  1892. kill_anon_super(&root->anon_super);
  1893. }
  1894. if (root->node)
  1895. free_extent_buffer(root->node);
  1896. if (root->commit_root)
  1897. free_extent_buffer(root->commit_root);
  1898. kfree(root->name);
  1899. kfree(root);
  1900. return 0;
  1901. }
  1902. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1903. {
  1904. int ret;
  1905. struct btrfs_root *gang[8];
  1906. int i;
  1907. while (1) {
  1908. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1909. (void **)gang, 0,
  1910. ARRAY_SIZE(gang));
  1911. if (!ret)
  1912. break;
  1913. for (i = 0; i < ret; i++)
  1914. btrfs_free_fs_root(fs_info, gang[i]);
  1915. }
  1916. return 0;
  1917. }
  1918. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1919. {
  1920. u64 root_objectid = 0;
  1921. struct btrfs_root *gang[8];
  1922. int i;
  1923. int ret;
  1924. while (1) {
  1925. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1926. (void **)gang, root_objectid,
  1927. ARRAY_SIZE(gang));
  1928. if (!ret)
  1929. break;
  1930. for (i = 0; i < ret; i++) {
  1931. root_objectid = gang[i]->root_key.objectid;
  1932. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1933. root_objectid, gang[i]);
  1934. BUG_ON(ret);
  1935. btrfs_orphan_cleanup(gang[i]);
  1936. }
  1937. root_objectid++;
  1938. }
  1939. return 0;
  1940. }
  1941. int btrfs_commit_super(struct btrfs_root *root)
  1942. {
  1943. struct btrfs_trans_handle *trans;
  1944. int ret;
  1945. mutex_lock(&root->fs_info->cleaner_mutex);
  1946. btrfs_clean_old_snapshots(root);
  1947. mutex_unlock(&root->fs_info->cleaner_mutex);
  1948. trans = btrfs_start_transaction(root, 1);
  1949. ret = btrfs_commit_transaction(trans, root);
  1950. BUG_ON(ret);
  1951. /* run commit again to drop the original snapshot */
  1952. trans = btrfs_start_transaction(root, 1);
  1953. btrfs_commit_transaction(trans, root);
  1954. ret = btrfs_write_and_wait_transaction(NULL, root);
  1955. BUG_ON(ret);
  1956. ret = write_ctree_super(NULL, root, 0);
  1957. return ret;
  1958. }
  1959. int close_ctree(struct btrfs_root *root)
  1960. {
  1961. struct btrfs_fs_info *fs_info = root->fs_info;
  1962. int ret;
  1963. fs_info->closing = 1;
  1964. smp_mb();
  1965. kthread_stop(root->fs_info->transaction_kthread);
  1966. kthread_stop(root->fs_info->cleaner_kthread);
  1967. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1968. ret = btrfs_commit_super(root);
  1969. if (ret)
  1970. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  1971. }
  1972. if (fs_info->delalloc_bytes) {
  1973. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  1974. fs_info->delalloc_bytes);
  1975. }
  1976. if (fs_info->total_ref_cache_size) {
  1977. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  1978. (unsigned long long)fs_info->total_ref_cache_size);
  1979. }
  1980. if (fs_info->extent_root->node)
  1981. free_extent_buffer(fs_info->extent_root->node);
  1982. if (fs_info->tree_root->node)
  1983. free_extent_buffer(fs_info->tree_root->node);
  1984. if (root->fs_info->chunk_root->node)
  1985. free_extent_buffer(root->fs_info->chunk_root->node);
  1986. if (root->fs_info->dev_root->node)
  1987. free_extent_buffer(root->fs_info->dev_root->node);
  1988. if (root->fs_info->csum_root->node)
  1989. free_extent_buffer(root->fs_info->csum_root->node);
  1990. btrfs_free_block_groups(root->fs_info);
  1991. del_fs_roots(fs_info);
  1992. iput(fs_info->btree_inode);
  1993. btrfs_stop_workers(&fs_info->fixup_workers);
  1994. btrfs_stop_workers(&fs_info->delalloc_workers);
  1995. btrfs_stop_workers(&fs_info->workers);
  1996. btrfs_stop_workers(&fs_info->endio_workers);
  1997. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1998. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1999. btrfs_stop_workers(&fs_info->endio_write_workers);
  2000. btrfs_stop_workers(&fs_info->submit_workers);
  2001. btrfs_close_devices(fs_info->fs_devices);
  2002. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2003. bdi_destroy(&fs_info->bdi);
  2004. kfree(fs_info->extent_root);
  2005. kfree(fs_info->tree_root);
  2006. kfree(fs_info->chunk_root);
  2007. kfree(fs_info->dev_root);
  2008. kfree(fs_info->csum_root);
  2009. return 0;
  2010. }
  2011. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2012. {
  2013. int ret;
  2014. struct inode *btree_inode = buf->first_page->mapping->host;
  2015. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  2016. if (!ret)
  2017. return ret;
  2018. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2019. parent_transid);
  2020. return !ret;
  2021. }
  2022. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2023. {
  2024. struct inode *btree_inode = buf->first_page->mapping->host;
  2025. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2026. buf);
  2027. }
  2028. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2029. {
  2030. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2031. u64 transid = btrfs_header_generation(buf);
  2032. struct inode *btree_inode = root->fs_info->btree_inode;
  2033. int was_dirty;
  2034. btrfs_assert_tree_locked(buf);
  2035. if (transid != root->fs_info->generation) {
  2036. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2037. "found %llu running %llu\n",
  2038. (unsigned long long)buf->start,
  2039. (unsigned long long)transid,
  2040. (unsigned long long)root->fs_info->generation);
  2041. WARN_ON(1);
  2042. }
  2043. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2044. buf);
  2045. if (!was_dirty) {
  2046. spin_lock(&root->fs_info->delalloc_lock);
  2047. root->fs_info->dirty_metadata_bytes += buf->len;
  2048. spin_unlock(&root->fs_info->delalloc_lock);
  2049. }
  2050. }
  2051. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2052. {
  2053. /*
  2054. * looks as though older kernels can get into trouble with
  2055. * this code, they end up stuck in balance_dirty_pages forever
  2056. */
  2057. struct extent_io_tree *tree;
  2058. u64 num_dirty;
  2059. u64 start = 0;
  2060. unsigned long thresh = 32 * 1024 * 1024;
  2061. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  2062. if (current->flags & PF_MEMALLOC)
  2063. return;
  2064. num_dirty = count_range_bits(tree, &start, (u64)-1,
  2065. thresh, EXTENT_DIRTY);
  2066. if (num_dirty > thresh) {
  2067. balance_dirty_pages_ratelimited_nr(
  2068. root->fs_info->btree_inode->i_mapping, 1);
  2069. }
  2070. return;
  2071. }
  2072. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2073. {
  2074. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2075. int ret;
  2076. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2077. if (ret == 0)
  2078. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2079. return ret;
  2080. }
  2081. int btree_lock_page_hook(struct page *page)
  2082. {
  2083. struct inode *inode = page->mapping->host;
  2084. struct btrfs_root *root = BTRFS_I(inode)->root;
  2085. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2086. struct extent_buffer *eb;
  2087. unsigned long len;
  2088. u64 bytenr = page_offset(page);
  2089. if (page->private == EXTENT_PAGE_PRIVATE)
  2090. goto out;
  2091. len = page->private >> 2;
  2092. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2093. if (!eb)
  2094. goto out;
  2095. btrfs_tree_lock(eb);
  2096. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2097. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2098. spin_lock(&root->fs_info->delalloc_lock);
  2099. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2100. root->fs_info->dirty_metadata_bytes -= eb->len;
  2101. else
  2102. WARN_ON(1);
  2103. spin_unlock(&root->fs_info->delalloc_lock);
  2104. }
  2105. btrfs_tree_unlock(eb);
  2106. free_extent_buffer(eb);
  2107. out:
  2108. lock_page(page);
  2109. return 0;
  2110. }
  2111. static struct extent_io_ops btree_extent_io_ops = {
  2112. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2113. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2114. .submit_bio_hook = btree_submit_bio_hook,
  2115. /* note we're sharing with inode.c for the merge bio hook */
  2116. .merge_bio_hook = btrfs_merge_bio_hook,
  2117. };