qlge_main.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/module.h>
  13. #include <linux/list.h>
  14. #include <linux/pci.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sched.h>
  18. #include <linux/slab.h>
  19. #include <linux/dmapool.h>
  20. #include <linux/mempool.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/kthread.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/errno.h>
  25. #include <linux/ioport.h>
  26. #include <linux/in.h>
  27. #include <linux/ip.h>
  28. #include <linux/ipv6.h>
  29. #include <net/ipv6.h>
  30. #include <linux/tcp.h>
  31. #include <linux/udp.h>
  32. #include <linux/if_arp.h>
  33. #include <linux/if_ether.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/prefetch.h>
  43. #include <net/ip6_checksum.h>
  44. #include "qlge.h"
  45. char qlge_driver_name[] = DRV_NAME;
  46. const char qlge_driver_version[] = DRV_VERSION;
  47. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  48. MODULE_DESCRIPTION(DRV_STRING " ");
  49. MODULE_LICENSE("GPL");
  50. MODULE_VERSION(DRV_VERSION);
  51. static const u32 default_msg =
  52. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  53. /* NETIF_MSG_TIMER | */
  54. NETIF_MSG_IFDOWN |
  55. NETIF_MSG_IFUP |
  56. NETIF_MSG_RX_ERR |
  57. NETIF_MSG_TX_ERR |
  58. /* NETIF_MSG_TX_QUEUED | */
  59. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  60. /* NETIF_MSG_PKTDATA | */
  61. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  62. static int debug = -1; /* defaults above */
  63. module_param(debug, int, 0664);
  64. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65. #define MSIX_IRQ 0
  66. #define MSI_IRQ 1
  67. #define LEG_IRQ 2
  68. static int qlge_irq_type = MSIX_IRQ;
  69. module_param(qlge_irq_type, int, 0664);
  70. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  71. static int qlge_mpi_coredump;
  72. module_param(qlge_mpi_coredump, int, 0);
  73. MODULE_PARM_DESC(qlge_mpi_coredump,
  74. "Option to enable MPI firmware dump. "
  75. "Default is OFF - Do Not allocate memory. ");
  76. static int qlge_force_coredump;
  77. module_param(qlge_force_coredump, int, 0);
  78. MODULE_PARM_DESC(qlge_force_coredump,
  79. "Option to allow force of firmware core dump. "
  80. "Default is OFF - Do not allow.");
  81. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  83. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  84. /* required last entry */
  85. {0,}
  86. };
  87. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  88. static int ql_wol(struct ql_adapter *qdev);
  89. static void qlge_set_multicast_list(struct net_device *ndev);
  90. /* This hardware semaphore causes exclusive access to
  91. * resources shared between the NIC driver, MPI firmware,
  92. * FCOE firmware and the FC driver.
  93. */
  94. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  95. {
  96. u32 sem_bits = 0;
  97. switch (sem_mask) {
  98. case SEM_XGMAC0_MASK:
  99. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  100. break;
  101. case SEM_XGMAC1_MASK:
  102. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  103. break;
  104. case SEM_ICB_MASK:
  105. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  106. break;
  107. case SEM_MAC_ADDR_MASK:
  108. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  109. break;
  110. case SEM_FLASH_MASK:
  111. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  112. break;
  113. case SEM_PROBE_MASK:
  114. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  115. break;
  116. case SEM_RT_IDX_MASK:
  117. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  118. break;
  119. case SEM_PROC_REG_MASK:
  120. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  121. break;
  122. default:
  123. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  124. return -EINVAL;
  125. }
  126. ql_write32(qdev, SEM, sem_bits | sem_mask);
  127. return !(ql_read32(qdev, SEM) & sem_bits);
  128. }
  129. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  130. {
  131. unsigned int wait_count = 30;
  132. do {
  133. if (!ql_sem_trylock(qdev, sem_mask))
  134. return 0;
  135. udelay(100);
  136. } while (--wait_count);
  137. return -ETIMEDOUT;
  138. }
  139. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  140. {
  141. ql_write32(qdev, SEM, sem_mask);
  142. ql_read32(qdev, SEM); /* flush */
  143. }
  144. /* This function waits for a specific bit to come ready
  145. * in a given register. It is used mostly by the initialize
  146. * process, but is also used in kernel thread API such as
  147. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  148. */
  149. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  150. {
  151. u32 temp;
  152. int count = UDELAY_COUNT;
  153. while (count) {
  154. temp = ql_read32(qdev, reg);
  155. /* check for errors */
  156. if (temp & err_bit) {
  157. netif_alert(qdev, probe, qdev->ndev,
  158. "register 0x%.08x access error, value = 0x%.08x!.\n",
  159. reg, temp);
  160. return -EIO;
  161. } else if (temp & bit)
  162. return 0;
  163. udelay(UDELAY_DELAY);
  164. count--;
  165. }
  166. netif_alert(qdev, probe, qdev->ndev,
  167. "Timed out waiting for reg %x to come ready.\n", reg);
  168. return -ETIMEDOUT;
  169. }
  170. /* The CFG register is used to download TX and RX control blocks
  171. * to the chip. This function waits for an operation to complete.
  172. */
  173. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  174. {
  175. int count = UDELAY_COUNT;
  176. u32 temp;
  177. while (count) {
  178. temp = ql_read32(qdev, CFG);
  179. if (temp & CFG_LE)
  180. return -EIO;
  181. if (!(temp & bit))
  182. return 0;
  183. udelay(UDELAY_DELAY);
  184. count--;
  185. }
  186. return -ETIMEDOUT;
  187. }
  188. /* Used to issue init control blocks to hw. Maps control block,
  189. * sets address, triggers download, waits for completion.
  190. */
  191. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  192. u16 q_id)
  193. {
  194. u64 map;
  195. int status = 0;
  196. int direction;
  197. u32 mask;
  198. u32 value;
  199. direction =
  200. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  201. PCI_DMA_FROMDEVICE;
  202. map = pci_map_single(qdev->pdev, ptr, size, direction);
  203. if (pci_dma_mapping_error(qdev->pdev, map)) {
  204. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  205. return -ENOMEM;
  206. }
  207. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  208. if (status)
  209. return status;
  210. status = ql_wait_cfg(qdev, bit);
  211. if (status) {
  212. netif_err(qdev, ifup, qdev->ndev,
  213. "Timed out waiting for CFG to come ready.\n");
  214. goto exit;
  215. }
  216. ql_write32(qdev, ICB_L, (u32) map);
  217. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  218. mask = CFG_Q_MASK | (bit << 16);
  219. value = bit | (q_id << CFG_Q_SHIFT);
  220. ql_write32(qdev, CFG, (mask | value));
  221. /*
  222. * Wait for the bit to clear after signaling hw.
  223. */
  224. status = ql_wait_cfg(qdev, bit);
  225. exit:
  226. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  227. pci_unmap_single(qdev->pdev, map, size, direction);
  228. return status;
  229. }
  230. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  231. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  232. u32 *value)
  233. {
  234. u32 offset = 0;
  235. int status;
  236. switch (type) {
  237. case MAC_ADDR_TYPE_MULTI_MAC:
  238. case MAC_ADDR_TYPE_CAM_MAC:
  239. {
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. status =
  255. ql_wait_reg_rdy(qdev,
  256. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  257. if (status)
  258. goto exit;
  259. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  260. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  261. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  262. status =
  263. ql_wait_reg_rdy(qdev,
  264. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  265. if (status)
  266. goto exit;
  267. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  268. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  269. status =
  270. ql_wait_reg_rdy(qdev,
  271. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  272. if (status)
  273. goto exit;
  274. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  275. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  276. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  277. status =
  278. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  279. MAC_ADDR_MR, 0);
  280. if (status)
  281. goto exit;
  282. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  283. }
  284. break;
  285. }
  286. case MAC_ADDR_TYPE_VLAN:
  287. case MAC_ADDR_TYPE_MULTI_FLTR:
  288. default:
  289. netif_crit(qdev, ifup, qdev->ndev,
  290. "Address type %d not yet supported.\n", type);
  291. status = -EPERM;
  292. }
  293. exit:
  294. return status;
  295. }
  296. /* Set up a MAC, multicast or VLAN address for the
  297. * inbound frame matching.
  298. */
  299. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  300. u16 index)
  301. {
  302. u32 offset = 0;
  303. int status = 0;
  304. switch (type) {
  305. case MAC_ADDR_TYPE_MULTI_MAC:
  306. {
  307. u32 upper = (addr[0] << 8) | addr[1];
  308. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  309. (addr[4] << 8) | (addr[5]);
  310. status =
  311. ql_wait_reg_rdy(qdev,
  312. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  313. if (status)
  314. goto exit;
  315. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  316. (index << MAC_ADDR_IDX_SHIFT) |
  317. type | MAC_ADDR_E);
  318. ql_write32(qdev, MAC_ADDR_DATA, lower);
  319. status =
  320. ql_wait_reg_rdy(qdev,
  321. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  322. if (status)
  323. goto exit;
  324. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  325. (index << MAC_ADDR_IDX_SHIFT) |
  326. type | MAC_ADDR_E);
  327. ql_write32(qdev, MAC_ADDR_DATA, upper);
  328. status =
  329. ql_wait_reg_rdy(qdev,
  330. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  331. if (status)
  332. goto exit;
  333. break;
  334. }
  335. case MAC_ADDR_TYPE_CAM_MAC:
  336. {
  337. u32 cam_output;
  338. u32 upper = (addr[0] << 8) | addr[1];
  339. u32 lower =
  340. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  341. (addr[5]);
  342. status =
  343. ql_wait_reg_rdy(qdev,
  344. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  345. if (status)
  346. goto exit;
  347. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  348. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  349. type); /* type */
  350. ql_write32(qdev, MAC_ADDR_DATA, lower);
  351. status =
  352. ql_wait_reg_rdy(qdev,
  353. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  354. if (status)
  355. goto exit;
  356. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  357. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  358. type); /* type */
  359. ql_write32(qdev, MAC_ADDR_DATA, upper);
  360. status =
  361. ql_wait_reg_rdy(qdev,
  362. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  363. if (status)
  364. goto exit;
  365. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  366. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  367. type); /* type */
  368. /* This field should also include the queue id
  369. and possibly the function id. Right now we hardcode
  370. the route field to NIC core.
  371. */
  372. cam_output = (CAM_OUT_ROUTE_NIC |
  373. (qdev->
  374. func << CAM_OUT_FUNC_SHIFT) |
  375. (0 << CAM_OUT_CQ_ID_SHIFT));
  376. if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
  377. cam_output |= CAM_OUT_RV;
  378. /* route to NIC core */
  379. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  380. break;
  381. }
  382. case MAC_ADDR_TYPE_VLAN:
  383. {
  384. u32 enable_bit = *((u32 *) &addr[0]);
  385. /* For VLAN, the addr actually holds a bit that
  386. * either enables or disables the vlan id we are
  387. * addressing. It's either MAC_ADDR_E on or off.
  388. * That's bit-27 we're talking about.
  389. */
  390. status =
  391. ql_wait_reg_rdy(qdev,
  392. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  393. if (status)
  394. goto exit;
  395. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  396. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  397. type | /* type */
  398. enable_bit); /* enable/disable */
  399. break;
  400. }
  401. case MAC_ADDR_TYPE_MULTI_FLTR:
  402. default:
  403. netif_crit(qdev, ifup, qdev->ndev,
  404. "Address type %d not yet supported.\n", type);
  405. status = -EPERM;
  406. }
  407. exit:
  408. return status;
  409. }
  410. /* Set or clear MAC address in hardware. We sometimes
  411. * have to clear it to prevent wrong frame routing
  412. * especially in a bonding environment.
  413. */
  414. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  415. {
  416. int status;
  417. char zero_mac_addr[ETH_ALEN];
  418. char *addr;
  419. if (set) {
  420. addr = &qdev->current_mac_addr[0];
  421. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  422. "Set Mac addr %pM\n", addr);
  423. } else {
  424. memset(zero_mac_addr, 0, ETH_ALEN);
  425. addr = &zero_mac_addr[0];
  426. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  427. "Clearing MAC address\n");
  428. }
  429. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  430. if (status)
  431. return status;
  432. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  433. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  434. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  435. if (status)
  436. netif_err(qdev, ifup, qdev->ndev,
  437. "Failed to init mac address.\n");
  438. return status;
  439. }
  440. void ql_link_on(struct ql_adapter *qdev)
  441. {
  442. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  443. netif_carrier_on(qdev->ndev);
  444. ql_set_mac_addr(qdev, 1);
  445. }
  446. void ql_link_off(struct ql_adapter *qdev)
  447. {
  448. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  449. netif_carrier_off(qdev->ndev);
  450. ql_set_mac_addr(qdev, 0);
  451. }
  452. /* Get a specific frame routing value from the CAM.
  453. * Used for debug and reg dump.
  454. */
  455. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  456. {
  457. int status = 0;
  458. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  459. if (status)
  460. goto exit;
  461. ql_write32(qdev, RT_IDX,
  462. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  463. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  464. if (status)
  465. goto exit;
  466. *value = ql_read32(qdev, RT_DATA);
  467. exit:
  468. return status;
  469. }
  470. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  471. * to route different frame types to various inbound queues. We send broadcast/
  472. * multicast/error frames to the default queue for slow handling,
  473. * and CAM hit/RSS frames to the fast handling queues.
  474. */
  475. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  476. int enable)
  477. {
  478. int status = -EINVAL; /* Return error if no mask match. */
  479. u32 value = 0;
  480. switch (mask) {
  481. case RT_IDX_CAM_HIT:
  482. {
  483. value = RT_IDX_DST_CAM_Q | /* dest */
  484. RT_IDX_TYPE_NICQ | /* type */
  485. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  486. break;
  487. }
  488. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  489. {
  490. value = RT_IDX_DST_DFLT_Q | /* dest */
  491. RT_IDX_TYPE_NICQ | /* type */
  492. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  493. break;
  494. }
  495. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  496. {
  497. value = RT_IDX_DST_DFLT_Q | /* dest */
  498. RT_IDX_TYPE_NICQ | /* type */
  499. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  500. break;
  501. }
  502. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  503. {
  504. value = RT_IDX_DST_DFLT_Q | /* dest */
  505. RT_IDX_TYPE_NICQ | /* type */
  506. (RT_IDX_IP_CSUM_ERR_SLOT <<
  507. RT_IDX_IDX_SHIFT); /* index */
  508. break;
  509. }
  510. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  511. {
  512. value = RT_IDX_DST_DFLT_Q | /* dest */
  513. RT_IDX_TYPE_NICQ | /* type */
  514. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  515. RT_IDX_IDX_SHIFT); /* index */
  516. break;
  517. }
  518. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  519. {
  520. value = RT_IDX_DST_DFLT_Q | /* dest */
  521. RT_IDX_TYPE_NICQ | /* type */
  522. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  523. break;
  524. }
  525. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  526. {
  527. value = RT_IDX_DST_DFLT_Q | /* dest */
  528. RT_IDX_TYPE_NICQ | /* type */
  529. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  530. break;
  531. }
  532. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  533. {
  534. value = RT_IDX_DST_DFLT_Q | /* dest */
  535. RT_IDX_TYPE_NICQ | /* type */
  536. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  537. break;
  538. }
  539. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  540. {
  541. value = RT_IDX_DST_RSS | /* dest */
  542. RT_IDX_TYPE_NICQ | /* type */
  543. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  544. break;
  545. }
  546. case 0: /* Clear the E-bit on an entry. */
  547. {
  548. value = RT_IDX_DST_DFLT_Q | /* dest */
  549. RT_IDX_TYPE_NICQ | /* type */
  550. (index << RT_IDX_IDX_SHIFT);/* index */
  551. break;
  552. }
  553. default:
  554. netif_err(qdev, ifup, qdev->ndev,
  555. "Mask type %d not yet supported.\n", mask);
  556. status = -EPERM;
  557. goto exit;
  558. }
  559. if (value) {
  560. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  561. if (status)
  562. goto exit;
  563. value |= (enable ? RT_IDX_E : 0);
  564. ql_write32(qdev, RT_IDX, value);
  565. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  566. }
  567. exit:
  568. return status;
  569. }
  570. static void ql_enable_interrupts(struct ql_adapter *qdev)
  571. {
  572. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  573. }
  574. static void ql_disable_interrupts(struct ql_adapter *qdev)
  575. {
  576. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  577. }
  578. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  579. * Otherwise, we may have multiple outstanding workers and don't want to
  580. * enable until the last one finishes. In this case, the irq_cnt gets
  581. * incremented every time we queue a worker and decremented every time
  582. * a worker finishes. Once it hits zero we enable the interrupt.
  583. */
  584. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  585. {
  586. u32 var = 0;
  587. unsigned long hw_flags = 0;
  588. struct intr_context *ctx = qdev->intr_context + intr;
  589. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  590. /* Always enable if we're MSIX multi interrupts and
  591. * it's not the default (zeroeth) interrupt.
  592. */
  593. ql_write32(qdev, INTR_EN,
  594. ctx->intr_en_mask);
  595. var = ql_read32(qdev, STS);
  596. return var;
  597. }
  598. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  599. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  600. ql_write32(qdev, INTR_EN,
  601. ctx->intr_en_mask);
  602. var = ql_read32(qdev, STS);
  603. }
  604. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  605. return var;
  606. }
  607. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  608. {
  609. u32 var = 0;
  610. struct intr_context *ctx;
  611. /* HW disables for us if we're MSIX multi interrupts and
  612. * it's not the default (zeroeth) interrupt.
  613. */
  614. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  615. return 0;
  616. ctx = qdev->intr_context + intr;
  617. spin_lock(&qdev->hw_lock);
  618. if (!atomic_read(&ctx->irq_cnt)) {
  619. ql_write32(qdev, INTR_EN,
  620. ctx->intr_dis_mask);
  621. var = ql_read32(qdev, STS);
  622. }
  623. atomic_inc(&ctx->irq_cnt);
  624. spin_unlock(&qdev->hw_lock);
  625. return var;
  626. }
  627. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  628. {
  629. int i;
  630. for (i = 0; i < qdev->intr_count; i++) {
  631. /* The enable call does a atomic_dec_and_test
  632. * and enables only if the result is zero.
  633. * So we precharge it here.
  634. */
  635. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  636. i == 0))
  637. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  638. ql_enable_completion_interrupt(qdev, i);
  639. }
  640. }
  641. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  642. {
  643. int status, i;
  644. u16 csum = 0;
  645. __le16 *flash = (__le16 *)&qdev->flash;
  646. status = strncmp((char *)&qdev->flash, str, 4);
  647. if (status) {
  648. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  649. return status;
  650. }
  651. for (i = 0; i < size; i++)
  652. csum += le16_to_cpu(*flash++);
  653. if (csum)
  654. netif_err(qdev, ifup, qdev->ndev,
  655. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  656. return csum;
  657. }
  658. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  659. {
  660. int status = 0;
  661. /* wait for reg to come ready */
  662. status = ql_wait_reg_rdy(qdev,
  663. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  664. if (status)
  665. goto exit;
  666. /* set up for reg read */
  667. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  668. /* wait for reg to come ready */
  669. status = ql_wait_reg_rdy(qdev,
  670. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  671. if (status)
  672. goto exit;
  673. /* This data is stored on flash as an array of
  674. * __le32. Since ql_read32() returns cpu endian
  675. * we need to swap it back.
  676. */
  677. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  678. exit:
  679. return status;
  680. }
  681. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  682. {
  683. u32 i, size;
  684. int status;
  685. __le32 *p = (__le32 *)&qdev->flash;
  686. u32 offset;
  687. u8 mac_addr[6];
  688. /* Get flash offset for function and adjust
  689. * for dword access.
  690. */
  691. if (!qdev->port)
  692. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  693. else
  694. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  695. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  696. return -ETIMEDOUT;
  697. size = sizeof(struct flash_params_8000) / sizeof(u32);
  698. for (i = 0; i < size; i++, p++) {
  699. status = ql_read_flash_word(qdev, i+offset, p);
  700. if (status) {
  701. netif_err(qdev, ifup, qdev->ndev,
  702. "Error reading flash.\n");
  703. goto exit;
  704. }
  705. }
  706. status = ql_validate_flash(qdev,
  707. sizeof(struct flash_params_8000) / sizeof(u16),
  708. "8000");
  709. if (status) {
  710. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  711. status = -EINVAL;
  712. goto exit;
  713. }
  714. /* Extract either manufacturer or BOFM modified
  715. * MAC address.
  716. */
  717. if (qdev->flash.flash_params_8000.data_type1 == 2)
  718. memcpy(mac_addr,
  719. qdev->flash.flash_params_8000.mac_addr1,
  720. qdev->ndev->addr_len);
  721. else
  722. memcpy(mac_addr,
  723. qdev->flash.flash_params_8000.mac_addr,
  724. qdev->ndev->addr_len);
  725. if (!is_valid_ether_addr(mac_addr)) {
  726. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  727. status = -EINVAL;
  728. goto exit;
  729. }
  730. memcpy(qdev->ndev->dev_addr,
  731. mac_addr,
  732. qdev->ndev->addr_len);
  733. exit:
  734. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  735. return status;
  736. }
  737. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  738. {
  739. int i;
  740. int status;
  741. __le32 *p = (__le32 *)&qdev->flash;
  742. u32 offset = 0;
  743. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  744. /* Second function's parameters follow the first
  745. * function's.
  746. */
  747. if (qdev->port)
  748. offset = size;
  749. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  750. return -ETIMEDOUT;
  751. for (i = 0; i < size; i++, p++) {
  752. status = ql_read_flash_word(qdev, i+offset, p);
  753. if (status) {
  754. netif_err(qdev, ifup, qdev->ndev,
  755. "Error reading flash.\n");
  756. goto exit;
  757. }
  758. }
  759. status = ql_validate_flash(qdev,
  760. sizeof(struct flash_params_8012) / sizeof(u16),
  761. "8012");
  762. if (status) {
  763. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  764. status = -EINVAL;
  765. goto exit;
  766. }
  767. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  768. status = -EINVAL;
  769. goto exit;
  770. }
  771. memcpy(qdev->ndev->dev_addr,
  772. qdev->flash.flash_params_8012.mac_addr,
  773. qdev->ndev->addr_len);
  774. exit:
  775. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  776. return status;
  777. }
  778. /* xgmac register are located behind the xgmac_addr and xgmac_data
  779. * register pair. Each read/write requires us to wait for the ready
  780. * bit before reading/writing the data.
  781. */
  782. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  783. {
  784. int status;
  785. /* wait for reg to come ready */
  786. status = ql_wait_reg_rdy(qdev,
  787. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  788. if (status)
  789. return status;
  790. /* write the data to the data reg */
  791. ql_write32(qdev, XGMAC_DATA, data);
  792. /* trigger the write */
  793. ql_write32(qdev, XGMAC_ADDR, reg);
  794. return status;
  795. }
  796. /* xgmac register are located behind the xgmac_addr and xgmac_data
  797. * register pair. Each read/write requires us to wait for the ready
  798. * bit before reading/writing the data.
  799. */
  800. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  801. {
  802. int status = 0;
  803. /* wait for reg to come ready */
  804. status = ql_wait_reg_rdy(qdev,
  805. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  806. if (status)
  807. goto exit;
  808. /* set up for reg read */
  809. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  810. /* wait for reg to come ready */
  811. status = ql_wait_reg_rdy(qdev,
  812. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  813. if (status)
  814. goto exit;
  815. /* get the data */
  816. *data = ql_read32(qdev, XGMAC_DATA);
  817. exit:
  818. return status;
  819. }
  820. /* This is used for reading the 64-bit statistics regs. */
  821. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  822. {
  823. int status = 0;
  824. u32 hi = 0;
  825. u32 lo = 0;
  826. status = ql_read_xgmac_reg(qdev, reg, &lo);
  827. if (status)
  828. goto exit;
  829. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  830. if (status)
  831. goto exit;
  832. *data = (u64) lo | ((u64) hi << 32);
  833. exit:
  834. return status;
  835. }
  836. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  837. {
  838. int status;
  839. /*
  840. * Get MPI firmware version for driver banner
  841. * and ethool info.
  842. */
  843. status = ql_mb_about_fw(qdev);
  844. if (status)
  845. goto exit;
  846. status = ql_mb_get_fw_state(qdev);
  847. if (status)
  848. goto exit;
  849. /* Wake up a worker to get/set the TX/RX frame sizes. */
  850. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  851. exit:
  852. return status;
  853. }
  854. /* Take the MAC Core out of reset.
  855. * Enable statistics counting.
  856. * Take the transmitter/receiver out of reset.
  857. * This functionality may be done in the MPI firmware at a
  858. * later date.
  859. */
  860. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  861. {
  862. int status = 0;
  863. u32 data;
  864. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  865. /* Another function has the semaphore, so
  866. * wait for the port init bit to come ready.
  867. */
  868. netif_info(qdev, link, qdev->ndev,
  869. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  870. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  871. if (status) {
  872. netif_crit(qdev, link, qdev->ndev,
  873. "Port initialize timed out.\n");
  874. }
  875. return status;
  876. }
  877. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  878. /* Set the core reset. */
  879. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  880. if (status)
  881. goto end;
  882. data |= GLOBAL_CFG_RESET;
  883. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  884. if (status)
  885. goto end;
  886. /* Clear the core reset and turn on jumbo for receiver. */
  887. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  888. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  889. data |= GLOBAL_CFG_TX_STAT_EN;
  890. data |= GLOBAL_CFG_RX_STAT_EN;
  891. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  892. if (status)
  893. goto end;
  894. /* Enable transmitter, and clear it's reset. */
  895. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  896. if (status)
  897. goto end;
  898. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  899. data |= TX_CFG_EN; /* Enable the transmitter. */
  900. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  901. if (status)
  902. goto end;
  903. /* Enable receiver and clear it's reset. */
  904. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  905. if (status)
  906. goto end;
  907. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  908. data |= RX_CFG_EN; /* Enable the receiver. */
  909. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  910. if (status)
  911. goto end;
  912. /* Turn on jumbo. */
  913. status =
  914. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  915. if (status)
  916. goto end;
  917. status =
  918. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  919. if (status)
  920. goto end;
  921. /* Signal to the world that the port is enabled. */
  922. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  923. end:
  924. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  925. return status;
  926. }
  927. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  928. {
  929. return PAGE_SIZE << qdev->lbq_buf_order;
  930. }
  931. /* Get the next large buffer. */
  932. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  933. {
  934. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  935. rx_ring->lbq_curr_idx++;
  936. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  937. rx_ring->lbq_curr_idx = 0;
  938. rx_ring->lbq_free_cnt++;
  939. return lbq_desc;
  940. }
  941. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  942. struct rx_ring *rx_ring)
  943. {
  944. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  945. pci_dma_sync_single_for_cpu(qdev->pdev,
  946. dma_unmap_addr(lbq_desc, mapaddr),
  947. rx_ring->lbq_buf_size,
  948. PCI_DMA_FROMDEVICE);
  949. /* If it's the last chunk of our master page then
  950. * we unmap it.
  951. */
  952. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  953. == ql_lbq_block_size(qdev))
  954. pci_unmap_page(qdev->pdev,
  955. lbq_desc->p.pg_chunk.map,
  956. ql_lbq_block_size(qdev),
  957. PCI_DMA_FROMDEVICE);
  958. return lbq_desc;
  959. }
  960. /* Get the next small buffer. */
  961. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  962. {
  963. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  964. rx_ring->sbq_curr_idx++;
  965. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  966. rx_ring->sbq_curr_idx = 0;
  967. rx_ring->sbq_free_cnt++;
  968. return sbq_desc;
  969. }
  970. /* Update an rx ring index. */
  971. static void ql_update_cq(struct rx_ring *rx_ring)
  972. {
  973. rx_ring->cnsmr_idx++;
  974. rx_ring->curr_entry++;
  975. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  976. rx_ring->cnsmr_idx = 0;
  977. rx_ring->curr_entry = rx_ring->cq_base;
  978. }
  979. }
  980. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  981. {
  982. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  983. }
  984. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  985. struct bq_desc *lbq_desc)
  986. {
  987. if (!rx_ring->pg_chunk.page) {
  988. u64 map;
  989. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  990. GFP_ATOMIC,
  991. qdev->lbq_buf_order);
  992. if (unlikely(!rx_ring->pg_chunk.page)) {
  993. netif_err(qdev, drv, qdev->ndev,
  994. "page allocation failed.\n");
  995. return -ENOMEM;
  996. }
  997. rx_ring->pg_chunk.offset = 0;
  998. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  999. 0, ql_lbq_block_size(qdev),
  1000. PCI_DMA_FROMDEVICE);
  1001. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1002. __free_pages(rx_ring->pg_chunk.page,
  1003. qdev->lbq_buf_order);
  1004. netif_err(qdev, drv, qdev->ndev,
  1005. "PCI mapping failed.\n");
  1006. return -ENOMEM;
  1007. }
  1008. rx_ring->pg_chunk.map = map;
  1009. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1010. }
  1011. /* Copy the current master pg_chunk info
  1012. * to the current descriptor.
  1013. */
  1014. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1015. /* Adjust the master page chunk for next
  1016. * buffer get.
  1017. */
  1018. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1019. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1020. rx_ring->pg_chunk.page = NULL;
  1021. lbq_desc->p.pg_chunk.last_flag = 1;
  1022. } else {
  1023. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1024. get_page(rx_ring->pg_chunk.page);
  1025. lbq_desc->p.pg_chunk.last_flag = 0;
  1026. }
  1027. return 0;
  1028. }
  1029. /* Process (refill) a large buffer queue. */
  1030. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1031. {
  1032. u32 clean_idx = rx_ring->lbq_clean_idx;
  1033. u32 start_idx = clean_idx;
  1034. struct bq_desc *lbq_desc;
  1035. u64 map;
  1036. int i;
  1037. while (rx_ring->lbq_free_cnt > 32) {
  1038. for (i = 0; i < 16; i++) {
  1039. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1040. "lbq: try cleaning clean_idx = %d.\n",
  1041. clean_idx);
  1042. lbq_desc = &rx_ring->lbq[clean_idx];
  1043. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1044. netif_err(qdev, ifup, qdev->ndev,
  1045. "Could not get a page chunk.\n");
  1046. return;
  1047. }
  1048. map = lbq_desc->p.pg_chunk.map +
  1049. lbq_desc->p.pg_chunk.offset;
  1050. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1051. dma_unmap_len_set(lbq_desc, maplen,
  1052. rx_ring->lbq_buf_size);
  1053. *lbq_desc->addr = cpu_to_le64(map);
  1054. pci_dma_sync_single_for_device(qdev->pdev, map,
  1055. rx_ring->lbq_buf_size,
  1056. PCI_DMA_FROMDEVICE);
  1057. clean_idx++;
  1058. if (clean_idx == rx_ring->lbq_len)
  1059. clean_idx = 0;
  1060. }
  1061. rx_ring->lbq_clean_idx = clean_idx;
  1062. rx_ring->lbq_prod_idx += 16;
  1063. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1064. rx_ring->lbq_prod_idx = 0;
  1065. rx_ring->lbq_free_cnt -= 16;
  1066. }
  1067. if (start_idx != clean_idx) {
  1068. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1069. "lbq: updating prod idx = %d.\n",
  1070. rx_ring->lbq_prod_idx);
  1071. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1072. rx_ring->lbq_prod_idx_db_reg);
  1073. }
  1074. }
  1075. /* Process (refill) a small buffer queue. */
  1076. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1077. {
  1078. u32 clean_idx = rx_ring->sbq_clean_idx;
  1079. u32 start_idx = clean_idx;
  1080. struct bq_desc *sbq_desc;
  1081. u64 map;
  1082. int i;
  1083. while (rx_ring->sbq_free_cnt > 16) {
  1084. for (i = 0; i < 16; i++) {
  1085. sbq_desc = &rx_ring->sbq[clean_idx];
  1086. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1087. "sbq: try cleaning clean_idx = %d.\n",
  1088. clean_idx);
  1089. if (sbq_desc->p.skb == NULL) {
  1090. netif_printk(qdev, rx_status, KERN_DEBUG,
  1091. qdev->ndev,
  1092. "sbq: getting new skb for index %d.\n",
  1093. sbq_desc->index);
  1094. sbq_desc->p.skb =
  1095. netdev_alloc_skb(qdev->ndev,
  1096. SMALL_BUFFER_SIZE);
  1097. if (sbq_desc->p.skb == NULL) {
  1098. netif_err(qdev, probe, qdev->ndev,
  1099. "Couldn't get an skb.\n");
  1100. rx_ring->sbq_clean_idx = clean_idx;
  1101. return;
  1102. }
  1103. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1104. map = pci_map_single(qdev->pdev,
  1105. sbq_desc->p.skb->data,
  1106. rx_ring->sbq_buf_size,
  1107. PCI_DMA_FROMDEVICE);
  1108. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1109. netif_err(qdev, ifup, qdev->ndev,
  1110. "PCI mapping failed.\n");
  1111. rx_ring->sbq_clean_idx = clean_idx;
  1112. dev_kfree_skb_any(sbq_desc->p.skb);
  1113. sbq_desc->p.skb = NULL;
  1114. return;
  1115. }
  1116. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1117. dma_unmap_len_set(sbq_desc, maplen,
  1118. rx_ring->sbq_buf_size);
  1119. *sbq_desc->addr = cpu_to_le64(map);
  1120. }
  1121. clean_idx++;
  1122. if (clean_idx == rx_ring->sbq_len)
  1123. clean_idx = 0;
  1124. }
  1125. rx_ring->sbq_clean_idx = clean_idx;
  1126. rx_ring->sbq_prod_idx += 16;
  1127. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1128. rx_ring->sbq_prod_idx = 0;
  1129. rx_ring->sbq_free_cnt -= 16;
  1130. }
  1131. if (start_idx != clean_idx) {
  1132. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1133. "sbq: updating prod idx = %d.\n",
  1134. rx_ring->sbq_prod_idx);
  1135. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1136. rx_ring->sbq_prod_idx_db_reg);
  1137. }
  1138. }
  1139. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1140. struct rx_ring *rx_ring)
  1141. {
  1142. ql_update_sbq(qdev, rx_ring);
  1143. ql_update_lbq(qdev, rx_ring);
  1144. }
  1145. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1146. * fails at some stage, or from the interrupt when a tx completes.
  1147. */
  1148. static void ql_unmap_send(struct ql_adapter *qdev,
  1149. struct tx_ring_desc *tx_ring_desc, int mapped)
  1150. {
  1151. int i;
  1152. for (i = 0; i < mapped; i++) {
  1153. if (i == 0 || (i == 7 && mapped > 7)) {
  1154. /*
  1155. * Unmap the skb->data area, or the
  1156. * external sglist (AKA the Outbound
  1157. * Address List (OAL)).
  1158. * If its the zeroeth element, then it's
  1159. * the skb->data area. If it's the 7th
  1160. * element and there is more than 6 frags,
  1161. * then its an OAL.
  1162. */
  1163. if (i == 7) {
  1164. netif_printk(qdev, tx_done, KERN_DEBUG,
  1165. qdev->ndev,
  1166. "unmapping OAL area.\n");
  1167. }
  1168. pci_unmap_single(qdev->pdev,
  1169. dma_unmap_addr(&tx_ring_desc->map[i],
  1170. mapaddr),
  1171. dma_unmap_len(&tx_ring_desc->map[i],
  1172. maplen),
  1173. PCI_DMA_TODEVICE);
  1174. } else {
  1175. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1176. "unmapping frag %d.\n", i);
  1177. pci_unmap_page(qdev->pdev,
  1178. dma_unmap_addr(&tx_ring_desc->map[i],
  1179. mapaddr),
  1180. dma_unmap_len(&tx_ring_desc->map[i],
  1181. maplen), PCI_DMA_TODEVICE);
  1182. }
  1183. }
  1184. }
  1185. /* Map the buffers for this transmit. This will return
  1186. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1187. */
  1188. static int ql_map_send(struct ql_adapter *qdev,
  1189. struct ob_mac_iocb_req *mac_iocb_ptr,
  1190. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1191. {
  1192. int len = skb_headlen(skb);
  1193. dma_addr_t map;
  1194. int frag_idx, err, map_idx = 0;
  1195. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1196. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1197. if (frag_cnt) {
  1198. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1199. "frag_cnt = %d.\n", frag_cnt);
  1200. }
  1201. /*
  1202. * Map the skb buffer first.
  1203. */
  1204. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1205. err = pci_dma_mapping_error(qdev->pdev, map);
  1206. if (err) {
  1207. netif_err(qdev, tx_queued, qdev->ndev,
  1208. "PCI mapping failed with error: %d\n", err);
  1209. return NETDEV_TX_BUSY;
  1210. }
  1211. tbd->len = cpu_to_le32(len);
  1212. tbd->addr = cpu_to_le64(map);
  1213. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1214. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1215. map_idx++;
  1216. /*
  1217. * This loop fills the remainder of the 8 address descriptors
  1218. * in the IOCB. If there are more than 7 fragments, then the
  1219. * eighth address desc will point to an external list (OAL).
  1220. * When this happens, the remainder of the frags will be stored
  1221. * in this list.
  1222. */
  1223. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1224. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1225. tbd++;
  1226. if (frag_idx == 6 && frag_cnt > 7) {
  1227. /* Let's tack on an sglist.
  1228. * Our control block will now
  1229. * look like this:
  1230. * iocb->seg[0] = skb->data
  1231. * iocb->seg[1] = frag[0]
  1232. * iocb->seg[2] = frag[1]
  1233. * iocb->seg[3] = frag[2]
  1234. * iocb->seg[4] = frag[3]
  1235. * iocb->seg[5] = frag[4]
  1236. * iocb->seg[6] = frag[5]
  1237. * iocb->seg[7] = ptr to OAL (external sglist)
  1238. * oal->seg[0] = frag[6]
  1239. * oal->seg[1] = frag[7]
  1240. * oal->seg[2] = frag[8]
  1241. * oal->seg[3] = frag[9]
  1242. * oal->seg[4] = frag[10]
  1243. * etc...
  1244. */
  1245. /* Tack on the OAL in the eighth segment of IOCB. */
  1246. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1247. sizeof(struct oal),
  1248. PCI_DMA_TODEVICE);
  1249. err = pci_dma_mapping_error(qdev->pdev, map);
  1250. if (err) {
  1251. netif_err(qdev, tx_queued, qdev->ndev,
  1252. "PCI mapping outbound address list with error: %d\n",
  1253. err);
  1254. goto map_error;
  1255. }
  1256. tbd->addr = cpu_to_le64(map);
  1257. /*
  1258. * The length is the number of fragments
  1259. * that remain to be mapped times the length
  1260. * of our sglist (OAL).
  1261. */
  1262. tbd->len =
  1263. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1264. (frag_cnt - frag_idx)) | TX_DESC_C);
  1265. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1266. map);
  1267. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1268. sizeof(struct oal));
  1269. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1270. map_idx++;
  1271. }
  1272. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  1273. DMA_TO_DEVICE);
  1274. err = dma_mapping_error(&qdev->pdev->dev, map);
  1275. if (err) {
  1276. netif_err(qdev, tx_queued, qdev->ndev,
  1277. "PCI mapping frags failed with error: %d.\n",
  1278. err);
  1279. goto map_error;
  1280. }
  1281. tbd->addr = cpu_to_le64(map);
  1282. tbd->len = cpu_to_le32(skb_frag_size(frag));
  1283. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1284. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1285. skb_frag_size(frag));
  1286. }
  1287. /* Save the number of segments we've mapped. */
  1288. tx_ring_desc->map_cnt = map_idx;
  1289. /* Terminate the last segment. */
  1290. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1291. return NETDEV_TX_OK;
  1292. map_error:
  1293. /*
  1294. * If the first frag mapping failed, then i will be zero.
  1295. * This causes the unmap of the skb->data area. Otherwise
  1296. * we pass in the number of frags that mapped successfully
  1297. * so they can be umapped.
  1298. */
  1299. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1300. return NETDEV_TX_BUSY;
  1301. }
  1302. /* Process an inbound completion from an rx ring. */
  1303. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1304. struct rx_ring *rx_ring,
  1305. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1306. u32 length,
  1307. u16 vlan_id)
  1308. {
  1309. struct sk_buff *skb;
  1310. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1311. struct napi_struct *napi = &rx_ring->napi;
  1312. napi->dev = qdev->ndev;
  1313. skb = napi_get_frags(napi);
  1314. if (!skb) {
  1315. netif_err(qdev, drv, qdev->ndev,
  1316. "Couldn't get an skb, exiting.\n");
  1317. rx_ring->rx_dropped++;
  1318. put_page(lbq_desc->p.pg_chunk.page);
  1319. return;
  1320. }
  1321. prefetch(lbq_desc->p.pg_chunk.va);
  1322. __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1323. lbq_desc->p.pg_chunk.page,
  1324. lbq_desc->p.pg_chunk.offset,
  1325. length);
  1326. skb->len += length;
  1327. skb->data_len += length;
  1328. skb->truesize += length;
  1329. skb_shinfo(skb)->nr_frags++;
  1330. rx_ring->rx_packets++;
  1331. rx_ring->rx_bytes += length;
  1332. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1333. skb_record_rx_queue(skb, rx_ring->cq_id);
  1334. if (vlan_id != 0xffff)
  1335. __vlan_hwaccel_put_tag(skb, vlan_id);
  1336. napi_gro_frags(napi);
  1337. }
  1338. /* Process an inbound completion from an rx ring. */
  1339. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1340. struct rx_ring *rx_ring,
  1341. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1342. u32 length,
  1343. u16 vlan_id)
  1344. {
  1345. struct net_device *ndev = qdev->ndev;
  1346. struct sk_buff *skb = NULL;
  1347. void *addr;
  1348. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1349. struct napi_struct *napi = &rx_ring->napi;
  1350. skb = netdev_alloc_skb(ndev, length);
  1351. if (!skb) {
  1352. netif_err(qdev, drv, qdev->ndev,
  1353. "Couldn't get an skb, need to unwind!.\n");
  1354. rx_ring->rx_dropped++;
  1355. put_page(lbq_desc->p.pg_chunk.page);
  1356. return;
  1357. }
  1358. addr = lbq_desc->p.pg_chunk.va;
  1359. prefetch(addr);
  1360. /* Frame error, so drop the packet. */
  1361. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1362. netif_info(qdev, drv, qdev->ndev,
  1363. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1364. rx_ring->rx_errors++;
  1365. goto err_out;
  1366. }
  1367. /* The max framesize filter on this chip is set higher than
  1368. * MTU since FCoE uses 2k frames.
  1369. */
  1370. if (skb->len > ndev->mtu + ETH_HLEN) {
  1371. netif_err(qdev, drv, qdev->ndev,
  1372. "Segment too small, dropping.\n");
  1373. rx_ring->rx_dropped++;
  1374. goto err_out;
  1375. }
  1376. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1377. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1378. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1379. length);
  1380. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1381. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1382. length-ETH_HLEN);
  1383. skb->len += length-ETH_HLEN;
  1384. skb->data_len += length-ETH_HLEN;
  1385. skb->truesize += length-ETH_HLEN;
  1386. rx_ring->rx_packets++;
  1387. rx_ring->rx_bytes += skb->len;
  1388. skb->protocol = eth_type_trans(skb, ndev);
  1389. skb_checksum_none_assert(skb);
  1390. if ((ndev->features & NETIF_F_RXCSUM) &&
  1391. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1392. /* TCP frame. */
  1393. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1394. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1395. "TCP checksum done!\n");
  1396. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1397. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1398. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1399. /* Unfragmented ipv4 UDP frame. */
  1400. struct iphdr *iph =
  1401. (struct iphdr *) ((u8 *)addr + ETH_HLEN);
  1402. if (!(iph->frag_off &
  1403. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1404. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1405. netif_printk(qdev, rx_status, KERN_DEBUG,
  1406. qdev->ndev,
  1407. "UDP checksum done!\n");
  1408. }
  1409. }
  1410. }
  1411. skb_record_rx_queue(skb, rx_ring->cq_id);
  1412. if (vlan_id != 0xffff)
  1413. __vlan_hwaccel_put_tag(skb, vlan_id);
  1414. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1415. napi_gro_receive(napi, skb);
  1416. else
  1417. netif_receive_skb(skb);
  1418. return;
  1419. err_out:
  1420. dev_kfree_skb_any(skb);
  1421. put_page(lbq_desc->p.pg_chunk.page);
  1422. }
  1423. /* Process an inbound completion from an rx ring. */
  1424. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1425. struct rx_ring *rx_ring,
  1426. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1427. u32 length,
  1428. u16 vlan_id)
  1429. {
  1430. struct net_device *ndev = qdev->ndev;
  1431. struct sk_buff *skb = NULL;
  1432. struct sk_buff *new_skb = NULL;
  1433. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1434. skb = sbq_desc->p.skb;
  1435. /* Allocate new_skb and copy */
  1436. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1437. if (new_skb == NULL) {
  1438. netif_err(qdev, probe, qdev->ndev,
  1439. "No skb available, drop the packet.\n");
  1440. rx_ring->rx_dropped++;
  1441. return;
  1442. }
  1443. skb_reserve(new_skb, NET_IP_ALIGN);
  1444. memcpy(skb_put(new_skb, length), skb->data, length);
  1445. skb = new_skb;
  1446. /* Frame error, so drop the packet. */
  1447. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1448. netif_info(qdev, drv, qdev->ndev,
  1449. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1450. dev_kfree_skb_any(skb);
  1451. rx_ring->rx_errors++;
  1452. return;
  1453. }
  1454. /* loopback self test for ethtool */
  1455. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1456. ql_check_lb_frame(qdev, skb);
  1457. dev_kfree_skb_any(skb);
  1458. return;
  1459. }
  1460. /* The max framesize filter on this chip is set higher than
  1461. * MTU since FCoE uses 2k frames.
  1462. */
  1463. if (skb->len > ndev->mtu + ETH_HLEN) {
  1464. dev_kfree_skb_any(skb);
  1465. rx_ring->rx_dropped++;
  1466. return;
  1467. }
  1468. prefetch(skb->data);
  1469. skb->dev = ndev;
  1470. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1471. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1472. "%s Multicast.\n",
  1473. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1474. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1475. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1476. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1477. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1478. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1479. }
  1480. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1481. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1482. "Promiscuous Packet.\n");
  1483. rx_ring->rx_packets++;
  1484. rx_ring->rx_bytes += skb->len;
  1485. skb->protocol = eth_type_trans(skb, ndev);
  1486. skb_checksum_none_assert(skb);
  1487. /* If rx checksum is on, and there are no
  1488. * csum or frame errors.
  1489. */
  1490. if ((ndev->features & NETIF_F_RXCSUM) &&
  1491. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1492. /* TCP frame. */
  1493. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1494. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1495. "TCP checksum done!\n");
  1496. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1497. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1498. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1499. /* Unfragmented ipv4 UDP frame. */
  1500. struct iphdr *iph = (struct iphdr *) skb->data;
  1501. if (!(iph->frag_off &
  1502. ntohs(IP_MF|IP_OFFSET))) {
  1503. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1504. netif_printk(qdev, rx_status, KERN_DEBUG,
  1505. qdev->ndev,
  1506. "UDP checksum done!\n");
  1507. }
  1508. }
  1509. }
  1510. skb_record_rx_queue(skb, rx_ring->cq_id);
  1511. if (vlan_id != 0xffff)
  1512. __vlan_hwaccel_put_tag(skb, vlan_id);
  1513. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1514. napi_gro_receive(&rx_ring->napi, skb);
  1515. else
  1516. netif_receive_skb(skb);
  1517. }
  1518. static void ql_realign_skb(struct sk_buff *skb, int len)
  1519. {
  1520. void *temp_addr = skb->data;
  1521. /* Undo the skb_reserve(skb,32) we did before
  1522. * giving to hardware, and realign data on
  1523. * a 2-byte boundary.
  1524. */
  1525. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1526. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1527. skb_copy_to_linear_data(skb, temp_addr,
  1528. (unsigned int)len);
  1529. }
  1530. /*
  1531. * This function builds an skb for the given inbound
  1532. * completion. It will be rewritten for readability in the near
  1533. * future, but for not it works well.
  1534. */
  1535. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1536. struct rx_ring *rx_ring,
  1537. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1538. {
  1539. struct bq_desc *lbq_desc;
  1540. struct bq_desc *sbq_desc;
  1541. struct sk_buff *skb = NULL;
  1542. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1543. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1544. /*
  1545. * Handle the header buffer if present.
  1546. */
  1547. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1548. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1549. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1550. "Header of %d bytes in small buffer.\n", hdr_len);
  1551. /*
  1552. * Headers fit nicely into a small buffer.
  1553. */
  1554. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1555. pci_unmap_single(qdev->pdev,
  1556. dma_unmap_addr(sbq_desc, mapaddr),
  1557. dma_unmap_len(sbq_desc, maplen),
  1558. PCI_DMA_FROMDEVICE);
  1559. skb = sbq_desc->p.skb;
  1560. ql_realign_skb(skb, hdr_len);
  1561. skb_put(skb, hdr_len);
  1562. sbq_desc->p.skb = NULL;
  1563. }
  1564. /*
  1565. * Handle the data buffer(s).
  1566. */
  1567. if (unlikely(!length)) { /* Is there data too? */
  1568. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1569. "No Data buffer in this packet.\n");
  1570. return skb;
  1571. }
  1572. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1573. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1574. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1575. "Headers in small, data of %d bytes in small, combine them.\n",
  1576. length);
  1577. /*
  1578. * Data is less than small buffer size so it's
  1579. * stuffed in a small buffer.
  1580. * For this case we append the data
  1581. * from the "data" small buffer to the "header" small
  1582. * buffer.
  1583. */
  1584. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1585. pci_dma_sync_single_for_cpu(qdev->pdev,
  1586. dma_unmap_addr
  1587. (sbq_desc, mapaddr),
  1588. dma_unmap_len
  1589. (sbq_desc, maplen),
  1590. PCI_DMA_FROMDEVICE);
  1591. memcpy(skb_put(skb, length),
  1592. sbq_desc->p.skb->data, length);
  1593. pci_dma_sync_single_for_device(qdev->pdev,
  1594. dma_unmap_addr
  1595. (sbq_desc,
  1596. mapaddr),
  1597. dma_unmap_len
  1598. (sbq_desc,
  1599. maplen),
  1600. PCI_DMA_FROMDEVICE);
  1601. } else {
  1602. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1603. "%d bytes in a single small buffer.\n",
  1604. length);
  1605. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1606. skb = sbq_desc->p.skb;
  1607. ql_realign_skb(skb, length);
  1608. skb_put(skb, length);
  1609. pci_unmap_single(qdev->pdev,
  1610. dma_unmap_addr(sbq_desc,
  1611. mapaddr),
  1612. dma_unmap_len(sbq_desc,
  1613. maplen),
  1614. PCI_DMA_FROMDEVICE);
  1615. sbq_desc->p.skb = NULL;
  1616. }
  1617. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1618. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1619. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1620. "Header in small, %d bytes in large. Chain large to small!\n",
  1621. length);
  1622. /*
  1623. * The data is in a single large buffer. We
  1624. * chain it to the header buffer's skb and let
  1625. * it rip.
  1626. */
  1627. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1628. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1629. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1630. lbq_desc->p.pg_chunk.offset, length);
  1631. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1632. lbq_desc->p.pg_chunk.offset,
  1633. length);
  1634. skb->len += length;
  1635. skb->data_len += length;
  1636. skb->truesize += length;
  1637. } else {
  1638. /*
  1639. * The headers and data are in a single large buffer. We
  1640. * copy it to a new skb and let it go. This can happen with
  1641. * jumbo mtu on a non-TCP/UDP frame.
  1642. */
  1643. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1644. skb = netdev_alloc_skb(qdev->ndev, length);
  1645. if (skb == NULL) {
  1646. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1647. "No skb available, drop the packet.\n");
  1648. return NULL;
  1649. }
  1650. pci_unmap_page(qdev->pdev,
  1651. dma_unmap_addr(lbq_desc,
  1652. mapaddr),
  1653. dma_unmap_len(lbq_desc, maplen),
  1654. PCI_DMA_FROMDEVICE);
  1655. skb_reserve(skb, NET_IP_ALIGN);
  1656. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1657. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1658. length);
  1659. skb_fill_page_desc(skb, 0,
  1660. lbq_desc->p.pg_chunk.page,
  1661. lbq_desc->p.pg_chunk.offset,
  1662. length);
  1663. skb->len += length;
  1664. skb->data_len += length;
  1665. skb->truesize += length;
  1666. length -= length;
  1667. __pskb_pull_tail(skb,
  1668. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1669. VLAN_ETH_HLEN : ETH_HLEN);
  1670. }
  1671. } else {
  1672. /*
  1673. * The data is in a chain of large buffers
  1674. * pointed to by a small buffer. We loop
  1675. * thru and chain them to the our small header
  1676. * buffer's skb.
  1677. * frags: There are 18 max frags and our small
  1678. * buffer will hold 32 of them. The thing is,
  1679. * we'll use 3 max for our 9000 byte jumbo
  1680. * frames. If the MTU goes up we could
  1681. * eventually be in trouble.
  1682. */
  1683. int size, i = 0;
  1684. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1685. pci_unmap_single(qdev->pdev,
  1686. dma_unmap_addr(sbq_desc, mapaddr),
  1687. dma_unmap_len(sbq_desc, maplen),
  1688. PCI_DMA_FROMDEVICE);
  1689. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1690. /*
  1691. * This is an non TCP/UDP IP frame, so
  1692. * the headers aren't split into a small
  1693. * buffer. We have to use the small buffer
  1694. * that contains our sg list as our skb to
  1695. * send upstairs. Copy the sg list here to
  1696. * a local buffer and use it to find the
  1697. * pages to chain.
  1698. */
  1699. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1700. "%d bytes of headers & data in chain of large.\n",
  1701. length);
  1702. skb = sbq_desc->p.skb;
  1703. sbq_desc->p.skb = NULL;
  1704. skb_reserve(skb, NET_IP_ALIGN);
  1705. }
  1706. while (length > 0) {
  1707. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1708. size = (length < rx_ring->lbq_buf_size) ? length :
  1709. rx_ring->lbq_buf_size;
  1710. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1711. "Adding page %d to skb for %d bytes.\n",
  1712. i, size);
  1713. skb_fill_page_desc(skb, i,
  1714. lbq_desc->p.pg_chunk.page,
  1715. lbq_desc->p.pg_chunk.offset,
  1716. size);
  1717. skb->len += size;
  1718. skb->data_len += size;
  1719. skb->truesize += size;
  1720. length -= size;
  1721. i++;
  1722. }
  1723. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1724. VLAN_ETH_HLEN : ETH_HLEN);
  1725. }
  1726. return skb;
  1727. }
  1728. /* Process an inbound completion from an rx ring. */
  1729. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1730. struct rx_ring *rx_ring,
  1731. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1732. u16 vlan_id)
  1733. {
  1734. struct net_device *ndev = qdev->ndev;
  1735. struct sk_buff *skb = NULL;
  1736. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1737. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1738. if (unlikely(!skb)) {
  1739. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1740. "No skb available, drop packet.\n");
  1741. rx_ring->rx_dropped++;
  1742. return;
  1743. }
  1744. /* Frame error, so drop the packet. */
  1745. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1746. netif_info(qdev, drv, qdev->ndev,
  1747. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1748. dev_kfree_skb_any(skb);
  1749. rx_ring->rx_errors++;
  1750. return;
  1751. }
  1752. /* The max framesize filter on this chip is set higher than
  1753. * MTU since FCoE uses 2k frames.
  1754. */
  1755. if (skb->len > ndev->mtu + ETH_HLEN) {
  1756. dev_kfree_skb_any(skb);
  1757. rx_ring->rx_dropped++;
  1758. return;
  1759. }
  1760. /* loopback self test for ethtool */
  1761. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1762. ql_check_lb_frame(qdev, skb);
  1763. dev_kfree_skb_any(skb);
  1764. return;
  1765. }
  1766. prefetch(skb->data);
  1767. skb->dev = ndev;
  1768. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1769. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1770. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1771. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1772. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1773. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1774. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1775. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1776. rx_ring->rx_multicast++;
  1777. }
  1778. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1779. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1780. "Promiscuous Packet.\n");
  1781. }
  1782. skb->protocol = eth_type_trans(skb, ndev);
  1783. skb_checksum_none_assert(skb);
  1784. /* If rx checksum is on, and there are no
  1785. * csum or frame errors.
  1786. */
  1787. if ((ndev->features & NETIF_F_RXCSUM) &&
  1788. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1789. /* TCP frame. */
  1790. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1791. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1792. "TCP checksum done!\n");
  1793. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1794. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1795. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1796. /* Unfragmented ipv4 UDP frame. */
  1797. struct iphdr *iph = (struct iphdr *) skb->data;
  1798. if (!(iph->frag_off &
  1799. ntohs(IP_MF|IP_OFFSET))) {
  1800. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1801. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1802. "TCP checksum done!\n");
  1803. }
  1804. }
  1805. }
  1806. rx_ring->rx_packets++;
  1807. rx_ring->rx_bytes += skb->len;
  1808. skb_record_rx_queue(skb, rx_ring->cq_id);
  1809. if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
  1810. __vlan_hwaccel_put_tag(skb, vlan_id);
  1811. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1812. napi_gro_receive(&rx_ring->napi, skb);
  1813. else
  1814. netif_receive_skb(skb);
  1815. }
  1816. /* Process an inbound completion from an rx ring. */
  1817. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1818. struct rx_ring *rx_ring,
  1819. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1820. {
  1821. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1822. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1823. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1824. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1825. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1826. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1827. /* The data and headers are split into
  1828. * separate buffers.
  1829. */
  1830. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1831. vlan_id);
  1832. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1833. /* The data fit in a single small buffer.
  1834. * Allocate a new skb, copy the data and
  1835. * return the buffer to the free pool.
  1836. */
  1837. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1838. length, vlan_id);
  1839. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1840. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1841. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1842. /* TCP packet in a page chunk that's been checksummed.
  1843. * Tack it on to our GRO skb and let it go.
  1844. */
  1845. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1846. length, vlan_id);
  1847. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1848. /* Non-TCP packet in a page chunk. Allocate an
  1849. * skb, tack it on frags, and send it up.
  1850. */
  1851. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1852. length, vlan_id);
  1853. } else {
  1854. /* Non-TCP/UDP large frames that span multiple buffers
  1855. * can be processed corrrectly by the split frame logic.
  1856. */
  1857. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1858. vlan_id);
  1859. }
  1860. return (unsigned long)length;
  1861. }
  1862. /* Process an outbound completion from an rx ring. */
  1863. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1864. struct ob_mac_iocb_rsp *mac_rsp)
  1865. {
  1866. struct tx_ring *tx_ring;
  1867. struct tx_ring_desc *tx_ring_desc;
  1868. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1869. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1870. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1871. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1872. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1873. tx_ring->tx_packets++;
  1874. dev_kfree_skb(tx_ring_desc->skb);
  1875. tx_ring_desc->skb = NULL;
  1876. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1877. OB_MAC_IOCB_RSP_S |
  1878. OB_MAC_IOCB_RSP_L |
  1879. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1880. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1881. netif_warn(qdev, tx_done, qdev->ndev,
  1882. "Total descriptor length did not match transfer length.\n");
  1883. }
  1884. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1885. netif_warn(qdev, tx_done, qdev->ndev,
  1886. "Frame too short to be valid, not sent.\n");
  1887. }
  1888. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1889. netif_warn(qdev, tx_done, qdev->ndev,
  1890. "Frame too long, but sent anyway.\n");
  1891. }
  1892. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1893. netif_warn(qdev, tx_done, qdev->ndev,
  1894. "PCI backplane error. Frame not sent.\n");
  1895. }
  1896. }
  1897. atomic_inc(&tx_ring->tx_count);
  1898. }
  1899. /* Fire up a handler to reset the MPI processor. */
  1900. void ql_queue_fw_error(struct ql_adapter *qdev)
  1901. {
  1902. ql_link_off(qdev);
  1903. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1904. }
  1905. void ql_queue_asic_error(struct ql_adapter *qdev)
  1906. {
  1907. ql_link_off(qdev);
  1908. ql_disable_interrupts(qdev);
  1909. /* Clear adapter up bit to signal the recovery
  1910. * process that it shouldn't kill the reset worker
  1911. * thread
  1912. */
  1913. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1914. /* Set asic recovery bit to indicate reset process that we are
  1915. * in fatal error recovery process rather than normal close
  1916. */
  1917. set_bit(QL_ASIC_RECOVERY, &qdev->flags);
  1918. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1919. }
  1920. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1921. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1922. {
  1923. switch (ib_ae_rsp->event) {
  1924. case MGMT_ERR_EVENT:
  1925. netif_err(qdev, rx_err, qdev->ndev,
  1926. "Management Processor Fatal Error.\n");
  1927. ql_queue_fw_error(qdev);
  1928. return;
  1929. case CAM_LOOKUP_ERR_EVENT:
  1930. netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
  1931. netdev_err(qdev->ndev, "This event shouldn't occur.\n");
  1932. ql_queue_asic_error(qdev);
  1933. return;
  1934. case SOFT_ECC_ERROR_EVENT:
  1935. netdev_err(qdev->ndev, "Soft ECC error detected.\n");
  1936. ql_queue_asic_error(qdev);
  1937. break;
  1938. case PCI_ERR_ANON_BUF_RD:
  1939. netdev_err(qdev->ndev, "PCI error occurred when reading "
  1940. "anonymous buffers from rx_ring %d.\n",
  1941. ib_ae_rsp->q_id);
  1942. ql_queue_asic_error(qdev);
  1943. break;
  1944. default:
  1945. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  1946. ib_ae_rsp->event);
  1947. ql_queue_asic_error(qdev);
  1948. break;
  1949. }
  1950. }
  1951. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1952. {
  1953. struct ql_adapter *qdev = rx_ring->qdev;
  1954. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1955. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1956. int count = 0;
  1957. struct tx_ring *tx_ring;
  1958. /* While there are entries in the completion queue. */
  1959. while (prod != rx_ring->cnsmr_idx) {
  1960. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1961. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  1962. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  1963. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1964. rmb();
  1965. switch (net_rsp->opcode) {
  1966. case OPCODE_OB_MAC_TSO_IOCB:
  1967. case OPCODE_OB_MAC_IOCB:
  1968. ql_process_mac_tx_intr(qdev, net_rsp);
  1969. break;
  1970. default:
  1971. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1972. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1973. net_rsp->opcode);
  1974. }
  1975. count++;
  1976. ql_update_cq(rx_ring);
  1977. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1978. }
  1979. if (!net_rsp)
  1980. return 0;
  1981. ql_write_cq_idx(rx_ring);
  1982. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1983. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  1984. if (atomic_read(&tx_ring->queue_stopped) &&
  1985. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1986. /*
  1987. * The queue got stopped because the tx_ring was full.
  1988. * Wake it up, because it's now at least 25% empty.
  1989. */
  1990. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1991. }
  1992. return count;
  1993. }
  1994. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1995. {
  1996. struct ql_adapter *qdev = rx_ring->qdev;
  1997. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1998. struct ql_net_rsp_iocb *net_rsp;
  1999. int count = 0;
  2000. /* While there are entries in the completion queue. */
  2001. while (prod != rx_ring->cnsmr_idx) {
  2002. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2003. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2004. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2005. net_rsp = rx_ring->curr_entry;
  2006. rmb();
  2007. switch (net_rsp->opcode) {
  2008. case OPCODE_IB_MAC_IOCB:
  2009. ql_process_mac_rx_intr(qdev, rx_ring,
  2010. (struct ib_mac_iocb_rsp *)
  2011. net_rsp);
  2012. break;
  2013. case OPCODE_IB_AE_IOCB:
  2014. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2015. net_rsp);
  2016. break;
  2017. default:
  2018. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2019. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2020. net_rsp->opcode);
  2021. break;
  2022. }
  2023. count++;
  2024. ql_update_cq(rx_ring);
  2025. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2026. if (count == budget)
  2027. break;
  2028. }
  2029. ql_update_buffer_queues(qdev, rx_ring);
  2030. ql_write_cq_idx(rx_ring);
  2031. return count;
  2032. }
  2033. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2034. {
  2035. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2036. struct ql_adapter *qdev = rx_ring->qdev;
  2037. struct rx_ring *trx_ring;
  2038. int i, work_done = 0;
  2039. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2040. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2041. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2042. /* Service the TX rings first. They start
  2043. * right after the RSS rings. */
  2044. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2045. trx_ring = &qdev->rx_ring[i];
  2046. /* If this TX completion ring belongs to this vector and
  2047. * it's not empty then service it.
  2048. */
  2049. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2050. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2051. trx_ring->cnsmr_idx)) {
  2052. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2053. "%s: Servicing TX completion ring %d.\n",
  2054. __func__, trx_ring->cq_id);
  2055. ql_clean_outbound_rx_ring(trx_ring);
  2056. }
  2057. }
  2058. /*
  2059. * Now service the RSS ring if it's active.
  2060. */
  2061. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2062. rx_ring->cnsmr_idx) {
  2063. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2064. "%s: Servicing RX completion ring %d.\n",
  2065. __func__, rx_ring->cq_id);
  2066. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2067. }
  2068. if (work_done < budget) {
  2069. napi_complete(napi);
  2070. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2071. }
  2072. return work_done;
  2073. }
  2074. static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
  2075. {
  2076. struct ql_adapter *qdev = netdev_priv(ndev);
  2077. if (features & NETIF_F_HW_VLAN_RX) {
  2078. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2079. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2080. } else {
  2081. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2082. }
  2083. }
  2084. static netdev_features_t qlge_fix_features(struct net_device *ndev,
  2085. netdev_features_t features)
  2086. {
  2087. /*
  2088. * Since there is no support for separate rx/tx vlan accel
  2089. * enable/disable make sure tx flag is always in same state as rx.
  2090. */
  2091. if (features & NETIF_F_HW_VLAN_RX)
  2092. features |= NETIF_F_HW_VLAN_TX;
  2093. else
  2094. features &= ~NETIF_F_HW_VLAN_TX;
  2095. return features;
  2096. }
  2097. static int qlge_set_features(struct net_device *ndev,
  2098. netdev_features_t features)
  2099. {
  2100. netdev_features_t changed = ndev->features ^ features;
  2101. if (changed & NETIF_F_HW_VLAN_RX)
  2102. qlge_vlan_mode(ndev, features);
  2103. return 0;
  2104. }
  2105. static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
  2106. {
  2107. u32 enable_bit = MAC_ADDR_E;
  2108. int err;
  2109. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2110. MAC_ADDR_TYPE_VLAN, vid);
  2111. if (err)
  2112. netif_err(qdev, ifup, qdev->ndev,
  2113. "Failed to init vlan address.\n");
  2114. return err;
  2115. }
  2116. static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2117. {
  2118. struct ql_adapter *qdev = netdev_priv(ndev);
  2119. int status;
  2120. int err;
  2121. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2122. if (status)
  2123. return status;
  2124. err = __qlge_vlan_rx_add_vid(qdev, vid);
  2125. set_bit(vid, qdev->active_vlans);
  2126. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2127. return err;
  2128. }
  2129. static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
  2130. {
  2131. u32 enable_bit = 0;
  2132. int err;
  2133. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2134. MAC_ADDR_TYPE_VLAN, vid);
  2135. if (err)
  2136. netif_err(qdev, ifup, qdev->ndev,
  2137. "Failed to clear vlan address.\n");
  2138. return err;
  2139. }
  2140. static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2141. {
  2142. struct ql_adapter *qdev = netdev_priv(ndev);
  2143. int status;
  2144. int err;
  2145. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2146. if (status)
  2147. return status;
  2148. err = __qlge_vlan_rx_kill_vid(qdev, vid);
  2149. clear_bit(vid, qdev->active_vlans);
  2150. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2151. return err;
  2152. }
  2153. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2154. {
  2155. int status;
  2156. u16 vid;
  2157. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2158. if (status)
  2159. return;
  2160. for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
  2161. __qlge_vlan_rx_add_vid(qdev, vid);
  2162. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2163. }
  2164. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2165. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2166. {
  2167. struct rx_ring *rx_ring = dev_id;
  2168. napi_schedule(&rx_ring->napi);
  2169. return IRQ_HANDLED;
  2170. }
  2171. /* This handles a fatal error, MPI activity, and the default
  2172. * rx_ring in an MSI-X multiple vector environment.
  2173. * In MSI/Legacy environment it also process the rest of
  2174. * the rx_rings.
  2175. */
  2176. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2177. {
  2178. struct rx_ring *rx_ring = dev_id;
  2179. struct ql_adapter *qdev = rx_ring->qdev;
  2180. struct intr_context *intr_context = &qdev->intr_context[0];
  2181. u32 var;
  2182. int work_done = 0;
  2183. spin_lock(&qdev->hw_lock);
  2184. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2185. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2186. "Shared Interrupt, Not ours!\n");
  2187. spin_unlock(&qdev->hw_lock);
  2188. return IRQ_NONE;
  2189. }
  2190. spin_unlock(&qdev->hw_lock);
  2191. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2192. /*
  2193. * Check for fatal error.
  2194. */
  2195. if (var & STS_FE) {
  2196. ql_queue_asic_error(qdev);
  2197. netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
  2198. var = ql_read32(qdev, ERR_STS);
  2199. netdev_err(qdev->ndev, "Resetting chip. "
  2200. "Error Status Register = 0x%x\n", var);
  2201. return IRQ_HANDLED;
  2202. }
  2203. /*
  2204. * Check MPI processor activity.
  2205. */
  2206. if ((var & STS_PI) &&
  2207. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2208. /*
  2209. * We've got an async event or mailbox completion.
  2210. * Handle it and clear the source of the interrupt.
  2211. */
  2212. netif_err(qdev, intr, qdev->ndev,
  2213. "Got MPI processor interrupt.\n");
  2214. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2215. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2216. queue_delayed_work_on(smp_processor_id(),
  2217. qdev->workqueue, &qdev->mpi_work, 0);
  2218. work_done++;
  2219. }
  2220. /*
  2221. * Get the bit-mask that shows the active queues for this
  2222. * pass. Compare it to the queues that this irq services
  2223. * and call napi if there's a match.
  2224. */
  2225. var = ql_read32(qdev, ISR1);
  2226. if (var & intr_context->irq_mask) {
  2227. netif_info(qdev, intr, qdev->ndev,
  2228. "Waking handler for rx_ring[0].\n");
  2229. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2230. napi_schedule(&rx_ring->napi);
  2231. work_done++;
  2232. }
  2233. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2234. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2235. }
  2236. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2237. {
  2238. if (skb_is_gso(skb)) {
  2239. int err;
  2240. if (skb_header_cloned(skb)) {
  2241. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2242. if (err)
  2243. return err;
  2244. }
  2245. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2246. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2247. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2248. mac_iocb_ptr->total_hdrs_len =
  2249. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2250. mac_iocb_ptr->net_trans_offset =
  2251. cpu_to_le16(skb_network_offset(skb) |
  2252. skb_transport_offset(skb)
  2253. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2254. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2255. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2256. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2257. struct iphdr *iph = ip_hdr(skb);
  2258. iph->check = 0;
  2259. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2260. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2261. iph->daddr, 0,
  2262. IPPROTO_TCP,
  2263. 0);
  2264. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2265. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2266. tcp_hdr(skb)->check =
  2267. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2268. &ipv6_hdr(skb)->daddr,
  2269. 0, IPPROTO_TCP, 0);
  2270. }
  2271. return 1;
  2272. }
  2273. return 0;
  2274. }
  2275. static void ql_hw_csum_setup(struct sk_buff *skb,
  2276. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2277. {
  2278. int len;
  2279. struct iphdr *iph = ip_hdr(skb);
  2280. __sum16 *check;
  2281. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2282. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2283. mac_iocb_ptr->net_trans_offset =
  2284. cpu_to_le16(skb_network_offset(skb) |
  2285. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2286. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2287. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2288. if (likely(iph->protocol == IPPROTO_TCP)) {
  2289. check = &(tcp_hdr(skb)->check);
  2290. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2291. mac_iocb_ptr->total_hdrs_len =
  2292. cpu_to_le16(skb_transport_offset(skb) +
  2293. (tcp_hdr(skb)->doff << 2));
  2294. } else {
  2295. check = &(udp_hdr(skb)->check);
  2296. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2297. mac_iocb_ptr->total_hdrs_len =
  2298. cpu_to_le16(skb_transport_offset(skb) +
  2299. sizeof(struct udphdr));
  2300. }
  2301. *check = ~csum_tcpudp_magic(iph->saddr,
  2302. iph->daddr, len, iph->protocol, 0);
  2303. }
  2304. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2305. {
  2306. struct tx_ring_desc *tx_ring_desc;
  2307. struct ob_mac_iocb_req *mac_iocb_ptr;
  2308. struct ql_adapter *qdev = netdev_priv(ndev);
  2309. int tso;
  2310. struct tx_ring *tx_ring;
  2311. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2312. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2313. if (skb_padto(skb, ETH_ZLEN))
  2314. return NETDEV_TX_OK;
  2315. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2316. netif_info(qdev, tx_queued, qdev->ndev,
  2317. "%s: shutting down tx queue %d du to lack of resources.\n",
  2318. __func__, tx_ring_idx);
  2319. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2320. atomic_inc(&tx_ring->queue_stopped);
  2321. tx_ring->tx_errors++;
  2322. return NETDEV_TX_BUSY;
  2323. }
  2324. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2325. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2326. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2327. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2328. mac_iocb_ptr->tid = tx_ring_desc->index;
  2329. /* We use the upper 32-bits to store the tx queue for this IO.
  2330. * When we get the completion we can use it to establish the context.
  2331. */
  2332. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2333. tx_ring_desc->skb = skb;
  2334. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2335. if (vlan_tx_tag_present(skb)) {
  2336. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2337. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2338. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2339. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2340. }
  2341. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2342. if (tso < 0) {
  2343. dev_kfree_skb_any(skb);
  2344. return NETDEV_TX_OK;
  2345. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2346. ql_hw_csum_setup(skb,
  2347. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2348. }
  2349. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2350. NETDEV_TX_OK) {
  2351. netif_err(qdev, tx_queued, qdev->ndev,
  2352. "Could not map the segments.\n");
  2353. tx_ring->tx_errors++;
  2354. return NETDEV_TX_BUSY;
  2355. }
  2356. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2357. tx_ring->prod_idx++;
  2358. if (tx_ring->prod_idx == tx_ring->wq_len)
  2359. tx_ring->prod_idx = 0;
  2360. wmb();
  2361. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2362. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2363. "tx queued, slot %d, len %d\n",
  2364. tx_ring->prod_idx, skb->len);
  2365. atomic_dec(&tx_ring->tx_count);
  2366. return NETDEV_TX_OK;
  2367. }
  2368. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2369. {
  2370. if (qdev->rx_ring_shadow_reg_area) {
  2371. pci_free_consistent(qdev->pdev,
  2372. PAGE_SIZE,
  2373. qdev->rx_ring_shadow_reg_area,
  2374. qdev->rx_ring_shadow_reg_dma);
  2375. qdev->rx_ring_shadow_reg_area = NULL;
  2376. }
  2377. if (qdev->tx_ring_shadow_reg_area) {
  2378. pci_free_consistent(qdev->pdev,
  2379. PAGE_SIZE,
  2380. qdev->tx_ring_shadow_reg_area,
  2381. qdev->tx_ring_shadow_reg_dma);
  2382. qdev->tx_ring_shadow_reg_area = NULL;
  2383. }
  2384. }
  2385. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2386. {
  2387. qdev->rx_ring_shadow_reg_area =
  2388. pci_alloc_consistent(qdev->pdev,
  2389. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2390. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2391. netif_err(qdev, ifup, qdev->ndev,
  2392. "Allocation of RX shadow space failed.\n");
  2393. return -ENOMEM;
  2394. }
  2395. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2396. qdev->tx_ring_shadow_reg_area =
  2397. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2398. &qdev->tx_ring_shadow_reg_dma);
  2399. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2400. netif_err(qdev, ifup, qdev->ndev,
  2401. "Allocation of TX shadow space failed.\n");
  2402. goto err_wqp_sh_area;
  2403. }
  2404. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2405. return 0;
  2406. err_wqp_sh_area:
  2407. pci_free_consistent(qdev->pdev,
  2408. PAGE_SIZE,
  2409. qdev->rx_ring_shadow_reg_area,
  2410. qdev->rx_ring_shadow_reg_dma);
  2411. return -ENOMEM;
  2412. }
  2413. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2414. {
  2415. struct tx_ring_desc *tx_ring_desc;
  2416. int i;
  2417. struct ob_mac_iocb_req *mac_iocb_ptr;
  2418. mac_iocb_ptr = tx_ring->wq_base;
  2419. tx_ring_desc = tx_ring->q;
  2420. for (i = 0; i < tx_ring->wq_len; i++) {
  2421. tx_ring_desc->index = i;
  2422. tx_ring_desc->skb = NULL;
  2423. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2424. mac_iocb_ptr++;
  2425. tx_ring_desc++;
  2426. }
  2427. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2428. atomic_set(&tx_ring->queue_stopped, 0);
  2429. }
  2430. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2431. struct tx_ring *tx_ring)
  2432. {
  2433. if (tx_ring->wq_base) {
  2434. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2435. tx_ring->wq_base, tx_ring->wq_base_dma);
  2436. tx_ring->wq_base = NULL;
  2437. }
  2438. kfree(tx_ring->q);
  2439. tx_ring->q = NULL;
  2440. }
  2441. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2442. struct tx_ring *tx_ring)
  2443. {
  2444. tx_ring->wq_base =
  2445. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2446. &tx_ring->wq_base_dma);
  2447. if ((tx_ring->wq_base == NULL) ||
  2448. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2449. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2450. return -ENOMEM;
  2451. }
  2452. tx_ring->q =
  2453. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2454. if (tx_ring->q == NULL)
  2455. goto err;
  2456. return 0;
  2457. err:
  2458. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2459. tx_ring->wq_base, tx_ring->wq_base_dma);
  2460. return -ENOMEM;
  2461. }
  2462. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2463. {
  2464. struct bq_desc *lbq_desc;
  2465. uint32_t curr_idx, clean_idx;
  2466. curr_idx = rx_ring->lbq_curr_idx;
  2467. clean_idx = rx_ring->lbq_clean_idx;
  2468. while (curr_idx != clean_idx) {
  2469. lbq_desc = &rx_ring->lbq[curr_idx];
  2470. if (lbq_desc->p.pg_chunk.last_flag) {
  2471. pci_unmap_page(qdev->pdev,
  2472. lbq_desc->p.pg_chunk.map,
  2473. ql_lbq_block_size(qdev),
  2474. PCI_DMA_FROMDEVICE);
  2475. lbq_desc->p.pg_chunk.last_flag = 0;
  2476. }
  2477. put_page(lbq_desc->p.pg_chunk.page);
  2478. lbq_desc->p.pg_chunk.page = NULL;
  2479. if (++curr_idx == rx_ring->lbq_len)
  2480. curr_idx = 0;
  2481. }
  2482. }
  2483. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2484. {
  2485. int i;
  2486. struct bq_desc *sbq_desc;
  2487. for (i = 0; i < rx_ring->sbq_len; i++) {
  2488. sbq_desc = &rx_ring->sbq[i];
  2489. if (sbq_desc == NULL) {
  2490. netif_err(qdev, ifup, qdev->ndev,
  2491. "sbq_desc %d is NULL.\n", i);
  2492. return;
  2493. }
  2494. if (sbq_desc->p.skb) {
  2495. pci_unmap_single(qdev->pdev,
  2496. dma_unmap_addr(sbq_desc, mapaddr),
  2497. dma_unmap_len(sbq_desc, maplen),
  2498. PCI_DMA_FROMDEVICE);
  2499. dev_kfree_skb(sbq_desc->p.skb);
  2500. sbq_desc->p.skb = NULL;
  2501. }
  2502. }
  2503. }
  2504. /* Free all large and small rx buffers associated
  2505. * with the completion queues for this device.
  2506. */
  2507. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2508. {
  2509. int i;
  2510. struct rx_ring *rx_ring;
  2511. for (i = 0; i < qdev->rx_ring_count; i++) {
  2512. rx_ring = &qdev->rx_ring[i];
  2513. if (rx_ring->lbq)
  2514. ql_free_lbq_buffers(qdev, rx_ring);
  2515. if (rx_ring->sbq)
  2516. ql_free_sbq_buffers(qdev, rx_ring);
  2517. }
  2518. }
  2519. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2520. {
  2521. struct rx_ring *rx_ring;
  2522. int i;
  2523. for (i = 0; i < qdev->rx_ring_count; i++) {
  2524. rx_ring = &qdev->rx_ring[i];
  2525. if (rx_ring->type != TX_Q)
  2526. ql_update_buffer_queues(qdev, rx_ring);
  2527. }
  2528. }
  2529. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2530. struct rx_ring *rx_ring)
  2531. {
  2532. int i;
  2533. struct bq_desc *lbq_desc;
  2534. __le64 *bq = rx_ring->lbq_base;
  2535. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2536. for (i = 0; i < rx_ring->lbq_len; i++) {
  2537. lbq_desc = &rx_ring->lbq[i];
  2538. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2539. lbq_desc->index = i;
  2540. lbq_desc->addr = bq;
  2541. bq++;
  2542. }
  2543. }
  2544. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2545. struct rx_ring *rx_ring)
  2546. {
  2547. int i;
  2548. struct bq_desc *sbq_desc;
  2549. __le64 *bq = rx_ring->sbq_base;
  2550. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2551. for (i = 0; i < rx_ring->sbq_len; i++) {
  2552. sbq_desc = &rx_ring->sbq[i];
  2553. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2554. sbq_desc->index = i;
  2555. sbq_desc->addr = bq;
  2556. bq++;
  2557. }
  2558. }
  2559. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2560. struct rx_ring *rx_ring)
  2561. {
  2562. /* Free the small buffer queue. */
  2563. if (rx_ring->sbq_base) {
  2564. pci_free_consistent(qdev->pdev,
  2565. rx_ring->sbq_size,
  2566. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2567. rx_ring->sbq_base = NULL;
  2568. }
  2569. /* Free the small buffer queue control blocks. */
  2570. kfree(rx_ring->sbq);
  2571. rx_ring->sbq = NULL;
  2572. /* Free the large buffer queue. */
  2573. if (rx_ring->lbq_base) {
  2574. pci_free_consistent(qdev->pdev,
  2575. rx_ring->lbq_size,
  2576. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2577. rx_ring->lbq_base = NULL;
  2578. }
  2579. /* Free the large buffer queue control blocks. */
  2580. kfree(rx_ring->lbq);
  2581. rx_ring->lbq = NULL;
  2582. /* Free the rx queue. */
  2583. if (rx_ring->cq_base) {
  2584. pci_free_consistent(qdev->pdev,
  2585. rx_ring->cq_size,
  2586. rx_ring->cq_base, rx_ring->cq_base_dma);
  2587. rx_ring->cq_base = NULL;
  2588. }
  2589. }
  2590. /* Allocate queues and buffers for this completions queue based
  2591. * on the values in the parameter structure. */
  2592. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2593. struct rx_ring *rx_ring)
  2594. {
  2595. /*
  2596. * Allocate the completion queue for this rx_ring.
  2597. */
  2598. rx_ring->cq_base =
  2599. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2600. &rx_ring->cq_base_dma);
  2601. if (rx_ring->cq_base == NULL) {
  2602. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2603. return -ENOMEM;
  2604. }
  2605. if (rx_ring->sbq_len) {
  2606. /*
  2607. * Allocate small buffer queue.
  2608. */
  2609. rx_ring->sbq_base =
  2610. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2611. &rx_ring->sbq_base_dma);
  2612. if (rx_ring->sbq_base == NULL) {
  2613. netif_err(qdev, ifup, qdev->ndev,
  2614. "Small buffer queue allocation failed.\n");
  2615. goto err_mem;
  2616. }
  2617. /*
  2618. * Allocate small buffer queue control blocks.
  2619. */
  2620. rx_ring->sbq =
  2621. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2622. GFP_KERNEL);
  2623. if (rx_ring->sbq == NULL) {
  2624. netif_err(qdev, ifup, qdev->ndev,
  2625. "Small buffer queue control block allocation failed.\n");
  2626. goto err_mem;
  2627. }
  2628. ql_init_sbq_ring(qdev, rx_ring);
  2629. }
  2630. if (rx_ring->lbq_len) {
  2631. /*
  2632. * Allocate large buffer queue.
  2633. */
  2634. rx_ring->lbq_base =
  2635. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2636. &rx_ring->lbq_base_dma);
  2637. if (rx_ring->lbq_base == NULL) {
  2638. netif_err(qdev, ifup, qdev->ndev,
  2639. "Large buffer queue allocation failed.\n");
  2640. goto err_mem;
  2641. }
  2642. /*
  2643. * Allocate large buffer queue control blocks.
  2644. */
  2645. rx_ring->lbq =
  2646. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2647. GFP_KERNEL);
  2648. if (rx_ring->lbq == NULL) {
  2649. netif_err(qdev, ifup, qdev->ndev,
  2650. "Large buffer queue control block allocation failed.\n");
  2651. goto err_mem;
  2652. }
  2653. ql_init_lbq_ring(qdev, rx_ring);
  2654. }
  2655. return 0;
  2656. err_mem:
  2657. ql_free_rx_resources(qdev, rx_ring);
  2658. return -ENOMEM;
  2659. }
  2660. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2661. {
  2662. struct tx_ring *tx_ring;
  2663. struct tx_ring_desc *tx_ring_desc;
  2664. int i, j;
  2665. /*
  2666. * Loop through all queues and free
  2667. * any resources.
  2668. */
  2669. for (j = 0; j < qdev->tx_ring_count; j++) {
  2670. tx_ring = &qdev->tx_ring[j];
  2671. for (i = 0; i < tx_ring->wq_len; i++) {
  2672. tx_ring_desc = &tx_ring->q[i];
  2673. if (tx_ring_desc && tx_ring_desc->skb) {
  2674. netif_err(qdev, ifdown, qdev->ndev,
  2675. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2676. tx_ring_desc->skb, j,
  2677. tx_ring_desc->index);
  2678. ql_unmap_send(qdev, tx_ring_desc,
  2679. tx_ring_desc->map_cnt);
  2680. dev_kfree_skb(tx_ring_desc->skb);
  2681. tx_ring_desc->skb = NULL;
  2682. }
  2683. }
  2684. }
  2685. }
  2686. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2687. {
  2688. int i;
  2689. for (i = 0; i < qdev->tx_ring_count; i++)
  2690. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2691. for (i = 0; i < qdev->rx_ring_count; i++)
  2692. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2693. ql_free_shadow_space(qdev);
  2694. }
  2695. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2696. {
  2697. int i;
  2698. /* Allocate space for our shadow registers and such. */
  2699. if (ql_alloc_shadow_space(qdev))
  2700. return -ENOMEM;
  2701. for (i = 0; i < qdev->rx_ring_count; i++) {
  2702. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2703. netif_err(qdev, ifup, qdev->ndev,
  2704. "RX resource allocation failed.\n");
  2705. goto err_mem;
  2706. }
  2707. }
  2708. /* Allocate tx queue resources */
  2709. for (i = 0; i < qdev->tx_ring_count; i++) {
  2710. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2711. netif_err(qdev, ifup, qdev->ndev,
  2712. "TX resource allocation failed.\n");
  2713. goto err_mem;
  2714. }
  2715. }
  2716. return 0;
  2717. err_mem:
  2718. ql_free_mem_resources(qdev);
  2719. return -ENOMEM;
  2720. }
  2721. /* Set up the rx ring control block and pass it to the chip.
  2722. * The control block is defined as
  2723. * "Completion Queue Initialization Control Block", or cqicb.
  2724. */
  2725. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2726. {
  2727. struct cqicb *cqicb = &rx_ring->cqicb;
  2728. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2729. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2730. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2731. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2732. void __iomem *doorbell_area =
  2733. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2734. int err = 0;
  2735. u16 bq_len;
  2736. u64 tmp;
  2737. __le64 *base_indirect_ptr;
  2738. int page_entries;
  2739. /* Set up the shadow registers for this ring. */
  2740. rx_ring->prod_idx_sh_reg = shadow_reg;
  2741. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2742. *rx_ring->prod_idx_sh_reg = 0;
  2743. shadow_reg += sizeof(u64);
  2744. shadow_reg_dma += sizeof(u64);
  2745. rx_ring->lbq_base_indirect = shadow_reg;
  2746. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2747. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2748. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2749. rx_ring->sbq_base_indirect = shadow_reg;
  2750. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2751. /* PCI doorbell mem area + 0x00 for consumer index register */
  2752. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2753. rx_ring->cnsmr_idx = 0;
  2754. rx_ring->curr_entry = rx_ring->cq_base;
  2755. /* PCI doorbell mem area + 0x04 for valid register */
  2756. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2757. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2758. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2759. /* PCI doorbell mem area + 0x1c */
  2760. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2761. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2762. cqicb->msix_vect = rx_ring->irq;
  2763. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2764. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2765. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2766. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2767. /*
  2768. * Set up the control block load flags.
  2769. */
  2770. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2771. FLAGS_LV | /* Load MSI-X vector */
  2772. FLAGS_LI; /* Load irq delay values */
  2773. if (rx_ring->lbq_len) {
  2774. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2775. tmp = (u64)rx_ring->lbq_base_dma;
  2776. base_indirect_ptr = rx_ring->lbq_base_indirect;
  2777. page_entries = 0;
  2778. do {
  2779. *base_indirect_ptr = cpu_to_le64(tmp);
  2780. tmp += DB_PAGE_SIZE;
  2781. base_indirect_ptr++;
  2782. page_entries++;
  2783. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2784. cqicb->lbq_addr =
  2785. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2786. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2787. (u16) rx_ring->lbq_buf_size;
  2788. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2789. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2790. (u16) rx_ring->lbq_len;
  2791. cqicb->lbq_len = cpu_to_le16(bq_len);
  2792. rx_ring->lbq_prod_idx = 0;
  2793. rx_ring->lbq_curr_idx = 0;
  2794. rx_ring->lbq_clean_idx = 0;
  2795. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2796. }
  2797. if (rx_ring->sbq_len) {
  2798. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2799. tmp = (u64)rx_ring->sbq_base_dma;
  2800. base_indirect_ptr = rx_ring->sbq_base_indirect;
  2801. page_entries = 0;
  2802. do {
  2803. *base_indirect_ptr = cpu_to_le64(tmp);
  2804. tmp += DB_PAGE_SIZE;
  2805. base_indirect_ptr++;
  2806. page_entries++;
  2807. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2808. cqicb->sbq_addr =
  2809. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2810. cqicb->sbq_buf_size =
  2811. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2812. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2813. (u16) rx_ring->sbq_len;
  2814. cqicb->sbq_len = cpu_to_le16(bq_len);
  2815. rx_ring->sbq_prod_idx = 0;
  2816. rx_ring->sbq_curr_idx = 0;
  2817. rx_ring->sbq_clean_idx = 0;
  2818. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2819. }
  2820. switch (rx_ring->type) {
  2821. case TX_Q:
  2822. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2823. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2824. break;
  2825. case RX_Q:
  2826. /* Inbound completion handling rx_rings run in
  2827. * separate NAPI contexts.
  2828. */
  2829. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2830. 64);
  2831. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2832. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2833. break;
  2834. default:
  2835. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2836. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2837. }
  2838. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2839. CFG_LCQ, rx_ring->cq_id);
  2840. if (err) {
  2841. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2842. return err;
  2843. }
  2844. return err;
  2845. }
  2846. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2847. {
  2848. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2849. void __iomem *doorbell_area =
  2850. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2851. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2852. (tx_ring->wq_id * sizeof(u64));
  2853. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2854. (tx_ring->wq_id * sizeof(u64));
  2855. int err = 0;
  2856. /*
  2857. * Assign doorbell registers for this tx_ring.
  2858. */
  2859. /* TX PCI doorbell mem area for tx producer index */
  2860. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2861. tx_ring->prod_idx = 0;
  2862. /* TX PCI doorbell mem area + 0x04 */
  2863. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2864. /*
  2865. * Assign shadow registers for this tx_ring.
  2866. */
  2867. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2868. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2869. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2870. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2871. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2872. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2873. wqicb->rid = 0;
  2874. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2875. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2876. ql_init_tx_ring(qdev, tx_ring);
  2877. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2878. (u16) tx_ring->wq_id);
  2879. if (err) {
  2880. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2881. return err;
  2882. }
  2883. return err;
  2884. }
  2885. static void ql_disable_msix(struct ql_adapter *qdev)
  2886. {
  2887. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2888. pci_disable_msix(qdev->pdev);
  2889. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2890. kfree(qdev->msi_x_entry);
  2891. qdev->msi_x_entry = NULL;
  2892. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2893. pci_disable_msi(qdev->pdev);
  2894. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2895. }
  2896. }
  2897. /* We start by trying to get the number of vectors
  2898. * stored in qdev->intr_count. If we don't get that
  2899. * many then we reduce the count and try again.
  2900. */
  2901. static void ql_enable_msix(struct ql_adapter *qdev)
  2902. {
  2903. int i, err;
  2904. /* Get the MSIX vectors. */
  2905. if (qlge_irq_type == MSIX_IRQ) {
  2906. /* Try to alloc space for the msix struct,
  2907. * if it fails then go to MSI/legacy.
  2908. */
  2909. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2910. sizeof(struct msix_entry),
  2911. GFP_KERNEL);
  2912. if (!qdev->msi_x_entry) {
  2913. qlge_irq_type = MSI_IRQ;
  2914. goto msi;
  2915. }
  2916. for (i = 0; i < qdev->intr_count; i++)
  2917. qdev->msi_x_entry[i].entry = i;
  2918. /* Loop to get our vectors. We start with
  2919. * what we want and settle for what we get.
  2920. */
  2921. do {
  2922. err = pci_enable_msix(qdev->pdev,
  2923. qdev->msi_x_entry, qdev->intr_count);
  2924. if (err > 0)
  2925. qdev->intr_count = err;
  2926. } while (err > 0);
  2927. if (err < 0) {
  2928. kfree(qdev->msi_x_entry);
  2929. qdev->msi_x_entry = NULL;
  2930. netif_warn(qdev, ifup, qdev->ndev,
  2931. "MSI-X Enable failed, trying MSI.\n");
  2932. qdev->intr_count = 1;
  2933. qlge_irq_type = MSI_IRQ;
  2934. } else if (err == 0) {
  2935. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2936. netif_info(qdev, ifup, qdev->ndev,
  2937. "MSI-X Enabled, got %d vectors.\n",
  2938. qdev->intr_count);
  2939. return;
  2940. }
  2941. }
  2942. msi:
  2943. qdev->intr_count = 1;
  2944. if (qlge_irq_type == MSI_IRQ) {
  2945. if (!pci_enable_msi(qdev->pdev)) {
  2946. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2947. netif_info(qdev, ifup, qdev->ndev,
  2948. "Running with MSI interrupts.\n");
  2949. return;
  2950. }
  2951. }
  2952. qlge_irq_type = LEG_IRQ;
  2953. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2954. "Running with legacy interrupts.\n");
  2955. }
  2956. /* Each vector services 1 RSS ring and and 1 or more
  2957. * TX completion rings. This function loops through
  2958. * the TX completion rings and assigns the vector that
  2959. * will service it. An example would be if there are
  2960. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2961. * This would mean that vector 0 would service RSS ring 0
  2962. * and TX completion rings 0,1,2 and 3. Vector 1 would
  2963. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2964. */
  2965. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2966. {
  2967. int i, j, vect;
  2968. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2969. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2970. /* Assign irq vectors to TX rx_rings.*/
  2971. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2972. i < qdev->rx_ring_count; i++) {
  2973. if (j == tx_rings_per_vector) {
  2974. vect++;
  2975. j = 0;
  2976. }
  2977. qdev->rx_ring[i].irq = vect;
  2978. j++;
  2979. }
  2980. } else {
  2981. /* For single vector all rings have an irq
  2982. * of zero.
  2983. */
  2984. for (i = 0; i < qdev->rx_ring_count; i++)
  2985. qdev->rx_ring[i].irq = 0;
  2986. }
  2987. }
  2988. /* Set the interrupt mask for this vector. Each vector
  2989. * will service 1 RSS ring and 1 or more TX completion
  2990. * rings. This function sets up a bit mask per vector
  2991. * that indicates which rings it services.
  2992. */
  2993. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2994. {
  2995. int j, vect = ctx->intr;
  2996. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2997. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2998. /* Add the RSS ring serviced by this vector
  2999. * to the mask.
  3000. */
  3001. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3002. /* Add the TX ring(s) serviced by this vector
  3003. * to the mask. */
  3004. for (j = 0; j < tx_rings_per_vector; j++) {
  3005. ctx->irq_mask |=
  3006. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3007. (vect * tx_rings_per_vector) + j].cq_id);
  3008. }
  3009. } else {
  3010. /* For single vector we just shift each queue's
  3011. * ID into the mask.
  3012. */
  3013. for (j = 0; j < qdev->rx_ring_count; j++)
  3014. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3015. }
  3016. }
  3017. /*
  3018. * Here we build the intr_context structures based on
  3019. * our rx_ring count and intr vector count.
  3020. * The intr_context structure is used to hook each vector
  3021. * to possibly different handlers.
  3022. */
  3023. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3024. {
  3025. int i = 0;
  3026. struct intr_context *intr_context = &qdev->intr_context[0];
  3027. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3028. /* Each rx_ring has it's
  3029. * own intr_context since we have separate
  3030. * vectors for each queue.
  3031. */
  3032. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3033. qdev->rx_ring[i].irq = i;
  3034. intr_context->intr = i;
  3035. intr_context->qdev = qdev;
  3036. /* Set up this vector's bit-mask that indicates
  3037. * which queues it services.
  3038. */
  3039. ql_set_irq_mask(qdev, intr_context);
  3040. /*
  3041. * We set up each vectors enable/disable/read bits so
  3042. * there's no bit/mask calculations in the critical path.
  3043. */
  3044. intr_context->intr_en_mask =
  3045. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3046. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3047. | i;
  3048. intr_context->intr_dis_mask =
  3049. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3050. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3051. INTR_EN_IHD | i;
  3052. intr_context->intr_read_mask =
  3053. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3054. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3055. i;
  3056. if (i == 0) {
  3057. /* The first vector/queue handles
  3058. * broadcast/multicast, fatal errors,
  3059. * and firmware events. This in addition
  3060. * to normal inbound NAPI processing.
  3061. */
  3062. intr_context->handler = qlge_isr;
  3063. sprintf(intr_context->name, "%s-rx-%d",
  3064. qdev->ndev->name, i);
  3065. } else {
  3066. /*
  3067. * Inbound queues handle unicast frames only.
  3068. */
  3069. intr_context->handler = qlge_msix_rx_isr;
  3070. sprintf(intr_context->name, "%s-rx-%d",
  3071. qdev->ndev->name, i);
  3072. }
  3073. }
  3074. } else {
  3075. /*
  3076. * All rx_rings use the same intr_context since
  3077. * there is only one vector.
  3078. */
  3079. intr_context->intr = 0;
  3080. intr_context->qdev = qdev;
  3081. /*
  3082. * We set up each vectors enable/disable/read bits so
  3083. * there's no bit/mask calculations in the critical path.
  3084. */
  3085. intr_context->intr_en_mask =
  3086. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3087. intr_context->intr_dis_mask =
  3088. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3089. INTR_EN_TYPE_DISABLE;
  3090. intr_context->intr_read_mask =
  3091. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3092. /*
  3093. * Single interrupt means one handler for all rings.
  3094. */
  3095. intr_context->handler = qlge_isr;
  3096. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3097. /* Set up this vector's bit-mask that indicates
  3098. * which queues it services. In this case there is
  3099. * a single vector so it will service all RSS and
  3100. * TX completion rings.
  3101. */
  3102. ql_set_irq_mask(qdev, intr_context);
  3103. }
  3104. /* Tell the TX completion rings which MSIx vector
  3105. * they will be using.
  3106. */
  3107. ql_set_tx_vect(qdev);
  3108. }
  3109. static void ql_free_irq(struct ql_adapter *qdev)
  3110. {
  3111. int i;
  3112. struct intr_context *intr_context = &qdev->intr_context[0];
  3113. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3114. if (intr_context->hooked) {
  3115. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3116. free_irq(qdev->msi_x_entry[i].vector,
  3117. &qdev->rx_ring[i]);
  3118. } else {
  3119. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3120. }
  3121. }
  3122. }
  3123. ql_disable_msix(qdev);
  3124. }
  3125. static int ql_request_irq(struct ql_adapter *qdev)
  3126. {
  3127. int i;
  3128. int status = 0;
  3129. struct pci_dev *pdev = qdev->pdev;
  3130. struct intr_context *intr_context = &qdev->intr_context[0];
  3131. ql_resolve_queues_to_irqs(qdev);
  3132. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3133. atomic_set(&intr_context->irq_cnt, 0);
  3134. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3135. status = request_irq(qdev->msi_x_entry[i].vector,
  3136. intr_context->handler,
  3137. 0,
  3138. intr_context->name,
  3139. &qdev->rx_ring[i]);
  3140. if (status) {
  3141. netif_err(qdev, ifup, qdev->ndev,
  3142. "Failed request for MSIX interrupt %d.\n",
  3143. i);
  3144. goto err_irq;
  3145. }
  3146. } else {
  3147. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3148. "trying msi or legacy interrupts.\n");
  3149. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3150. "%s: irq = %d.\n", __func__, pdev->irq);
  3151. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3152. "%s: context->name = %s.\n", __func__,
  3153. intr_context->name);
  3154. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3155. "%s: dev_id = 0x%p.\n", __func__,
  3156. &qdev->rx_ring[0]);
  3157. status =
  3158. request_irq(pdev->irq, qlge_isr,
  3159. test_bit(QL_MSI_ENABLED,
  3160. &qdev->
  3161. flags) ? 0 : IRQF_SHARED,
  3162. intr_context->name, &qdev->rx_ring[0]);
  3163. if (status)
  3164. goto err_irq;
  3165. netif_err(qdev, ifup, qdev->ndev,
  3166. "Hooked intr %d, queue type %s, with name %s.\n",
  3167. i,
  3168. qdev->rx_ring[0].type == DEFAULT_Q ?
  3169. "DEFAULT_Q" :
  3170. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3171. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3172. intr_context->name);
  3173. }
  3174. intr_context->hooked = 1;
  3175. }
  3176. return status;
  3177. err_irq:
  3178. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3179. ql_free_irq(qdev);
  3180. return status;
  3181. }
  3182. static int ql_start_rss(struct ql_adapter *qdev)
  3183. {
  3184. static const u8 init_hash_seed[] = {
  3185. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3186. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3187. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3188. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3189. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3190. };
  3191. struct ricb *ricb = &qdev->ricb;
  3192. int status = 0;
  3193. int i;
  3194. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3195. memset((void *)ricb, 0, sizeof(*ricb));
  3196. ricb->base_cq = RSS_L4K;
  3197. ricb->flags =
  3198. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3199. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3200. /*
  3201. * Fill out the Indirection Table.
  3202. */
  3203. for (i = 0; i < 1024; i++)
  3204. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3205. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3206. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3207. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3208. if (status) {
  3209. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3210. return status;
  3211. }
  3212. return status;
  3213. }
  3214. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3215. {
  3216. int i, status = 0;
  3217. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3218. if (status)
  3219. return status;
  3220. /* Clear all the entries in the routing table. */
  3221. for (i = 0; i < 16; i++) {
  3222. status = ql_set_routing_reg(qdev, i, 0, 0);
  3223. if (status) {
  3224. netif_err(qdev, ifup, qdev->ndev,
  3225. "Failed to init routing register for CAM packets.\n");
  3226. break;
  3227. }
  3228. }
  3229. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3230. return status;
  3231. }
  3232. /* Initialize the frame-to-queue routing. */
  3233. static int ql_route_initialize(struct ql_adapter *qdev)
  3234. {
  3235. int status = 0;
  3236. /* Clear all the entries in the routing table. */
  3237. status = ql_clear_routing_entries(qdev);
  3238. if (status)
  3239. return status;
  3240. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3241. if (status)
  3242. return status;
  3243. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3244. RT_IDX_IP_CSUM_ERR, 1);
  3245. if (status) {
  3246. netif_err(qdev, ifup, qdev->ndev,
  3247. "Failed to init routing register "
  3248. "for IP CSUM error packets.\n");
  3249. goto exit;
  3250. }
  3251. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3252. RT_IDX_TU_CSUM_ERR, 1);
  3253. if (status) {
  3254. netif_err(qdev, ifup, qdev->ndev,
  3255. "Failed to init routing register "
  3256. "for TCP/UDP CSUM error packets.\n");
  3257. goto exit;
  3258. }
  3259. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3260. if (status) {
  3261. netif_err(qdev, ifup, qdev->ndev,
  3262. "Failed to init routing register for broadcast packets.\n");
  3263. goto exit;
  3264. }
  3265. /* If we have more than one inbound queue, then turn on RSS in the
  3266. * routing block.
  3267. */
  3268. if (qdev->rss_ring_count > 1) {
  3269. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3270. RT_IDX_RSS_MATCH, 1);
  3271. if (status) {
  3272. netif_err(qdev, ifup, qdev->ndev,
  3273. "Failed to init routing register for MATCH RSS packets.\n");
  3274. goto exit;
  3275. }
  3276. }
  3277. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3278. RT_IDX_CAM_HIT, 1);
  3279. if (status)
  3280. netif_err(qdev, ifup, qdev->ndev,
  3281. "Failed to init routing register for CAM packets.\n");
  3282. exit:
  3283. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3284. return status;
  3285. }
  3286. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3287. {
  3288. int status, set;
  3289. /* If check if the link is up and use to
  3290. * determine if we are setting or clearing
  3291. * the MAC address in the CAM.
  3292. */
  3293. set = ql_read32(qdev, STS);
  3294. set &= qdev->port_link_up;
  3295. status = ql_set_mac_addr(qdev, set);
  3296. if (status) {
  3297. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3298. return status;
  3299. }
  3300. status = ql_route_initialize(qdev);
  3301. if (status)
  3302. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3303. return status;
  3304. }
  3305. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3306. {
  3307. u32 value, mask;
  3308. int i;
  3309. int status = 0;
  3310. /*
  3311. * Set up the System register to halt on errors.
  3312. */
  3313. value = SYS_EFE | SYS_FAE;
  3314. mask = value << 16;
  3315. ql_write32(qdev, SYS, mask | value);
  3316. /* Set the default queue, and VLAN behavior. */
  3317. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3318. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3319. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3320. /* Set the MPI interrupt to enabled. */
  3321. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3322. /* Enable the function, set pagesize, enable error checking. */
  3323. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3324. FSC_EC | FSC_VM_PAGE_4K;
  3325. value |= SPLT_SETTING;
  3326. /* Set/clear header splitting. */
  3327. mask = FSC_VM_PAGESIZE_MASK |
  3328. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3329. ql_write32(qdev, FSC, mask | value);
  3330. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3331. /* Set RX packet routing to use port/pci function on which the
  3332. * packet arrived on in addition to usual frame routing.
  3333. * This is helpful on bonding where both interfaces can have
  3334. * the same MAC address.
  3335. */
  3336. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3337. /* Reroute all packets to our Interface.
  3338. * They may have been routed to MPI firmware
  3339. * due to WOL.
  3340. */
  3341. value = ql_read32(qdev, MGMT_RCV_CFG);
  3342. value &= ~MGMT_RCV_CFG_RM;
  3343. mask = 0xffff0000;
  3344. /* Sticky reg needs clearing due to WOL. */
  3345. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3346. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3347. /* Default WOL is enable on Mezz cards */
  3348. if (qdev->pdev->subsystem_device == 0x0068 ||
  3349. qdev->pdev->subsystem_device == 0x0180)
  3350. qdev->wol = WAKE_MAGIC;
  3351. /* Start up the rx queues. */
  3352. for (i = 0; i < qdev->rx_ring_count; i++) {
  3353. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3354. if (status) {
  3355. netif_err(qdev, ifup, qdev->ndev,
  3356. "Failed to start rx ring[%d].\n", i);
  3357. return status;
  3358. }
  3359. }
  3360. /* If there is more than one inbound completion queue
  3361. * then download a RICB to configure RSS.
  3362. */
  3363. if (qdev->rss_ring_count > 1) {
  3364. status = ql_start_rss(qdev);
  3365. if (status) {
  3366. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3367. return status;
  3368. }
  3369. }
  3370. /* Start up the tx queues. */
  3371. for (i = 0; i < qdev->tx_ring_count; i++) {
  3372. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3373. if (status) {
  3374. netif_err(qdev, ifup, qdev->ndev,
  3375. "Failed to start tx ring[%d].\n", i);
  3376. return status;
  3377. }
  3378. }
  3379. /* Initialize the port and set the max framesize. */
  3380. status = qdev->nic_ops->port_initialize(qdev);
  3381. if (status)
  3382. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3383. /* Set up the MAC address and frame routing filter. */
  3384. status = ql_cam_route_initialize(qdev);
  3385. if (status) {
  3386. netif_err(qdev, ifup, qdev->ndev,
  3387. "Failed to init CAM/Routing tables.\n");
  3388. return status;
  3389. }
  3390. /* Start NAPI for the RSS queues. */
  3391. for (i = 0; i < qdev->rss_ring_count; i++)
  3392. napi_enable(&qdev->rx_ring[i].napi);
  3393. return status;
  3394. }
  3395. /* Issue soft reset to chip. */
  3396. static int ql_adapter_reset(struct ql_adapter *qdev)
  3397. {
  3398. u32 value;
  3399. int status = 0;
  3400. unsigned long end_jiffies;
  3401. /* Clear all the entries in the routing table. */
  3402. status = ql_clear_routing_entries(qdev);
  3403. if (status) {
  3404. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3405. return status;
  3406. }
  3407. end_jiffies = jiffies +
  3408. max((unsigned long)1, usecs_to_jiffies(30));
  3409. /* Check if bit is set then skip the mailbox command and
  3410. * clear the bit, else we are in normal reset process.
  3411. */
  3412. if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
  3413. /* Stop management traffic. */
  3414. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3415. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3416. ql_wait_fifo_empty(qdev);
  3417. } else
  3418. clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
  3419. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3420. do {
  3421. value = ql_read32(qdev, RST_FO);
  3422. if ((value & RST_FO_FR) == 0)
  3423. break;
  3424. cpu_relax();
  3425. } while (time_before(jiffies, end_jiffies));
  3426. if (value & RST_FO_FR) {
  3427. netif_err(qdev, ifdown, qdev->ndev,
  3428. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3429. status = -ETIMEDOUT;
  3430. }
  3431. /* Resume management traffic. */
  3432. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3433. return status;
  3434. }
  3435. static void ql_display_dev_info(struct net_device *ndev)
  3436. {
  3437. struct ql_adapter *qdev = netdev_priv(ndev);
  3438. netif_info(qdev, probe, qdev->ndev,
  3439. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3440. "XG Roll = %d, XG Rev = %d.\n",
  3441. qdev->func,
  3442. qdev->port,
  3443. qdev->chip_rev_id & 0x0000000f,
  3444. qdev->chip_rev_id >> 4 & 0x0000000f,
  3445. qdev->chip_rev_id >> 8 & 0x0000000f,
  3446. qdev->chip_rev_id >> 12 & 0x0000000f);
  3447. netif_info(qdev, probe, qdev->ndev,
  3448. "MAC address %pM\n", ndev->dev_addr);
  3449. }
  3450. static int ql_wol(struct ql_adapter *qdev)
  3451. {
  3452. int status = 0;
  3453. u32 wol = MB_WOL_DISABLE;
  3454. /* The CAM is still intact after a reset, but if we
  3455. * are doing WOL, then we may need to program the
  3456. * routing regs. We would also need to issue the mailbox
  3457. * commands to instruct the MPI what to do per the ethtool
  3458. * settings.
  3459. */
  3460. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3461. WAKE_MCAST | WAKE_BCAST)) {
  3462. netif_err(qdev, ifdown, qdev->ndev,
  3463. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3464. qdev->wol);
  3465. return -EINVAL;
  3466. }
  3467. if (qdev->wol & WAKE_MAGIC) {
  3468. status = ql_mb_wol_set_magic(qdev, 1);
  3469. if (status) {
  3470. netif_err(qdev, ifdown, qdev->ndev,
  3471. "Failed to set magic packet on %s.\n",
  3472. qdev->ndev->name);
  3473. return status;
  3474. } else
  3475. netif_info(qdev, drv, qdev->ndev,
  3476. "Enabled magic packet successfully on %s.\n",
  3477. qdev->ndev->name);
  3478. wol |= MB_WOL_MAGIC_PKT;
  3479. }
  3480. if (qdev->wol) {
  3481. wol |= MB_WOL_MODE_ON;
  3482. status = ql_mb_wol_mode(qdev, wol);
  3483. netif_err(qdev, drv, qdev->ndev,
  3484. "WOL %s (wol code 0x%x) on %s\n",
  3485. (status == 0) ? "Successfully set" : "Failed",
  3486. wol, qdev->ndev->name);
  3487. }
  3488. return status;
  3489. }
  3490. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3491. {
  3492. /* Don't kill the reset worker thread if we
  3493. * are in the process of recovery.
  3494. */
  3495. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3496. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3497. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3498. cancel_delayed_work_sync(&qdev->mpi_work);
  3499. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3500. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3501. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3502. }
  3503. static int ql_adapter_down(struct ql_adapter *qdev)
  3504. {
  3505. int i, status = 0;
  3506. ql_link_off(qdev);
  3507. ql_cancel_all_work_sync(qdev);
  3508. for (i = 0; i < qdev->rss_ring_count; i++)
  3509. napi_disable(&qdev->rx_ring[i].napi);
  3510. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3511. ql_disable_interrupts(qdev);
  3512. ql_tx_ring_clean(qdev);
  3513. /* Call netif_napi_del() from common point.
  3514. */
  3515. for (i = 0; i < qdev->rss_ring_count; i++)
  3516. netif_napi_del(&qdev->rx_ring[i].napi);
  3517. status = ql_adapter_reset(qdev);
  3518. if (status)
  3519. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3520. qdev->func);
  3521. ql_free_rx_buffers(qdev);
  3522. return status;
  3523. }
  3524. static int ql_adapter_up(struct ql_adapter *qdev)
  3525. {
  3526. int err = 0;
  3527. err = ql_adapter_initialize(qdev);
  3528. if (err) {
  3529. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3530. goto err_init;
  3531. }
  3532. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3533. ql_alloc_rx_buffers(qdev);
  3534. /* If the port is initialized and the
  3535. * link is up the turn on the carrier.
  3536. */
  3537. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3538. (ql_read32(qdev, STS) & qdev->port_link_up))
  3539. ql_link_on(qdev);
  3540. /* Restore rx mode. */
  3541. clear_bit(QL_ALLMULTI, &qdev->flags);
  3542. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3543. qlge_set_multicast_list(qdev->ndev);
  3544. /* Restore vlan setting. */
  3545. qlge_restore_vlan(qdev);
  3546. ql_enable_interrupts(qdev);
  3547. ql_enable_all_completion_interrupts(qdev);
  3548. netif_tx_start_all_queues(qdev->ndev);
  3549. return 0;
  3550. err_init:
  3551. ql_adapter_reset(qdev);
  3552. return err;
  3553. }
  3554. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3555. {
  3556. ql_free_mem_resources(qdev);
  3557. ql_free_irq(qdev);
  3558. }
  3559. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3560. {
  3561. int status = 0;
  3562. if (ql_alloc_mem_resources(qdev)) {
  3563. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3564. return -ENOMEM;
  3565. }
  3566. status = ql_request_irq(qdev);
  3567. return status;
  3568. }
  3569. static int qlge_close(struct net_device *ndev)
  3570. {
  3571. struct ql_adapter *qdev = netdev_priv(ndev);
  3572. /* If we hit pci_channel_io_perm_failure
  3573. * failure condition, then we already
  3574. * brought the adapter down.
  3575. */
  3576. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3577. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3578. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3579. return 0;
  3580. }
  3581. /*
  3582. * Wait for device to recover from a reset.
  3583. * (Rarely happens, but possible.)
  3584. */
  3585. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3586. msleep(1);
  3587. ql_adapter_down(qdev);
  3588. ql_release_adapter_resources(qdev);
  3589. return 0;
  3590. }
  3591. static int ql_configure_rings(struct ql_adapter *qdev)
  3592. {
  3593. int i;
  3594. struct rx_ring *rx_ring;
  3595. struct tx_ring *tx_ring;
  3596. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3597. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3598. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3599. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3600. /* In a perfect world we have one RSS ring for each CPU
  3601. * and each has it's own vector. To do that we ask for
  3602. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3603. * vector count to what we actually get. We then
  3604. * allocate an RSS ring for each.
  3605. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3606. */
  3607. qdev->intr_count = cpu_cnt;
  3608. ql_enable_msix(qdev);
  3609. /* Adjust the RSS ring count to the actual vector count. */
  3610. qdev->rss_ring_count = qdev->intr_count;
  3611. qdev->tx_ring_count = cpu_cnt;
  3612. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3613. for (i = 0; i < qdev->tx_ring_count; i++) {
  3614. tx_ring = &qdev->tx_ring[i];
  3615. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3616. tx_ring->qdev = qdev;
  3617. tx_ring->wq_id = i;
  3618. tx_ring->wq_len = qdev->tx_ring_size;
  3619. tx_ring->wq_size =
  3620. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3621. /*
  3622. * The completion queue ID for the tx rings start
  3623. * immediately after the rss rings.
  3624. */
  3625. tx_ring->cq_id = qdev->rss_ring_count + i;
  3626. }
  3627. for (i = 0; i < qdev->rx_ring_count; i++) {
  3628. rx_ring = &qdev->rx_ring[i];
  3629. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3630. rx_ring->qdev = qdev;
  3631. rx_ring->cq_id = i;
  3632. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3633. if (i < qdev->rss_ring_count) {
  3634. /*
  3635. * Inbound (RSS) queues.
  3636. */
  3637. rx_ring->cq_len = qdev->rx_ring_size;
  3638. rx_ring->cq_size =
  3639. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3640. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3641. rx_ring->lbq_size =
  3642. rx_ring->lbq_len * sizeof(__le64);
  3643. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3644. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3645. rx_ring->sbq_size =
  3646. rx_ring->sbq_len * sizeof(__le64);
  3647. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3648. rx_ring->type = RX_Q;
  3649. } else {
  3650. /*
  3651. * Outbound queue handles outbound completions only.
  3652. */
  3653. /* outbound cq is same size as tx_ring it services. */
  3654. rx_ring->cq_len = qdev->tx_ring_size;
  3655. rx_ring->cq_size =
  3656. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3657. rx_ring->lbq_len = 0;
  3658. rx_ring->lbq_size = 0;
  3659. rx_ring->lbq_buf_size = 0;
  3660. rx_ring->sbq_len = 0;
  3661. rx_ring->sbq_size = 0;
  3662. rx_ring->sbq_buf_size = 0;
  3663. rx_ring->type = TX_Q;
  3664. }
  3665. }
  3666. return 0;
  3667. }
  3668. static int qlge_open(struct net_device *ndev)
  3669. {
  3670. int err = 0;
  3671. struct ql_adapter *qdev = netdev_priv(ndev);
  3672. err = ql_adapter_reset(qdev);
  3673. if (err)
  3674. return err;
  3675. err = ql_configure_rings(qdev);
  3676. if (err)
  3677. return err;
  3678. err = ql_get_adapter_resources(qdev);
  3679. if (err)
  3680. goto error_up;
  3681. err = ql_adapter_up(qdev);
  3682. if (err)
  3683. goto error_up;
  3684. return err;
  3685. error_up:
  3686. ql_release_adapter_resources(qdev);
  3687. return err;
  3688. }
  3689. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3690. {
  3691. struct rx_ring *rx_ring;
  3692. int i, status;
  3693. u32 lbq_buf_len;
  3694. /* Wait for an outstanding reset to complete. */
  3695. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3696. int i = 3;
  3697. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3698. netif_err(qdev, ifup, qdev->ndev,
  3699. "Waiting for adapter UP...\n");
  3700. ssleep(1);
  3701. }
  3702. if (!i) {
  3703. netif_err(qdev, ifup, qdev->ndev,
  3704. "Timed out waiting for adapter UP\n");
  3705. return -ETIMEDOUT;
  3706. }
  3707. }
  3708. status = ql_adapter_down(qdev);
  3709. if (status)
  3710. goto error;
  3711. /* Get the new rx buffer size. */
  3712. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3713. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3714. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3715. for (i = 0; i < qdev->rss_ring_count; i++) {
  3716. rx_ring = &qdev->rx_ring[i];
  3717. /* Set the new size. */
  3718. rx_ring->lbq_buf_size = lbq_buf_len;
  3719. }
  3720. status = ql_adapter_up(qdev);
  3721. if (status)
  3722. goto error;
  3723. return status;
  3724. error:
  3725. netif_alert(qdev, ifup, qdev->ndev,
  3726. "Driver up/down cycle failed, closing device.\n");
  3727. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3728. dev_close(qdev->ndev);
  3729. return status;
  3730. }
  3731. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3732. {
  3733. struct ql_adapter *qdev = netdev_priv(ndev);
  3734. int status;
  3735. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3736. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3737. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3738. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3739. } else
  3740. return -EINVAL;
  3741. queue_delayed_work(qdev->workqueue,
  3742. &qdev->mpi_port_cfg_work, 3*HZ);
  3743. ndev->mtu = new_mtu;
  3744. if (!netif_running(qdev->ndev)) {
  3745. return 0;
  3746. }
  3747. status = ql_change_rx_buffers(qdev);
  3748. if (status) {
  3749. netif_err(qdev, ifup, qdev->ndev,
  3750. "Changing MTU failed.\n");
  3751. }
  3752. return status;
  3753. }
  3754. static struct net_device_stats *qlge_get_stats(struct net_device
  3755. *ndev)
  3756. {
  3757. struct ql_adapter *qdev = netdev_priv(ndev);
  3758. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3759. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3760. unsigned long pkts, mcast, dropped, errors, bytes;
  3761. int i;
  3762. /* Get RX stats. */
  3763. pkts = mcast = dropped = errors = bytes = 0;
  3764. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3765. pkts += rx_ring->rx_packets;
  3766. bytes += rx_ring->rx_bytes;
  3767. dropped += rx_ring->rx_dropped;
  3768. errors += rx_ring->rx_errors;
  3769. mcast += rx_ring->rx_multicast;
  3770. }
  3771. ndev->stats.rx_packets = pkts;
  3772. ndev->stats.rx_bytes = bytes;
  3773. ndev->stats.rx_dropped = dropped;
  3774. ndev->stats.rx_errors = errors;
  3775. ndev->stats.multicast = mcast;
  3776. /* Get TX stats. */
  3777. pkts = errors = bytes = 0;
  3778. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3779. pkts += tx_ring->tx_packets;
  3780. bytes += tx_ring->tx_bytes;
  3781. errors += tx_ring->tx_errors;
  3782. }
  3783. ndev->stats.tx_packets = pkts;
  3784. ndev->stats.tx_bytes = bytes;
  3785. ndev->stats.tx_errors = errors;
  3786. return &ndev->stats;
  3787. }
  3788. static void qlge_set_multicast_list(struct net_device *ndev)
  3789. {
  3790. struct ql_adapter *qdev = netdev_priv(ndev);
  3791. struct netdev_hw_addr *ha;
  3792. int i, status;
  3793. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3794. if (status)
  3795. return;
  3796. /*
  3797. * Set or clear promiscuous mode if a
  3798. * transition is taking place.
  3799. */
  3800. if (ndev->flags & IFF_PROMISC) {
  3801. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3802. if (ql_set_routing_reg
  3803. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3804. netif_err(qdev, hw, qdev->ndev,
  3805. "Failed to set promiscuous mode.\n");
  3806. } else {
  3807. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3808. }
  3809. }
  3810. } else {
  3811. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3812. if (ql_set_routing_reg
  3813. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3814. netif_err(qdev, hw, qdev->ndev,
  3815. "Failed to clear promiscuous mode.\n");
  3816. } else {
  3817. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3818. }
  3819. }
  3820. }
  3821. /*
  3822. * Set or clear all multicast mode if a
  3823. * transition is taking place.
  3824. */
  3825. if ((ndev->flags & IFF_ALLMULTI) ||
  3826. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3827. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3828. if (ql_set_routing_reg
  3829. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3830. netif_err(qdev, hw, qdev->ndev,
  3831. "Failed to set all-multi mode.\n");
  3832. } else {
  3833. set_bit(QL_ALLMULTI, &qdev->flags);
  3834. }
  3835. }
  3836. } else {
  3837. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3838. if (ql_set_routing_reg
  3839. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3840. netif_err(qdev, hw, qdev->ndev,
  3841. "Failed to clear all-multi mode.\n");
  3842. } else {
  3843. clear_bit(QL_ALLMULTI, &qdev->flags);
  3844. }
  3845. }
  3846. }
  3847. if (!netdev_mc_empty(ndev)) {
  3848. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3849. if (status)
  3850. goto exit;
  3851. i = 0;
  3852. netdev_for_each_mc_addr(ha, ndev) {
  3853. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3854. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3855. netif_err(qdev, hw, qdev->ndev,
  3856. "Failed to loadmulticast address.\n");
  3857. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3858. goto exit;
  3859. }
  3860. i++;
  3861. }
  3862. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3863. if (ql_set_routing_reg
  3864. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3865. netif_err(qdev, hw, qdev->ndev,
  3866. "Failed to set multicast match mode.\n");
  3867. } else {
  3868. set_bit(QL_ALLMULTI, &qdev->flags);
  3869. }
  3870. }
  3871. exit:
  3872. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3873. }
  3874. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3875. {
  3876. struct ql_adapter *qdev = netdev_priv(ndev);
  3877. struct sockaddr *addr = p;
  3878. int status;
  3879. if (!is_valid_ether_addr(addr->sa_data))
  3880. return -EADDRNOTAVAIL;
  3881. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3882. /* Update local copy of current mac address. */
  3883. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3884. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3885. if (status)
  3886. return status;
  3887. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3888. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3889. if (status)
  3890. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3891. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3892. return status;
  3893. }
  3894. static void qlge_tx_timeout(struct net_device *ndev)
  3895. {
  3896. struct ql_adapter *qdev = netdev_priv(ndev);
  3897. ql_queue_asic_error(qdev);
  3898. }
  3899. static void ql_asic_reset_work(struct work_struct *work)
  3900. {
  3901. struct ql_adapter *qdev =
  3902. container_of(work, struct ql_adapter, asic_reset_work.work);
  3903. int status;
  3904. rtnl_lock();
  3905. status = ql_adapter_down(qdev);
  3906. if (status)
  3907. goto error;
  3908. status = ql_adapter_up(qdev);
  3909. if (status)
  3910. goto error;
  3911. /* Restore rx mode. */
  3912. clear_bit(QL_ALLMULTI, &qdev->flags);
  3913. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3914. qlge_set_multicast_list(qdev->ndev);
  3915. rtnl_unlock();
  3916. return;
  3917. error:
  3918. netif_alert(qdev, ifup, qdev->ndev,
  3919. "Driver up/down cycle failed, closing device\n");
  3920. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3921. dev_close(qdev->ndev);
  3922. rtnl_unlock();
  3923. }
  3924. static const struct nic_operations qla8012_nic_ops = {
  3925. .get_flash = ql_get_8012_flash_params,
  3926. .port_initialize = ql_8012_port_initialize,
  3927. };
  3928. static const struct nic_operations qla8000_nic_ops = {
  3929. .get_flash = ql_get_8000_flash_params,
  3930. .port_initialize = ql_8000_port_initialize,
  3931. };
  3932. /* Find the pcie function number for the other NIC
  3933. * on this chip. Since both NIC functions share a
  3934. * common firmware we have the lowest enabled function
  3935. * do any common work. Examples would be resetting
  3936. * after a fatal firmware error, or doing a firmware
  3937. * coredump.
  3938. */
  3939. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3940. {
  3941. int status = 0;
  3942. u32 temp;
  3943. u32 nic_func1, nic_func2;
  3944. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3945. &temp);
  3946. if (status)
  3947. return status;
  3948. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3949. MPI_TEST_NIC_FUNC_MASK);
  3950. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3951. MPI_TEST_NIC_FUNC_MASK);
  3952. if (qdev->func == nic_func1)
  3953. qdev->alt_func = nic_func2;
  3954. else if (qdev->func == nic_func2)
  3955. qdev->alt_func = nic_func1;
  3956. else
  3957. status = -EIO;
  3958. return status;
  3959. }
  3960. static int ql_get_board_info(struct ql_adapter *qdev)
  3961. {
  3962. int status;
  3963. qdev->func =
  3964. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3965. if (qdev->func > 3)
  3966. return -EIO;
  3967. status = ql_get_alt_pcie_func(qdev);
  3968. if (status)
  3969. return status;
  3970. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3971. if (qdev->port) {
  3972. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3973. qdev->port_link_up = STS_PL1;
  3974. qdev->port_init = STS_PI1;
  3975. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3976. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3977. } else {
  3978. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3979. qdev->port_link_up = STS_PL0;
  3980. qdev->port_init = STS_PI0;
  3981. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3982. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3983. }
  3984. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3985. qdev->device_id = qdev->pdev->device;
  3986. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3987. qdev->nic_ops = &qla8012_nic_ops;
  3988. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3989. qdev->nic_ops = &qla8000_nic_ops;
  3990. return status;
  3991. }
  3992. static void ql_release_all(struct pci_dev *pdev)
  3993. {
  3994. struct net_device *ndev = pci_get_drvdata(pdev);
  3995. struct ql_adapter *qdev = netdev_priv(ndev);
  3996. if (qdev->workqueue) {
  3997. destroy_workqueue(qdev->workqueue);
  3998. qdev->workqueue = NULL;
  3999. }
  4000. if (qdev->reg_base)
  4001. iounmap(qdev->reg_base);
  4002. if (qdev->doorbell_area)
  4003. iounmap(qdev->doorbell_area);
  4004. vfree(qdev->mpi_coredump);
  4005. pci_release_regions(pdev);
  4006. pci_set_drvdata(pdev, NULL);
  4007. }
  4008. static int __devinit ql_init_device(struct pci_dev *pdev,
  4009. struct net_device *ndev, int cards_found)
  4010. {
  4011. struct ql_adapter *qdev = netdev_priv(ndev);
  4012. int err = 0;
  4013. memset((void *)qdev, 0, sizeof(*qdev));
  4014. err = pci_enable_device(pdev);
  4015. if (err) {
  4016. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4017. return err;
  4018. }
  4019. qdev->ndev = ndev;
  4020. qdev->pdev = pdev;
  4021. pci_set_drvdata(pdev, ndev);
  4022. /* Set PCIe read request size */
  4023. err = pcie_set_readrq(pdev, 4096);
  4024. if (err) {
  4025. dev_err(&pdev->dev, "Set readrq failed.\n");
  4026. goto err_out1;
  4027. }
  4028. err = pci_request_regions(pdev, DRV_NAME);
  4029. if (err) {
  4030. dev_err(&pdev->dev, "PCI region request failed.\n");
  4031. return err;
  4032. }
  4033. pci_set_master(pdev);
  4034. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4035. set_bit(QL_DMA64, &qdev->flags);
  4036. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4037. } else {
  4038. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4039. if (!err)
  4040. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4041. }
  4042. if (err) {
  4043. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4044. goto err_out2;
  4045. }
  4046. /* Set PCIe reset type for EEH to fundamental. */
  4047. pdev->needs_freset = 1;
  4048. pci_save_state(pdev);
  4049. qdev->reg_base =
  4050. ioremap_nocache(pci_resource_start(pdev, 1),
  4051. pci_resource_len(pdev, 1));
  4052. if (!qdev->reg_base) {
  4053. dev_err(&pdev->dev, "Register mapping failed.\n");
  4054. err = -ENOMEM;
  4055. goto err_out2;
  4056. }
  4057. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4058. qdev->doorbell_area =
  4059. ioremap_nocache(pci_resource_start(pdev, 3),
  4060. pci_resource_len(pdev, 3));
  4061. if (!qdev->doorbell_area) {
  4062. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4063. err = -ENOMEM;
  4064. goto err_out2;
  4065. }
  4066. err = ql_get_board_info(qdev);
  4067. if (err) {
  4068. dev_err(&pdev->dev, "Register access failed.\n");
  4069. err = -EIO;
  4070. goto err_out2;
  4071. }
  4072. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4073. spin_lock_init(&qdev->hw_lock);
  4074. spin_lock_init(&qdev->stats_lock);
  4075. if (qlge_mpi_coredump) {
  4076. qdev->mpi_coredump =
  4077. vmalloc(sizeof(struct ql_mpi_coredump));
  4078. if (qdev->mpi_coredump == NULL) {
  4079. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4080. err = -ENOMEM;
  4081. goto err_out2;
  4082. }
  4083. if (qlge_force_coredump)
  4084. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4085. }
  4086. /* make sure the EEPROM is good */
  4087. err = qdev->nic_ops->get_flash(qdev);
  4088. if (err) {
  4089. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4090. goto err_out2;
  4091. }
  4092. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4093. /* Keep local copy of current mac address. */
  4094. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4095. /* Set up the default ring sizes. */
  4096. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4097. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4098. /* Set up the coalescing parameters. */
  4099. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4100. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4101. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4102. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4103. /*
  4104. * Set up the operating parameters.
  4105. */
  4106. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4107. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4108. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4109. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4110. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4111. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4112. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4113. init_completion(&qdev->ide_completion);
  4114. mutex_init(&qdev->mpi_mutex);
  4115. if (!cards_found) {
  4116. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4117. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4118. DRV_NAME, DRV_VERSION);
  4119. }
  4120. return 0;
  4121. err_out2:
  4122. ql_release_all(pdev);
  4123. err_out1:
  4124. pci_disable_device(pdev);
  4125. return err;
  4126. }
  4127. static const struct net_device_ops qlge_netdev_ops = {
  4128. .ndo_open = qlge_open,
  4129. .ndo_stop = qlge_close,
  4130. .ndo_start_xmit = qlge_send,
  4131. .ndo_change_mtu = qlge_change_mtu,
  4132. .ndo_get_stats = qlge_get_stats,
  4133. .ndo_set_rx_mode = qlge_set_multicast_list,
  4134. .ndo_set_mac_address = qlge_set_mac_address,
  4135. .ndo_validate_addr = eth_validate_addr,
  4136. .ndo_tx_timeout = qlge_tx_timeout,
  4137. .ndo_fix_features = qlge_fix_features,
  4138. .ndo_set_features = qlge_set_features,
  4139. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4140. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4141. };
  4142. static void ql_timer(unsigned long data)
  4143. {
  4144. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4145. u32 var = 0;
  4146. var = ql_read32(qdev, STS);
  4147. if (pci_channel_offline(qdev->pdev)) {
  4148. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4149. return;
  4150. }
  4151. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4152. }
  4153. static int __devinit qlge_probe(struct pci_dev *pdev,
  4154. const struct pci_device_id *pci_entry)
  4155. {
  4156. struct net_device *ndev = NULL;
  4157. struct ql_adapter *qdev = NULL;
  4158. static int cards_found = 0;
  4159. int err = 0;
  4160. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4161. min(MAX_CPUS, (int)num_online_cpus()));
  4162. if (!ndev)
  4163. return -ENOMEM;
  4164. err = ql_init_device(pdev, ndev, cards_found);
  4165. if (err < 0) {
  4166. free_netdev(ndev);
  4167. return err;
  4168. }
  4169. qdev = netdev_priv(ndev);
  4170. SET_NETDEV_DEV(ndev, &pdev->dev);
  4171. ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  4172. NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
  4173. NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
  4174. ndev->features = ndev->hw_features |
  4175. NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
  4176. if (test_bit(QL_DMA64, &qdev->flags))
  4177. ndev->features |= NETIF_F_HIGHDMA;
  4178. /*
  4179. * Set up net_device structure.
  4180. */
  4181. ndev->tx_queue_len = qdev->tx_ring_size;
  4182. ndev->irq = pdev->irq;
  4183. ndev->netdev_ops = &qlge_netdev_ops;
  4184. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4185. ndev->watchdog_timeo = 10 * HZ;
  4186. err = register_netdev(ndev);
  4187. if (err) {
  4188. dev_err(&pdev->dev, "net device registration failed.\n");
  4189. ql_release_all(pdev);
  4190. pci_disable_device(pdev);
  4191. return err;
  4192. }
  4193. /* Start up the timer to trigger EEH if
  4194. * the bus goes dead
  4195. */
  4196. init_timer_deferrable(&qdev->timer);
  4197. qdev->timer.data = (unsigned long)qdev;
  4198. qdev->timer.function = ql_timer;
  4199. qdev->timer.expires = jiffies + (5*HZ);
  4200. add_timer(&qdev->timer);
  4201. ql_link_off(qdev);
  4202. ql_display_dev_info(ndev);
  4203. atomic_set(&qdev->lb_count, 0);
  4204. cards_found++;
  4205. return 0;
  4206. }
  4207. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4208. {
  4209. return qlge_send(skb, ndev);
  4210. }
  4211. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4212. {
  4213. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4214. }
  4215. static void __devexit qlge_remove(struct pci_dev *pdev)
  4216. {
  4217. struct net_device *ndev = pci_get_drvdata(pdev);
  4218. struct ql_adapter *qdev = netdev_priv(ndev);
  4219. del_timer_sync(&qdev->timer);
  4220. ql_cancel_all_work_sync(qdev);
  4221. unregister_netdev(ndev);
  4222. ql_release_all(pdev);
  4223. pci_disable_device(pdev);
  4224. free_netdev(ndev);
  4225. }
  4226. /* Clean up resources without touching hardware. */
  4227. static void ql_eeh_close(struct net_device *ndev)
  4228. {
  4229. int i;
  4230. struct ql_adapter *qdev = netdev_priv(ndev);
  4231. if (netif_carrier_ok(ndev)) {
  4232. netif_carrier_off(ndev);
  4233. netif_stop_queue(ndev);
  4234. }
  4235. /* Disabling the timer */
  4236. del_timer_sync(&qdev->timer);
  4237. ql_cancel_all_work_sync(qdev);
  4238. for (i = 0; i < qdev->rss_ring_count; i++)
  4239. netif_napi_del(&qdev->rx_ring[i].napi);
  4240. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4241. ql_tx_ring_clean(qdev);
  4242. ql_free_rx_buffers(qdev);
  4243. ql_release_adapter_resources(qdev);
  4244. }
  4245. /*
  4246. * This callback is called by the PCI subsystem whenever
  4247. * a PCI bus error is detected.
  4248. */
  4249. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4250. enum pci_channel_state state)
  4251. {
  4252. struct net_device *ndev = pci_get_drvdata(pdev);
  4253. struct ql_adapter *qdev = netdev_priv(ndev);
  4254. switch (state) {
  4255. case pci_channel_io_normal:
  4256. return PCI_ERS_RESULT_CAN_RECOVER;
  4257. case pci_channel_io_frozen:
  4258. netif_device_detach(ndev);
  4259. if (netif_running(ndev))
  4260. ql_eeh_close(ndev);
  4261. pci_disable_device(pdev);
  4262. return PCI_ERS_RESULT_NEED_RESET;
  4263. case pci_channel_io_perm_failure:
  4264. dev_err(&pdev->dev,
  4265. "%s: pci_channel_io_perm_failure.\n", __func__);
  4266. ql_eeh_close(ndev);
  4267. set_bit(QL_EEH_FATAL, &qdev->flags);
  4268. return PCI_ERS_RESULT_DISCONNECT;
  4269. }
  4270. /* Request a slot reset. */
  4271. return PCI_ERS_RESULT_NEED_RESET;
  4272. }
  4273. /*
  4274. * This callback is called after the PCI buss has been reset.
  4275. * Basically, this tries to restart the card from scratch.
  4276. * This is a shortened version of the device probe/discovery code,
  4277. * it resembles the first-half of the () routine.
  4278. */
  4279. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4280. {
  4281. struct net_device *ndev = pci_get_drvdata(pdev);
  4282. struct ql_adapter *qdev = netdev_priv(ndev);
  4283. pdev->error_state = pci_channel_io_normal;
  4284. pci_restore_state(pdev);
  4285. if (pci_enable_device(pdev)) {
  4286. netif_err(qdev, ifup, qdev->ndev,
  4287. "Cannot re-enable PCI device after reset.\n");
  4288. return PCI_ERS_RESULT_DISCONNECT;
  4289. }
  4290. pci_set_master(pdev);
  4291. if (ql_adapter_reset(qdev)) {
  4292. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4293. set_bit(QL_EEH_FATAL, &qdev->flags);
  4294. return PCI_ERS_RESULT_DISCONNECT;
  4295. }
  4296. return PCI_ERS_RESULT_RECOVERED;
  4297. }
  4298. static void qlge_io_resume(struct pci_dev *pdev)
  4299. {
  4300. struct net_device *ndev = pci_get_drvdata(pdev);
  4301. struct ql_adapter *qdev = netdev_priv(ndev);
  4302. int err = 0;
  4303. if (netif_running(ndev)) {
  4304. err = qlge_open(ndev);
  4305. if (err) {
  4306. netif_err(qdev, ifup, qdev->ndev,
  4307. "Device initialization failed after reset.\n");
  4308. return;
  4309. }
  4310. } else {
  4311. netif_err(qdev, ifup, qdev->ndev,
  4312. "Device was not running prior to EEH.\n");
  4313. }
  4314. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4315. netif_device_attach(ndev);
  4316. }
  4317. static struct pci_error_handlers qlge_err_handler = {
  4318. .error_detected = qlge_io_error_detected,
  4319. .slot_reset = qlge_io_slot_reset,
  4320. .resume = qlge_io_resume,
  4321. };
  4322. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4323. {
  4324. struct net_device *ndev = pci_get_drvdata(pdev);
  4325. struct ql_adapter *qdev = netdev_priv(ndev);
  4326. int err;
  4327. netif_device_detach(ndev);
  4328. del_timer_sync(&qdev->timer);
  4329. if (netif_running(ndev)) {
  4330. err = ql_adapter_down(qdev);
  4331. if (!err)
  4332. return err;
  4333. }
  4334. ql_wol(qdev);
  4335. err = pci_save_state(pdev);
  4336. if (err)
  4337. return err;
  4338. pci_disable_device(pdev);
  4339. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4340. return 0;
  4341. }
  4342. #ifdef CONFIG_PM
  4343. static int qlge_resume(struct pci_dev *pdev)
  4344. {
  4345. struct net_device *ndev = pci_get_drvdata(pdev);
  4346. struct ql_adapter *qdev = netdev_priv(ndev);
  4347. int err;
  4348. pci_set_power_state(pdev, PCI_D0);
  4349. pci_restore_state(pdev);
  4350. err = pci_enable_device(pdev);
  4351. if (err) {
  4352. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4353. return err;
  4354. }
  4355. pci_set_master(pdev);
  4356. pci_enable_wake(pdev, PCI_D3hot, 0);
  4357. pci_enable_wake(pdev, PCI_D3cold, 0);
  4358. if (netif_running(ndev)) {
  4359. err = ql_adapter_up(qdev);
  4360. if (err)
  4361. return err;
  4362. }
  4363. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4364. netif_device_attach(ndev);
  4365. return 0;
  4366. }
  4367. #endif /* CONFIG_PM */
  4368. static void qlge_shutdown(struct pci_dev *pdev)
  4369. {
  4370. qlge_suspend(pdev, PMSG_SUSPEND);
  4371. }
  4372. static struct pci_driver qlge_driver = {
  4373. .name = DRV_NAME,
  4374. .id_table = qlge_pci_tbl,
  4375. .probe = qlge_probe,
  4376. .remove = __devexit_p(qlge_remove),
  4377. #ifdef CONFIG_PM
  4378. .suspend = qlge_suspend,
  4379. .resume = qlge_resume,
  4380. #endif
  4381. .shutdown = qlge_shutdown,
  4382. .err_handler = &qlge_err_handler
  4383. };
  4384. static int __init qlge_init_module(void)
  4385. {
  4386. return pci_register_driver(&qlge_driver);
  4387. }
  4388. static void __exit qlge_exit(void)
  4389. {
  4390. pci_unregister_driver(&qlge_driver);
  4391. }
  4392. module_init(qlge_init_module);
  4393. module_exit(qlge_exit);