swiotlb.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is for IA-64 and EM64T platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. */
  18. #include <linux/cache.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/string.h>
  24. #include <linux/types.h>
  25. #include <linux/ctype.h>
  26. #include <asm/io.h>
  27. #include <asm/dma.h>
  28. #include <asm/scatterlist.h>
  29. #include <linux/init.h>
  30. #include <linux/bootmem.h>
  31. #define OFFSET(val,align) ((unsigned long) \
  32. ( (val) & ( (align) - 1)))
  33. #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
  34. #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
  35. /*
  36. * Maximum allowable number of contiguous slabs to map,
  37. * must be a power of 2. What is the appropriate value ?
  38. * The complexity of {map,unmap}_single is linearly dependent on this value.
  39. */
  40. #define IO_TLB_SEGSIZE 128
  41. /*
  42. * log of the size of each IO TLB slab. The number of slabs is command line
  43. * controllable.
  44. */
  45. #define IO_TLB_SHIFT 11
  46. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  47. /*
  48. * Minimum IO TLB size to bother booting with. Systems with mainly
  49. * 64bit capable cards will only lightly use the swiotlb. If we can't
  50. * allocate a contiguous 1MB, we're probably in trouble anyway.
  51. */
  52. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  53. /*
  54. * Enumeration for sync targets
  55. */
  56. enum dma_sync_target {
  57. SYNC_FOR_CPU = 0,
  58. SYNC_FOR_DEVICE = 1,
  59. };
  60. int swiotlb_force;
  61. /*
  62. * Used to do a quick range check in swiotlb_unmap_single and
  63. * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
  64. * API.
  65. */
  66. static char *io_tlb_start, *io_tlb_end;
  67. /*
  68. * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
  69. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  70. */
  71. static unsigned long io_tlb_nslabs;
  72. /*
  73. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  74. */
  75. static unsigned long io_tlb_overflow = 32*1024;
  76. void *io_tlb_overflow_buffer;
  77. /*
  78. * This is a free list describing the number of free entries available from
  79. * each index
  80. */
  81. static unsigned int *io_tlb_list;
  82. static unsigned int io_tlb_index;
  83. /*
  84. * We need to save away the original address corresponding to a mapped entry
  85. * for the sync operations.
  86. */
  87. static unsigned char **io_tlb_orig_addr;
  88. /*
  89. * Protect the above data structures in the map and unmap calls
  90. */
  91. static DEFINE_SPINLOCK(io_tlb_lock);
  92. static int __init
  93. setup_io_tlb_npages(char *str)
  94. {
  95. if (isdigit(*str)) {
  96. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  97. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  98. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  99. }
  100. if (*str == ',')
  101. ++str;
  102. if (!strcmp(str, "force"))
  103. swiotlb_force = 1;
  104. return 1;
  105. }
  106. __setup("swiotlb=", setup_io_tlb_npages);
  107. /* make io_tlb_overflow tunable too? */
  108. /*
  109. * Statically reserve bounce buffer space and initialize bounce buffer data
  110. * structures for the software IO TLB used to implement the DMA API.
  111. */
  112. void
  113. swiotlb_init_with_default_size (size_t default_size)
  114. {
  115. unsigned long i;
  116. if (!io_tlb_nslabs) {
  117. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  118. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  119. }
  120. /*
  121. * Get IO TLB memory from the low pages
  122. */
  123. io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
  124. if (!io_tlb_start)
  125. panic("Cannot allocate SWIOTLB buffer");
  126. io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
  127. /*
  128. * Allocate and initialize the free list array. This array is used
  129. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  130. * between io_tlb_start and io_tlb_end.
  131. */
  132. io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
  133. for (i = 0; i < io_tlb_nslabs; i++)
  134. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  135. io_tlb_index = 0;
  136. io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
  137. /*
  138. * Get the overflow emergency buffer
  139. */
  140. io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
  141. printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
  142. virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
  143. }
  144. void
  145. swiotlb_init (void)
  146. {
  147. swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
  148. }
  149. /*
  150. * Systems with larger DMA zones (those that don't support ISA) can
  151. * initialize the swiotlb later using the slab allocator if needed.
  152. * This should be just like above, but with some error catching.
  153. */
  154. int
  155. swiotlb_late_init_with_default_size (size_t default_size)
  156. {
  157. unsigned long i, req_nslabs = io_tlb_nslabs;
  158. unsigned int order;
  159. if (!io_tlb_nslabs) {
  160. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  161. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  162. }
  163. /*
  164. * Get IO TLB memory from the low pages
  165. */
  166. order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
  167. io_tlb_nslabs = SLABS_PER_PAGE << order;
  168. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  169. io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  170. order);
  171. if (io_tlb_start)
  172. break;
  173. order--;
  174. }
  175. if (!io_tlb_start)
  176. goto cleanup1;
  177. if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) {
  178. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  179. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  180. io_tlb_nslabs = SLABS_PER_PAGE << order;
  181. }
  182. io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
  183. memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT));
  184. /*
  185. * Allocate and initialize the free list array. This array is used
  186. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  187. * between io_tlb_start and io_tlb_end.
  188. */
  189. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  190. get_order(io_tlb_nslabs * sizeof(int)));
  191. if (!io_tlb_list)
  192. goto cleanup2;
  193. for (i = 0; i < io_tlb_nslabs; i++)
  194. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  195. io_tlb_index = 0;
  196. io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
  197. get_order(io_tlb_nslabs * sizeof(char *)));
  198. if (!io_tlb_orig_addr)
  199. goto cleanup3;
  200. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
  201. /*
  202. * Get the overflow emergency buffer
  203. */
  204. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  205. get_order(io_tlb_overflow));
  206. if (!io_tlb_overflow_buffer)
  207. goto cleanup4;
  208. printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - "
  209. "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20,
  210. virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
  211. return 0;
  212. cleanup4:
  213. free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
  214. sizeof(char *)));
  215. io_tlb_orig_addr = NULL;
  216. cleanup3:
  217. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  218. sizeof(int)));
  219. io_tlb_list = NULL;
  220. io_tlb_end = NULL;
  221. cleanup2:
  222. free_pages((unsigned long)io_tlb_start, order);
  223. io_tlb_start = NULL;
  224. cleanup1:
  225. io_tlb_nslabs = req_nslabs;
  226. return -ENOMEM;
  227. }
  228. static inline int
  229. address_needs_mapping(struct device *hwdev, dma_addr_t addr)
  230. {
  231. dma_addr_t mask = 0xffffffff;
  232. /* If the device has a mask, use it, otherwise default to 32 bits */
  233. if (hwdev && hwdev->dma_mask)
  234. mask = *hwdev->dma_mask;
  235. return (addr & ~mask) != 0;
  236. }
  237. /*
  238. * Allocates bounce buffer and returns its kernel virtual address.
  239. */
  240. static void *
  241. map_single(struct device *hwdev, char *buffer, size_t size, int dir)
  242. {
  243. unsigned long flags;
  244. char *dma_addr;
  245. unsigned int nslots, stride, index, wrap;
  246. int i;
  247. /*
  248. * For mappings greater than a page, we limit the stride (and
  249. * hence alignment) to a page size.
  250. */
  251. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  252. if (size > PAGE_SIZE)
  253. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  254. else
  255. stride = 1;
  256. if (!nslots)
  257. BUG();
  258. /*
  259. * Find suitable number of IO TLB entries size that will fit this
  260. * request and allocate a buffer from that IO TLB pool.
  261. */
  262. spin_lock_irqsave(&io_tlb_lock, flags);
  263. {
  264. wrap = index = ALIGN(io_tlb_index, stride);
  265. if (index >= io_tlb_nslabs)
  266. wrap = index = 0;
  267. do {
  268. /*
  269. * If we find a slot that indicates we have 'nslots'
  270. * number of contiguous buffers, we allocate the
  271. * buffers from that slot and mark the entries as '0'
  272. * indicating unavailable.
  273. */
  274. if (io_tlb_list[index] >= nslots) {
  275. int count = 0;
  276. for (i = index; i < (int) (index + nslots); i++)
  277. io_tlb_list[i] = 0;
  278. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  279. io_tlb_list[i] = ++count;
  280. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  281. /*
  282. * Update the indices to avoid searching in
  283. * the next round.
  284. */
  285. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  286. ? (index + nslots) : 0);
  287. goto found;
  288. }
  289. index += stride;
  290. if (index >= io_tlb_nslabs)
  291. index = 0;
  292. } while (index != wrap);
  293. spin_unlock_irqrestore(&io_tlb_lock, flags);
  294. return NULL;
  295. }
  296. found:
  297. spin_unlock_irqrestore(&io_tlb_lock, flags);
  298. /*
  299. * Save away the mapping from the original address to the DMA address.
  300. * This is needed when we sync the memory. Then we sync the buffer if
  301. * needed.
  302. */
  303. io_tlb_orig_addr[index] = buffer;
  304. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  305. memcpy(dma_addr, buffer, size);
  306. return dma_addr;
  307. }
  308. /*
  309. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  310. */
  311. static void
  312. unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
  313. {
  314. unsigned long flags;
  315. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  316. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  317. char *buffer = io_tlb_orig_addr[index];
  318. /*
  319. * First, sync the memory before unmapping the entry
  320. */
  321. if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  322. /*
  323. * bounce... copy the data back into the original buffer * and
  324. * delete the bounce buffer.
  325. */
  326. memcpy(buffer, dma_addr, size);
  327. /*
  328. * Return the buffer to the free list by setting the corresponding
  329. * entries to indicate the number of contigous entries available.
  330. * While returning the entries to the free list, we merge the entries
  331. * with slots below and above the pool being returned.
  332. */
  333. spin_lock_irqsave(&io_tlb_lock, flags);
  334. {
  335. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  336. io_tlb_list[index + nslots] : 0);
  337. /*
  338. * Step 1: return the slots to the free list, merging the
  339. * slots with superceeding slots
  340. */
  341. for (i = index + nslots - 1; i >= index; i--)
  342. io_tlb_list[i] = ++count;
  343. /*
  344. * Step 2: merge the returned slots with the preceding slots,
  345. * if available (non zero)
  346. */
  347. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  348. io_tlb_list[i] = ++count;
  349. }
  350. spin_unlock_irqrestore(&io_tlb_lock, flags);
  351. }
  352. static void
  353. sync_single(struct device *hwdev, char *dma_addr, size_t size,
  354. int dir, int target)
  355. {
  356. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  357. char *buffer = io_tlb_orig_addr[index];
  358. switch (target) {
  359. case SYNC_FOR_CPU:
  360. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  361. memcpy(buffer, dma_addr, size);
  362. else if (dir != DMA_TO_DEVICE)
  363. BUG();
  364. break;
  365. case SYNC_FOR_DEVICE:
  366. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  367. memcpy(dma_addr, buffer, size);
  368. else if (dir != DMA_FROM_DEVICE)
  369. BUG();
  370. break;
  371. default:
  372. BUG();
  373. }
  374. }
  375. void *
  376. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  377. dma_addr_t *dma_handle, gfp_t flags)
  378. {
  379. unsigned long dev_addr;
  380. void *ret;
  381. int order = get_order(size);
  382. /*
  383. * XXX fix me: the DMA API should pass us an explicit DMA mask
  384. * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
  385. * bit range instead of a 16MB one).
  386. */
  387. flags |= GFP_DMA;
  388. ret = (void *)__get_free_pages(flags, order);
  389. if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
  390. /*
  391. * The allocated memory isn't reachable by the device.
  392. * Fall back on swiotlb_map_single().
  393. */
  394. free_pages((unsigned long) ret, order);
  395. ret = NULL;
  396. }
  397. if (!ret) {
  398. /*
  399. * We are either out of memory or the device can't DMA
  400. * to GFP_DMA memory; fall back on
  401. * swiotlb_map_single(), which will grab memory from
  402. * the lowest available address range.
  403. */
  404. dma_addr_t handle;
  405. handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
  406. if (swiotlb_dma_mapping_error(handle))
  407. return NULL;
  408. ret = phys_to_virt(handle);
  409. }
  410. memset(ret, 0, size);
  411. dev_addr = virt_to_phys(ret);
  412. /* Confirm address can be DMA'd by device */
  413. if (address_needs_mapping(hwdev, dev_addr)) {
  414. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
  415. (unsigned long long)*hwdev->dma_mask, dev_addr);
  416. panic("swiotlb_alloc_coherent: allocated memory is out of "
  417. "range for device");
  418. }
  419. *dma_handle = dev_addr;
  420. return ret;
  421. }
  422. void
  423. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  424. dma_addr_t dma_handle)
  425. {
  426. if (!(vaddr >= (void *)io_tlb_start
  427. && vaddr < (void *)io_tlb_end))
  428. free_pages((unsigned long) vaddr, get_order(size));
  429. else
  430. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  431. swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
  432. }
  433. static void
  434. swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
  435. {
  436. /*
  437. * Ran out of IOMMU space for this operation. This is very bad.
  438. * Unfortunately the drivers cannot handle this operation properly.
  439. * unless they check for dma_mapping_error (most don't)
  440. * When the mapping is small enough return a static buffer to limit
  441. * the damage, or panic when the transfer is too big.
  442. */
  443. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at "
  444. "device %s\n", size, dev ? dev->bus_id : "?");
  445. if (size > io_tlb_overflow && do_panic) {
  446. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
  447. panic("DMA: Memory would be corrupted\n");
  448. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  449. panic("DMA: Random memory would be DMAed\n");
  450. }
  451. }
  452. /*
  453. * Map a single buffer of the indicated size for DMA in streaming mode. The
  454. * physical address to use is returned.
  455. *
  456. * Once the device is given the dma address, the device owns this memory until
  457. * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
  458. */
  459. dma_addr_t
  460. swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
  461. {
  462. unsigned long dev_addr = virt_to_phys(ptr);
  463. void *map;
  464. if (dir == DMA_NONE)
  465. BUG();
  466. /*
  467. * If the pointer passed in happens to be in the device's DMA window,
  468. * we can safely return the device addr and not worry about bounce
  469. * buffering it.
  470. */
  471. if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
  472. return dev_addr;
  473. /*
  474. * Oh well, have to allocate and map a bounce buffer.
  475. */
  476. map = map_single(hwdev, ptr, size, dir);
  477. if (!map) {
  478. swiotlb_full(hwdev, size, dir, 1);
  479. map = io_tlb_overflow_buffer;
  480. }
  481. dev_addr = virt_to_phys(map);
  482. /*
  483. * Ensure that the address returned is DMA'ble
  484. */
  485. if (address_needs_mapping(hwdev, dev_addr))
  486. panic("map_single: bounce buffer is not DMA'ble");
  487. return dev_addr;
  488. }
  489. /*
  490. * Since DMA is i-cache coherent, any (complete) pages that were written via
  491. * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  492. * flush them when they get mapped into an executable vm-area.
  493. */
  494. static void
  495. mark_clean(void *addr, size_t size)
  496. {
  497. unsigned long pg_addr, end;
  498. pg_addr = PAGE_ALIGN((unsigned long) addr);
  499. end = (unsigned long) addr + size;
  500. while (pg_addr + PAGE_SIZE <= end) {
  501. struct page *page = virt_to_page(pg_addr);
  502. set_bit(PG_arch_1, &page->flags);
  503. pg_addr += PAGE_SIZE;
  504. }
  505. }
  506. /*
  507. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  508. * match what was provided for in a previous swiotlb_map_single call. All
  509. * other usages are undefined.
  510. *
  511. * After this call, reads by the cpu to the buffer are guaranteed to see
  512. * whatever the device wrote there.
  513. */
  514. void
  515. swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
  516. int dir)
  517. {
  518. char *dma_addr = phys_to_virt(dev_addr);
  519. if (dir == DMA_NONE)
  520. BUG();
  521. if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
  522. unmap_single(hwdev, dma_addr, size, dir);
  523. else if (dir == DMA_FROM_DEVICE)
  524. mark_clean(dma_addr, size);
  525. }
  526. /*
  527. * Make physical memory consistent for a single streaming mode DMA translation
  528. * after a transfer.
  529. *
  530. * If you perform a swiotlb_map_single() but wish to interrogate the buffer
  531. * using the cpu, yet do not wish to teardown the dma mapping, you must
  532. * call this function before doing so. At the next point you give the dma
  533. * address back to the card, you must first perform a
  534. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  535. */
  536. static inline void
  537. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  538. size_t size, int dir, int target)
  539. {
  540. char *dma_addr = phys_to_virt(dev_addr);
  541. if (dir == DMA_NONE)
  542. BUG();
  543. if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
  544. sync_single(hwdev, dma_addr, size, dir, target);
  545. else if (dir == DMA_FROM_DEVICE)
  546. mark_clean(dma_addr, size);
  547. }
  548. void
  549. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  550. size_t size, int dir)
  551. {
  552. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  553. }
  554. void
  555. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  556. size_t size, int dir)
  557. {
  558. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  559. }
  560. /*
  561. * Same as above, but for a sub-range of the mapping.
  562. */
  563. static inline void
  564. swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
  565. unsigned long offset, size_t size,
  566. int dir, int target)
  567. {
  568. char *dma_addr = phys_to_virt(dev_addr) + offset;
  569. if (dir == DMA_NONE)
  570. BUG();
  571. if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
  572. sync_single(hwdev, dma_addr, size, dir, target);
  573. else if (dir == DMA_FROM_DEVICE)
  574. mark_clean(dma_addr, size);
  575. }
  576. void
  577. swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  578. unsigned long offset, size_t size, int dir)
  579. {
  580. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  581. SYNC_FOR_CPU);
  582. }
  583. void
  584. swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
  585. unsigned long offset, size_t size, int dir)
  586. {
  587. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  588. SYNC_FOR_DEVICE);
  589. }
  590. /*
  591. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  592. * This is the scatter-gather version of the above swiotlb_map_single
  593. * interface. Here the scatter gather list elements are each tagged with the
  594. * appropriate dma address and length. They are obtained via
  595. * sg_dma_{address,length}(SG).
  596. *
  597. * NOTE: An implementation may be able to use a smaller number of
  598. * DMA address/length pairs than there are SG table elements.
  599. * (for example via virtual mapping capabilities)
  600. * The routine returns the number of addr/length pairs actually
  601. * used, at most nents.
  602. *
  603. * Device ownership issues as mentioned above for swiotlb_map_single are the
  604. * same here.
  605. */
  606. int
  607. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
  608. int dir)
  609. {
  610. void *addr;
  611. unsigned long dev_addr;
  612. int i;
  613. if (dir == DMA_NONE)
  614. BUG();
  615. for (i = 0; i < nelems; i++, sg++) {
  616. addr = SG_ENT_VIRT_ADDRESS(sg);
  617. dev_addr = virt_to_phys(addr);
  618. if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
  619. void *map = map_single(hwdev, addr, sg->length, dir);
  620. sg->dma_address = virt_to_bus(map);
  621. if (!map) {
  622. /* Don't panic here, we expect map_sg users
  623. to do proper error handling. */
  624. swiotlb_full(hwdev, sg->length, dir, 0);
  625. swiotlb_unmap_sg(hwdev, sg - i, i, dir);
  626. sg[0].dma_length = 0;
  627. return 0;
  628. }
  629. } else
  630. sg->dma_address = dev_addr;
  631. sg->dma_length = sg->length;
  632. }
  633. return nelems;
  634. }
  635. /*
  636. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  637. * concerning calls here are the same as for swiotlb_unmap_single() above.
  638. */
  639. void
  640. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
  641. int dir)
  642. {
  643. int i;
  644. if (dir == DMA_NONE)
  645. BUG();
  646. for (i = 0; i < nelems; i++, sg++)
  647. if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
  648. unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
  649. else if (dir == DMA_FROM_DEVICE)
  650. mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
  651. }
  652. /*
  653. * Make physical memory consistent for a set of streaming mode DMA translations
  654. * after a transfer.
  655. *
  656. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  657. * and usage.
  658. */
  659. static inline void
  660. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
  661. int nelems, int dir, int target)
  662. {
  663. int i;
  664. if (dir == DMA_NONE)
  665. BUG();
  666. for (i = 0; i < nelems; i++, sg++)
  667. if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
  668. sync_single(hwdev, (void *) sg->dma_address,
  669. sg->dma_length, dir, target);
  670. }
  671. void
  672. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  673. int nelems, int dir)
  674. {
  675. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  676. }
  677. void
  678. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  679. int nelems, int dir)
  680. {
  681. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  682. }
  683. int
  684. swiotlb_dma_mapping_error(dma_addr_t dma_addr)
  685. {
  686. return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
  687. }
  688. /*
  689. * Return whether the given device DMA address mask can be supported
  690. * properly. For example, if your device can only drive the low 24-bits
  691. * during bus mastering, then you would pass 0x00ffffff as the mask to
  692. * this function.
  693. */
  694. int
  695. swiotlb_dma_supported (struct device *hwdev, u64 mask)
  696. {
  697. return (virt_to_phys (io_tlb_end) - 1) <= mask;
  698. }
  699. EXPORT_SYMBOL(swiotlb_init);
  700. EXPORT_SYMBOL(swiotlb_map_single);
  701. EXPORT_SYMBOL(swiotlb_unmap_single);
  702. EXPORT_SYMBOL(swiotlb_map_sg);
  703. EXPORT_SYMBOL(swiotlb_unmap_sg);
  704. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  705. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  706. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
  707. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
  708. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  709. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  710. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  711. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  712. EXPORT_SYMBOL(swiotlb_free_coherent);
  713. EXPORT_SYMBOL(swiotlb_dma_supported);