xfs_file.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_bit.h"
  21. #include "xfs_log.h"
  22. #include "xfs_inum.h"
  23. #include "xfs_sb.h"
  24. #include "xfs_ag.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_bmap_btree.h"
  28. #include "xfs_alloc.h"
  29. #include "xfs_dinode.h"
  30. #include "xfs_inode.h"
  31. #include "xfs_inode_item.h"
  32. #include "xfs_bmap.h"
  33. #include "xfs_error.h"
  34. #include "xfs_vnodeops.h"
  35. #include "xfs_da_btree.h"
  36. #include "xfs_ioctl.h"
  37. #include "xfs_trace.h"
  38. #include <linux/dcache.h>
  39. #include <linux/falloc.h>
  40. static const struct vm_operations_struct xfs_file_vm_ops;
  41. /*
  42. * Locking primitives for read and write IO paths to ensure we consistently use
  43. * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  44. */
  45. static inline void
  46. xfs_rw_ilock(
  47. struct xfs_inode *ip,
  48. int type)
  49. {
  50. if (type & XFS_IOLOCK_EXCL)
  51. mutex_lock(&VFS_I(ip)->i_mutex);
  52. xfs_ilock(ip, type);
  53. }
  54. static inline void
  55. xfs_rw_iunlock(
  56. struct xfs_inode *ip,
  57. int type)
  58. {
  59. xfs_iunlock(ip, type);
  60. if (type & XFS_IOLOCK_EXCL)
  61. mutex_unlock(&VFS_I(ip)->i_mutex);
  62. }
  63. static inline void
  64. xfs_rw_ilock_demote(
  65. struct xfs_inode *ip,
  66. int type)
  67. {
  68. xfs_ilock_demote(ip, type);
  69. if (type & XFS_IOLOCK_EXCL)
  70. mutex_unlock(&VFS_I(ip)->i_mutex);
  71. }
  72. /*
  73. * xfs_iozero
  74. *
  75. * xfs_iozero clears the specified range of buffer supplied,
  76. * and marks all the affected blocks as valid and modified. If
  77. * an affected block is not allocated, it will be allocated. If
  78. * an affected block is not completely overwritten, and is not
  79. * valid before the operation, it will be read from disk before
  80. * being partially zeroed.
  81. */
  82. STATIC int
  83. xfs_iozero(
  84. struct xfs_inode *ip, /* inode */
  85. loff_t pos, /* offset in file */
  86. size_t count) /* size of data to zero */
  87. {
  88. struct page *page;
  89. struct address_space *mapping;
  90. int status;
  91. mapping = VFS_I(ip)->i_mapping;
  92. do {
  93. unsigned offset, bytes;
  94. void *fsdata;
  95. offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
  96. bytes = PAGE_CACHE_SIZE - offset;
  97. if (bytes > count)
  98. bytes = count;
  99. status = pagecache_write_begin(NULL, mapping, pos, bytes,
  100. AOP_FLAG_UNINTERRUPTIBLE,
  101. &page, &fsdata);
  102. if (status)
  103. break;
  104. zero_user(page, offset, bytes);
  105. status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
  106. page, fsdata);
  107. WARN_ON(status <= 0); /* can't return less than zero! */
  108. pos += bytes;
  109. count -= bytes;
  110. status = 0;
  111. } while (count);
  112. return (-status);
  113. }
  114. /*
  115. * Fsync operations on directories are much simpler than on regular files,
  116. * as there is no file data to flush, and thus also no need for explicit
  117. * cache flush operations, and there are no non-transaction metadata updates
  118. * on directories either.
  119. */
  120. STATIC int
  121. xfs_dir_fsync(
  122. struct file *file,
  123. loff_t start,
  124. loff_t end,
  125. int datasync)
  126. {
  127. struct xfs_inode *ip = XFS_I(file->f_mapping->host);
  128. struct xfs_mount *mp = ip->i_mount;
  129. xfs_lsn_t lsn = 0;
  130. trace_xfs_dir_fsync(ip);
  131. xfs_ilock(ip, XFS_ILOCK_SHARED);
  132. if (xfs_ipincount(ip))
  133. lsn = ip->i_itemp->ili_last_lsn;
  134. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  135. if (!lsn)
  136. return 0;
  137. return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
  138. }
  139. STATIC int
  140. xfs_file_fsync(
  141. struct file *file,
  142. loff_t start,
  143. loff_t end,
  144. int datasync)
  145. {
  146. struct inode *inode = file->f_mapping->host;
  147. struct xfs_inode *ip = XFS_I(inode);
  148. struct xfs_mount *mp = ip->i_mount;
  149. int error = 0;
  150. int log_flushed = 0;
  151. xfs_lsn_t lsn = 0;
  152. trace_xfs_file_fsync(ip);
  153. error = filemap_write_and_wait_range(inode->i_mapping, start, end);
  154. if (error)
  155. return error;
  156. if (XFS_FORCED_SHUTDOWN(mp))
  157. return -XFS_ERROR(EIO);
  158. xfs_iflags_clear(ip, XFS_ITRUNCATED);
  159. if (mp->m_flags & XFS_MOUNT_BARRIER) {
  160. /*
  161. * If we have an RT and/or log subvolume we need to make sure
  162. * to flush the write cache the device used for file data
  163. * first. This is to ensure newly written file data make
  164. * it to disk before logging the new inode size in case of
  165. * an extending write.
  166. */
  167. if (XFS_IS_REALTIME_INODE(ip))
  168. xfs_blkdev_issue_flush(mp->m_rtdev_targp);
  169. else if (mp->m_logdev_targp != mp->m_ddev_targp)
  170. xfs_blkdev_issue_flush(mp->m_ddev_targp);
  171. }
  172. /*
  173. * All metadata updates are logged, which means that we just have
  174. * to flush the log up to the latest LSN that touched the inode.
  175. */
  176. xfs_ilock(ip, XFS_ILOCK_SHARED);
  177. if (xfs_ipincount(ip)) {
  178. if (!datasync ||
  179. (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
  180. lsn = ip->i_itemp->ili_last_lsn;
  181. }
  182. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  183. if (lsn)
  184. error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
  185. /*
  186. * If we only have a single device, and the log force about was
  187. * a no-op we might have to flush the data device cache here.
  188. * This can only happen for fdatasync/O_DSYNC if we were overwriting
  189. * an already allocated file and thus do not have any metadata to
  190. * commit.
  191. */
  192. if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
  193. mp->m_logdev_targp == mp->m_ddev_targp &&
  194. !XFS_IS_REALTIME_INODE(ip) &&
  195. !log_flushed)
  196. xfs_blkdev_issue_flush(mp->m_ddev_targp);
  197. return -error;
  198. }
  199. STATIC ssize_t
  200. xfs_file_aio_read(
  201. struct kiocb *iocb,
  202. const struct iovec *iovp,
  203. unsigned long nr_segs,
  204. loff_t pos)
  205. {
  206. struct file *file = iocb->ki_filp;
  207. struct inode *inode = file->f_mapping->host;
  208. struct xfs_inode *ip = XFS_I(inode);
  209. struct xfs_mount *mp = ip->i_mount;
  210. size_t size = 0;
  211. ssize_t ret = 0;
  212. int ioflags = 0;
  213. xfs_fsize_t n;
  214. unsigned long seg;
  215. XFS_STATS_INC(xs_read_calls);
  216. BUG_ON(iocb->ki_pos != pos);
  217. if (unlikely(file->f_flags & O_DIRECT))
  218. ioflags |= IO_ISDIRECT;
  219. if (file->f_mode & FMODE_NOCMTIME)
  220. ioflags |= IO_INVIS;
  221. /* START copy & waste from filemap.c */
  222. for (seg = 0; seg < nr_segs; seg++) {
  223. const struct iovec *iv = &iovp[seg];
  224. /*
  225. * If any segment has a negative length, or the cumulative
  226. * length ever wraps negative then return -EINVAL.
  227. */
  228. size += iv->iov_len;
  229. if (unlikely((ssize_t)(size|iv->iov_len) < 0))
  230. return XFS_ERROR(-EINVAL);
  231. }
  232. /* END copy & waste from filemap.c */
  233. if (unlikely(ioflags & IO_ISDIRECT)) {
  234. xfs_buftarg_t *target =
  235. XFS_IS_REALTIME_INODE(ip) ?
  236. mp->m_rtdev_targp : mp->m_ddev_targp;
  237. if ((iocb->ki_pos & target->bt_smask) ||
  238. (size & target->bt_smask)) {
  239. if (iocb->ki_pos == i_size_read(inode))
  240. return 0;
  241. return -XFS_ERROR(EINVAL);
  242. }
  243. }
  244. n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
  245. if (n <= 0 || size == 0)
  246. return 0;
  247. if (n < size)
  248. size = n;
  249. if (XFS_FORCED_SHUTDOWN(mp))
  250. return -EIO;
  251. /*
  252. * Locking is a bit tricky here. If we take an exclusive lock
  253. * for direct IO, we effectively serialise all new concurrent
  254. * read IO to this file and block it behind IO that is currently in
  255. * progress because IO in progress holds the IO lock shared. We only
  256. * need to hold the lock exclusive to blow away the page cache, so
  257. * only take lock exclusively if the page cache needs invalidation.
  258. * This allows the normal direct IO case of no page cache pages to
  259. * proceeed concurrently without serialisation.
  260. */
  261. xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
  262. if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
  263. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  264. xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
  265. if (inode->i_mapping->nrpages) {
  266. ret = -xfs_flushinval_pages(ip,
  267. (iocb->ki_pos & PAGE_CACHE_MASK),
  268. -1, FI_REMAPF_LOCKED);
  269. if (ret) {
  270. xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
  271. return ret;
  272. }
  273. }
  274. xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
  275. }
  276. trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
  277. ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
  278. if (ret > 0)
  279. XFS_STATS_ADD(xs_read_bytes, ret);
  280. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  281. return ret;
  282. }
  283. STATIC ssize_t
  284. xfs_file_splice_read(
  285. struct file *infilp,
  286. loff_t *ppos,
  287. struct pipe_inode_info *pipe,
  288. size_t count,
  289. unsigned int flags)
  290. {
  291. struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
  292. int ioflags = 0;
  293. ssize_t ret;
  294. XFS_STATS_INC(xs_read_calls);
  295. if (infilp->f_mode & FMODE_NOCMTIME)
  296. ioflags |= IO_INVIS;
  297. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  298. return -EIO;
  299. xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
  300. trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
  301. ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
  302. if (ret > 0)
  303. XFS_STATS_ADD(xs_read_bytes, ret);
  304. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  305. return ret;
  306. }
  307. /*
  308. * xfs_file_splice_write() does not use xfs_rw_ilock() because
  309. * generic_file_splice_write() takes the i_mutex itself. This, in theory,
  310. * couuld cause lock inversions between the aio_write path and the splice path
  311. * if someone is doing concurrent splice(2) based writes and write(2) based
  312. * writes to the same inode. The only real way to fix this is to re-implement
  313. * the generic code here with correct locking orders.
  314. */
  315. STATIC ssize_t
  316. xfs_file_splice_write(
  317. struct pipe_inode_info *pipe,
  318. struct file *outfilp,
  319. loff_t *ppos,
  320. size_t count,
  321. unsigned int flags)
  322. {
  323. struct inode *inode = outfilp->f_mapping->host;
  324. struct xfs_inode *ip = XFS_I(inode);
  325. int ioflags = 0;
  326. ssize_t ret;
  327. XFS_STATS_INC(xs_write_calls);
  328. if (outfilp->f_mode & FMODE_NOCMTIME)
  329. ioflags |= IO_INVIS;
  330. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  331. return -EIO;
  332. xfs_ilock(ip, XFS_IOLOCK_EXCL);
  333. trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
  334. ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
  335. if (ret > 0)
  336. XFS_STATS_ADD(xs_write_bytes, ret);
  337. xfs_iunlock(ip, XFS_IOLOCK_EXCL);
  338. return ret;
  339. }
  340. /*
  341. * This routine is called to handle zeroing any space in the last block of the
  342. * file that is beyond the EOF. We do this since the size is being increased
  343. * without writing anything to that block and we don't want to read the
  344. * garbage on the disk.
  345. */
  346. STATIC int /* error (positive) */
  347. xfs_zero_last_block(
  348. struct xfs_inode *ip,
  349. xfs_fsize_t offset,
  350. xfs_fsize_t isize)
  351. {
  352. struct xfs_mount *mp = ip->i_mount;
  353. xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
  354. int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
  355. int zero_len;
  356. int nimaps = 1;
  357. int error = 0;
  358. struct xfs_bmbt_irec imap;
  359. xfs_ilock(ip, XFS_ILOCK_EXCL);
  360. error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
  361. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  362. if (error)
  363. return error;
  364. ASSERT(nimaps > 0);
  365. /*
  366. * If the block underlying isize is just a hole, then there
  367. * is nothing to zero.
  368. */
  369. if (imap.br_startblock == HOLESTARTBLOCK)
  370. return 0;
  371. zero_len = mp->m_sb.sb_blocksize - zero_offset;
  372. if (isize + zero_len > offset)
  373. zero_len = offset - isize;
  374. return xfs_iozero(ip, isize, zero_len);
  375. }
  376. /*
  377. * Zero any on disk space between the current EOF and the new, larger EOF.
  378. *
  379. * This handles the normal case of zeroing the remainder of the last block in
  380. * the file and the unusual case of zeroing blocks out beyond the size of the
  381. * file. This second case only happens with fixed size extents and when the
  382. * system crashes before the inode size was updated but after blocks were
  383. * allocated.
  384. *
  385. * Expects the iolock to be held exclusive, and will take the ilock internally.
  386. */
  387. int /* error (positive) */
  388. xfs_zero_eof(
  389. struct xfs_inode *ip,
  390. xfs_off_t offset, /* starting I/O offset */
  391. xfs_fsize_t isize) /* current inode size */
  392. {
  393. struct xfs_mount *mp = ip->i_mount;
  394. xfs_fileoff_t start_zero_fsb;
  395. xfs_fileoff_t end_zero_fsb;
  396. xfs_fileoff_t zero_count_fsb;
  397. xfs_fileoff_t last_fsb;
  398. xfs_fileoff_t zero_off;
  399. xfs_fsize_t zero_len;
  400. int nimaps;
  401. int error = 0;
  402. struct xfs_bmbt_irec imap;
  403. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  404. ASSERT(offset > isize);
  405. /*
  406. * First handle zeroing the block on which isize resides.
  407. *
  408. * We only zero a part of that block so it is handled specially.
  409. */
  410. if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
  411. error = xfs_zero_last_block(ip, offset, isize);
  412. if (error)
  413. return error;
  414. }
  415. /*
  416. * Calculate the range between the new size and the old where blocks
  417. * needing to be zeroed may exist.
  418. *
  419. * To get the block where the last byte in the file currently resides,
  420. * we need to subtract one from the size and truncate back to a block
  421. * boundary. We subtract 1 in case the size is exactly on a block
  422. * boundary.
  423. */
  424. last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
  425. start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  426. end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
  427. ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
  428. if (last_fsb == end_zero_fsb) {
  429. /*
  430. * The size was only incremented on its last block.
  431. * We took care of that above, so just return.
  432. */
  433. return 0;
  434. }
  435. ASSERT(start_zero_fsb <= end_zero_fsb);
  436. while (start_zero_fsb <= end_zero_fsb) {
  437. nimaps = 1;
  438. zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
  439. xfs_ilock(ip, XFS_ILOCK_EXCL);
  440. error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
  441. &imap, &nimaps, 0);
  442. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  443. if (error)
  444. return error;
  445. ASSERT(nimaps > 0);
  446. if (imap.br_state == XFS_EXT_UNWRITTEN ||
  447. imap.br_startblock == HOLESTARTBLOCK) {
  448. start_zero_fsb = imap.br_startoff + imap.br_blockcount;
  449. ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
  450. continue;
  451. }
  452. /*
  453. * There are blocks we need to zero.
  454. */
  455. zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
  456. zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
  457. if ((zero_off + zero_len) > offset)
  458. zero_len = offset - zero_off;
  459. error = xfs_iozero(ip, zero_off, zero_len);
  460. if (error)
  461. return error;
  462. start_zero_fsb = imap.br_startoff + imap.br_blockcount;
  463. ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
  464. }
  465. return 0;
  466. }
  467. /*
  468. * Common pre-write limit and setup checks.
  469. *
  470. * Called with the iolocked held either shared and exclusive according to
  471. * @iolock, and returns with it held. Might upgrade the iolock to exclusive
  472. * if called for a direct write beyond i_size.
  473. */
  474. STATIC ssize_t
  475. xfs_file_aio_write_checks(
  476. struct file *file,
  477. loff_t *pos,
  478. size_t *count,
  479. int *iolock)
  480. {
  481. struct inode *inode = file->f_mapping->host;
  482. struct xfs_inode *ip = XFS_I(inode);
  483. int error = 0;
  484. restart:
  485. error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
  486. if (error)
  487. return error;
  488. /*
  489. * If the offset is beyond the size of the file, we need to zero any
  490. * blocks that fall between the existing EOF and the start of this
  491. * write. If zeroing is needed and we are currently holding the
  492. * iolock shared, we need to update it to exclusive which implies
  493. * having to redo all checks before.
  494. */
  495. if (*pos > i_size_read(inode)) {
  496. if (*iolock == XFS_IOLOCK_SHARED) {
  497. xfs_rw_iunlock(ip, *iolock);
  498. *iolock = XFS_IOLOCK_EXCL;
  499. xfs_rw_ilock(ip, *iolock);
  500. goto restart;
  501. }
  502. error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
  503. if (error)
  504. return error;
  505. }
  506. /*
  507. * Updating the timestamps will grab the ilock again from
  508. * xfs_fs_dirty_inode, so we have to call it after dropping the
  509. * lock above. Eventually we should look into a way to avoid
  510. * the pointless lock roundtrip.
  511. */
  512. if (likely(!(file->f_mode & FMODE_NOCMTIME)))
  513. file_update_time(file);
  514. /*
  515. * If we're writing the file then make sure to clear the setuid and
  516. * setgid bits if the process is not being run by root. This keeps
  517. * people from modifying setuid and setgid binaries.
  518. */
  519. return file_remove_suid(file);
  520. }
  521. /*
  522. * xfs_file_dio_aio_write - handle direct IO writes
  523. *
  524. * Lock the inode appropriately to prepare for and issue a direct IO write.
  525. * By separating it from the buffered write path we remove all the tricky to
  526. * follow locking changes and looping.
  527. *
  528. * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
  529. * until we're sure the bytes at the new EOF have been zeroed and/or the cached
  530. * pages are flushed out.
  531. *
  532. * In most cases the direct IO writes will be done holding IOLOCK_SHARED
  533. * allowing them to be done in parallel with reads and other direct IO writes.
  534. * However, if the IO is not aligned to filesystem blocks, the direct IO layer
  535. * needs to do sub-block zeroing and that requires serialisation against other
  536. * direct IOs to the same block. In this case we need to serialise the
  537. * submission of the unaligned IOs so that we don't get racing block zeroing in
  538. * the dio layer. To avoid the problem with aio, we also need to wait for
  539. * outstanding IOs to complete so that unwritten extent conversion is completed
  540. * before we try to map the overlapping block. This is currently implemented by
  541. * hitting it with a big hammer (i.e. inode_dio_wait()).
  542. *
  543. * Returns with locks held indicated by @iolock and errors indicated by
  544. * negative return values.
  545. */
  546. STATIC ssize_t
  547. xfs_file_dio_aio_write(
  548. struct kiocb *iocb,
  549. const struct iovec *iovp,
  550. unsigned long nr_segs,
  551. loff_t pos,
  552. size_t ocount)
  553. {
  554. struct file *file = iocb->ki_filp;
  555. struct address_space *mapping = file->f_mapping;
  556. struct inode *inode = mapping->host;
  557. struct xfs_inode *ip = XFS_I(inode);
  558. struct xfs_mount *mp = ip->i_mount;
  559. ssize_t ret = 0;
  560. size_t count = ocount;
  561. int unaligned_io = 0;
  562. int iolock;
  563. struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
  564. mp->m_rtdev_targp : mp->m_ddev_targp;
  565. if ((pos & target->bt_smask) || (count & target->bt_smask))
  566. return -XFS_ERROR(EINVAL);
  567. if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
  568. unaligned_io = 1;
  569. /*
  570. * We don't need to take an exclusive lock unless there page cache needs
  571. * to be invalidated or unaligned IO is being executed. We don't need to
  572. * consider the EOF extension case here because
  573. * xfs_file_aio_write_checks() will relock the inode as necessary for
  574. * EOF zeroing cases and fill out the new inode size as appropriate.
  575. */
  576. if (unaligned_io || mapping->nrpages)
  577. iolock = XFS_IOLOCK_EXCL;
  578. else
  579. iolock = XFS_IOLOCK_SHARED;
  580. xfs_rw_ilock(ip, iolock);
  581. /*
  582. * Recheck if there are cached pages that need invalidate after we got
  583. * the iolock to protect against other threads adding new pages while
  584. * we were waiting for the iolock.
  585. */
  586. if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
  587. xfs_rw_iunlock(ip, iolock);
  588. iolock = XFS_IOLOCK_EXCL;
  589. xfs_rw_ilock(ip, iolock);
  590. }
  591. ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
  592. if (ret)
  593. goto out;
  594. if (mapping->nrpages) {
  595. ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
  596. FI_REMAPF_LOCKED);
  597. if (ret)
  598. goto out;
  599. }
  600. /*
  601. * If we are doing unaligned IO, wait for all other IO to drain,
  602. * otherwise demote the lock if we had to flush cached pages
  603. */
  604. if (unaligned_io)
  605. inode_dio_wait(inode);
  606. else if (iolock == XFS_IOLOCK_EXCL) {
  607. xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
  608. iolock = XFS_IOLOCK_SHARED;
  609. }
  610. trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
  611. ret = generic_file_direct_write(iocb, iovp,
  612. &nr_segs, pos, &iocb->ki_pos, count, ocount);
  613. out:
  614. xfs_rw_iunlock(ip, iolock);
  615. /* No fallback to buffered IO on errors for XFS. */
  616. ASSERT(ret < 0 || ret == count);
  617. return ret;
  618. }
  619. STATIC ssize_t
  620. xfs_file_buffered_aio_write(
  621. struct kiocb *iocb,
  622. const struct iovec *iovp,
  623. unsigned long nr_segs,
  624. loff_t pos,
  625. size_t ocount)
  626. {
  627. struct file *file = iocb->ki_filp;
  628. struct address_space *mapping = file->f_mapping;
  629. struct inode *inode = mapping->host;
  630. struct xfs_inode *ip = XFS_I(inode);
  631. ssize_t ret;
  632. int enospc = 0;
  633. int iolock = XFS_IOLOCK_EXCL;
  634. size_t count = ocount;
  635. xfs_rw_ilock(ip, iolock);
  636. ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
  637. if (ret)
  638. goto out;
  639. /* We can write back this queue in page reclaim */
  640. current->backing_dev_info = mapping->backing_dev_info;
  641. write_retry:
  642. trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
  643. ret = generic_file_buffered_write(iocb, iovp, nr_segs,
  644. pos, &iocb->ki_pos, count, ret);
  645. /*
  646. * if we just got an ENOSPC, flush the inode now we aren't holding any
  647. * page locks and retry *once*
  648. */
  649. if (ret == -ENOSPC && !enospc) {
  650. enospc = 1;
  651. ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
  652. if (!ret)
  653. goto write_retry;
  654. }
  655. current->backing_dev_info = NULL;
  656. out:
  657. xfs_rw_iunlock(ip, iolock);
  658. return ret;
  659. }
  660. STATIC ssize_t
  661. xfs_file_aio_write(
  662. struct kiocb *iocb,
  663. const struct iovec *iovp,
  664. unsigned long nr_segs,
  665. loff_t pos)
  666. {
  667. struct file *file = iocb->ki_filp;
  668. struct address_space *mapping = file->f_mapping;
  669. struct inode *inode = mapping->host;
  670. struct xfs_inode *ip = XFS_I(inode);
  671. ssize_t ret;
  672. size_t ocount = 0;
  673. XFS_STATS_INC(xs_write_calls);
  674. BUG_ON(iocb->ki_pos != pos);
  675. ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
  676. if (ret)
  677. return ret;
  678. if (ocount == 0)
  679. return 0;
  680. xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
  681. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  682. return -EIO;
  683. if (unlikely(file->f_flags & O_DIRECT))
  684. ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
  685. else
  686. ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
  687. ocount);
  688. if (ret > 0) {
  689. ssize_t err;
  690. XFS_STATS_ADD(xs_write_bytes, ret);
  691. /* Handle various SYNC-type writes */
  692. err = generic_write_sync(file, pos, ret);
  693. if (err < 0)
  694. ret = err;
  695. }
  696. return ret;
  697. }
  698. STATIC long
  699. xfs_file_fallocate(
  700. struct file *file,
  701. int mode,
  702. loff_t offset,
  703. loff_t len)
  704. {
  705. struct inode *inode = file->f_path.dentry->d_inode;
  706. long error;
  707. loff_t new_size = 0;
  708. xfs_flock64_t bf;
  709. xfs_inode_t *ip = XFS_I(inode);
  710. int cmd = XFS_IOC_RESVSP;
  711. int attr_flags = XFS_ATTR_NOLOCK;
  712. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  713. return -EOPNOTSUPP;
  714. bf.l_whence = 0;
  715. bf.l_start = offset;
  716. bf.l_len = len;
  717. xfs_ilock(ip, XFS_IOLOCK_EXCL);
  718. if (mode & FALLOC_FL_PUNCH_HOLE)
  719. cmd = XFS_IOC_UNRESVSP;
  720. /* check the new inode size is valid before allocating */
  721. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  722. offset + len > i_size_read(inode)) {
  723. new_size = offset + len;
  724. error = inode_newsize_ok(inode, new_size);
  725. if (error)
  726. goto out_unlock;
  727. }
  728. if (file->f_flags & O_DSYNC)
  729. attr_flags |= XFS_ATTR_SYNC;
  730. error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
  731. if (error)
  732. goto out_unlock;
  733. /* Change file size if needed */
  734. if (new_size) {
  735. struct iattr iattr;
  736. iattr.ia_valid = ATTR_SIZE;
  737. iattr.ia_size = new_size;
  738. error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
  739. }
  740. out_unlock:
  741. xfs_iunlock(ip, XFS_IOLOCK_EXCL);
  742. return error;
  743. }
  744. STATIC int
  745. xfs_file_open(
  746. struct inode *inode,
  747. struct file *file)
  748. {
  749. if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
  750. return -EFBIG;
  751. if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
  752. return -EIO;
  753. return 0;
  754. }
  755. STATIC int
  756. xfs_dir_open(
  757. struct inode *inode,
  758. struct file *file)
  759. {
  760. struct xfs_inode *ip = XFS_I(inode);
  761. int mode;
  762. int error;
  763. error = xfs_file_open(inode, file);
  764. if (error)
  765. return error;
  766. /*
  767. * If there are any blocks, read-ahead block 0 as we're almost
  768. * certain to have the next operation be a read there.
  769. */
  770. mode = xfs_ilock_map_shared(ip);
  771. if (ip->i_d.di_nextents > 0)
  772. xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
  773. xfs_iunlock(ip, mode);
  774. return 0;
  775. }
  776. STATIC int
  777. xfs_file_release(
  778. struct inode *inode,
  779. struct file *filp)
  780. {
  781. return -xfs_release(XFS_I(inode));
  782. }
  783. STATIC int
  784. xfs_file_readdir(
  785. struct file *filp,
  786. void *dirent,
  787. filldir_t filldir)
  788. {
  789. struct inode *inode = filp->f_path.dentry->d_inode;
  790. xfs_inode_t *ip = XFS_I(inode);
  791. int error;
  792. size_t bufsize;
  793. /*
  794. * The Linux API doesn't pass down the total size of the buffer
  795. * we read into down to the filesystem. With the filldir concept
  796. * it's not needed for correct information, but the XFS dir2 leaf
  797. * code wants an estimate of the buffer size to calculate it's
  798. * readahead window and size the buffers used for mapping to
  799. * physical blocks.
  800. *
  801. * Try to give it an estimate that's good enough, maybe at some
  802. * point we can change the ->readdir prototype to include the
  803. * buffer size. For now we use the current glibc buffer size.
  804. */
  805. bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
  806. error = xfs_readdir(ip, dirent, bufsize,
  807. (xfs_off_t *)&filp->f_pos, filldir);
  808. if (error)
  809. return -error;
  810. return 0;
  811. }
  812. STATIC int
  813. xfs_file_mmap(
  814. struct file *filp,
  815. struct vm_area_struct *vma)
  816. {
  817. vma->vm_ops = &xfs_file_vm_ops;
  818. vma->vm_flags |= VM_CAN_NONLINEAR;
  819. file_accessed(filp);
  820. return 0;
  821. }
  822. /*
  823. * mmap()d file has taken write protection fault and is being made
  824. * writable. We can set the page state up correctly for a writable
  825. * page, which means we can do correct delalloc accounting (ENOSPC
  826. * checking!) and unwritten extent mapping.
  827. */
  828. STATIC int
  829. xfs_vm_page_mkwrite(
  830. struct vm_area_struct *vma,
  831. struct vm_fault *vmf)
  832. {
  833. return block_page_mkwrite(vma, vmf, xfs_get_blocks);
  834. }
  835. const struct file_operations xfs_file_operations = {
  836. .llseek = generic_file_llseek,
  837. .read = do_sync_read,
  838. .write = do_sync_write,
  839. .aio_read = xfs_file_aio_read,
  840. .aio_write = xfs_file_aio_write,
  841. .splice_read = xfs_file_splice_read,
  842. .splice_write = xfs_file_splice_write,
  843. .unlocked_ioctl = xfs_file_ioctl,
  844. #ifdef CONFIG_COMPAT
  845. .compat_ioctl = xfs_file_compat_ioctl,
  846. #endif
  847. .mmap = xfs_file_mmap,
  848. .open = xfs_file_open,
  849. .release = xfs_file_release,
  850. .fsync = xfs_file_fsync,
  851. .fallocate = xfs_file_fallocate,
  852. };
  853. const struct file_operations xfs_dir_file_operations = {
  854. .open = xfs_dir_open,
  855. .read = generic_read_dir,
  856. .readdir = xfs_file_readdir,
  857. .llseek = generic_file_llseek,
  858. .unlocked_ioctl = xfs_file_ioctl,
  859. #ifdef CONFIG_COMPAT
  860. .compat_ioctl = xfs_file_compat_ioctl,
  861. #endif
  862. .fsync = xfs_dir_fsync,
  863. };
  864. static const struct vm_operations_struct xfs_file_vm_ops = {
  865. .fault = filemap_fault,
  866. .page_mkwrite = xfs_vm_page_mkwrite,
  867. };