flow.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. /* flow.c: Generic flow cache.
  2. *
  3. * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
  4. * Copyright (C) 2003 David S. Miller (davem@redhat.com)
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/list.h>
  9. #include <linux/jhash.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/mm.h>
  12. #include <linux/random.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/smp.h>
  16. #include <linux/completion.h>
  17. #include <linux/percpu.h>
  18. #include <linux/bitops.h>
  19. #include <linux/notifier.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpumask.h>
  22. #include <net/flow.h>
  23. #include <asm/atomic.h>
  24. #include <asm/semaphore.h>
  25. #include <linux/security.h>
  26. struct flow_cache_entry {
  27. struct flow_cache_entry *next;
  28. u16 family;
  29. u8 dir;
  30. struct flowi key;
  31. u32 genid;
  32. u32 sk_sid;
  33. void *object;
  34. atomic_t *object_ref;
  35. };
  36. atomic_t flow_cache_genid = ATOMIC_INIT(0);
  37. static u32 flow_hash_shift;
  38. #define flow_hash_size (1 << flow_hash_shift)
  39. static DEFINE_PER_CPU(struct flow_cache_entry **, flow_tables) = { NULL };
  40. #define flow_table(cpu) (per_cpu(flow_tables, cpu))
  41. static kmem_cache_t *flow_cachep __read_mostly;
  42. static int flow_lwm, flow_hwm;
  43. struct flow_percpu_info {
  44. int hash_rnd_recalc;
  45. u32 hash_rnd;
  46. int count;
  47. } ____cacheline_aligned;
  48. static DEFINE_PER_CPU(struct flow_percpu_info, flow_hash_info) = { 0 };
  49. #define flow_hash_rnd_recalc(cpu) \
  50. (per_cpu(flow_hash_info, cpu).hash_rnd_recalc)
  51. #define flow_hash_rnd(cpu) \
  52. (per_cpu(flow_hash_info, cpu).hash_rnd)
  53. #define flow_count(cpu) \
  54. (per_cpu(flow_hash_info, cpu).count)
  55. static struct timer_list flow_hash_rnd_timer;
  56. #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
  57. struct flow_flush_info {
  58. atomic_t cpuleft;
  59. struct completion completion;
  60. };
  61. static DEFINE_PER_CPU(struct tasklet_struct, flow_flush_tasklets) = { NULL };
  62. #define flow_flush_tasklet(cpu) (&per_cpu(flow_flush_tasklets, cpu))
  63. static void flow_cache_new_hashrnd(unsigned long arg)
  64. {
  65. int i;
  66. for_each_cpu(i)
  67. flow_hash_rnd_recalc(i) = 1;
  68. flow_hash_rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  69. add_timer(&flow_hash_rnd_timer);
  70. }
  71. static void __flow_cache_shrink(int cpu, int shrink_to)
  72. {
  73. struct flow_cache_entry *fle, **flp;
  74. int i;
  75. for (i = 0; i < flow_hash_size; i++) {
  76. int k = 0;
  77. flp = &flow_table(cpu)[i];
  78. while ((fle = *flp) != NULL && k < shrink_to) {
  79. k++;
  80. flp = &fle->next;
  81. }
  82. while ((fle = *flp) != NULL) {
  83. *flp = fle->next;
  84. if (fle->object)
  85. atomic_dec(fle->object_ref);
  86. kmem_cache_free(flow_cachep, fle);
  87. flow_count(cpu)--;
  88. }
  89. }
  90. }
  91. static void flow_cache_shrink(int cpu)
  92. {
  93. int shrink_to = flow_lwm / flow_hash_size;
  94. __flow_cache_shrink(cpu, shrink_to);
  95. }
  96. static void flow_new_hash_rnd(int cpu)
  97. {
  98. get_random_bytes(&flow_hash_rnd(cpu), sizeof(u32));
  99. flow_hash_rnd_recalc(cpu) = 0;
  100. __flow_cache_shrink(cpu, 0);
  101. }
  102. static u32 flow_hash_code(struct flowi *key, int cpu)
  103. {
  104. u32 *k = (u32 *) key;
  105. return (jhash2(k, (sizeof(*key) / sizeof(u32)), flow_hash_rnd(cpu)) &
  106. (flow_hash_size - 1));
  107. }
  108. #if (BITS_PER_LONG == 64)
  109. typedef u64 flow_compare_t;
  110. #else
  111. typedef u32 flow_compare_t;
  112. #endif
  113. extern void flowi_is_missized(void);
  114. /* I hear what you're saying, use memcmp. But memcmp cannot make
  115. * important assumptions that we can here, such as alignment and
  116. * constant size.
  117. */
  118. static int flow_key_compare(struct flowi *key1, struct flowi *key2)
  119. {
  120. flow_compare_t *k1, *k1_lim, *k2;
  121. const int n_elem = sizeof(struct flowi) / sizeof(flow_compare_t);
  122. if (sizeof(struct flowi) % sizeof(flow_compare_t))
  123. flowi_is_missized();
  124. k1 = (flow_compare_t *) key1;
  125. k1_lim = k1 + n_elem;
  126. k2 = (flow_compare_t *) key2;
  127. do {
  128. if (*k1++ != *k2++)
  129. return 1;
  130. } while (k1 < k1_lim);
  131. return 0;
  132. }
  133. void *flow_cache_lookup(struct flowi *key, u32 sk_sid, u16 family, u8 dir,
  134. flow_resolve_t resolver)
  135. {
  136. struct flow_cache_entry *fle, **head;
  137. unsigned int hash;
  138. int cpu;
  139. local_bh_disable();
  140. cpu = smp_processor_id();
  141. fle = NULL;
  142. /* Packet really early in init? Making flow_cache_init a
  143. * pre-smp initcall would solve this. --RR */
  144. if (!flow_table(cpu))
  145. goto nocache;
  146. if (flow_hash_rnd_recalc(cpu))
  147. flow_new_hash_rnd(cpu);
  148. hash = flow_hash_code(key, cpu);
  149. head = &flow_table(cpu)[hash];
  150. for (fle = *head; fle; fle = fle->next) {
  151. if (fle->family == family &&
  152. fle->dir == dir &&
  153. fle->sk_sid == sk_sid &&
  154. flow_key_compare(key, &fle->key) == 0) {
  155. if (fle->genid == atomic_read(&flow_cache_genid)) {
  156. void *ret = fle->object;
  157. if (ret)
  158. atomic_inc(fle->object_ref);
  159. local_bh_enable();
  160. return ret;
  161. }
  162. break;
  163. }
  164. }
  165. if (!fle) {
  166. if (flow_count(cpu) > flow_hwm)
  167. flow_cache_shrink(cpu);
  168. fle = kmem_cache_alloc(flow_cachep, SLAB_ATOMIC);
  169. if (fle) {
  170. fle->next = *head;
  171. *head = fle;
  172. fle->family = family;
  173. fle->dir = dir;
  174. fle->sk_sid = sk_sid;
  175. memcpy(&fle->key, key, sizeof(*key));
  176. fle->object = NULL;
  177. flow_count(cpu)++;
  178. }
  179. }
  180. nocache:
  181. {
  182. void *obj;
  183. atomic_t *obj_ref;
  184. resolver(key, sk_sid, family, dir, &obj, &obj_ref);
  185. if (fle) {
  186. fle->genid = atomic_read(&flow_cache_genid);
  187. if (fle->object)
  188. atomic_dec(fle->object_ref);
  189. fle->object = obj;
  190. fle->object_ref = obj_ref;
  191. if (obj)
  192. atomic_inc(fle->object_ref);
  193. }
  194. local_bh_enable();
  195. return obj;
  196. }
  197. }
  198. static void flow_cache_flush_tasklet(unsigned long data)
  199. {
  200. struct flow_flush_info *info = (void *)data;
  201. int i;
  202. int cpu;
  203. cpu = smp_processor_id();
  204. for (i = 0; i < flow_hash_size; i++) {
  205. struct flow_cache_entry *fle;
  206. fle = flow_table(cpu)[i];
  207. for (; fle; fle = fle->next) {
  208. unsigned genid = atomic_read(&flow_cache_genid);
  209. if (!fle->object || fle->genid == genid)
  210. continue;
  211. fle->object = NULL;
  212. atomic_dec(fle->object_ref);
  213. }
  214. }
  215. if (atomic_dec_and_test(&info->cpuleft))
  216. complete(&info->completion);
  217. }
  218. static void flow_cache_flush_per_cpu(void *) __attribute__((__unused__));
  219. static void flow_cache_flush_per_cpu(void *data)
  220. {
  221. struct flow_flush_info *info = data;
  222. int cpu;
  223. struct tasklet_struct *tasklet;
  224. cpu = smp_processor_id();
  225. tasklet = flow_flush_tasklet(cpu);
  226. tasklet->data = (unsigned long)info;
  227. tasklet_schedule(tasklet);
  228. }
  229. void flow_cache_flush(void)
  230. {
  231. struct flow_flush_info info;
  232. static DECLARE_MUTEX(flow_flush_sem);
  233. /* Don't want cpus going down or up during this. */
  234. lock_cpu_hotplug();
  235. down(&flow_flush_sem);
  236. atomic_set(&info.cpuleft, num_online_cpus());
  237. init_completion(&info.completion);
  238. local_bh_disable();
  239. smp_call_function(flow_cache_flush_per_cpu, &info, 1, 0);
  240. flow_cache_flush_tasklet((unsigned long)&info);
  241. local_bh_enable();
  242. wait_for_completion(&info.completion);
  243. up(&flow_flush_sem);
  244. unlock_cpu_hotplug();
  245. }
  246. static void __devinit flow_cache_cpu_prepare(int cpu)
  247. {
  248. struct tasklet_struct *tasklet;
  249. unsigned long order;
  250. for (order = 0;
  251. (PAGE_SIZE << order) <
  252. (sizeof(struct flow_cache_entry *)*flow_hash_size);
  253. order++)
  254. /* NOTHING */;
  255. flow_table(cpu) = (struct flow_cache_entry **)
  256. __get_free_pages(GFP_KERNEL, order);
  257. if (!flow_table(cpu))
  258. panic("NET: failed to allocate flow cache order %lu\n", order);
  259. memset(flow_table(cpu), 0, PAGE_SIZE << order);
  260. flow_hash_rnd_recalc(cpu) = 1;
  261. flow_count(cpu) = 0;
  262. tasklet = flow_flush_tasklet(cpu);
  263. tasklet_init(tasklet, flow_cache_flush_tasklet, 0);
  264. }
  265. #ifdef CONFIG_HOTPLUG_CPU
  266. static int flow_cache_cpu(struct notifier_block *nfb,
  267. unsigned long action,
  268. void *hcpu)
  269. {
  270. if (action == CPU_DEAD)
  271. __flow_cache_shrink((unsigned long)hcpu, 0);
  272. return NOTIFY_OK;
  273. }
  274. #endif /* CONFIG_HOTPLUG_CPU */
  275. static int __init flow_cache_init(void)
  276. {
  277. int i;
  278. flow_cachep = kmem_cache_create("flow_cache",
  279. sizeof(struct flow_cache_entry),
  280. 0, SLAB_HWCACHE_ALIGN,
  281. NULL, NULL);
  282. if (!flow_cachep)
  283. panic("NET: failed to allocate flow cache slab\n");
  284. flow_hash_shift = 10;
  285. flow_lwm = 2 * flow_hash_size;
  286. flow_hwm = 4 * flow_hash_size;
  287. init_timer(&flow_hash_rnd_timer);
  288. flow_hash_rnd_timer.function = flow_cache_new_hashrnd;
  289. flow_hash_rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  290. add_timer(&flow_hash_rnd_timer);
  291. for_each_cpu(i)
  292. flow_cache_cpu_prepare(i);
  293. hotcpu_notifier(flow_cache_cpu, 0);
  294. return 0;
  295. }
  296. module_init(flow_cache_init);
  297. EXPORT_SYMBOL(flow_cache_genid);
  298. EXPORT_SYMBOL(flow_cache_lookup);