output.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534
  1. /*
  2. * net/dccp/output.c
  3. *
  4. * An implementation of the DCCP protocol
  5. * Arnaldo Carvalho de Melo <acme@conectiva.com.br>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/config.h>
  13. #include <linux/dccp.h>
  14. #include <linux/kernel.h>
  15. #include <linux/skbuff.h>
  16. #include <net/inet_sock.h>
  17. #include <net/sock.h>
  18. #include "ackvec.h"
  19. #include "ccid.h"
  20. #include "dccp.h"
  21. static inline void dccp_event_ack_sent(struct sock *sk)
  22. {
  23. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  24. }
  25. static inline void dccp_skb_entail(struct sock *sk, struct sk_buff *skb)
  26. {
  27. skb_set_owner_w(skb, sk);
  28. WARN_ON(sk->sk_send_head);
  29. sk->sk_send_head = skb;
  30. }
  31. /*
  32. * All SKB's seen here are completely headerless. It is our
  33. * job to build the DCCP header, and pass the packet down to
  34. * IP so it can do the same plus pass the packet off to the
  35. * device.
  36. */
  37. static int dccp_transmit_skb(struct sock *sk, struct sk_buff *skb)
  38. {
  39. if (likely(skb != NULL)) {
  40. const struct inet_sock *inet = inet_sk(sk);
  41. const struct inet_connection_sock *icsk = inet_csk(sk);
  42. struct dccp_sock *dp = dccp_sk(sk);
  43. struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
  44. struct dccp_hdr *dh;
  45. /* XXX For now we're using only 48 bits sequence numbers */
  46. const int dccp_header_size = sizeof(*dh) +
  47. sizeof(struct dccp_hdr_ext) +
  48. dccp_packet_hdr_len(dcb->dccpd_type);
  49. int err, set_ack = 1;
  50. u64 ackno = dp->dccps_gsr;
  51. dccp_inc_seqno(&dp->dccps_gss);
  52. switch (dcb->dccpd_type) {
  53. case DCCP_PKT_DATA:
  54. set_ack = 0;
  55. /* fall through */
  56. case DCCP_PKT_DATAACK:
  57. break;
  58. case DCCP_PKT_SYNC:
  59. case DCCP_PKT_SYNCACK:
  60. ackno = dcb->dccpd_seq;
  61. /* fall through */
  62. default:
  63. /*
  64. * Only data packets should come through with skb->sk
  65. * set.
  66. */
  67. WARN_ON(skb->sk);
  68. skb_set_owner_w(skb, sk);
  69. break;
  70. }
  71. dcb->dccpd_seq = dp->dccps_gss;
  72. dccp_insert_options(sk, skb);
  73. skb->h.raw = skb_push(skb, dccp_header_size);
  74. dh = dccp_hdr(skb);
  75. /* Build DCCP header and checksum it. */
  76. memset(dh, 0, dccp_header_size);
  77. dh->dccph_type = dcb->dccpd_type;
  78. dh->dccph_sport = inet->sport;
  79. dh->dccph_dport = inet->dport;
  80. dh->dccph_doff = (dccp_header_size + dcb->dccpd_opt_len) / 4;
  81. dh->dccph_ccval = dcb->dccpd_ccval;
  82. /* XXX For now we're using only 48 bits sequence numbers */
  83. dh->dccph_x = 1;
  84. dp->dccps_awh = dp->dccps_gss;
  85. dccp_hdr_set_seq(dh, dp->dccps_gss);
  86. if (set_ack)
  87. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), ackno);
  88. switch (dcb->dccpd_type) {
  89. case DCCP_PKT_REQUEST:
  90. dccp_hdr_request(skb)->dccph_req_service =
  91. dp->dccps_service;
  92. break;
  93. case DCCP_PKT_RESET:
  94. dccp_hdr_reset(skb)->dccph_reset_code =
  95. dcb->dccpd_reset_code;
  96. break;
  97. }
  98. icsk->icsk_af_ops->send_check(sk, skb->len, skb);
  99. if (set_ack)
  100. dccp_event_ack_sent(sk);
  101. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  102. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  103. err = icsk->icsk_af_ops->queue_xmit(skb, 0);
  104. if (err <= 0)
  105. return err;
  106. /* NET_XMIT_CN is special. It does not guarantee,
  107. * that this packet is lost. It tells that device
  108. * is about to start to drop packets or already
  109. * drops some packets of the same priority and
  110. * invokes us to send less aggressively.
  111. */
  112. return err == NET_XMIT_CN ? 0 : err;
  113. }
  114. return -ENOBUFS;
  115. }
  116. unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu)
  117. {
  118. struct inet_connection_sock *icsk = inet_csk(sk);
  119. struct dccp_sock *dp = dccp_sk(sk);
  120. int mss_now = (pmtu - icsk->icsk_af_ops->net_header_len -
  121. sizeof(struct dccp_hdr) - sizeof(struct dccp_hdr_ext));
  122. /* Now subtract optional transport overhead */
  123. mss_now -= icsk->icsk_ext_hdr_len;
  124. /*
  125. * FIXME: this should come from the CCID infrastructure, where, say,
  126. * TFRC will say it wants TIMESTAMPS, ELAPSED time, etc, for now lets
  127. * put a rough estimate for NDP + TIMESTAMP + TIMESTAMP_ECHO + ELAPSED
  128. * TIME + TFRC_OPT_LOSS_EVENT_RATE + TFRC_OPT_RECEIVE_RATE + padding to
  129. * make it a multiple of 4
  130. */
  131. mss_now -= ((5 + 6 + 10 + 6 + 6 + 6 + 3) / 4) * 4;
  132. /* And store cached results */
  133. icsk->icsk_pmtu_cookie = pmtu;
  134. dp->dccps_mss_cache = mss_now;
  135. return mss_now;
  136. }
  137. EXPORT_SYMBOL_GPL(dccp_sync_mss);
  138. void dccp_write_space(struct sock *sk)
  139. {
  140. read_lock(&sk->sk_callback_lock);
  141. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  142. wake_up_interruptible(sk->sk_sleep);
  143. /* Should agree with poll, otherwise some programs break */
  144. if (sock_writeable(sk))
  145. sk_wake_async(sk, 2, POLL_OUT);
  146. read_unlock(&sk->sk_callback_lock);
  147. }
  148. /**
  149. * dccp_wait_for_ccid - Wait for ccid to tell us we can send a packet
  150. * @sk: socket to wait for
  151. * @timeo: for how long
  152. */
  153. static int dccp_wait_for_ccid(struct sock *sk, struct sk_buff *skb,
  154. long *timeo)
  155. {
  156. struct dccp_sock *dp = dccp_sk(sk);
  157. DEFINE_WAIT(wait);
  158. long delay;
  159. int rc;
  160. while (1) {
  161. prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
  162. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  163. goto do_error;
  164. if (!*timeo)
  165. goto do_nonblock;
  166. if (signal_pending(current))
  167. goto do_interrupted;
  168. rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb,
  169. skb->len);
  170. if (rc <= 0)
  171. break;
  172. delay = msecs_to_jiffies(rc);
  173. if (delay > *timeo || delay < 0)
  174. goto do_nonblock;
  175. sk->sk_write_pending++;
  176. release_sock(sk);
  177. *timeo -= schedule_timeout(delay);
  178. lock_sock(sk);
  179. sk->sk_write_pending--;
  180. }
  181. out:
  182. finish_wait(sk->sk_sleep, &wait);
  183. return rc;
  184. do_error:
  185. rc = -EPIPE;
  186. goto out;
  187. do_nonblock:
  188. rc = -EAGAIN;
  189. goto out;
  190. do_interrupted:
  191. rc = sock_intr_errno(*timeo);
  192. goto out;
  193. }
  194. int dccp_write_xmit(struct sock *sk, struct sk_buff *skb, long *timeo)
  195. {
  196. const struct dccp_sock *dp = dccp_sk(sk);
  197. int err = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb,
  198. skb->len);
  199. if (err > 0)
  200. err = dccp_wait_for_ccid(sk, skb, timeo);
  201. if (err == 0) {
  202. struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
  203. const int len = skb->len;
  204. if (sk->sk_state == DCCP_PARTOPEN) {
  205. /* See 8.1.5. Handshake Completion */
  206. inet_csk_schedule_ack(sk);
  207. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  208. inet_csk(sk)->icsk_rto,
  209. DCCP_RTO_MAX);
  210. dcb->dccpd_type = DCCP_PKT_DATAACK;
  211. } else if (dccp_ack_pending(sk))
  212. dcb->dccpd_type = DCCP_PKT_DATAACK;
  213. else
  214. dcb->dccpd_type = DCCP_PKT_DATA;
  215. err = dccp_transmit_skb(sk, skb);
  216. ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, 0, len);
  217. } else
  218. kfree_skb(skb);
  219. return err;
  220. }
  221. int dccp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
  222. {
  223. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk) != 0)
  224. return -EHOSTUNREACH; /* Routing failure or similar. */
  225. return dccp_transmit_skb(sk, (skb_cloned(skb) ?
  226. pskb_copy(skb, GFP_ATOMIC):
  227. skb_clone(skb, GFP_ATOMIC)));
  228. }
  229. struct sk_buff *dccp_make_response(struct sock *sk, struct dst_entry *dst,
  230. struct request_sock *req)
  231. {
  232. struct dccp_hdr *dh;
  233. struct dccp_request_sock *dreq;
  234. const int dccp_header_size = sizeof(struct dccp_hdr) +
  235. sizeof(struct dccp_hdr_ext) +
  236. sizeof(struct dccp_hdr_response);
  237. struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN +
  238. dccp_header_size, 1,
  239. GFP_ATOMIC);
  240. if (skb == NULL)
  241. return NULL;
  242. /* Reserve space for headers. */
  243. skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size);
  244. skb->dst = dst_clone(dst);
  245. skb->csum = 0;
  246. dreq = dccp_rsk(req);
  247. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESPONSE;
  248. DCCP_SKB_CB(skb)->dccpd_seq = dreq->dreq_iss;
  249. dccp_insert_options(sk, skb);
  250. skb->h.raw = skb_push(skb, dccp_header_size);
  251. dh = dccp_hdr(skb);
  252. memset(dh, 0, dccp_header_size);
  253. dh->dccph_sport = inet_sk(sk)->sport;
  254. dh->dccph_dport = inet_rsk(req)->rmt_port;
  255. dh->dccph_doff = (dccp_header_size +
  256. DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
  257. dh->dccph_type = DCCP_PKT_RESPONSE;
  258. dh->dccph_x = 1;
  259. dccp_hdr_set_seq(dh, dreq->dreq_iss);
  260. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dreq->dreq_isr);
  261. dccp_hdr_response(skb)->dccph_resp_service = dreq->dreq_service;
  262. dh->dccph_checksum = dccp_v4_checksum(skb, inet_rsk(req)->loc_addr,
  263. inet_rsk(req)->rmt_addr);
  264. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  265. return skb;
  266. }
  267. EXPORT_SYMBOL_GPL(dccp_make_response);
  268. struct sk_buff *dccp_make_reset(struct sock *sk, struct dst_entry *dst,
  269. const enum dccp_reset_codes code)
  270. {
  271. struct dccp_hdr *dh;
  272. struct dccp_sock *dp = dccp_sk(sk);
  273. const int dccp_header_size = sizeof(struct dccp_hdr) +
  274. sizeof(struct dccp_hdr_ext) +
  275. sizeof(struct dccp_hdr_reset);
  276. struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN +
  277. dccp_header_size, 1,
  278. GFP_ATOMIC);
  279. if (skb == NULL)
  280. return NULL;
  281. /* Reserve space for headers. */
  282. skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size);
  283. skb->dst = dst_clone(dst);
  284. skb->csum = 0;
  285. dccp_inc_seqno(&dp->dccps_gss);
  286. DCCP_SKB_CB(skb)->dccpd_reset_code = code;
  287. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESET;
  288. DCCP_SKB_CB(skb)->dccpd_seq = dp->dccps_gss;
  289. dccp_insert_options(sk, skb);
  290. skb->h.raw = skb_push(skb, dccp_header_size);
  291. dh = dccp_hdr(skb);
  292. memset(dh, 0, dccp_header_size);
  293. dh->dccph_sport = inet_sk(sk)->sport;
  294. dh->dccph_dport = inet_sk(sk)->dport;
  295. dh->dccph_doff = (dccp_header_size +
  296. DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
  297. dh->dccph_type = DCCP_PKT_RESET;
  298. dh->dccph_x = 1;
  299. dccp_hdr_set_seq(dh, dp->dccps_gss);
  300. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dp->dccps_gsr);
  301. dccp_hdr_reset(skb)->dccph_reset_code = code;
  302. dh->dccph_checksum = dccp_v4_checksum(skb, inet_sk(sk)->saddr,
  303. inet_sk(sk)->daddr);
  304. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  305. return skb;
  306. }
  307. /*
  308. * Do all connect socket setups that can be done AF independent.
  309. */
  310. static inline void dccp_connect_init(struct sock *sk)
  311. {
  312. struct dccp_sock *dp = dccp_sk(sk);
  313. struct dst_entry *dst = __sk_dst_get(sk);
  314. struct inet_connection_sock *icsk = inet_csk(sk);
  315. sk->sk_err = 0;
  316. sock_reset_flag(sk, SOCK_DONE);
  317. dccp_sync_mss(sk, dst_mtu(dst));
  318. dccp_update_gss(sk, dp->dccps_iss);
  319. /*
  320. * SWL and AWL are initially adjusted so that they are not less than
  321. * the initial Sequence Numbers received and sent, respectively:
  322. * SWL := max(GSR + 1 - floor(W/4), ISR),
  323. * AWL := max(GSS - W' + 1, ISS).
  324. * These adjustments MUST be applied only at the beginning of the
  325. * connection.
  326. */
  327. dccp_set_seqno(&dp->dccps_awl, max48(dp->dccps_awl, dp->dccps_iss));
  328. icsk->icsk_retransmits = 0;
  329. }
  330. int dccp_connect(struct sock *sk)
  331. {
  332. struct sk_buff *skb;
  333. struct inet_connection_sock *icsk = inet_csk(sk);
  334. dccp_connect_init(sk);
  335. skb = alloc_skb(MAX_DCCP_HEADER + 15, sk->sk_allocation);
  336. if (unlikely(skb == NULL))
  337. return -ENOBUFS;
  338. /* Reserve space for headers. */
  339. skb_reserve(skb, MAX_DCCP_HEADER);
  340. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_REQUEST;
  341. skb->csum = 0;
  342. dccp_skb_entail(sk, skb);
  343. dccp_transmit_skb(sk, skb_clone(skb, GFP_KERNEL));
  344. DCCP_INC_STATS(DCCP_MIB_ACTIVEOPENS);
  345. /* Timer for repeating the REQUEST until an answer. */
  346. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  347. icsk->icsk_rto, DCCP_RTO_MAX);
  348. return 0;
  349. }
  350. EXPORT_SYMBOL_GPL(dccp_connect);
  351. void dccp_send_ack(struct sock *sk)
  352. {
  353. /* If we have been reset, we may not send again. */
  354. if (sk->sk_state != DCCP_CLOSED) {
  355. struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC);
  356. if (skb == NULL) {
  357. inet_csk_schedule_ack(sk);
  358. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  359. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  360. TCP_DELACK_MAX,
  361. DCCP_RTO_MAX);
  362. return;
  363. }
  364. /* Reserve space for headers */
  365. skb_reserve(skb, MAX_DCCP_HEADER);
  366. skb->csum = 0;
  367. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_ACK;
  368. dccp_transmit_skb(sk, skb);
  369. }
  370. }
  371. EXPORT_SYMBOL_GPL(dccp_send_ack);
  372. void dccp_send_delayed_ack(struct sock *sk)
  373. {
  374. struct inet_connection_sock *icsk = inet_csk(sk);
  375. /*
  376. * FIXME: tune this timer. elapsed time fixes the skew, so no problem
  377. * with using 2s, and active senders also piggyback the ACK into a
  378. * DATAACK packet, so this is really for quiescent senders.
  379. */
  380. unsigned long timeout = jiffies + 2 * HZ;
  381. /* Use new timeout only if there wasn't a older one earlier. */
  382. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  383. /* If delack timer was blocked or is about to expire,
  384. * send ACK now.
  385. *
  386. * FIXME: check the "about to expire" part
  387. */
  388. if (icsk->icsk_ack.blocked) {
  389. dccp_send_ack(sk);
  390. return;
  391. }
  392. if (!time_before(timeout, icsk->icsk_ack.timeout))
  393. timeout = icsk->icsk_ack.timeout;
  394. }
  395. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  396. icsk->icsk_ack.timeout = timeout;
  397. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  398. }
  399. void dccp_send_sync(struct sock *sk, const u64 seq,
  400. const enum dccp_pkt_type pkt_type)
  401. {
  402. /*
  403. * We are not putting this on the write queue, so
  404. * dccp_transmit_skb() will set the ownership to this
  405. * sock.
  406. */
  407. struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC);
  408. if (skb == NULL)
  409. /* FIXME: how to make sure the sync is sent? */
  410. return;
  411. /* Reserve space for headers and prepare control bits. */
  412. skb_reserve(skb, MAX_DCCP_HEADER);
  413. skb->csum = 0;
  414. DCCP_SKB_CB(skb)->dccpd_type = pkt_type;
  415. DCCP_SKB_CB(skb)->dccpd_seq = seq;
  416. dccp_transmit_skb(sk, skb);
  417. }
  418. /*
  419. * Send a DCCP_PKT_CLOSE/CLOSEREQ. The caller locks the socket for us. This
  420. * cannot be allowed to fail queueing a DCCP_PKT_CLOSE/CLOSEREQ frame under
  421. * any circumstances.
  422. */
  423. void dccp_send_close(struct sock *sk, const int active)
  424. {
  425. struct dccp_sock *dp = dccp_sk(sk);
  426. struct sk_buff *skb;
  427. const gfp_t prio = active ? GFP_KERNEL : GFP_ATOMIC;
  428. skb = alloc_skb(sk->sk_prot->max_header, prio);
  429. if (skb == NULL)
  430. return;
  431. /* Reserve space for headers and prepare control bits. */
  432. skb_reserve(skb, sk->sk_prot->max_header);
  433. skb->csum = 0;
  434. DCCP_SKB_CB(skb)->dccpd_type = dp->dccps_role == DCCP_ROLE_CLIENT ?
  435. DCCP_PKT_CLOSE : DCCP_PKT_CLOSEREQ;
  436. if (active) {
  437. dccp_skb_entail(sk, skb);
  438. dccp_transmit_skb(sk, skb_clone(skb, prio));
  439. } else
  440. dccp_transmit_skb(sk, skb);
  441. }